
Massively Parallel 3D Image Reconstruction
Xiao Wang

Purdue University
Amit Sabne

Microso� Corporation
Pu� Sakdhnagool
Purdue University

Sherman J. Kisner
High Performance Imaging LLC

Charles A. Bouman
Purdue University

Samuel P. Midki�
Purdue University

ABSTRACT
Computed Tomographic (CT) image reconstruction is an important
technique used in a wide range of applications. Among recon-
struction methods, Model-Based Iterative Reconstruction (MBIR)
is known to produce much higher quality CT images; however,
the high computational requirements of MBIR greatly restrict their
application. Currently, MBIR speed is primarily limited by irregular
data access pa�erns, the di�culty of e�ective parallelization, and
slow algorithmic convergence.

�is paper presents a new algorithm for MBIR, the Non-Uniform
Parallel Super-Voxel (NU-PSV) algorithm, that regularizes the data
access pa�ern, enables massive parallelism, and ensures fast conver-
gence. We compare the NU-PSV algorithmwith two state-of-the-art
implementations on a 69632-core distributed system. Results indi-
cate that the NU-PSV algorithm has an average speedup of 1665
compared to the fastest state-of-the-art implementations.

1 JUSTIFICATION
Signi�cant advances in the design and implementation of a high-
performing, scalable 3DModel-Based Iterative Reconstruction (MBIR)
are presented. �ese advances give an algorithm that scales to 69632
cores on the Cori Xeon-Phi Knights Landing cluster and is 1665
times faster than the state-of-the-art.

A�ributes Contents
Category Time-to-solution, scalability

Type of method Fully implicit
Results reported on basis of Whole application without I/O

Precision reported Single precision
System scale Measured on full-scale system

Measurement mechanism Timer, static analysis tool

2 INTRODUCTION
Computed Tomography (CT) is a widely-used imaging technique
for the reconstruction of 3D volumes. Applications for these re-
constructions include security baggage scanning [8, 9, 18, 19, 30],
medical and biological imaging [26, 27], and scienti�c and materials
imaging [13, 17, 21, 29].
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MBIR [26, 27] is a regularized 3D reconstruction method, based
on Bayesian estimation. Extensive prior research has shown that
MBIR provides higher image quality than other methods [21, 26, 27].
In addition, MBIR requires only one ��h of the typical X-ray dose,
and thus greatly reduces data acquisition time [2]. Because of these
bene�ts, MBIR has great potential to be adopted in next-generation
imaging systems [16]. However, MBIR’s improved image quality
requires several orders of magnitude more computation compared
to traditional methods [30, 33]. �erefore, MBIR is considered
impractical for many applications [2, 16].

Algorithms for MBIR can be summarized into two categories:
global update and local update methods, with each having advan-
tages and disadvantages. For global update methods [7, 10], all
3D-pixels in a volume, also known as voxels, are updated simulta-
neously in every iteration. �erefore, global update methods are
naturally parallel and enable good scalability. However, massive
parallelism also leads to slow algorithmic convergence [26, 30],
sometimes requiring hundreds of iterations [8, 20].

In contrast, local update methods, such as coordinate descent [3,
4, 11, 22, 26, 31, 34] have much faster convergence with fewer
iterations [33] and allow for the simultaneous update of small
groups of voxels [11, 25, 34]. �ere are two state-of-the-art im-
plementations for local update methods: Time-Interlaced MBIR
(TIMBIR)1 [13, 21] and Parallel Super-Voxel Iterative Coordinate
Descent (PSV-ICD) [24, 30], with each having its own advantages
and disadvantages. TIMBIR parallelizes the updates for a small
group of spatially separated voxels that share li�le data in com-
mon. �ese spatially separated voxel updates reduce synchroniza-
tion overhead among cores. However, this approach also reduces
cache locality and limits scalability. Alternatively, PSV-ICD updates
groups of spatially close voxels that share much data. In this case,
a single core that sequentially updates this group of spatially close
voxels can reuse data, which bene�ts cache locality. Multiple cores
can then update spatially separated groups of voxels to reduce syn-
chronization overhead (or atomic operation overhead). PSV-ICD,
however, is a single node implementation and cannot scale. �ere-
fore, existing implementations for local update methods require a
trade-o� between cache locality and parallelism.

In addition to the trade-o�s mentioned above, all implemen-
tations for MBIR su�er from irregular data access pa�erns and
ine�cient SIMD operations. For each voxel update, data must be
accessed from a 2D array, following an irregular pa�ern in mem-
ory. Importantly, this access pa�ern is di�erent for each voxel, so
there is no single reorganization of the data can resolve this SIMD
ine�ciency.

1TIMBIR can be downloaded at h�ps://github.com/adityamnk/timbir.
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Figure 1: (a) A CT system setup. (b) At view 45°, X-rays pass through voxel u1, making a projection on the le� side of the
detector. (c) At view 90°, the projection for voxel u1 shi�s to the center of the detector. Note that the projection at view 90° is
shorter than at view 45°. (d) At view 135°, the projection shi�s to the right side of the detector.

