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We introduce a forward model for the computation of high angle annular dark field (HAADF) images of
nano-crystalline spherical particles and apply it to image simulations for assemblies of nano-spheres of
Al, Cu, and Au with a range of sizes, as well as an artificial bi-sphere, consisting of solid hemispheres of Al
and Cu or Al and Au. Comparison of computed intensity profiles with experimental observations on Al
spheres at different microscope accelerating voltages provides confidence in the forward model. Simu-
lated tomographic tilt series for both HAADF and bright field (BF) images are then used to illustrate that
the model-based iterative reconstruction (MBIR) approach is capable of reconstructing sphere config-
urations of mixed atomic number, with the correct relative reconstructed intensity ratio proportional to
the square of the atomic number ratio.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The field of materials science has seen a dramatic increase in
the use of X-ray or electron-based tomographic studies of mate-
rials. Despite the availability of advanced materials–characteriza-
tion tools, rapid and sensitive detectors, and massive computa-
tional resources, there is still a dire need for accurate physical
models and the associated algorithms that can assist the user in
(1) predicting what the data should look like, given a model of the
material system, and (2) extracting all available information from
an acquired data set. For instance, high angle annular dark field
(HAADF) electron tomography is used to reconstruct nanoscale
objects in 3D (e.g., [1]), but to-date such reconstructions are
mostly qualitative instead of quantitative. In medical X-ray to-
mography applications (for instance, dual energy CT-scans [2]),
tomographic reconstruction results in a quantitative 3D map of the
object's density distribution; one can quantitatively identify bone,
tissue, empty spaces, fluids, and so on. In medium resolution
HAADF tomography, on the other hand, there is no clear under-
standing of what the quantity is that is being reconstructed; since
katakrishnan),
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the HAADF signal is considered to be proportional to Z2, with Z the
atomic number, one should ask the question: can we actually re-
construct Z2 as a function of position in the sample? It appears from
the recent HAADF literature (e.g., [3]) that the electron tomo-
graphy community has not yet answered this apparently simple
question. Some progress has been made at the atomic length scale
[4], where 3D reconstructions of nano-particles are now within
the realm of possibilities, but at the larger length scale (tens of
nanometers to microns, e.g., the relevant length scales for many
modern materials applications) no reports of quantitative HAADF-
based reconstructions can be found. This example illustrates that
today's modern data processing algorithms in electron microscopy
are not necessarily being employed to the fullest extent. Extracting
all possible information from a data set requires not only algo-
rithms for the analysis of the reconstructions but also predictive
(forward) algorithms so that microstructure models can be com-
pared to actual data sets. In 3D TEM and SEM studies, such algo-
rithms are still rare and in this contribution we describe a forward
modeling approach for HAADF-STEM tomography that may ulti-
mately make this powerful technique more quantitative.

Model-based iterative reconstruction (MBIR) algorithms have
emerged as a mathematical and algorithmic framework for in-
tegrating physical models of materials and devices with experi-
mentally measured data to form quantitative inversions of 3D
material parameter volumes [5]. The MBIR framework formulates
the problem of data inversion as an estimation problem, in which
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the unknown quantity is the image or volume to be reconstructed.
The MBIR problem typically then reduces to an optimization with
terms representing the match of the measured data to the theo-
retical prediction and the known and statistical ensemble prop-
erties of the material. MBIR is a powerful framework because it
allows for incorporation of general nonlinear physics-based for-
ward models, joint estimation of unknown physical parameters
(e.g., instrument calibration parameters), and both hard and soft
constraints resulting from material properties and statistical ma-
terial characteristics.

While conventional image reconstruction methods (e.g., fil-
tered back projection (FBP) or simultaneous iterative reconstruc-
tion technique (SIRT) [6,7]) depend on linearity assumptions, MBIR
does not require such approximations, and can produce quanti-
tatively accurate reconstructions in a wide range of scenarios. In
many cases, the use of more complex and accurate physical
models leads to nonlinear forward models, e.g., surface-connected
voids modify serial sectioning BSE observations due to what is
essentially an occlusion process; and the attenuation of the bright-
field beam changes the HAADF scattering amplitude. Both of these
phenomena represent nonlinear forward dependencies, which can
be fully incorporated in MBIR methods and the corresponding cost
function can be solved using a range of mathematical tools, such as
multiresolution/multigrid methods [8], adjoint differentiation [9],
and Fréchet differentiation [10]. A key advantage of MBIR methods
is that they can accommodate limitations in experimental systems
by estimating calibration (i.e., hyper-) parameters automatically as
part of the reconstruction process. In addition, diverse information
regarding the known physical properties of a sample, along with
its ensemble statistical properties, can also be integrated into the
MBIR approach. Reconstruction regularity can be imposed through
Bayesian prior modeling of local and even global material
statistics.

