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ABSTRACT

Digital holography (DH) systems have the potential to perform single-shot imaging through deep turbulence by
incorporating emerging algorithms, such as model-based iterative reconstruction (MBIR), that jointly estimate
both the phase-errors and speckle-free image. However, the high computational cost of MBIR poses a challenge
for use in practical applications.

In this paper, we propose a method that makes MBIR feasible for real-time DH systems. Our method uses
surrogate optimization techniques to simplify and speed up the reflectance and phase-error updates in MBIR.
Further, our method accelerates computation of the surrogate-updates by leveraging cache-prefetching and SIMD
vector processing units on each CPU core. We analyze the convergence and real CPU time of our method using
simulated data sets, and demonstrate its dramatic speedup over the original MBIR, approach.

Keywords: Digital Holography, MBIR, SIMD parallelism, surrogate optimization, phase-recovery

1. INTRODUCTION

Digital holography (DH) systems can acquire high-resolution images of far-away targets using a coherent laser
source and an image-sensor such as a focal plane array (FPA). The main advantage of DH systems is their ability
to coherently detect weak signal fields that are modulations of the source optical field. The resulting complex
images can be processed to remove severe distortions that would not otherwise be possible with conventional non-
coherent detection. Consequently, DH imaging has huge potential for real-time remote-sensing and surveillance
(ISR) applications.

Figure 1 illustrates remote-sensing using a DH system. Reflected light from the target is focused onto the
FPA using a lens-array. This weak received field is then demodulated by mixing it with a strong reference field
that is identical to the source but has a linear pixel-wise phase offset”. This demodulation technique is known as
optical heterodyning'>2, and the resulting FPA measurement is the hologram. While most DH systems use simple
Fourier-based methods to form the target image from the hologram, advanced image-formation methods®? can
significantly improve quality.

The presence of deep atmospheric turbulence between the target and image sensor can pose a strong challenge
to DH systems. As shown in Figure 1, turbulence distorts the point-wise phase of the pupil-plane optical field?,
or equivalently, the Fresnel diffraction pattern of the target. In this case, DH systems must remove these
phase-errors in order to recover a focused image of the target.

Image sharpening (IS)* and model-based iterative reconstruction (MBIR)'*7 are perhaps the two ma-

jor classes of algorithms for estimating the unknown phase errors from DH images. The IS and DH-MBIR
methods primarily differ in two ways. First, the IS method estimates the complex-valued reflection coefficient,
which typically has abrupt spatial variations due to speckle. Alternatively, DH-MBIR estimates the real-valued
reflectance® ", which is typically much smoother as seen in Figure 4. Second, IS and DH-MBIR use very different

*author is currently with Lawrence Livermore National Labs, Livermore, CA. This work was at Purdue University, West Lafayette.
Further author information: Send correspondence to Venkatesh Sridhar, E-mail: vsridha@purdue.edu.

tprojecting the field at an oblique angle onto the FPA produces such a phase-offset
#We assume isoplanatic atmospheric conditions, which allows us to accumulate the phase-errors during wave propaga-
tion in the pupil-plane
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mathematical frameworks, and consequently, different iterative computations to estimate the phase-errors and
the target image.

IS methods are based on maximizing the sharpness of the intensity image specified by the magnitude-squared
of reflection coefficient, g. More specifically, IS uses simple Fourier-inversion methods to express g as a function
of the detected pupil-plane field, y, and the unknown phase-errors, ¢. Then, the phase-errors are estimated by
maximizing a sharpness metric associated with the image |g|?. However, g is affected by speckle noise®, which

limits the quality of both the sharpened image and the estimated phase-errors’.

In contrast, DH-MBIR methods use a Bayesian framework to jointly estimate the target reflectance, r, and
the unknown phase-errors, ¢, from the detected pupil-plane field, y. The key advantage of DH-MBIR is that
it estimates the reflectance, r, which is much smoother than the reflection coefficient, |g|?, estimated by IS.
Therefore, since the unknown has fewer degrees of freedom, the estimation problem can be more accurately
solved with with less data.

