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We present a method for detecting and localizing a fluorescing tumor obscured underneath several
millimeters of a multiply scattering, homogeneous medium from fluorescence measurements made above
the surface. Using a statistical model of the measurement system, we develop approaches for detection
by use of a binary hypothesis testing approach and localization by use of maximum-likelihood estimation.
We also compute the probability of tumor detection and the Cramér–Rao lower bound for the localization
estimate error, which are performance metrics that could potentially be optimized in an experimental
design. We validate the methods in an experimental study involving an excised mouse tumor tagged with
a new folate-indocyanine dye and obscured under a tissue-simulating lipid suspension. © 2005 Optical
Society of America
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1. Introduction

Currently, the only assured cure for the vast majority
of cancers involves the complete resection of all ma-
lignant lesions. Achievement of this objective, how-
ever, is often limited by the inability of the surgeon to
identify and localize all cancerous tissues. In some
cases, neoplastic loci are difficult to distinguish from
adjacent normal tissue. In other situations, they are
not detected by the surgeon because of their small
size or obscured location. Even after removal of visi-
ble tumor masses during surgical debulking, micro-
scopic tumors not visible to the naked eye can often be
the source of recurrent disease.1

Recent advances in biomedical optical imaging
based on fluorescent dyes2 offer great promise in di-
agnosing malignant tissue, monitoring tumor ther-
apy progress, and guiding surgical intervention for
tumor removal. Optical imaging is safe and relatively
inexpensive compared with other modalities, and op-
tical measurement probes have the potential to be

small, maneuverable, and unobtrusive. These prop-
erties can be particularly attractive in an intraoper-
ative environment where real-time imaging may be
required over a period of hours.

Fluorescence optical diffusion tomography (FODT),
in which full volumetric images of fluorescence are
reconstructed from measurements on the boundary,
has generated considerable interest.3–9 However, al-
though FODT offers the advantage of quantitative
imaging, it is an ill-posed inverse problem that is
often computationally demanding. This has moti-
vated interest in simpler, more computationally effi-
cient approaches that localize fluorophores in a
turbid medium, but fall short of quantitative FODT.
Previously, the problem of localizing fluorophores in
real animal tissue, tissue-simulating phantoms, or
computational simulations has been considered in a
variety of studies. Chen et al.10 have used a near-
infrared (near-IR) measurement system with dual
interfering sources to determine the two-dimensional
(2-D) location of a fluorescing tumor in a mouse sub-
ject. The mouse was injected with a contrast agent
that selectively targeted the tumor because of its in-
creased metabolic activity. Gannot et al.11 performed
a three-dimensional (3-D) localization of a targeted
fluorophore in the tongue of live mouse subjects un-
derneath 1–2�mm Intralipid–agarose slabs. The au-
thors measured surface fluorescence with a camera,
and they used a Levenburg–Marquardt method in
their localization procedure to fit the data to a
random-walk model. Hull et al.12 have accurately de-

A. B. Milstein (milstein@ll.mit.edu), C. A. Bouman, and K. J.
Webb are with the School of Electrical and Computer Engineering,
Purdue University, 465 Northwestern Avenue, West Lafayette,
Indiana 47907-2035. M. D. Kennedy and P. S. Low are with the
School of Chemistry, Purdue University, West Lafayette, Indiana
47907-2084.

Received 30 July 2004; revised manuscript received 21 Novem-
ber 2004; accepted 23 November 2004.

0003-6935/05/122300-11$15.00/0
© 2005 Optical Society of America

2300 APPLIED OPTICS � Vol. 44, No. 12 � 20 April 2005



termined the depth of a small fluorescent sphere em-
bedded within a turbid medium by use of fluorescence
measurements on the surface. The sample was illu-
minated from the side with an expanded laser beam,
and the fluorescence was collected from the top sur-
face with a linear array of detector fibers. Pfister and
Scholz13 have used a multiple-signal classification al-
gorithm to localize fluorescent spots under tissuelike
scatter in a computational simulation. All the local-
ization approaches essentially perform a fit between
measured data and theory. To date, the question of
how to compute the probability of tumor detection, or
how to obtain theoretical precision bounds for the
localization, has not been addressed to our knowl-
edge.