In the longer-term, MBIR offers the potential for dramatic im-
provements through joint optimization of sensing hardware and
reconstruction algorithms. For example, the acquisition speed of
limited view time-varying samples can be dramatically increased
by designing the microscope to acquire along sparse time-varying
viewing directions. Through the use of sparse manifold con-
straints, the resulting 4D reconstruction can still be well-posed,
even with large reductions in the total quantity of acquired data.
Similar system optimization can be used to integrate multi-modal
data, e.g., bright and dark field information.

One of the essential ingredients of the MBIR approach is the
ability to compute the forward projection of an object. In other
words, for a given object, and a given acquisition modality, the
MBIR approach relies on the availability of a physics-based algo-
rithm that can predict the images or spectra that would be gen-
erated for this modality and this object. This is not a new concept,
and the microscopy community has for several decades now
computed high resolution lattice images based on a model (the
crystal structure) and an imaging modality (a parallel or a con-
verged probe and knowledge of the microscope aberrations).
However, such a forward modeling approach is less common for
other imaging modalities, such as HAADF-STEM tomography. In
the remainder of this paper, we will describe a relatively simple
physics-based forward model for HAADF-STEM signal generation
and apply it to three “phantom” samples. These are digital samples
with an idealized and quantified structure that can be used to
verify the validity and accuracy of tomographic reconstruction
algorithms, in the same way that the well known Shepp–Logan
phantom, which mimics the density variations of the human head
and brain, is the standard for testing X-ray computed tomography
algorithms. The phantom samples are a collection of aluminum
nano-spheres, mixed aluminum and copper or aluminum and gold
spheres, and a single Al/Cu or Al/Au bi-sphere.
Our ultimate goal is to create an MBIR approach for the quan-
titative reconstruction of HAADF-STEM tomography data sets,
using BF data as the normalization, while taking into account the
fact that BF data is usually complicated due to elastic scattering
contributions. The first step towards solving the general problem
is to take a simple model for HAADF image formation (the volume
to be reconstructed is assumed to be represented by HAADF
scatter coefficients at every point in space) and to combine it with
a prior model (which is essentially a smoothness constraint) to
formulate tomographic reconstruction as a maximum-a-posteriori
probability (MAP) estimation problem. In this approach, the object
to be reconstructed is described entirely by the HAADF scatter
coefficients, and the BF signal is ignored completely; we have
shown [11] that such a simple forward projection model already
provides a significant improvement over the more traditional
SIRT-based reconstruction approaches. In the next step, antici-
pating that a proper accounting for elastic contributions to the BF
and HAADF signals would be necessary, we explored an MBIR
approach to pure BF reconstructions; in our model [12] we deal
with elastic (Bragg) scattering as anomalies in the data (a sudden
large change in the signal restricted to certain sample tilt angles).
This approach was also found to be superior to that of the more
conventional reconstruction methods. In the present contribution,
we present a first attempt at combining BF and HAADF signals
using a more complex model for the HAADF signal, but we sim-
plify the BF signal to one that is affected by absorption only, so that
we can determine the best way to incorporate BF normalization
into the MBIR reconstruction approach. As will be shown in what
follows, this simplified approach already has the potential to
provide quantitative reconstructions in which the reconstructed
scatter coefficients have a realistic dependence on the atomic
number. Finally, in ongoing research, we plan to combine all our
prior approaches and quantitatively account for all scattering
contributions to both BF and HAADF signals. One of the potential
additional benefits could be the ability to also determine the
crystallographic orientation of the sample (multiple grains or
particles), since the BF signal will be properly modeled using an
elastic scattering approach. It should be noted that the BF signal,
which will be used to normalize the HAADF signal, is an in-
coherent BF signal.

The structure of this paper is then as follows: first, in Section 2,
we describe the phantom structures and the basic scattering
processes that will be taken into account in the forward projection
model. In Section 3, we describe for each of the phantoms how the
HAADF-STEM tomographic signals are computed. These simulated
data sets are then used to test a recent new HAADF-STEM re-
construction algorithm. The effects of bright field normalization of
the HAADF signal are explored in Section 4. Although the BF and
HAADF forward models presented here do not formally consider
Bragg scattering, we find that BF normalization of the HAADF
signal produces quantitative tomographic reconstructions. Section
5 concludes this paper.
2. Generation of the phantom structures

2.1. The multi-sphere phantoms

Since a sphere is a relatively simple shape in terms of geometry
and projections, all three phantoms will be based on spheres. In
this section, we briefly describe a simple method to generate a
phantom consisting of a semi-random arrangement of spheres
with a range of sizes. We start from an algorithm for the random
space-filling tiling of a plane with identical but differently sized
shapes (a technique borrowed from statistical geometry [13]) and
extend it to 3-D. Consider a 3-D box with volume V which we wish