In this paper, we propose a method to significantly speed up MBIR for real-time DH applications. Our
approach uses surrogate optimization to simplify the pixel-wise phase-error and reflectance updates that dominate
the computation. We also show how fast parallel SIMD vector processing instructions together with cache
prefetching can be used to speed these operations even on a single core of a modern CPU. In our experiments
with simulated data sets we verify the convergence of our method and show that we achieve dramatic speedup
over the original DH-MBIR approach!. More specifically, we show that on a single CPU core our method
accelerates the reflectance and phase-error updates by a factor of 15.1x and 37.6x respectively as compared to
the original approach, and consequently accelerates each DH-MBIR iteration by a factor of 23.7x.

%
Coherent
light source

Interference

(Fresnel Diffraction)

Phase error ¢ Pupil Plane

Object Plane (turbulence) Field y Focal :’Lir;e) Array
(Reflection
Coefficient g) )
FFT o D(e”) FFT
(corrupted by phase error) {} (Lens >FPA)
Heterodyning
light source (LO)

Figure 1. Illustration of a Digital Holography system for remote-sensing. A laser source illuminates the target and a lens
focuses the reflected light onto the FPA. The detected field is optically heterodyned with a strong reference field to form
a hologram. However, atmospheric turbulence between the target and lens can corrupt the pupil-plane field by inducing
phase-errors. These phase-errors must be removed prior to recovering the target image from the hologram.

2. STASTICAL FRAMEWORK FOR DH-MBIR

In this section, we briefly describe the forward model of the DH system and summarize the MBIR reconstruction
approach developed by Pellizari et al..

8¢ is speckled since each pixel value can be modeled as a sum of many small scatterers, whose phase is a uniform
random variable € (0, 27)
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2.1 DH Forward Model
Following from Figure 1, the detected pupil-plane field y € C™ is given by

y =D(a)D(e’*)Fg+w (1)

where D(:) = diag(:), g € C" represents the object’s reflection coefficient, F' € C™*™ represents a 2-D Discrete
Spatial Fourier transform (DSFT) that computes the Fresnel diffraction integralY, a € {0,1}" denotes the
aperture mask, ¢ € (—m, 7)™ represents the phase-errors in the pupil-plane caused by turbulence, and w ~
N (0,02 1) represents white noise. So, we can specify (1) using the following conditional distribution

1 1
p(ylg, ¢) = WQXP{—M|?J—A¢9|2}7 (2)

where Ay = D(a)D(e’?)F is the system matrix/.
Since we specify the speckle-free reflectance r as E[|g|?], we can model g as N'(0,D(r)) shown below

*71 exp {—g"D(r)!
plglr) = CPIGIEE p{—¢"D(r)"'g}. (3)

2.2 MAP Estimation for DH Reconstruction

Pellizari et al.! formulate the joint estimation of reflectance » € R*" and phase-errors ¢ as a Maximum-a-
posteriori (MAP) estimation problem given by

(7, d) = argn;ax log p(y|r, ¢) + log p(r) + log p(¢), (4)

where p(y|r, ¢) denotes the likelihood model, and, p(r) and p(¢) denote the prior models for r and ¢ respectively.
However, computing the likelihood model in (4) is not tractable without the knowledge of missing information,
g. To overcome this issue, Pellizari et al.! use the Expectation-Maximization (EM) algorithm to reformulate the
MAP estimate of (4) as the following iterative update

(r®), ¢ = argmax Q(r, ¢; r* =1, "1, (5)
¢
where the function @ is specified by

Q(r,¢; ', ¢") = Ey [logp(y, glr, )|y, ", ¢'] 4 log p(r) + log p(¢). (6)

In the Appendix, we compute the above Q function starting from (2) and (3). A more comprehensive derivation
for the same is available in Pellizari et al.'.