In this paper, we present a massively parallel algorithm, Non-
Uniform Parallel Super-Voxel (NU-PSV), that directly addresses the
four major performance issues of MBIR: (1) data access pa�ern
regularity, (2) cache locality, (3) parallelism, and (4) algorithmic
convergence. �e NU-PSV algorithm utilizes a�ree-Dimensional
Super-Voxel (3DSV) to ensure good cache locality and low parallel
overhead while retaining the fast convergence of a local update
method. It also incorporates a Block Transposed Bu�er (BTB) data
layout to completely regularize the memory accesses and enable
SIMD operations.

In summary, in this paper we:
• Introduce the concept of the 3DSV for 3D image recon-

struction;
• Describe the BTB design that regularizes data access and

improves SIMD operations;
• Describe the NU-PSV algorithm and provide experimental

results showing that NU-PSV scales to 69632 cores with a
speedup of 1665 compared to PSV-ICD and 9776 compared
to TIMBIR.

In Section 3, we review background information about CT scan-
ner systems and the state-of-the-art implementations. In Section 4,
we introduce the 3DSV design and the NU-PSV algorithm. In Sec-
tion 5, we present three reconstruction performance evaluations
for NU-PSV on di�erent datasets. In Section 6, we discuss how
NU-PSV can be applied to compressive sensing problems in general.
Finally, we present our conclusions in Section 7.

3 BACKGROUND
�is section describes a generic system for CT, along with current
state-of-the-art implementations for MBIR.

3.1 3D Computed Tomography
Figure 1(a) illustrates a typical CT scanner system, consisting of an
X-ray source and a detector mounted on opposite ends of a rotating
gantry, with the X-ray detector elements along the vertical direction
called rows, and the detector elements along the horizontal direction
called channels. �e object to be imaged is placed near the center
of rotation. As the gantry rotates around a �xed z axis, X-rays

from the source pass through the object and a series of snap-shot
images, or views, are taken by the detectors at discrete rotation
angles, denoted by β in the �gure. �ese measurements from the
detector elements represent the integral density of the object along
the path of the X-rays.

To reconstruct a 3D volume of the object, the reconstruction is
obtained in slices, where a slice is de�ned as a cross-section of the
sample object found along a �xed value of z. �en, an inverse is
computed from the measurements to determine the radio-density
of each slice. In this model, it is important to note that all mea-
surements for a single slice are taken on the same row of the X-ray
detector. In Figure 1(a), a sample slice within the sample object is
shown as a shaded circle. Notice that its measurements project to
the shaded horizontal line along the same row of the detector.

Figures 1(b), (c), and (d) illustrate how a single voxel in a slice
maps to the detector measurements. Let u1 denote a voxel in the
sample slice, shown as a red square. Figure 1(b) shows the set of
channels, represented as a red bar on the detector, that receive
measurements from u1 at view angle 45°. We can note that the set
of channels are located on the le� side of the detector. Figures 1(c)
and (d) shows the set of channels that receive measurements from
u1 at view angles 90° and 135°, respectively. Note that the set of
channels shi� to the center and right side of the detector at view
angles 90° and 135°, respectively.

To organize and process the measurements from di�erent view
angles, the measurements for a slice are organized into a view-
by-channel 2D array, known as a sinogram. Figure 2(a) illustrates
such a sinogram, with the red sinusoidal trace representing the
measurements for voxel u1. When u1 is updated, its associated
measurements must be accessed following this red sinusoidal trace
in the memory. Unfortunately, no cache line can e�ciently ac-
cess measurements in memory following a sinusoidal trace, which
explains why MBIR has poor cache locality. Furthermore, the am-
plitude and phase of the sinusoidal trace is di�erent for each voxel,
so no universal reordering of the measurements can regularize the
memory access pa�ern for all voxels.

Another interesting feature is that the width of the voxel trace
varies at di�erent view angles. Figure 1(b), (c) and (d) illustrate
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Figure 2: (a) �e update of u1 follows a sinusoidal trace in sinogram. (b) �e sinusoidal traces for u1 and u2 intersect at white
dots. (c) Shows a super-voxel in a slice. (d) Measurements for the super-voxel follow a sinusoidal band in sinogram and
measurements for u1 fall within the sinusoidal band. A�er copying measurements to a memory bu�er, the voxel trace for u1
still curves up and down with a smaller amplitude.

this e�ect. Note that the length of projection onto the detector at
β = 90°, shown in Figure 1(c), is the shortest; but at angles β = 45°
and 135°, shown in Figure 1(b) and (d), the length of projection is
across the diagonal of the square voxel and is the longest. For a
cubic voxel speci�cally, the length of projection increases by a factor
of
√
2 at angles β = 45° and 135°. Consequently, the combination of

sinusoidal memory access and varying voxel trace width leads to
irregular data access in MBIR.