Fig. 1. (top) Experimental HAADF image of Al spheres (300 kV) and (bottom) three
different views of a phantom of randomly positioned spheres.
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to fill completely with spheres (i.e., a tiling with, in the limit, no
empty space left over). If the first sphere that we place randomly
inside the box has volume V0, then we can fill the box with a series
of spheres of ever decreasing size, to fill all the gaps. The volume of
the i-th sphere is given by V g i0 ( ), where g(i) is a suitably chosen
function. In the limit of a complete tiling, we must have

V V g i ,
1i

0
0

∑= ( )
( )=

∞

so that the function g(i) must sum to a finite value V/V0. In prin-
ciple there should not be any overlap between spheres, but in
practice, to mimic the experimental microstructure, we will allow
a very small amount of overlap.

We select the following function for g(i):

g i i , 2c( ) = ( )−

where c ∈ . For c 1> , the resulting series converges, and defines
the Riemann zeta function cζ ( ):

c
i
1

.
3i

c
0

∑ζ ( ) =
( )=

∞

Optimal values for c range from 1.2 to about 1.4.
To create a realistic configuration of nano-spheres, with empty

spaces in between, and aggregates of spheres of different sizes, we
take a box of dimensions b b b, ,x y z( ), with bz significantly smaller
than the other two dimensions to reflect the fact that, in a real
sample, the spheres would be spread out in a relatively thin layer
on a support membrane. Spheres are randomly positioned, with
volumes decreasing according to the above choice of g(i), but we
impose a few additional constraints. First of all, to mimic the fact
that the spheres lie on top of a planar support film, we do not
allow spheres to approach the z¼0 plane any closer than their
radius; secondly, we allow spheres to overlap by a small number of
voxels, to make sure that they are in tight contact. Thirdly, we
introduce a plateau in the sphere size plot, so that there are a
predefined number of spheres with identical size before we con-
tinue the decrease of the function g(i). Finally, to mimic the wide
open spaces typically observed in between particle clusters in
experimental data, we eliminate the first Ns spheres (which are the
largest ones due to our choice of g(i)) from the data set after it has
been created. The series is then truncated after N spheres (in this
paper N¼4000). As illustrated in Fig. 1, this algorithm generates a
rather realistic arrangement of spheres. The mixed aluminum–

copper or aluminum–gold sphere phantoms can be generated
easily by randomly assigning atomic number 13 or 29 (or 79) and
the appropriate normal absorption parameter to each sphere.
Fig. 2. Bright field tilt series for a bi-sphere with absorption parameters specified in
the text.
2.2. The Al/Cu bi-sphere phantom

The simplest of the phantom structures used for our work is the
bi-sphere, a simple sphere of radius R for which the two hemi-
spheres have different atomic numbers and absorption para-
meters. At zero sample tilt, the top half of the sphere has atomic
number Z1 and normal absorption parameter μ1, whereas the
bottom half has parameters Z2 and μ2. If we assume that the z-axis
points upwards, and the y-axis is the tilt axis, then the equation of
the mid-plane for a given tilt angle τ is given by z¼γx, with

tanγ τ= .
In the absence of Bragg scattering, the forward scattered (BF)

image is relatively easy to compute analytically. The path length
inside the sphere as a function of the image pixel position (x,y) for
a tilted sphere is given by
⎡⎣
⎤⎦

x y R x y H H H x H

H H x

, 2

4

2 2 2
1 2 2

1

λ μ γ μ γ μ γ

μ γ

( ) = − − ( ( ) + ( − )) ( − ) + ( ( )

+ ( − )) ( ) ( )

when x y R2 2 2+ ≤ and x y R1 2 2 2 2γ( + ) + ≥ ; the function H(x) is the
unit step function, which equals 1 when the argument is positive,
and 0 when it is negative. When x y R1 2 2 2 2γ( + ) + ≤ then we have

x y x R x y, ;1 2 1 2
2 2 2λ γ μ μ μ μ( ) = − ( − ) + ( + ) − −

x y,λ ( ) vanishes everywhere else.
The BF image intensity according to Beer's law is then given by

I x y I e, .BF
x y

0
,( ) = λ− ( )

Fig. 2 shows a few frames of a simulated tilt series based on the
equation above for a bi-sphere of radius 60 nm, and absorption
parameters 2 /2000 nm1

1μ π= − and 2 /800 nm2
1μ π= − . The tilt an-

gles are (from left to right) 85°, 70°, 50°, 20°, and 0°.
3. HAADF forward projection model

The HAADF signal stems primarily from Rutherford scattering
of the incident electrons. The differential scattering cross section
for scattering of individual electrons by atoms with atomic number
Z is given by