Algorithm 1 shows the pseudo-code for implementing the EM algorithm specified by (5) and (6) (also see
(22) in the Appendix). Each of the M-steps represented by lines 11 and 14 is implemented using only one pass of
Iterative Coordinate Descent (ICD) optimization®, and the prior models for phase and reflectance are specified
by Markov Random Field (MRF) priors.

3. ACCELERATING DH-MBIR

In this section, we propose a method that drastically speeds up the M-steps in Algorithm 1 that dominate the
computation by using surrogate optimization and SIMD parallelization.

Ywe neglect the quadratic phase terms in the Fresnel integral

IAs in !, we approximate D(a) = I, so that Ay is orthogonal
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Algorithm 1 EM Algorithm for DH-MBIR
1: // Initial values: (r',¢') € (RT", (—m,7)™)
2: // Assumption: D(a) = I, so AgA(z, =nl

3:

4: while not converged do

5: // E-step: Find Posterior mean p and covariance C
- 2

6: C: (%AgA¢/ +ID(TJ)71) —D(W)

7 0= C’Agy

8: 2= A=)t

9:

10: // M-step: Reflectance update

- 24+C
11: r < argmin{ E ('MS TC%s —Hogrs> — logp(r)}
r

reR+" —1 s
12:

13: // M-step: Phase-error update
14: ¢ < argmin,, {—G%Real (yD(ei?)z) — 1ogp(¢)}
15: (r',¢") < (r,¢)

16: end while

3.1 Fast Method for Reflectance Update
Each greedy pixel-wise r update is given by

. ‘,Us|2 Os
I's —— 1 bs / — 4 9
<— argmin " + logu + E gplu—rj) (7)

u>0 j€ds

where C' and p are defined by lines 6 and 7 of Algorithm 1 respectively, p(.) is a Gibbs-prior potential function,
more specifically a Q-Generalized Gaussian Markov random field prior (Q-GGMRF)? in this case, and s denotes
the neighborhood of pixel s.

Pellizari et al.>*7 compute the above update almost exactly using a method based on derivative-rooting.
However, this approach requires finding the root(s) of a cubic polynomial which is computationally expensive.

In order to speed-up the r update, we replace the objective function in (7) with a suitable surrogate that is
easy to minimize. However, designing a surrogate typically requires the objective function to be convex. So first,
we substitute the +log() function in (7) with its 1°% order approximation, which yields a convex optimization
of the form

s +Cs
s ¢ argmin s P+Cs | i + Z bs jp(u—r1;) ¢ . (8)
u>0 jeds

We then design a quadratic surrogate function for (8) based on the Linear Interpolation of Derivative (LID)
method!’. We define the function I(-) : Rt — R as

|/v‘s|2+cs n u

m rs

I(u) = (9)

The first and second derivatives of [(-) are given by

2 2
(|M3|U;_CS) + l7 l//(u) _ 2(|I’LS| +CS)

() = —
() Ts us
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In accordance with the LID method, we specify a quadratic surrogate function that matches the derivative of
I(-) defined by (9) at 2 different points, rs and «s, where r4 is the current value of the pixel being updated and
as is another suitably chosen value in the search direction. In this case, our reflectance update is given by

0
T's <— argmin 22 + 01u + Z bsip(u — Tj) ) (10)
ueS 2 JEOs

where S denotes the search interval (min(r, o), max(rs, ay)), and, 6o, 61 are given by

= ) ey (M)

rg — Olg r2a?
21 C 1
91 :l/(TS)*QQTS:77(|NS| ;F s) +**927’5.
72 T

We select a; that bounds our search interval as shown below

T .
. if I'(rs) + Z bs,jp'(rs —1r5) >0
g = j€EODs

rs(1+ M) else,

where M > 0. In practice, we suitably vary M such that it decays slowly with the number of iterations.