Recently, several advancements have been made in
the development of fluorescent contrast agents that
specifically target cancer cells. Receptors for the vi-
tamin folic acid are expressed at high levels in a
number of tumor types including ovarian,14 breast,15

brain,16 kidney,17 lung,18 uterine,15 and others. In
nonmalignant tissues, expression of folate receptors
(FRs) is found only in a few tissue types.19–21 Because
of the rare occurrence of FRs in normal tissues and
their high level of expression in tumors, FRs are a
strong candidate for obtaining tumor targeting with
little uptake into normal tissues. FR targeting has
previously been used for radioimaging, magnetic res-
onance imaging, and optical imaging.22–25 Optical im-
aging agents targeted with folate have been
developed with near-IR dyes as well as visible
dyes,24,25 resulting in high tumor-to-background con-
trast.

Here we use a statistical model of the measure-
ment system to develop approaches for detection by
use of a binary hypothesis testing approach and lo-
calization by use of a maximum-likelihood (ML) esti-
mation. For the detection problem, we provide
expressions for the tumor’s detection probability. We
also compute the Cramér–Rao lower bound for the
localization error. These bounds allow one to predict
the performance and solvability of a detection and
localization problem in advance, before making mea-
surements, and hence can be used to optimize an
experimental design. Previously, the Cramér–Rao
bound was computed in other inverse scattering ap-
plications to bound the localization error26 and to
compute performance limits in parametric, shape-
based imaging.27,28 In addition, hypothesis testing
has been explored for linearized inverse scattering
problems.29 We apply these to the problem of detect-
ing and localizing a fluorescent tumor.

We validate the methods in an experimental study
using an excised mouse tumor tagged with a new
folate-indocyanine dye and obscured under a tissue-
simulating lipid suspension. The new targeted folate-
indocyanine dye was designed to operate with
excitation at 785 nm, a common wavelength for inex-
pensive diode lasers and a useful one for biomedical
optics due to tissue’s relatively low absorption.30,31

The dye was injected into a mouse, where it accumu-
lated preferentially in a lung tumor. The mouse tu-

mor was then excised and placed into a tissue-
simulating Intralipid–agarose gel phantom. Use of
an excised real mouse tumor in the Intralipid sus-
pension, instead of just the dye molecules, ensures
that a medically realistic dose of the drug has been
used in the experiment. Hence, the fluorescence sig-
nature resulting from the tumor is one that could
conceivably be encountered in a clinical application.
We used a fluorescence microscope to perform a one-
dimensional (1-D) measurement scan. From these
data, we estimated the tumor’s lateral and depth co-
ordinates and instrument model parameters, which
we subsequently used to compute the performance
bounds.

2. Models

A. Coupled Diffusion Equations

Here we briefly review the diffusion equation descrip-
tion of light in multiply scattering media such as
tissue.3,4 In applications where scattering dominates
over absorption, the transport of light modulated at
angular frequency � through a scattering medium
can be modeled with the photon diffusion equa-
tion.32,33 For the exp�j�t� time variation, the diffusion
equation is given by

� · [D(r) � �(r, �)] � [�a(r) � j��c]�(r, �)
� � 	(r � rsi

), (1)

where ��r, �� �W�cm2� is the complex modulation en-
velope of the photon fluence rate, rsi

is the point-
source location, and 	�r� is the Dirac function. The
diffusion coefficient D�r� �cm� is inversely related to
the reduced scattering coefficient, and �a�r� �cm�1� is
the absorption coefficient. Note that we assume that
the laser excitation can be modeled as an isotropic
point source at position rsi

.
For the case in which the scattering medium con-

tains a fluorophore, the fluorophore is excited with
light at wavelength 
x and emits light at a longer
wavelength 
m. We use two coupled diffusion equa-
tions to describe a fluorescence measurement, with
the first to represent 
x excitation and the second to
represent the emitted 
m photons34–36:

� · [Dx(r) � �x(r, �)] � [�ax
(r) � j��c]�x(r, �)

� �	(r � rsi
), (2)

� · [Dm(r) � �m(r, �)] � [�am
(r) � j��c]�m(r, �)

� ��x(r, �)��af
(r)

1 � j��(r)

1 � [��(r)]2, (3)

where the subscripts x and m denote excitation and
emission wavelengths 
x and 
m, respectively. The
fluorescent lifetime ��r� �s� is the fluorophore’s
characteristic exponential decay constant. The fluo-
rescent yield ��af

�r� �cm�1� incorporates the fluoro-
phore’s quantum efficiency � and its absorption
coefficient �af

.
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B. Forward Model

Consider a fluorescence measurement scan, where a
single source–detector position is scanned over the
top of a tissue surface to probe for a fluorescing sub-
merged tumor. Figure 1(a) illustrates this measure-
ment, with photons migrating from the source
position to the tumor and emitted photons migrating
back to the same position. The inverse problem is to
determine the tumor’s position from the fluorescence
measurements. We use a forward model based on Eq.
(1) that gives the expected measurements that would
result from a tumor at a known position.