Fig. 3. (a) Integrand of the Rutherford scattering cross section for a HAADF detector
angular range of 60–300 mrad; the vertical dashed lines show the integration
subdivisions for the harmonic series discussed in the text. (b) shows how Ruther-
ford electrons scattered in one sphere may intersect one or more additional spheres
on their trajectory to the HAADF defector.
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where 8.854 10 F/m0
12ϵ = × − is the permittivity of vacuum, Ω the

solid angle, Ekin is the (relativistic) kinetic energy of the electron,
and β the scattering angle measured with respect to the forward
direction. For 200 kV electrons (the relativistically corrected vol-
tage is 239,139 V) and Al atoms, the pre-factor is given by
3.83�10�28 m2, or 3.83 barns; for 300 kV electrons (388,062 V
relativistically), the differential cross section pre-factor equals
1.92 barns.

For a given Rutherford scattering event on a single atom with a
scattering angle in the range ,1 2β β[ ], the total scattering cross
section is then given by the integration (denoting the pre-factor by
b and working in spherical coordinates):

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟b bd d
sin

sin
2

4
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sin
2

1
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.
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2
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2∫ ∫σ φ θ θ
π θ π β β= ( − ) = −

π

θ

θ

The annular detector inner and outer angles βi and βo are ex-
pressed as o1θ π β= − and i2θ π β= − . For the annular detector used
in typical experiments, the relevant angles are 60 mradiβ ≈ and

5 300 mrado iβ β≈ = , leading to a scattering cross section in this
angular range of around 13,400b for a single atom. For a given
detector geometry, this quantity must be multiplied by the in-
cident beam current density (about 106 A/cm2) and the pixel dwell
time (10 μs–1 ms) to obtain the total signal generated at a scat-
tering point inside a conical shell tied to the annular detector.

It should be noted that this angular dependence results in a
very uneven distribution of electrons across the detector. Fig. 3
(a) shows the integrand (logarithmic scale) of the cross section
integral above as a function of the angular range (expressed in
terms of θ), for βi¼3.5° and βo¼17.5°. This steep angular variation
means that the numerical integration over θ will need to be per-
formed using smaller integration steps near the inner edge of the
detector and larger steps near the outer edge. We use the fol-
lowing harmonic series to determine the step sizes jβΔ for this

integration: hj
N j 1β αΔ = − − , where N is the number of integration

intervals, h a constant in the range 0, 1[ ], and

h
h h

1
1

.
5o i N

α β β= ( − ) −
( − ) ( )

It is easily verified that this expression spans the entire angular
range:

.
j

N

j o i
1

∑ β β βΔ = −
=

The constant h has been set to the value 0.9 for all simulations
reported in this paper.

The total signal acquired by the annular detector consists of
electrons that were Rutherford scattered at any point inside the Al
spheres. The Rutherford signal contributing to a single “detector
pixel” must be attenuated to account for the path length traversed
by the scattered electron inside the original sphere plus all other
spheres that this electron traversed. In this model, we ignore
multiple Rutherford scattering events.

Consider the case illustrated in Fig. 3(b): a Rutherford scatter-
ing event occurs in the top sphere, and the event location is taken
as the origin. The electrons that travel inside the gray cone in
sphere 1 can reach the annular detector at the bottom of the
drawing. The number of such electrons is determined by (1) the
depth inside sphere 1 at which the scattering event occurs; (2) the
distance that the scattered electron travels inside sphere 1, and
(3) the distance(s) that the electron travels inside other spheres.
To obtain the path length we need a simple expression for the

length of a line intersecting a sphere. If we assume an origin
outside a sphere with radius R and located at c, then it is easy to
show that the intersecting points along a line with unit direction

vector ℓ̂ are given by λ ℓ̂± , where

⎡⎣ ⎤⎦R cc c ,2 2 2
1/2

λ = ℓ̂· ± (ℓ̂· ) + −±

and c c2 2= | | . Intersections will only occur if the expression under
the square root is positive; if it is zero, then the line is tangent to
the sphere and the intersection length vanishes. The intersection
length λΔ is thus given by

⎡⎣ ⎤⎦R cc2 .2 2 2
1/2

λΔ = (ℓ̂· ) + −

If the origin lies inside the sphere (as is required for the compu-
tation of Rutherford scattering events), then the portion of the line
length inside the sphere starting at the scattering event is given by

⎡⎣ ⎤⎦R cc c .2 2 2
1/2

λ λΔ = = ℓ̂· + (ℓ̂· ) + −+

For numerical convenience, we express the unit vector ℓ̂ in
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spherical coordinates as cos sin , sin sin , cosφ θ φ θ θℓ̂ = ( ). We
discretize the annular detector both in the radial and azimuthal
directions, with step sizes dθ and dφ. This leads to a total of