We can replace the symmetric Gibbs-prior model in (10) with a quadratic surrogate function of its own.
Consequently, (10) further simplifies to

0 .
T's <— argmin 20+ Oru+ Z ijQ(U - Tj)2 ) (11)
ueS 2 j€ds ” 2

where 7; is given by

So, the surrogate-based reflectance update is given by

01— icosbs,iTiTj
Py e clipd — | = 2 jc0s badTi" ,SY, (12)
02+ > jeos Us.iTs

where the clip{z, (a,b)} here denotes z when z € (a,b), @ when z < a, and b otherwise.

3.2 Fast Method for Phase-error Update

The exact pixel-wise phase-error update is given by
¢s + argmin ¢ —m; cos(u — @s) + Z bsjp(u—dj) ¢ (13)
u€[—m,m) jeas

where ys = 2ys27 /02 (see line 8 of Algorithm 1 for definition of z), ms = |xs|, ¥s = Zxs, and p(-) is the
phase-wrapped quadratic error with the form

p(A) = ([(A+mmod 2r] - m)*

= min (A + 2mn)* . (14)
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Figure 2. Approximation of the wrapped-phase penalty function p(u — ¢;),j € 9s, for the s-th pixel ICD update. Sub-
figures (a) and (b) show how the approximation varies with different values of (¢;, ¢s).

Pellizari et al."»? estimate the phase-errors on a lower-resolution grid and compute the above ICD update
using the Golden-section search (GSS) method. However, the GSS method is computationally expensive since it
involves nested evaluations of the local cost function.

We devise a faster update strategy for the ICD update. We first approximate the cos(-) function in (13) with
its Taylor’s series expansion of cos(A) ~ 1 — %AQ to yield approximate ICD update of

. 1
¢s < argmin §ms(u — o)t + Z b jp(u— ;) o . (15)
wE[—m,m) jeds
Substituting in the form of p(-) from (14), yields the update
1
¢s < argmin §ms(u —ps)2 + Z bs ;min (u — ¢; + 27rnj)2 . (16)
u€[—m,m) jcos nj

While exact solution of equation (16) is difficult, we can get a local minimum using alternating minimization.
One iteration of alternating minimization is given by

n; < argmin (¢s — ¢; + 2mm)?, j € Os (17)
mez
) oms
Ps aer[grnln) T(U —ps)2 + Z bei(u— ¢ +2mn )% 5 . (18)
uel=m,m JjEDs

Figure 2 illustrates how the above method approximates the wrapped-phase penalty function in (15). Note that
since ¢;,¢s € [—m,m), we can show that (17) specifies n; € {—1,0,1}, and further, ¢; — 27n; € (—2m,2m).
Consequently, equation (18) can be simplified further as

¢s < Qgs + 2wk (19)

where ¢~>5 is defined as
- Meps+2 Zjeas bsj(¢; — 2mn;)

ms + 2 Zjeas bs,j

)

and k, is defined as

1 (;~Ss < -7
ks =10 q;s € [-m,m)
-1 és > .
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3.3 SIMD Parallelization of ICD updates

ICD optimization is a serial pixel-wise greedy minimization method. However, from (7) and (13) we notice that
the ICD updates for those pixels that do not form pair-wise MRF cliques with one another are independent and
can be computed simultaneously. For example, Figure 3(a) shows that in the case of a MRF with symmetric
8-point neighborhood, we can specify a tiled pixel-grid of 4 different colors where ICD updates for pixels of the
same color are fully disassociated. Furthermore, the simplified ICD updates represented by (12) and (19) can be
fully implemented by basic addition and multiply operations™*. So, we can utilize SIMD units that perform fast
vector addition and multiplication on a single CPU core to update multiple disassociated pixels at a time. Figure
3(b) illustrates our idea of ICD parallelization using SIMD processing. Importantly, note that the required data
must be packed into contiguous arrays prior to SIMD computation.