For simplicity, we impose a few restrictions, al-
though most of these are straightforward to remove.
We consider only the � � 0 case, where unmodulated
light is used, and we assume that �ax

� �am
and

Dx � Dm, so that the diffusion equation Green’s func-
tions are the same for 
x and 
m. We also model the
tumor as a point fluorophore, and we examine the
validity of this approximation in Subsection 2.C. Fi-
nally, we model the tissue as a semi-infinite region
with homogeneous �a and D so that a closed-form
analytical solution to the diffusion equation can be
employed. This model allows for a rapid solution to
the localization inverse problem.

Let y denote the measurement vector and let f̃�r�
denote the fluorescence data vector expected from the
diffusion model due to a point fluorophore at location
r. We assume a source wavelength of 
x and a detec-
tor wavelength of 
m. Let the measurement source
positions be identified as rsi

and let the tumor cen-
troid position be denoted by r. In addition, let g�rsi

, r�

denote the domain’s Green’s function obtained as the
solution to Eq. (1), with the source at rsi

and the
observation at r. We also denote the recorded mea-
surement at rsi

as yi. Using the coupled diffusion
equations of Eqs. (2) and (4) and the approximations
noted above, we can give the fluorescence recorded at
rsi

from a point fluorophore located at r by f̃i�r� �
g�rsi

, r�g�r, rsi
�w0, where the first Green’s function

represents the excitation light reaching the tumor,
the second represents the light emitted by the tumor
back to the measurement point, and w0 is a constant
that incorporates the tumor’s ��af

and the efficiency
of light coupling into the medium. Using the reciproc-
ity theorem,37 we can interchange the source and
observation positions of the Green’s function, and
f̃i�r� � �g�rsi

, r��2w0.
Suppose the air–tissue interface is located at

z � 0 and that the region z 
 0 consists of tissue. We
use the extrapolated zero-flux boundary condition for
the diffusion equation, where the extrapolation dis-
tance ls � 5.03D is chosen to model a scattering do-
main interface where the scatterers are assumed to
be in water with a refractive index of 1.33.38 We apply
the method of images to enforce the ��z � �ls� �
0 boundary condition, as shown in Fig. 1(b). The ex-
citation source is modeled as an effective isotropic
point source located one transport length inside the
medium at zsi

� 3D.38 We assume a semi-infinite,
homogeneous medium, with a point fluorophore at
r � �x, y, z� and the measurement position at rsi

�
�xsi

, y, zsi
�. We define

ra � [(x � xsi
)2 � (z � zsi

)2]1�2, (4)

rb � [(x � xsi
)2 � (z � zsi

� 2ls)
2]1�2. (5)

The forward model is given by38

f̃i(r) � �exp(�kra)
ra

�
exp( � krb)

rb
�2

w, (6)

� fi(r)w, (7)

where we bundled the multiplicative constants from
the closed-form Green’s function and w0 into a new
parameter w, k � ��a�D, and the definition of fi is
implied. Note that we consider a 2-D geometry, where
the laser excitation and the tumor are located at the
same y position, so no y terms appear in Eq. (6).

C. Validity of Point Tumor Source Model

In Subsection 2.B we assumed that a fluorescing tu-
mor can be approximated as a single point. To inves-
tigate the validity of this assumption for scan
measurements similar to the one in our experiment,
we performed a numerical simulation study with a
fluorophore dispersed throughout a spherical domain
of varying size and depth.39 The 3 cm � 3 cm
� 3 cm tissue phantom of Fig. 2(a) with homogeneous
background �a � 0.03 cm�1 and D � 0.033 cm was

Fig. 1. (a) Illustration of a fluorescence scan measurement, with
photons migrating within the scattering tissue. (b) Semi-infinite
geometry used to derive the forward model. The method of images
is used to ensure that � � 0 for the boundary at a distance of ls

outside of the physical air–tissue interface.
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considered. Two different-sized tumors were consid-
ered: a 2�mm fluorescent sphere and a 1�cm sphere.
Each had ��af