Figure 2(b) illustrates a key di�culty in performing parallel
updates for voxels in the same slice. �e update of the two voxels,
u1 and u2, require access to data along the red and yellow traces in
the sinogram, respectively. Note that the voxel traces for u1 and u2
intersect at the white dots. �erefore, if u1 and u2 are updated in
parallel, synchronizations will be required on the measurements
at the intersections of the voxel traces. �is observation can be
generalized to show that whenever dense view projections are
taken, any two or more voxels will overlap at their intersections in
the sinogram and synchronizations will be required.

To reduce synchronizations, groups of spatially separated voxels
can be updated in parallel, so that their voxel traces are distant from
each other [14]. Such voxel traces, however, also share few mea-
surements and reduce cache locality. In contrast, updating groups
of spatially close voxels in parallel leads to their voxel traces close to
each other. �erefore, cache locality improves when spatially close
voxels are updated, but the associated synchronization overhead
for these updates is much worse.

3.2 State-of-�e-Art
�e 3D MBIR reconstruction is computed as the solution to the
following optimization problem:2

x̂ = argmin
x ≥0

{
1
2 (y −Ax)

TΛ(y −Ax) + R(x)
}
, (1)

where argmin is the minimizer that returns the reconstruction, x̂ ;
y is a vector of length M , whose elements are the measurements

2In fact, Equation (1) represents the general form for most compressive sensing prob-
lems [24, 30]. �erefore, its solution is of general interest (see Section 6).

in the sinogram; and x is a vector of size N , whose elements are
voxels of the volume. A is a sparse system matrix of size M × N ,
representing the scanner system geometry, and each element Ai, j
roughly corresponds to the length of intersection between the jth
voxel and the ith projection. If the ith projection measurement in-
tersects the jth voxel, thenAi, j will be a non-zero value. Otherwise,
Ai, j will be zero. Λ is a pre-computed diagonal weight matrix; and
R(x) is a regularizing function. �e �rst term of the Equation (1),
given by 1

2 (y −Ax)TΛ(y −Ax), is known as the data term because
it penalizes the function when the reconstruction, x̂ , �ts poorly
with the measurements, y. �e second term, R(x), is a regularizing
prior function that penalizes the function when x has irregular
spatial properties [26].

To compute the solution to Equation (1), coordinate descent
methods update small groups of voxels in parallel [11, 25, 34]. To
update each voxel x j , Algorithm 1 summarizes the key operations.

Algorithm 1 Voxel Update (j, x , e , Λ, A)

1: θ1, j ← −eTΛA∗, j
2: θ2, j ← A∗, j ΛA∗, j
3: α ← argminα ≥−x j

{
θ1, jα + 1

2θ2, jα
2 + R(x j + α)

}
4: x j ← x j + α
5: e ← e −A∗, jα

�e error term, e , equals to y −Ax ; A∗, j is the jth column of the
Amatrix; α is the change of x j ’s due to the update; and R(x j +α) is
the prior function for x j , which depends upon the neighbor voxels
of x j .3 In Algorithm 1, steps 1 and 2 calculate the �rst and second
derivatives required for step 3. In steps 3 and 4, α is chosen to
minimize the cost function and x j is updated, In step 5, e is updated
so that it is consistent with the updated voxel value, x j .

Next, we review the two state-of-the-art implementations for
coordinate descent methods, TIMBIR and PSV-ICD.

TIMBIR For TIMBIR, each core updates all the voxels in a single
slice, and di�erent cores update di�erent slices of the volume in
38 nearest voxels in the same slice and 2 nearest voxels in the adjacent slices.

3
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Figure 3: (a) Shows a 3DSV of size 3 × 3 × 2. A voxel-line in the 3DSV is shaded in red. Measurements for the 3DSV follow a
sinusoidal band in the sinogram. (b) A super-voxel bu�er. Notice that measurements for the red voxel-line trace curves up
and down in the super-voxel bu�er with a small amplitude. (c) block4 of the super-voxel bu�er with padded zeros and chunk
design. (d) �e memory layout for block4. Notice that the measurements in the chunk are scattered in memory.

parallel. �e bene�t of TIMBIR is that slices of the volume are
spatially separated. �erefore, TIMBIR has low synchronization
overhead, but it also has poor cache locality. TIMBIR, however,
provides limited scalability because the updates of adjacent slices
have dependencies (see the prior functionR(x j+α) in Algorithm (1)).
�erefore, TIMBIR can only update non-adjacent slices in parallel.

PSV-ICD PSV-ICD reconstructs a volume slice by slice. For each
slice, PSV-ICD groups spatially contiguous voxels into a super-voxel.
�en, a core updates all voxels within a super-voxel in sequence.
Since voxels within a super-voxel are spatially close, updates bene-
�t from cache locality. Di�erent cores, however, update spatially
separated super-voxels in the same slice. �erefore, synchroniza-
tions (implemented as atomic operations) among cores are reduced.
Figure 2(c) shows an example of a super-voxel. �e measurements
of the super-voxel follow the yellow sinusoidal band in the sino-
gram, shown in Figure 2(d). Every voxel of the super-voxel, such as
u1, has a voxel trace inside the sinusoidal band. �erefore, voxels of
a super-voxel share measurements and cache locality can be be�er
exploited.