8-point MRF
neighborhood

I--I---IIE
1

o] 8] 10
HEENNEENNE

(a) Tiled pixel pattern

Pixels to be updated
[1]2]s

—_—

eee SIMD Vector Processing Unit

Vertical neighbors ‘ ‘

L.
..

Horizontal neighbors

Diagonal neighbors

L1 ]
L1 ]
L1 ]
L]

= [l - 6

— Updated Pixel Values

(b) Parallel updates for pixels of same color using SIMD operations

Figure 3. SIMD Parallelization of ICD updates: (a) A tiled grid where pixels of the same color have independent ICD
updates (b) SIMD processing units of a CPU can be used to update multiple pixels of the same color at a time using fast
vector add and multiply operations.

However, our above approach has one key limitation. Accessing the data in an interleaved manner adds
significant overhead that reduces the benefit of the SIMD parallelism. To overcome this issue, we provide an
alternate method that negates the need to sample data in a tiled fashion.

We alternatively propose a simple row-wise update strategy which extends the SIMD vector processing
method of Figure 3(b) towards simultaneously computing the ICD updates for pixels in contiguous blocks within
the same row. In order to explain why this method works in practice, let us assume that within the symmetric
8-point MRF neighborhood depicted in Figure 3(a), the contribution of the horizontal left neighbor is small

**We choose Q-GGMRF parameters’ in (7) as (q,p) = (2,1) or (2,2) so that its surrogate coefficients 7; in (11) can
be computed easily

Proc. of SPIE Vol. 11543 1154304-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Sep 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



compared to the other 7 neighbors put together. In this case, we can show that our row-wise SIMD method
approximates serial pixel-wise minimization in raster order.

So, our row-wise update strategy provides dual benefits of fast memory access and SIMD parallelism. Our
experiments demonstrate that this method significantly speeds-up ICD computation without affecting conver-
gence.

4. EXPERIMENTAL RESULTS
4.1 Method

In this section, we compare the computational performance, convergence and reconstruction quality of our fast
DH-MBIR method against the exact DH-MBIR method' using simulated datasets. We implement both MBIR
methods on an Intel Xeon CPU (E5-2660 v3) in ANSI C with single-threading. The source code was compiled
with the Intel icc compiler (ver. 17.0.1) which automatically converts the tight vectorizable loops into AVX2
instructions for SIMD processing. We implement all Fourier-based operations in MBIR using FFT routines from
the Intel Math Kernel Library (MKL).

For our experiments, we simulate 6 different data sets, each based on the same object reflectance shown in
Figure 4 but a different phase-error screen and reflection-coefficient.

We simulate the phase-errors in the pupil-plane based on a Power Spectral density (PSD) modeling technique
11,12 For turbulent conditions, the 2-D spatial distribution of the phase-errors can be modeled as a Kolmogorov
PSD in the Fourier domain (see equation (1) of Srinath et al.'?). So, we generate the phase-errors by first scaling
white noise in the Fourier domain with a Kolmogorov PSD and then applying an inverse FFT !2, It is worth
noting that the PSD incorporates a key parameter known as the Fried coherence length, ry, that determines the
spatial correlation of the phase-errors. We specifically parameterize half of our simulated phase-error screens by
D,/ro = 10, and the other half by D,/rq = 20, where D, denotes aperture diameter. The top row of Figure
6(c) and (d) illustrates the simulated phase-screens.

We generate the reflection-coefficient based on the given object reflectance by sampling from the i.i.d complex
Gaussian distribution specified by (3). Subsequently, we simulate the detected field in the pupil-plane based on
the forward model specified by (1).

For most experiments, the grid-size for both the pupil-plane detection and the reconstruction is 256 x 256.
For CPU timing experiments alone we use a grid size of 128 x 128.