� 0.02 cm�1, �a � 0.030 cm�1, and the
same scattering properties as the background. A 1-D
scan (with unmodulated light) across the top of the
surface over the tumor was simulated, assuming a
conceptual instrument containing a source and de-
tector in the same position. The region was dis-
cretized into 65 � 65 � 65 voxels, and 21
measurements were simulated with multigrid finite
differences to solve the diffusion equation. The sim-
ulation used a numerical code that we previously
compared favorably with experimental data,3,4 lead-
ing us to a high degree of confidence in the precision
of the numerical simulations. Figure 2(b) shows the
simulated measurements of fluorescence for the
small tumor at four different depths. The scans are
normalized to the maximum because the signal from
the larger tumor was greater. Figure 2(c) shows the
simulated measurements of fluorescence for the large
tumor at three different depths. Figure 2(d) superim-
poses the two results. Note in Fig. 2(d) that the mea-
sured intensity profile is relatively invariant to the
tumor’s size, giving similar results as a function of
tumor depth for the two different tumor sizes consid-
ered. This result suggests that a simple point tumor
model is sufficiently accurate for localizing the cen-
troid of a tumor in a similar 1-D scanning experi-
ment. We note, however, that this observation may
not apply to other measurement geometries.

D. Detector Noise Model

For the detector noise, we assume the same shot-
noise model presented previously by Ye et al.40 Let y
denote the vector of measurements and n denote the
corresponding detector noise vector. We assume that
n is independent, zero mean, and Gaussian with the
covariance given by �, where

[ϒ]ii � �|yi|, (8)

and � is a scalar parameter of the measurement sys-
tem. Previously, Ye et al.41 presented a method for
estimating � from the measured data while solving
the optical diffusion tomography inverse problem. In
Section 5 we apply this estimation method to obtain
the value of � that we use to compute statistical
performance bounds related to our experimental
study.

3. Detection

Here we describe a procedure for detecting the pres-
ence of a tumor, and we compute the probability of
detecting a tumor for a specified false-alarm rate. As
we demonstrate in Subsection 5.D, the probability of
detection can be plotted as a function of tumor posi-
tion for a particular measurement system, allowing
one to characterize the instrument’s diagnostic capa-
bilities. The detection problem can be viewed as a
binary hypothesis testing problem.42 Let hypothesis
H0 correspond to the absence of a tumor, and let the
composite hypothesis H1, � correspond to the presence
of a tumor parameterized by the vector �
� �x z w�T, where x and z give the location and w
incorporates all scalar factors in the measurement.
Let y denote the measurement vector of length P,
and let n be the independent Gaussian noise vector
with covariance � introduced in Subsection 2.D.
The densities for y under both hypotheses are given
by

p0(y) �
1

[(2�)P|�|]1�2 exp	�
1
2 � y���1

2 
, (9)

p1, �(y) �
1

[(2�)P
���]

1�2 exp��
1
2 � y � wf(r)���1

2 �,
(10)

where r � �x z�T, and �u�v
2 � uHVu.

Suppose for the moment that � is known, and let PF

be the false-alarm rate that one wishes to achieve.
The Neyman–Pearson lemma42 indicates that a like-
lihood ratio test (LRT) produces the highest proba-
bility of detection for a specified false-alarm rate of
PF. We form the log likelihood ratio L�y, ��
� ln p1,��y��p0�y�, compare it with a threshold k̃PF

���
(which is determined by PF), and declare a tumor
present if L�y, �� 
 k̃PF

���.

Fig. 2. Simulated measurement of a tumor of diameter d at depth
zdepth, with all data sets normalized to the maximum value. (a)
Geometry. (b) Plot of simulated normalized intensity profile for a
small tumor at different depths, with d � 2 mm. (c) Plot of the
intensity profile for a large tumor at different depths, with d
� 1.0 cm. (d) Superimposed plots from two different-sized tumors,
showing the relative invariance to size.
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By writing out the ratio of Eqs. (10) and (9) and
taking the logarithm, we obtain

L(y, �) � hT(�)y � c(�), (11)

where hT��� � wfT�r���1, c��� �
1
2w

2fT�r���1f�r�.
Hence the LRT is equivalent to comparing q
� hT���y with a threshold, which we call kPF

���. Note
that the LRT is similar to matched filtering, as we
evaluate a cross correlation between the data y and
the forward model f�r� and compare it with a thresh-
old.