To further improve cache locality, measurements for a super-
voxel are copied from the sinogram to a memory bu�er, shown
as a yellow rectangle in Figure 2(d). �en, every voxel trace in
the memory bu�er is �a�ened. Note that the voxel trace for u1
becomes much more linear in the memory bu�er, improving hard-
ware prefetching. �e voxel trace, however, still curves up and
down in the memory bu�er, albeit with a smaller amplitude.

Despite the bene�ts outlined above, PSV-ICD has two major
disadvantages: data access pa�ern and scalability. Since the voxel
trace still curves up and down in the memory bu�er, e�cient SIMD
operations are not possible. In addition, PSV-ICD requires �ne-
grained atomic operations. �erefore, PSV-ICD is limited to a single
shared memory node and is not capable of large-scale parallelism.

4 INNOVATIONS
�is section presents the Non-Uniform Parallel Super-Voxel algo-
rithm (NU-PSV). Section 4.1 discusses how NU-PSV regularizes

data accesses and improves SIMD operations and prefetching. Sec-
tion 4.2 discusses the parallelization of NU-PSV, and Section 4.3
discusses the improved algorithmic convergence.

4.1 Improving Data Access
We de�ne a 3DSV as a group of voxels in the shape of a rectangular
cuboid in the volume. Figure 3(a) shows a 3DSV of size 3 × 3 × 2,
where the width and height are 3 and the depth is 2. In addition,
we de�ne a sequence of voxels along the depth (z axis) of a 3DSV
as a voxel-line [29, 33]. For the example in Figure 3(a), the 3DSV
has 9 voxel-lines in total and each voxel-line contains 2 voxels. One
such voxel-line is shown and shaded in red within the 3DSV.

Figure 3(a) also illustrates the measurements associated with a
3DSV as a yellow sinusoidal band in the sinogram. �e measure-
ments for a single voxel-line within the 3DSV are shown as a red
trace within the sinusoidal band. Notice that both the sinusoidal
band and the red voxel-line trace are three-dimensional with depth
2. Since each voxel-line must access shared measurements from
the sinusoidal band, the measurements are repeatedly accessed as
voxel-lines are updated. �erefore, the 3DSV design retains the
cache locality bene�t of the PSV-ICD algorithm.

To further improve cache locality and enable hardware prefetch-
ing, the 3DSV’s measurements can be copied from the sinusoidal
band to a memory bu�er, called the super-voxel bu�er. Figure 3(b)
shows the layout of a super-voxel bu�er for the 3DSV in Figure 3(a).
Since the sinusoidal band is three-dimensional, the super-voxel
bu�er also has three dimensions (channel, view, and depth), with
measurements stored in memory in the order of channel, view and
depth, i.e., adjacent channel entries are adjacent in memory.

Within the super-voxel bu�er, all measurements for a voxel-line,
shaded in red in Figure 3(b), are accessed along a sinusoidal trace
with depth 2, and with a much smaller amplitude than in the sino-
gram. Nevertheless, the combination of remaining trace amplitude,
varying trace and super-voxel bu�er width (as in Figure 3(b)) still
lead to irregular data access. To enable e�cient SIMD operations,
memory accesses must be regular and follow a pa�ern of ik + j,
where i, j are sequences of contiguous integers and K is a constant

4
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Figure 4: (a) Shows the transposed block4. (b) Shows themem-
ory layout for the transposed block4.

integer. To achieve such a goal, the super-voxel bu�er must have
constant trace width, constant bu�er width and no amplitude.

Before we present the technical solution, we start by de�ning a
series of data structures. We de�ne a block to be a �xed number of
contiguous views within a super-voxel bu�er, and denote the ith
block by blocki . Figure 3(b) shows a super-voxel bu�er consisting
of 8 blocks, with each block composed of 4 views. In addition, we
de�ne a chunk as a rectangular cuboid, circumscribing the sinu-
soidal voxel-line trace in a block. Figure 3(c) illustrates block4 of the
super-voxel bu�er, and the chunk contained within block4 is out-
lined with a bold blue line. To have a constant trace width, all the
measurements in a chunk are accessed when processing a voxel line,
even though only a portion of them are needed. For convenience,
we call the measurements required for a voxel-line update essential
measurements, shown in red in Figure 3(c). �e unneeded measure-
ments for the voxel-line update are called redundant measurements,
shown in yellow in Figure 3(c).

In addition to the chunk design, each block is padded with zeros
so that the bu�er width, namely the number of channels of a block,
is constant. Figure 3(c) illustrates this zero padding in which six
zeros are added to the bo�om of block4 , making block4 a rectangular
cuboid. Although redundant measurements and zero paddings
moderately increase cache pressure by adding unneeded data, the
performance gain from the regular data access far outweighs the
loss from increased cache pressure (see experiments in Section 5.1).