⎢
⎣⎢

⎥
⎦⎥

⎢
⎣⎢

⎥
⎦⎥N

2
d d

,d
max minπ

φ
θ θ

θ
= × ( − )

where ⌊⋯⌋ indicates the nearest smaller integer.
The final expression for the HAADF signal strength (i.e., number

of electrons counted) at a given beam position (x,y), with an in-
cident beam current density js and exposure time tΔ is given in
integral form by
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∑ ∑

φ θ θ
π θ

μ λ φ θ λ φ θ

( )

= Δ
−

×

− + ( − ) + ( ) + Δ ( )

π

π β

π β

∈ ( ) −

−

=

−

In this expression, x y,( ) is the set of spheres whose center, when
projected along the z-axis, lies less than a distance Rmax from the
image pixel (x,y), and zi is the distance along the z-axis measured
from the entrance point zi,in of the beam in sphere i. The first sum
in the exponential covers the attenuation of the incident beam
traveling through spheres that precede sphere i. The factor ,iλ φ θ( )
is the distance traveled through sphere i in the direction ,φ θ after
the Rutherford scattering event at depth zi; the final sum covers
the attenuation of the scattered electrons when they travel
through other spheres that happen to overlap the Rutherford
“conical volume” described by , ,i 0φ β β( [ ]).

Since we will employ a discrete description of the detector, the
integrals must be replaced by summations. The step size along the
beam direction is represented by zΔ , the azimuthal step size by

φΔ , and the step size along θ is θΔ . The summations then become
Fig. 4. (a) 300 kV and (b) 80 kV experimental HAADF images from a 510 nm diameter A
profiles for the indicated values of ξ in the absorption parameter μ¼2π/ξ; the normaliz
white lines in (a) and (b)), for the two accelerating voltages are superimposed as thick
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− ( Δ ) + Δ ( Δ )
( )

π θ

∈ ( ) =
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−
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where mi is the number of steps zΔ needed to traverse sphere i at
location (x,y); pθ is the number of subdivisions of the θ angular
range of the detector (see Eq. (5); Nφ is the number of azimuthal
subdivisions, and θp is short hand notation for pp 1θ θ θ= + Δ . For
the mixed sphere case, the parameters b and μ become dependent
on the atomic number Z, and b must be placed inside the first
summation.

Fig. 4(a) and (b) shows HAADF images of a 510 nm diameter
spherical Al particle at 300 kV (a) and 80 kV (b) microscope ac-
celerating voltages. Images were acquired on an FEI Titan micro-
scope operating at 80 kV and at 300 kV at spot size 7, STEM mode,
camera length 100 mm, with a Fischione HAADF STEM detector. In
Fig. 4(c), simulated radial intensity profiles are shown for several
values of the absorption length ξ in 2 /μ π ξ= , computed using Eq.
(6). Azimuthally averaged intensity profiles for the Al sphere are
superimposed as a dashed white wedge on the figure; note that
near the center of the sphere, the profiles are noisy due to the
small number of data points in the average. All profile intensities
are normalized with respect to the intensity at the center of the
sphere, and the radial distance is normalized by the sphere radius.
The 300 kV experimental profile coincides nearly perfectly with
the simulated curve labeled ξ¼500, while the 80 kV result lies
between the curves labeled 325 and 350. The agreement between
the normalized simulated and experimental intensity profiles in-
dicates that Eq. (6) provides a reasonable forward model for the
HAADF signal from spherical particles.
l spherical particle. The thin continuous lines in (c) are normalized radial intensity
ed experimental profiles, azimuthally averaged over the indicated wedge (dashed
lines in (c).
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4. Simulated BFþHAADF-STEM data sets and reconstructions

4.1. Image simulations

For each of the phantom structures introduced in Section 2,
HAADF-STEM as well as BF tilt series were computed using the
image models described in the previous section. A microscope
accelerating voltage of 300 kV was used for all simulations. Table 1
shows a number of parameters for each tilt series: number of
image pixels (n�n), pixel size x(Δ ), tilt range ( ,max maxθ θ[ − ] in 1°
increments), and the volume and type of reconstruction that was
carried out (either based on the HAADF simulations only, or using
both BF and HAADF signals). All tomographic reconstructions were
carried out using the OpenMBIR public domain package [14]. For
all image simulations the HAADF detector had an acceptance range
of 3.5 , 17.5[ ° °]. The HAADF detector was segmented in 20 radial
and 90 azimuthal sectors, with h¼0.9 in Eq. (5). An incident beam
current of 106 C/cm2/s was used for all simulations, with a pixel
dwell time of 1 ms. Normal absorption lengths were estimated
using the Weickenmeier–Kohl absorptive form factors [15] and are
843 nm for Al, 1028 nm for Si, 420 nm for Cu, and 236 nm for Au
(at 300 kV). The integration step size along the beam direction was
taken to be 0.5 nm.