We can determine the threshold kPF
��� by rewriting

the LRT in a more revealing form, using q � hT���y
rather than y. We obtain the 1-D Gaussian distribu-
tions p0�q� and p1,��q� by computing the required mo-
ments:

E0(q) � hT(�)E0(y) (12)

�0, (13)

E1,�(q) � E1,�[hT(�)y]

� w2fT(�)��1f(�), (14)

�q
2 � E0[hT(�)nnTh(�)] (15)

� hT(�)�h(�). (16)

By definition, the false-alarm rate PF is given by

PF ��
kPF

�

p0(q)dq � 1 � erf*	kPF

�q

, (17)

where we define

erf*(r) ��
��

r
1

�2�
exp	�

1
2 t2
dt. (18)

Hence the threshold kPF
that allows us to achieve a

false-alarm rate PF is

kPF
� �q erf*

�1�1 � PF�. �18��

To assess the achievable performance of the tumor
detection approach, we compute the probability of a
successful tumor detection. The receiver operating
characteristic (ROC)42 is defined as the probability of
detection PD�PF� specified as a function of the false-
alarm rate PF. Using the threshold kPF

computed in
Eq. (18=), we obtain

PD ��
kPF

�

p1, �(q)dq (19)

�1 � erf*	kPF
� q�

�q

 (20)

�1 � erf*�erf*
�1(1 � PF) �

q�
�q
�, (21)

where q� � E1,��q�. From Eq. (21), the ROC is specified
for every value of � (thus for any possible tumor lo-
cation).

In practice, the tumor position and the true value of
w are not known. Because the LRT assumes a known
�, we must use a modification of the LRT called the
generalized likelihood ratio test (GLRT).42 In the
GLRT, we first suppose that the tumor is present,
and we compute the ML estimate �̂ � arg max�

p1,��y�. We then perform the LRT, using �̂ in place of
�. Because the GLRT must be used, the ROC specified
in Eq. (21) cannot be achieved in practice and must be
considered an upper bound for the true probability of
detection.42 Computing the ML estimate �̂ is the prob-
lem of localization, which is addressed in Section 4.

4. Localization

If a tumor is present, we wish to localize it by esti-
mating its x and z coordinates. In the process, we
must also estimate w as a nuisance parameter. We
use the ML estimation to compute

�̂ � arg max
�

p1,�(y). (22)

When we take the logarithm of p1,��y�, the above op-
timization is equivalent to minimizing an objective
function

c(r) � min
w

� y � wf(r)���1
2 . (23)

Setting the derivative of �y � wf�r����1 with respect to
w to zero results in the following equivalent repre-
sentation of c�r�:

w̃(r) �
fT(r)��1y

yT��1y
, (24)

c(r) � � y � w̃(r)f(r)���1
2 . (25)

We estimate the tumor position r̂ by determining the
position r that minimizes c�r� in Eq. (25):

r̂ � arg min
r

c(r), (26)

ŵ � w̃(r̂). (27)
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With the use of closed-form Green’s functions in the
computation of f, this minimization can be accom-
plished quickly, even when c�r� is evaluated over an
entire region of interest.

To assess the precision of our localization procedure
for tumors of various depths, we compute statistical
bounds on the estimator variance using a model of the
measurement system. Specifically, we compute the
Cramér–Rao lower bound43 for the estimator covari-
ance to determine a measurement’s best-case perfor-
mance limits. For simplicity, we neglect bias in our
computations of the Cramér–Rao bound, as done pre-
viously.26 Let C � E���̂ � �� � ��̂ � ��T� and let
J be the Fisher information matrix43 defined as Jmn

� E����2�����m��n�ln p1,��y��. The Cramér–Rao bound
requires that C � J�1 (i.e., C � J�1 is nonnegative
definite). It can be shown43 that

J � f̃�(�)T��1f̃�(�), (28)

where

f̃�(�) � �� f̃(r)
�x

� f̃(r)
�z

� f̃(r)
�w �T

(29)

��w �f(r)
�x w

�f(r)
�z f(r)�T

. (30)

In Appendix A we present expressions for the re-
quired partial derivatives.

5. Experiment

A. Folate-Indocyanine, Dye Synthesis

A new folate-indocyanine dye suitable for use with
785�nm diode lasers was synthesized. The structural
formula is shown in Fig. 3. We purchased
9-fluorenylmethoxy carbonyl- (Fmoc-) protected
amino acid derivatives, Fmoc-aspartic acid-loaded
Wang resin, 2-(1H-benzotriazol-1-yl)-1, 1, 3,
3-tetramethyluronium hexafluorophosphate (HBTU),
and N-hydroxybenzotriazole from Novabiochem (San

Diego, California). N10-trifluoroacetylpteroic acid was
synthesized from folic acid (Sigma Chemical Com-
pany, St. Louis, Missouri) according to a previous
published report.44 The indocyanine derivative was
also synthesized according to a literature proce-
dure.45