Since the voxel trace and the bu�er widths are both constant,
measurements in a chunk have completely regular data access.
Figure 3(d) shows the resulting memory layout for block4 . Since
measurements are laid out along the channel direction in memory,
measurements a, b, c, and d in Figure 3(c) have contiguous memory
locations. Notice that the memory access pa�ern in Figure 3(d) is
regular, with measurements in the chunk sca�ered into 8 groups
and each group having two measurements.

While the memory access shown in Figure 3(d) is regular, the
SIMD performance is still impaired because the memory locations
for the chunk are sca�ered in the memory, leading to a large sca�er-
gather overhead. To reduce the sca�er-gather overhead, we intro-
duce the Block Transposed Bu�er (BTB). �e BTB is created by
performing a block-wise (i.e., block-by-block) transposition of each

block in the super-voxel bu�er. Figure 4(a) illustrates the trans-
pose of block4 , with the axes of channel and view swapped by
the transposition. Notice that the BTB is now a regular cuboid
whose measurements are stored in the order of view, channel, and
depth, i.e., measurements within the block are laid out along the
view direction in memory. For example, measurements a, b, c, d
in Figure 4(a) have contiguous memory locations. As shown in
Figure 4(b), a�er transposition measurements in the chunk fall into
2 �xed-size groups, outlined by bold blue lines, and each group have
contiguous memory locations. To be more speci�c, the number of
sca�ered groups in a chunk equals to the 3DSV depth. �erefore,
the 3DSV depth and the number of sca�ered groups in this exam-
ple are both 2. With fewer groups and more contiguous memory
accesses in each group, the sca�er-gather overhead is lower and
SIMD operations are more e�cient.

We now show analytically the e�ectiveness of the BTB in in-
creasing the SIMD performance. �e average number of regular
memory accesses in a chunk, denoted by Nrun , is approximately
given by

Nrun = (NwhC1N
2
b +C2Nb )Nd , (2)

where Nwh is the number of voxels along the width and height of
the 3DSV, Nb is the number of views in a block, Nd is the number
of voxels along the depth of the 3DSV, andC1 andC2 are constants.
Appendix A provides a derivation of this result alongwith analytical
expressions for C1 and C2. From this equation, we observe that
SIMD performance can improve by increasing block size, Nb , and
block depth, Nd . Unfortunately, a larger Nd also leads to more
sca�ered groups of the measurements and more sca�er-gather
overhead. �erefore, the best depth should be chosen to balance this
trade-o�. �e experiments in Figure 7(a) corroborate this analysis
by showing that a properly chosen depth delivers a 3.28 times SIMD
speedup.

In addition to a properly chosen depth, the BTB design also
requires a properly chosen block size. In Appendix A, we show that
the fraction of essential measurements in a chunk, denoted by Ec ,
can be analytically approximated as

Ec =
C2

NwhC1Nb +C2
. (3)

From this equation, we observe that Ec is inversely proportional to
Nb . �erefore, increasing block size not only leads to more regular
memory accesses, but also additional computations. So an optimal
Nb should be chosen to balance these two e�ects. Figures 7(b) and
(c) in Section 5 give a detailed evaluation, showing that a proper
block size can ensure a high SIMD speedup and a low Ec .

4.2 Improving Parallelism
�e NU-PSV algorithm exploits three orthogonal levels of paral-
lelism that can e�ectively utilize large parallel machines.

Intra-SV parallelism: data-level parallelism (SIMD vector-
ization) within and across multiple voxels of a 3DSV;
Inter-SV parallelism: parallelism across multiple 3DSVs in
a sub-volume, where a sub-volume is de�ned as a set of
contiguous slices;
Intra-volume parallelism: parallelism across sub-volumes
in a full 3D volume.

5
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Figure 5: (a) Shows a volume equally distributed between nodes, P1 and P2. Each 3DSV in the sub-volume accesses its measure-
ments e�ciently from the private BTBs. In addition, the update of two adjacent boundary voxels u1 and u2 depends on each
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Intra-SV parallelism. Intra-SV parallelism updates groups of
voxels in a 3DSV in parallel using SIMD vectorization. An ideal
choice for such groups is voxel-lines, because the BLB design, dis-
cussed in the previous section, enables regular memory access and
a high level of SIMD vectorization.

Algorithm 2 summarizes how the intra-SV parallelism functions
for a 3DSV’s update. �e algorithm uses three BTBs, denoted by
BTBe , BTBΛ, BTBA, to store the sinogram error, e , the sinogram
weights, Λ, and the corresponding system matrix entries, A∗, j . To
update a voxel-line, the intra-SV parallelism must compute θ1, j
and θ2, j for each voxel. Since θ1, j and θ2, j are formed from dot
products of vectors (see Algorithm 1), the values of θ1, j and θ2, j
can be computed as summations of the partial results, denoted by
θ∼1, j and θ

∼
2, j , at each BTB block. �erefore in step 4, the intra-SV

parallelism cycles through blocks and assigns the computations
at each block to SIMD units. �en, each SIMD unit computes
the partial result for its assigned voxel. �e summation of the
computations at each transposed block is then used for the voxels’
update in step 11. In this algorithm, voxels are processed in parallel
through SIMD units, and each SIMD unit’s access is completely
regularized by the organization of the BTBs.