We quantify the quality of our phase-error estimate based on the Strehl ratio metric specified by

[pi @ 9) exp {(6(w,y) — 9z, y)) } dody

Strehl ratio = ,
ffpupil Cl(l', y) d'rdy

where a represents the aperture mask and ¢ — gﬁ represents the estimation error.

. 2_||| |||=1 .
=2
III'

6 -III
200

USAF-1951

25 25

50 100 150 200 250

50 100 150 200 250

Figure 4. Example depicting object reflectance, r and simulated reflection coefficient, g. Unlike |g|? (right), the reflectance
r (left) is speckle-free and smooth.
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Table 1. CPU Time per EM iteration

DH-MBIR Phase-error
Method E-step Reflectance update! update? Full Iteration 3
(¢,p) =(2,1) | (g,p) =(2,2)

Exact 0.13 ms 1.25 ms 0.80 ms 9.02 ms 9.95 ms
Fast

(No SIMD) | 0.13 ms 0.53 ms 0.33 ms 0.38 ms 0.84 ms
Fast

(with SIMD) | 0.13 ms 0.10 ms 0.05 ms 0.24 ms 0.42 ms

L Prior model is a Q-GGMRF with 4-point neighborhood and power-parameters specified by

(¢,p)
2 Prior model is a wrapped-phase GMRF with 8-point neighborhood

% full iteration time calculated for case (q,p) = (2,2)

Table 2. Speedup of Fast DH-MBIR over Exact DH-MBIR

Reflectance update Phase-error update | Full Iteration
(e,p)=(2,1) | (g,p) =(2,2)
12.50 15.09 37.58 23.7

Strehl ratio
Strehl ratio
Strehl ratio

B ¢ o ) ¢ 0 > d
0 50 100 150 200 0 100 200 300 0 100 200 300
Iterations Iterations Iterations

(a) 3 different datasets simulated with D, /ro = 10

1 1 1
0.8 0.8 0.8
o ko) )
5 0.6 5 0.6 5 0.6
= = =
[ [ [
Z04 504 Z04
0.2 ——exact r, exact ¢ 0.2 / [+exactr, exact ¢| 0.2
——exact r, fast ¢ rd ——exact r, fast ¢
o —fastr, fast ¢ o —fastr, fast ¢ o
0 100 200 300 0 100 200 300 0 100 200 300
Iterations Iterations Iterations

(b) 3 different datasets simulated with Do /ro = 20
Figure 5. Effect of fast updates for estimating reflectance, r, and phase-error, ¢, on the convergence rate of DH-MBIR.

The number of iterations for DH-MBIR convergence is unchanged when we use fast updates for ¢ estimation instead of
exact updates, but increases when we use fast updates for r estimation in place of exact updates.

4.2 Results

Table 1 shows the per-iteration CPU time for the exact and fast DH-MBIR methods. Notice that even without
utilizing SIMD processing, the surrogate ICD updates are significantly faster than the exact ICD updates. In
particular, we observe more than a 20x reduction in time for the phase-error estimation that dominates the
exact DH-MBIR method. Furthermore, notice that SIMD parallelization provides additional acceleration of
the surrogate ICD updates. Specifically, this speedup resulting from SIMD is more prominent in the case of
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NO phase correction

NO phase correction NO phase correction NO phase correction NO phase correction

NO phase correction °

MBIR Exact

e=m M=z

USAF-1951 -
(a) Reflectance estimate, Do /ro = 10 (b) Reflectance estimate, D, /rg = 20
Ground Truth Ground Truth Ground Truth Ground Truth Ground Truth Ground Truth
= 3 3
“eP,
L, y 2 2
d‘ 24
MBIR Exact MBIR Exact MBIR Exact 1 MBIR Exact 1
- - =2 -
s L 5
6 ¢ oy ” | ’ -
wﬁ b "r ” Q 5 % o b S ‘é 0
#® Yes 4 £33