Standard Fmoc peptide chemistry was used to syn-
thesize a folate peptide linked to indocyanine at-
tached to the gamma carboxy of folic acid. The
sequence Asp-Lys-(�)Glu-pteroic acid was con-
structed by Fmoc chemistry with HBTU and
N-hydroxybenzotriazole as the activating agents,
along with diisopropyethylamine as the base and 20%
piperidine in dimethylformamide for deprotection of
the Fmoc groups. Fmoc-protected lysine containing a
4-methyltrityl protecting group on the ε-amine was
linked to Fmoc-protected glycine attached to a Wang
resin. An �-t-Boc protected N-�-Fmoc glutamic acid
was then linked to the peptide to provide a �-linked
conjugate on folate after attaching N10-trifluoro-
acetylpteroic acid to the peptide. The methoxytrityl
protecting group on the ε-amine of lysine was re-
moved with 1% trifluoroacetic acid in dichlorometh-
ane to allow attachment of indocyanine. Indocyanine,
diisopropylethylamine, and activating agents (added
slowly to the indocyanine solution) were reacted over-
night with the peptide and then washed thoroughly
from the peptide resin beads. The folate-indocyanine
peptide was then cleaved from the resin with 95%
trifluoroacetic acid:2.5% water:2.5% triisopropylsi-
lane solution. Diethyl ether was used to precipitate
the product, and the precipitant was collected by cen-
trifugation. The product was then washed twice with
diethyl ether and dried under vacuum overnight. To
remove the N10-trifluoracetyl protecting group, the
product was dissolved in 5 ml of water containing
0.5 ml of 10% ammonium hydroxide and stirred for
30 min at room temperature. The sample was then
precipitated with isopropanol and ether; the precipi-
tant was collected by centrifugation and then added
to a G-10 Sephadex gel filtration column �1.5 cm
� 15 cm� with water as the eluent. The product peaks
were collected and lyophilized.

B. Animal Studies

To demonstrate the effect of the folate-indocyanine
dye, we acquired images of a fluorescing tumor on a
mouse subject. All animal procedures were carried
out with approval from the Purdue Animal Care and
Use Committee. Nu�nu mice were purchased from
Harlan (Indianapolis, Indiana). The mice were at
least eight weeks old when purchased and were im-
mediately placed on folate-deficient chow (Harlan,
Indianapolis, Indiana); this occurred at least two
weeks prior to imaging. Tumors were induced into
the mice by injection of approximately 500,000 L1210
cells subcutaneously. Imaging was performed ap-
proximately two weeks after tumor induction or
when tumors reached approximately 1 cm in diame-
ter.

We injected the folate-indocyanine conjugate into

Fig. 3. Structural formula for folate-indocyanine.
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the femoral vein of the mice by making an incision in
the leg to expose the vein. We then injected 100 �l of
a phosphate-buffered saline solution containing
20 �g of the folate dye conjugate and images were
collected 2 h later. The wound was closed with Vet-
bond (The Butler Co., Indianapolis, Indiana), and the
mice were euthanized prior to imaging.

Figure 4 shows images of a nu�nu mouse with a
L1210 tumor. The mouse was illuminated under an
expanded laser diode beam at 785 nm, and images
were acquired with a Roper PI-MAX intensified CCD
camera. For the fluorescence measurements, a band-
pass filter in the 820�nm range with 10 nm FWHM
was placed over the camera. Figure 4(b) shows an
image at the 785�nm laser excitation, and Fig. 4(c)
shows the fluorescence emitted from the mouse. From
these images, it is clear that the dye provides high
contrast between tumors and the surrounding tissue.
In other experiments, we have shown that the dye
results in significantly increased fluorescence com-
pared with nontargeted indocyanine controls, but we
omit these results here for brevity.

C. Tumor Localization Measurement

Figure 5 schematically depicts an experiment to lo-
calize a fluorescent mouse tumor submerged under a
lipid suspension. A nu�nu mouse was induced to grow
a lung tumor, injected intravenously with folate-
indocyanine, and euthanized as described in Subsec-
tion 5.B. The tumor was excised and cut into two
fragments. Each of the two tumor fragments was
glued (with Vetbond) to the bottom of a cylindrical,
8.6�cm-diameter, 1.8�cm-deep plastic Petri dish.

Each tumor fragment was approximately 5 mm in
diameter and no thicker than 2 mm. The Petri dishes
were then filled with a solid gel phantom, prepared
from a suspension of 1% Intralipid and agarose.46 In
the 800�nm light wavelength range, 1% Intralipid
has �a � 0.030 cm�1 and D � 0.033 cm,47,48 similar to
the scatter of human tissue. The absorption of this
suspension is lower than that of human tissue, al-
though �a has previously been measured at around
0.040–0.050 cm�1 in certain tissue types for this
wavelength range.30 One of the Petri dishes was filled
to a height of 0.79 cm, and the other was filled to a
height of 1.20 cm. Assuming that the tumor centers
were approximately 0.1 cm from the bottom of the
Petri dishes, the true tumor depths were taken to be
0.69 and 1.1 cm.