�e intra-SV parallelism, however, has a technical di�culty.
Since the BLB design introduces redundant measurements, the
intra-SV parallelism must ensure that the results of θ1, j and θ2, j
are not a�ected by accessing redundant measurements. To ad-
dress this issue, we exploit the sparse A matrix structure. More
speci�cally, we set to zero all A matrix entries corresponding to
redundant measurements, shown in yellow within chunks in Fig-
ure 4(a). For essential measurements, however, theAmatrix entries
are set to non-zero. �erefore, the results of θ1, j and θ2, j , as in steps
1 and 2 of Algorithm 1, are not a�ected by accessing redundant
measurements, since the product of zero-value A matrix elements

Algorithm 2 3DSV Update (U , x , BTBe ,BTBΛ, BTBA)
INPUT: U : the 3DSV to be updated
INPUT: BTBe , BTBΛ, BTBA: the block-transposed bu�ers forU
1: for each voxel-line, V ∈ U do
2: Initialize θ1, j and θ2, j for each voxel, j ∈ V .
3: for each transposed block, tb do
4: for each voxel, j ∈ V , do in parallel among SIMD

units
5: Compute θ∼1, j and θ

∼
2, j , as in steps 1 and 2 of Algo-

rithm 1
6: θ1, j += θ∼1, j
7: θ2, j += θ∼2, j
8: end for
9: end for
10: for each voxel, j ∈ V do
11: α ← argminα ≥−x j

{
θ1, jα + 1

2θ2, jα
2 + R(x j + α)

}
, as

in step 3 of Algorithm 1
12: x j ← x j + α
13: BTBe ← BTBe −Aα
14: end for
15: end for

and redundant measurements are zero. Hence, θ1, j and θ2, j are
computed correctly.

Inter-SV parallelism. Inter-SV parallelism uses separate cores
in a node to perform parallel updates of di�erent 3DSVs within
a sub-volume. Algorithm 3 summarizes how inter-SV parallelism
functions. In steps 3 and 4, each 3DSV’s core creates private BTBs
for its 3DSV, denoted byU . Figure 5(a) shows an example of private
BTBs. In step 6, each core follows Algorithm 2 and updates voxel-
lines in U . In step 7, the private BTBe is transposed back to the
super-voxel bu�er, Buf e .
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At the end of a 3DSV’s update, the updated measurements in
each core’s super-voxel bu�er, Buf e , must be merged and writ-
ten to the full sinogram. �e updated measurements, however,
overlap with one other, because voxels share measurements in the
sinogram (see Section 3.1). �erefore, simply copying the updated
measurements back to the sinogram will lose and overwrite other
cores’ updates [24, 30]. To correctly write measurements to the
sinogram, Buf e,∆ is created in step 8 to keep track of all changes
to the measurements. �en, Buf e,∆ is atomically added back to the
sinogram in step 9, so that the changes of measurements for other
simultaneously updated 3DSVs are not lost and overwri�en.

Inter-SV parallelism, however, leads to image artifacts. Since a
sub-volume is arti�cially partitioned into 3DSVs, image artifacts are
present along the 3DSVs’ boundary [24, 30]. To address this, neigh-
boring 3DSVs overlap with each other on their common boundary
using halos, eliminating the partition boundary among neighboring
3DSVs. Figure 5(b) shows an example of overlapping 3DSVs, with
the halo regions shaded in gray.

Although overlapping neighboring 3DSVs removes image ar-
tifacts, the simultaneous updates of voxels in the boundary re-
gions can lead to data races. �is situation occurs when the same
boundary voxel is simultaneously updated by cores in step 12 of
Algorithm 2. To eliminate possible races, we employ a checker-
board pa�ern [24] for 3DSV updates. As shown in Figure 5(b),
checkerboard pa�ern tessellates a volume into tiles, with each tile
consisting of 4 3DSVs with di�erent colors, and with no two ad-
jacent 3DSVs having the same color. Inter-SV parallelism cycles
through the four colors in step 1 of Algorithm 3 and only 3DSVs
with the same color are updated in parallel. �erefore, no voxel on
a boundary is updated in parallel by more than one core.

Algorithm 3 inter-SV Update (S)
INPUT: S : a sub-volume to be updated.
1: for Tile color t from 1 to 4 do
2: for 3DSV,U ∈ S with color t , do in parallel among cores
3: create super-voxel bu�ers, Buf e , Buf Λ and Buf A
4: Block-transpose super-voxel bu�ers to BTBe , BTBΛ and

BTBA
5: Make a temporary copy of Buf e to Buf

′
e

6: 3DSV Update (U , S , BTBe , BTBΛ, BTBA), as in Algo-
rithm 2

7: Block transpose BTBe to Buf e
8: Buf e,∆ ← Buf e − Buf

′
e

9: Atomic operation: e ← e + Buf e,∆
10: end for
11: end for

Intra-volume parallelism. Intra-volume parallelism performs
parallel updates of all sub-volumes across nodes, with the ith node
processing the ith sub-volume (Si ). Figure 5(a) shows how sub-
volumes are equally distributed onto two nodes. Each node then
processes its sub-volume using Algorithm 3.