MBIR Fast MBIR Fast MBIR Fast MBIR Fast

o

@

(c) Phase-errors estimate, Dy /ro = 10 (d) Phase-errors estimate, D, /ro = 20
Figure 6. Comparison of reconstruction quality for 6 different simulated datasets. For each dataset, the reflectance
estimate without any phase recovery in shown the top row of sub-figures (a) and (b) respectively, and the corresponding
phase-errors in the pupil-plane are shown in the top row of sub-figures (¢) and (d). In all sub-figures, the middle row
shows reconstruction using the exact MBIR approach while the bottom rows shows reconstruction using the fast MBIR

approach. For most datasets, the reconstructions using the fast MBIR method are almost indistinguishable from the
exact MBIR method.

reflectance estimation as compared to phase-error estimationf?.

Table 2 shows the speedup of our fast DH-MBIR method over the exact DH-MBIR method based on the CPU
time in Table 1. The combined effect of surrogate optimization and SIMD parallelization provides a speedup

of 15.1x and 37.6x for the reflectance and phase-error updates respectively, and consequently accelerates each
DH-MBIR iteration by a factor of 23.7x.

Figure 5 shows the effect of fast updates on the convergence rate of DH-MBIR. Notice that replacing the
exact updates for phase-error estimation with the fast updates does not significantly alter the convergence rate.
However, when we use fast updates for reflectance estimation in place of the exact updates, we require more
iterations to converge.

tTthe timing includes complex-arithemtic computation of parameters ms and ¢, in (13) which is intensive and not
SIMD-compatible. Further using SIMD processing to compute (17) does not provide any significant benefit.
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Figure 6 compares the reconstruction quality of the fast and exact DH-MBIR approaches. We can see that
for most datasets, the reflectance and phase-error estimates are almost indistinguishable. For the third dataset
alone in Figure 6(c), the phase-error estimate from the fast DH-MBIR approach is more accurate as compared
to the exact DH-MBIR method.

5. CONCLUSION

In this paper, we proposed a method that drastically reduces the computational cost DH-MBIR for real-time
coherent imaging through turbulence. DH-MBIR jointly estimates the speckle-free object reflectance and atmo-
spheric phase-errors from holographic sensor measurements. In order to speedup DH-MBIR, we first designed
a surrogate function for the reflectance updates and a simple alternating minimzation scheme for the wrapped
phase-error updates. Further, we introduced a scheme that accelerates computation of the above surrogate
updates using SIMD vector processing instructions. We demonstrated the effectiveness of our fast DH-MBIR
method for real-time reconstruction with simulated data sets.

A. APPENDIX

To compute the Q-function in (6), we first need to compute log p(y, g|r, @) as well as the posterior distribution
p(gly, ', ¢"). The former is specified by

log p(y, glr, #) = log p(ylg, ¢) + log p(g|r)

1 .
— 557 19 = Aogl*=g" D(r) "' g — log|D(r)|+const. (20)

Similarly, we can obtain the posterior distribution as
pgly,r",¢") = p(y. glr’. ¢") /p(ylr’, &)
1 1
_t e Ny — A al2—dED ()1
Lo { =gz lly - Avall-g" D) g

where z is a normalizing constant. The above can be more compactly expressed as a complex Gaussian distri-
bution

ploly ", ) = ~ exp{~(g — 10" C~ (g~ )},

where mean p and covariance matrix C' are given by

C= (%AﬁAW + D(r’)—l) B
p=CAlg
Consequently the posterior mean and variance are given by
Elglr',¢'| = p and Elgg”r',¢'] = pu" + C. (21)
If we assume D(a) = I in (1), then A, is orthogonal, and so C is diagonal. Then from (20) and (21), we can
show that

- S S,8 2 y
Ellog(y, g|r, ¢ Z ('M [F+C + log rs> + J—QReal (yHD(eJd’)Ao,u) + const. (22)

s=1 w

The full derivation is available in' , Appendix B.
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