To perform the fluorescence scan measurement, a
previously described near-IR Raman imaging micro-
scope system49,50 was used. This system was origi-
nally designed for fast Raman spectral imaging by
use of a 2-D square fiber bundle, a spectrograph, and

Fig. 4. Nu�nu mouse injected with folate-indocyanine, which
selectively targets FRs on the tumors. The illumination is due to (a)
room light, (b) 785�nm excitation, (c) 820�nm emission.

Fig. 5. Schematic depictions of tumor localization experiment. (a)
A tumor-bearing mouse is injected with folate-indocyanine and the
excised tumor fragments are bonded to Petri dishes and covered
with Intralipid and agarose. (b) The sample is scanned in a near-IR
fluorescence microscope and measurements are recorded. HNF,
holographic notch filter.
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a CCD detector. Rather than collecting a 2-D spatial
grid of spectral data, we used the system to collect
only a single fluorescence spectrum for each sample
position. A diode laser (SDL-8630) operating at
785 nm was fiber coupled into a microscope, illumi-
nating the sample from above with 
100 mW of
power. The same microscope simultaneously col-
lected the fluorescence migrating from the obscured
tumor to the top of the sample. The spectra were
recorded by use of a spectrograph and a CCD detector
(Princeton Instruments LN�CCD-1024 EHRB). The
sample was moved in one dimension with a motorized
translation stage to 15 different positions, at a spac-
ing of 0.2 cm, with the middle measurement position
directly above the tumor. To minimize noise in our
measurements, integration times of 20 s were used
(although the emission could be clearly observed for
shorter integration times). For each sample, a back-
ground spectrum was recorded over the Intralipid far
from the tumor position. This measurement was used
to subtract any effects due to dark current or back-
ground signal from the tumor fluorescence signal.

For each recorded spectrum, we formed an inten-
sity measurement by integrating over wavelengths
from 800 to 840 nm. The resulting intensity measure-
ment scans for both samples, with each scan normal-
ized to arbitrary units, are shown in Fig. 6. The
localization procedure described in Eq. (27) was used
to estimate the tumor’s location, and the resulting
best-fit diffusion model computations are plotted in
Fig. 6 for comparison purposes. The surface plots of
Fig. 7 show c�r� in the vertical plane of points directly

underneath the measurement scan computed for
each of the two phantoms. The tumor coordinates
were estimated to be at �x, z� � �0.00, 0.68� cm and
�x, z� � �0.02, 0.95� cm, compared with the corre-
sponding true coordinates �x, z� � �0.00, 0.69� cm and
�x, z� � �0.00, 1.1� cm.

To compute the results of Fig. 7, we used ���ii �
|yi|, rather than Eq. (8), because � was unknown.
This results in an unknown scalar factor for the cost
function c�r�, which has no effect on the optimization
in Eq. (27). We address the question of determining �
in Subsection 5.D.

D. Detection and Localization Performance Bounds

To assess the diagnostic capabilities of the detection
and localization methods, we considered the question
of how deeply a realistic tumor could be embedded
but still detected with high probability and localized
with good precision. Because of the geometric con-
straints imposed by the microscope, we were unable
to measure Intralipid–agarose samples substantially
thicker than the ones described in Subsection 5.C.
Hence we computed theoretical performance bounds
using the methods of Section 3 and Subsection 4.A. To
develop a model for the measurement system, it was
necessary to determine the noise scaling parameter
�. From the data and fit depicted in Fig. 6(b), we
computed the ML estimate of � as41

�̂ �
1
P � y � ŵf(r̂)��̃�1

2 , (31)

Fig. 6. Normalized mouse tumor fluorescence intensity scans for
two different Intralipid depths: (a) 0.69 cm deep and (b) 1.1 cm
deep. The dashed curves show the best fit to a diffusion model with
a point fluorophore.

Fig. 7. Cost function versus tumor position for a mouse tumor
obscured under (a) 0.69 cm and (b) 1.1 cm of Intralipid. The �
symbol marks the true tumor location; the � symbol marks the
estimated location.
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where �ϒ̃�ii � |yi| and P is the number of measure-
ments.