Since the prior function for each voxel update in Algorithm (1)
depends upon its neighboring voxels, the update of boundary voxels

in Si depends on the adjacent boundary voxels in Si−1 and Si+1.4 An
example of this dependency is shown in Figure 5(a), where boundary
voxelsu1 andu2 are adjacent to each other and their updates depend
on each other. Because of the iterative nature of MBIR [23, 30],
violating this dependence does not prevent convergence. Intuitively,
intra-volume parallelism can be viewed as a special case of updating
spatially close voxels. If the neighboring sub-volumes each only
have one voxel, then intra-volume parallelism reduces to spatially
close voxel updates, which are known to converge [1, 12].

To reduce the communication latency in exchanging boundary
voxels of the sub-volumes, the intra-volume parallelism uses a two-
data-bu�er design. Each node, P i , has two allocated data bu�ers,
bu�er−1 for message passing with P i−1 and bu�er1 for message
passing with P i+1. When neighboring nodes send boundary voxels
to P i , a copy of voxels is passed asynchronously to the data bu�ers.
P i can then access the needed voxels from its allocated data bu�ers.

4.3 Improving Convergence

Algorithm 4 NU-PSV (Si )

INPUT: Si : the sub-volume to be processed by P i .
LOCAL: Aд : a group of greedy update 3DSVs.
LOCAL: Ar : a group of random update 3DSVs.
1: Inter-SV Update (Si ) as in Algorithm 3. A max-heap is con-

structed.
2: repeat
3: Re-randomize 3DSVs and divide them into C

ρ groups.
4: for Group r from 1 to C

ρ do
5: Inter-SV Update (Aд ), as in Algorithm 3.
6: Inter-SV Update (Ar ), as in Algorithm 3
7: �e max-heap is updated.
8: Exchange boundary voxels asynchronously among P i ,

P i−1 and P i+1
9: end for
10: until NU-PSV converges.

Although the checkerboard update pa�ern prevents data races
in inter-SV parallelism, it enforces a cyclic and �xed update order,
which typically has poorer convergence speed [23].

For fast convergence, previous theoretical work proves that a
combination of random updates and greedy updates has the fastest
algorithmic convergence [23]. We now discuss how we apply these
theoretical �ndings to improve the convergence of the NU-PSV al-
gorithm. Experiments in Section 5 show that the NU-PSV algorithm
provides, on average, a 1.66 times speedup due to faster conver-
gence as compared to the same algorithm using random updates
alone.

Intuitively, the NU-PSV algorithm bene�ts from randomized
3DSV update order because random updates ensure that computa-
tions are distributed across widely-separated groups of 3DSVs. �e
NU-PSV algorithm, however, also bene�ts from the greedy update
of 3DSVs because 3DSVs in a volume require di�erent frequencies

4Sub-volumes, such as S1 , that do not have adjacent boundary voxels are given imagi-
nary boundary voxels with value zero.
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Figure 6: �e le� image is a slice reconstructed by the traditional reconstruction method. �e right image is the same slice
reconstructed by MBIR. Notice that MBIR has signi�cantly better image quality with less noise.

Nodes 1 Node 4 Nodes 8 Nodes 64 Nodes 256 Nodes 1024 Nodes
Cores 68 Core 272 Cores 544 Cores 4352 Cores 17408 Cores 69632 Cores
TIMBIR >86400.0 >86400.0 76252.9 NA NA NA
PSV-ICD 12988.4 NA NA NA NA NA
NU-PSV 1039.5 286.0 149.4 24.4 10.9 7.8

Table 1: Runtimes in seconds for the iron hydroxide dataset. �e �rst row is the number of allocated nodes in the reconstruc-
tion and the second row is the number of allocated cores (each node has 68 cores). �e third row of the table is the average
runtimes for TIMBIR at di�erent numbers of allocated cores. Note that TIMBIR can only scale to 544 cores. �e fourth row is
the average runtimes for PSV-ICD. �e ��h row of the table is the average runtimes for NU-PSV.

of updates. For example, a high radio-density 3DSV, which rep-
resents material such as bones or metals, typically requires many
more updates than a low-radio density 3DSV, which represents
material such as air.

Algorithm 4 describes the NU-PSV algorithm that uses the two
update procedures. Step 1 updates all 3DSVs in the sub-volume
in a randomized order. At the end of the updates, a max-heap
is constructed, containing every 3DSV’s absolute magnitude of
change in the previous randomized update, with the top elements
of the max-heap being the 3DSVs with the highest magnitude of
change. In step 3, the NU-PSV algorithm randomly divides 3DSVs
into C

ρ groups, where each group contains Ar = Gρ
C of the 3DSVs

and G is the total number of 3DSVs in the sub-volume. Parameter
ρ is from 0 to 1 and it controls the extent to which updates are in
random update or greedy update procedure. In particular, ρ = 0
causes NU-PSV to perform greedy updates only and ρ = 1 causes
NU-PSV to perform random updates only.