Fig. 5 shows selected results of the tilt series simulations; all
phantom data sets are made available via the OpenMBIR web site
[14]. Fig. 5(a) and (b) are for the bisphere phantom, Al–Cu on the
left and Al–Au on the right. The label on the top right of each
image indicates the detector intensity range for BF and HAADF
images. The particular tilt angle for the displayed images is shown
in the lower right corner of the BF images. The increase in in-
tensity on one side of the sphere is due to the fact that for a tilted
bisphere, two regions with different atomic number and different
absorption lengths contribute to the HAADF signal. Fig. 5(c) and
(d) are BF, HAADF pairs for a pure Al sphere phantom, with a
maximum sphere size of 50 nm, and two different tilt angles of 0°
and 60°. The bottom row (Fig. 5(e) and (f)) shows identical si-
mulation results with half of the Al spheres randomly replaced by
Cu spheres (e) or Au spheres (f). Note that the maximum HAADF
intensity increases with increased atomic number, as expected.
Note also that the HAADF signal is about four orders of magnitude
smaller than the incident intensity of the BF signal, in agreement
with the Rutherford scattering probability, indicating that HAADF
and BF signals are properly scaled with respect to each other. This
is important, since the BF signal will be used as a normalization
signal for the HAADF tomographic reconstruction.

4.2. Tomographic reconstructions

4.2.1. Reconstruction algorithm summary
The HAADF-STEM tomographic reconstructions are carried out

using the MBIR approach [11]. The optimal reconstructions are
obtained as
Table 1
Phantoms, simulation parameters and reconstruction modes for all the tilt series gener

Phantom n xΔ (nm) maxθ

Al–Cu bisphere 200 1 75°, 90°
Al–Au bisphere 200 1 75°
Al spheres 511 2 75°
Al, Si spheres 511 2 90°
Al, Cu spheres 511 2 75°, 90°
Al, Au spheres 511 2 75°, 90°
Cu, Au spheres 511 2 75°, 90°
f g Af s farg min
1
2 7f 0

2^ ← ∥ − ∥ + ( )
( )Λ

≥

where g is the acquired HAADF data (with or without BF nor-
malization) organized as an M�1 vector, A is an M�N forward
projection matrix, f represents all the unknown voxels organized
as an N�1 vector and Λ is an M�M diagonal matrix with each
entry inversely proportional to the noise variance of the HAADF
measurement; s(f) corresponds to a Markov random field prior
model that penalizes differences between adjacent voxels. In
particular we use a q-GGMRF model for s(f) which has the form
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where is the set of pairs of neighboring voxels (e.g., a 26 point
neighborhood), and p, c and sf are q-GGMRF parameters. The
weights wjk are inversely proportional to the distance between
voxels j and k, normalized to 1. The parameter p controls the
smoothness of the edges in the reconstruction while sf controls
the tradeoff between resolution and noise. For the results in this
paper, we set p¼1.2 and adjust sf for the best visual quality in the
reconstructions. The value of c is set to 0.001, which makes the
function ρ (·) have bounded second derivatives, thereby simplify-
ing the overall optimization.

Minimizing the above cost function is a computationally chal-
lenging problem. We use the iterative coordinate descent (ICD)
algorithm [16] which lowers the cost function with respect to each
pixel one at a time. In order to reduce the computational com-
plexity of the 1-D optimizations we construct a substitute function
[17] to the original function and minimize this new function. The
substitute function is constructed so that it is computationally
inexpensive to minimize and minimizing the substitute lowers the
original cost. The algorithm is further sped up by using a multi-
resolution initial condition. This method solves the optimization
problem at a coarser scale (larger voxels) and uses the low re-
solution reconstruction to initialize the subsequent finer resolu-
tion reconstruction [18]. Since we start with a better initial con-
dition, the convergence of the algorithm to the minimum is rapid
at the computationally expensive finer scales.

4.2.2. Bisphere phantom reconstruction results
Fig. 6 shows a summary of the Al–Cu bisphere reconstruction

results. The top row shows reconstructed intensity histograms (on
a logarithmic scale) for the partial tilt series (a) and the full tilt
series (b). The solid line represents the normalized BFþHAADF
reconstruction, whereas the dashed line uses only the HAADF data.
The reconstructed intensities were scaled to the interval [0,1] be-
fore the histogram calculation. Note that both BFþHAADF curves
show two peaks, presumably corresponding to signals from the Al
ated using the image models introduced in Section 3.