Using the models in Section 2, we obtained bounds
on the tumor detection probability and on the tumor
localization error as described in Section 3 and Sub-
section 4.A. To compute the probability of detection
and the Cramér–Rao bounds as a function of tumor
position r for a realistic tumor, we used �
� �̂ŵ diag|f�r�|, where ŵ was the estimate obtained
in Subsection 5.C with the data of Fig. 6. This shot-
noise model is similar to the one described in Eq. (8),
but with yi replaced by its expected value ŵfi�r�. Fig-
ure 8(a) shows the probability of tumor detection as a
function of z, for a false alarm rate of 0.03, computed
with Eq. (21). This plot is an idealization because of
the model simplifications described in Subsection 2.B
and because the ROC is based on the LRT rather
than the GLRT. Nevertheless, it provides useful best-
case information and shows that it is difficult to de-
tect a tumor deeper than approximately 3.5 cm [the
cutoff in Fig. 8(a)] with this measurement device.
Figures 8(b) and 8(c) show lower bounds on the stan-
dard deviations �X and �Z of the position estimates of
x and z, respectively, computed with Eq. (28). The
assumption of a point-source representation is con-
sidered to be valid for all positions in this example.

6. Conclusion

We have presented an approach for detecting and
localizing an obscured, fluorescing tumor, using a sta-
tistical framework. We use this framework to com-
pute the probability of tumor detection and tumor
localization precision bounds. We considered a 1-D
measurement scan, with the excitation and collection
at the same location above the sample. The method

could be extended to 2-D planar measurement geom-
etries for 3-D localization. In principle, a similar ge-
ometry could be employed in the clinic in the form of
a scanning fluorescence probe that is waved over a
tissue region, or a small probe placed on a tissue
surface. Such measurements could facilitate intraop-
erative detection and localization of tumors, allowing
a surgeon to remove all tumors while minimizing
damage to surrounding tissue.

The measurement system used to perform the ex-
periment was not originally designed for this appli-
cation, and several improvements could be made in
subsequent research. The near-IR Raman imaging
microscope system used in the experiment collects
emitted light from an area that is of the order of 1 �m
in diameter.49 A larger-aperture detection system
could be used to reduce the exposure times. Time- or
frequency-domain measurements, rather than only
cw measurements, would potentially provide addi-
tional detection and localization criteria that are use-
ful. In addition, all the methods and analyses
presented here can be extended to more sophisti-
cated, multiple source–detector geometries that are
typically used in FODT. Another possibility is that
the approach of dual interfering sources51,3 studied
for 2-D tumor localization could be combined with our
approach for estimating tumor depth, potentially re-
sulting in a more accurate 3-D localization. An im-
portant future step would be to apply our analysis
methods to in vivo tumor detection and localization.
The excising of the mouse tumor and measurement in
an Intralipid–agarose suspension provided a care-
fully controlled experiment for our initial studies. For
in vivo experiments, irregular surfaces and possibly
inhomogeneous tissue properties might have to be
addressed.52

The fast detection and localization approach pre-
sented here could serve as a real-time complement to
more computationally demanding, but more quanti-
tative, FODT reconstruction algorithms. In addition,
detection and localization of a fluorescing tumor
might provide useful prior knowledge that can be
incorporated into Bayesian FODT reconstruction ap-
proaches.3 The ROC and the Cramér–Rao bound re-
sults presented here could also be used to optimize a
FODT measurement system geometry for the tasks of
detection and localization. These possibilities, com-
bined with the high tumor-to-background contrast
offered by the folate-indocyanine imaging agent,
could improve the performance in fluorescence-
enhanced optical mammography53 or other diagnos-
tic imaging applications.

Appendix A: Partial Derivatives for the Cramér–Rao
Bound

Here we compute the partial derivatives required in
Eq. (28). We first rewrite fi�r�:

fi(r) � [ai(r) � bi(r)2, (A1)

where ai and bi are the first and second terms in the

Fig. 8. Theoretical performance bounds for tumor measurement
as a function of tumor depth. (a) Probability of detection for a
false-alarm rate of 0.03. (b) Cramér–Rao bound for �X. (c) Cramér–
Rao bound for �Z.
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brackets of Eq. (6), respectively. The partial deriva-
tives are as follows:

�fi

�x � 2(ai � bi) 	�ai

�x �
�bi

�x 
, (A2)

�fi

�z � 2(ai � bi) 	�ai

�z �
�bi

�z 
, (A3)

�ai

�x � �(x � xsi
)ai(ra

�2 � kra
�1), (A4)

�ai

�z � �(z � zsi
)ai(ra

�2 � kra
�1), (A5)

�bi

�x � �(x � xsi
)bi(rb

�2 � krb
�1), (A6)

�bi

�z � �(z � zsi
� 2ls)bi(rb

�2 � krb
�1). (A7)
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