Reconst. volume HAADF BFþHAADF

200�132�200 ✓ ✓

200�132�200 ✓ ✓

510�511�200 ✓

510�511�160 ✓

510�511�160 ✓

510�511�160 ✓

510�511�160 ✓
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Al-Cu, 30° Al-Au, -45°

Al, 0° Al, -60°

Al-Cu, 30° Al-Au, 30°

Fig. 5. Example images from the simulated tilt series for the cases listed in Table 1. In each image pair, the labels at the top right indicate the intensity range on the BF or
HAADF detector; the label at the bottom right of the BF image indicates the type of spheres used as well as the tilt angle for this particular image. The field of view is
200�200 nm for the bisphere images in (a) and (b) and 1022�1022 nm for (c)–(f).
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and Cu portions of the bisphere. When the most intense peak
position is determined (vertical dashed lines labeled 1 in (a) and
(b)), and this position is scaled by a factor Z Z/ 0.2Al Cu

2( ) = , then we
obtain the vertical line labeled 2. Note that this line very nearly
coincides with the location of the second peak in each of the
histograms. The ratio of the HAADF and incoherent BF signals
overcomes the (non-linear) attenuation of the HAADF signal; both
signals contain a Beer's law style attenuation, so that the nor-
malized HAADF signal becomes nearly linear in the sample
thickness. Since the HAADF signal consists of both a Z2 contribu-
tion and a Beer's law attenuation, it should be no surprise that the
normalized reconstruction properly scales the reconstructed in-
tensities to be proportional to Z2. For the HAADF-only re-
constructions, however, no clear peaks are observed for the tilt
series with the missing wedge (a); the full tilt series (b) has a small
peak near normalized intensity level 0.65 and a broad peak near
the corresponding level of 0.13, but neither of these peaks can be
used easily for segmentation of the reconstructed data set. The
BFþHAADF reconstruction, even in the case of the missing wedge,
lends itself more readily to a threshold-based segmentation
approach.

Fig. 6 (c) shows vertical sections (normal to the tilt axis)
through the bisphere, displayed as gray-scale images with a
common intensity scale inside each set of four; in all cases, Cu is at
the bottom. The labels above each image refer to the slice location,
in nm from the sphere center. In the full-tilt BFþHAADF case, the
reconstructed interface between Al and Cu is perfectly sharp; in all
other cases, varying amounts of diffuseness can be observed near
the interface, in particular in the HAADF-only reconstruction with
a missing wedge. In addition, this reconstruction shows significant
non-uniformity in the Cu region, particularly near the sphere edge.
Such non-uniformity is absent in the BFþHAADF reconstruction
for the 75° tilt range, although some voxels at the surface of the
hemisphere show an increased intensity relative to the internal
voxels. This non-uniformity is due to a model mismatch between
the physically accurate forward model, which includes both
HAADF scatter and attenuation, and the forward model contained
in the MBIR reconstruction algorithm, which is a linear HAADF
scatter model without attenuation. While it is conceivable to im-
plement the more physically realistic forward model described in
this paper directly into the MBIR iterative reconstruction process,
here we investigate the results when the HAADF projection images
are normalized by the BF image, and then reconstructed using
MBIR.

Fig. 6 (d) shows line profiles normal to the interface plane
through the center of the bisphere (dashed line in the inset in (d)).
Dashed lines correspond to the 75° tilt series, solid lines to the full
tilt series; gray lines represent the HAADF-only reconstruction,
and solid lines the normalized BFþHAADF reconstruction. All in-
tensities were scaled to the interval [0,1]. Note that the BFþHAADF
reconstructions show nearly horizontal plateaus in both the Cu
region (left half) and the Al region (right half). The HAADF-only
reconstruction shows a significant variation of the intensity across
the entire range. Profiles parallel to the interface plane, through
both the Cu and Al regions, are shown in Fig. 6(e); the gray curves
correspond to the Al region, black curves to Cu. Once again, the
BFþHAADF reconstruction is nearly perfectly level across each
region. Note that the curves on the left represent the full tilt series
on the right the tilt series with a missing wedge. The results of
these simulations suggest that the BFþHAADF reconstructions
provide a quantitative aspect that the HAADF-only approach can-
not match. In the following section therefore, we will focus only on
reconstructions that employ both HAADF and BF data as input.
Note also that an attempt to use a standard SIRT reconstruction
algorithm was not successful with the present data sets pre-
sumably due to the rather large contrast between the two hemi-
spheres.
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Fig. 6. Reconstructed intensity histograms (logarithmic scale) for a cubic box surrounding the Al–Cu bisphere, using HAADF-only and BFþHAADF reconstructions; (a) uses a
partial tilt range of [�75°,þ75°], whereas (b) shows the results for the full tilt series [�90°,þ90°]. (c) shows cross sections normal to the tilt axis at the indicated distances
from the center, for HAADF-only and BFþHAADF reconstructions. (d) and (e) show profiles across the bisphere, perpendicular to the interface plane (d) and parallel to the
interface plane. Both partial (dashed) and full (solid) tilt series results are shown for HAADF-only and BFþHAADF reconstructions (d); in (e), gray lines correspond to profiles
through the Al hemisphere, whereas black lines correspond to the Cu hemisphere.
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4.2.3. Multisphere phantom reconstruction results
Fig. 7 shows reconstructed intensity histograms (logarithmic

scale) for the partial (left column) and full (right column) tilt
series. As before, intensities were normalized to the interval [0,1]
and binned with a step size of 0.01. Each row corresponds to a
different combination of Z1 and Z2: Al–Cu (top row), Al–Au (center
row) and Cu–Au (bottom row). Each histogram shows two gray
curves, corresponding to the reconstructed intensities inside a 3D
mask for each of the sub-sets of spheres (475 spheres of type 1,
452 spheres of type 2). The solid black line is the sum of the two
individual histograms. The vertical dashed line labeled “1” in each
plot is located at the center of mass of the intensities for the higher
atomic number spheres. The other line, labeled “2”, is located at a
position that is scaled by the factor Z Z/1 2

2( ) from line “1”.
For the Al–Cu phantom, two peaks are observed in Fig. 7(a) and

(b); the position of the second vertical line, with a scaling factor of
(13/29)2¼0.2, is slightly towards the right of the corresponding
peak, similar to the results for the bisphere. For the Al–Au tilt
series, the reconstructed histograms, shown in Fig. 7(c) and (d),
only reveal one single peak for the Au spheres. The scaling factor
for the second peak is equal to (13/79)2¼0.027, which indicates
that the reconstructed intensity associated with the Al spheres will
occur at the very left edge of the histogram, just barely above the
lowest overall intensity. As a result, the Al spheres are not well
defined in the reconstruction, likely due to the high Z2 contrast
between the two materials. Image acquisition with a larger dy-
namic range throughout the entire imaging series would be ne-
cessary for resolving the Z-contrast between Al and Au.

When the Al spheres are replaced by Cu, the scaling factor
becomes (29/79)2¼0.134, which is still fairly small. The re-
constructed histograms in Fig. 7(e) and (f) do show a peak at the
lower intensities, to the left of line “2”; replotting the histogram
with a smaller binsize (not shown) does result in the intensity
levels dropping off towards the left edge of the histogram, and the
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Fig. 7. Reconstructed intensity histograms (logarithmic scale) for (a) and (b) Al–Cu, (c) and (d) Al–Au, and (e) and (f) Cu–Au multi-sphere phantoms for tilt ranges of
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masking out everything but the sphere of type Z1 or Z2.
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Cu spheres are reasonably well reconstructed.
When the atomic numbers are more similar, the reconstruction

leads to overlapping intensity peaks in the histogram, as shown in
Fig. 8 for a mix of Al and Si spheres; the scaling factor is now equal
to (13/14)2¼0.862, and the peaks occur at the correct relative
position. The gray curves indicate significant overlap between the
reconstructed intensities for the Al and Si spheres; since the par-
ticle shapes are simply spherical, it should still be possible to
segment the reconstruction into spheres of types Z1 and Z2, but, in
general, more advanced segmentation approaches, such as the EM/
MPM algorithm [19], may be required to handle the peak overlap.

Finally, Fig. 9 shows, for the Al–Cu multisphere phantom, the
average intensity for each sphere in the data set as a function of
the radius of the sphere; note that there is significantly more
scatter at smaller sphere radii. Assuming that the reconstructed
intensity will be more realistic for the larger spheres, the dashed
horizontal lines correspond to the average normalized intensity for
the Al and Cu spheres, for the subset of spheres with radius larger
than 10 nm (i.e., to the right of the vertical dashed line). The short-
dashed line corresponds to the location computed from the Cu line
by scaling by a factor of (13/29)2¼0.2. Note that the smaller
spheres produce a lower average intensity, both for Al and Cu. For
the larger Al spheres, the scaled average intensity is quite close to
the expected intensity.
5. Conclusions

The results in the previous section show clearly that the model-
based iterative reconstruction procedure described in [11] is cap-
able of producing reconstructions that are nearly quantitative, due
to the fact that the bright field images are used to normalize the
HAADF data. Without such normalization, the reconstructed in-
tensities do not have a straightforward interpretation, and ex-
traction of quantitative data from a HAADF-only reconstruction
appears to be problematic. The approach presented in this con-
tribution illustrates that the combination of an accurate forward
projection model for the formation of HAADF and BF images of
nano-crystalline spheres combined with a model-based iterative
reconstruction technique allows for the quantitative extraction of
the ratio of the atomic numbers of two elemental solids, and thus
provides a pathway to quantitative HAADF tomographic re-
constructions. A direct reconstruction of the atomic number dis-
tribution will likely require a more accurate determination of in-
cident beam currents and measured HAADF and BF intensities.
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