In step 4, NU-PSV visits each randomized group in order. In
each visit, the algorithm alternates between a greedy update pro-
cedure (step 5) and a random update procedure (step 6). In the
greedy update procedure, NU-PSV processes the top Aд = G(1−ρ)

C
of the 3DSVs on the max-heap and updates them in parallel. A�er
the greedy update procedure, all voxels in the visited randomized

group are processed and updated in parallel. �e random update
procedure, however, causes the max-heap to become out of date.
In step 7, the max-heap is updated with the new magnitude of
change information from the random update procedure. Finally,
each node P i exchanges the boundary voxels with neighboring
nodes P i−1 and P i+1, as discussed in Section 4.2. In step 10, the
NU-PSV algorithm repeats itself until algorithmic convergence is
reached.

5 EXPERIMENTS
�is section provides an experimental evaluation of how the inno-
vations discussed in Section 4 contribute to NU-PSV’s performance.

Datasets. We use three datasets to evaluate NU-PSV’s perfor-
mance: (1) an iron hydroxide (FeOOH) material dataset, sparsely
imaged with a Zeiss Xradia 810 X-ray microscope at the United
States Air Force Research Lab, (2) a slime mold biology dataset (m
vesparium), imaged using the Advanced Light Source synchrotron
at the Lawrence Berkeley National Lab, and (3) a security baggage
scan dataset for a high clu�ered volume, imaged with an Imatron
C-300 Scanner at the Department of Homeland Security. Figure 6
shows an example slice in the iron hydroxide dataset, reconstructed
by the traditional reconstruction method (Filtered Back-Projection)
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Figure 7: (a) �e SIMD speedups at di�erent 3DSV depths. (b) �e SIMD speedups at di�erent block sizes. (c) �e fraction of
essential measurements, Ec , at di�erent block sizes. (d) NU-PSV’s strong-scaling speedup relative to 1 node (68 cores). �e
pairs at each data point indicate the speedup (second numbers of the pairs) at di�erent numbers of cores (�rst numbers of
the pairs). (e) Strong scalability of NU-PSV. �e numbers at each data point indicate the strong scaling e�ciency at di�erent
numbers of cores (e�ciency baseline is 1 node). (f) Weak scalability of NU-PSV.

and MBIR respectively. With the same amount of sparse-view mea-
surements, it can be seen that the MBIR reconstruction has less
noise and be�er image quality than the traditional method.

Computing platform. Experiments were performed on Cori
Xeon-Phi Knights Landing clusters [5] at �e National Energy
Research Scienti�c Computing Center (NERSC), using the Cray
Aries network. Each node features a 96-GB memory, a 16-GB high
bandwidth memory (cache mode), and a 68-core processor. Each
core has a 32-KB private L1 data cache, and every two cores share a
1-MB L2 cache. All programs in this section were compiled with the
Intel MPI compiler version 2017.up1 using the -O3 -qopenmp -xMIC-
AVX512 compiler options. Intra-voxel parallelism is achieved using
AVX-512 SIMD instructions. �e Inter-SV parallelism is achieved
using OpenMP, while intra-volume parallelism is achieved using
MPI.

Tools. All runtimes are based on the entire program except for
I/O that reads the input dataset and writes the outputs from/to the
NERSC global �le system. In addition, each reported runtime is
computed three times and the average is used. �e reported SIMD
speedups in this section are the relative speedup between a program
with SIMD vectorization and the exact same programwithout SIMD
vectorization (using the -no-vec -no-simd compiler options). Cache
miss rates are measured using the Intel Vtune Ampli�er 2017.

Algorithmic parametersAll experiments for NU-PSV use 3DSVs
of size 15 × 15 × 8, which was empirically determined to be the op-
timal size for the NERSC computer platform. �e only exception is
when a sub-volume has fewer than 8 slices and the depth of 3DSVs
reduces to the number of slices in the sub-volume. For example, if
a sub-volume only has 1 slice, then the 3DSV size is 15 × 15 × 1.
�e ρ and C parameters, discussed in Section 4.3, are empirically
determined to be 0.2 and 3.25 respectively for fastest convergence.

5.1 Iron Hydroxide Dataset
�e iron hydroxide dataset has 1024 slices and the sinogram for
each slice has: (1) parallel-beam sparse-view projections; with (2)
uniform angle distribution from 0° to 180°; and (3) a sinogram size
of 1024 × 225, where 1024 is the number of channels, and 225 is the
number of views. �e reconstructed volume size for this dataset is
10243 with a voxel resolution of 643µm3.

To quantify the overall performance, NU-PSV’s runtimes are
compared to the performance of TIMBIR and PSV-ICD, discussed in
Section 3.2. Table 1 summarizes the average runtimes of the three
algorithms at di�erent numbers of cores. In the third row, TIMBIR’s
runtimes at 1 and 4 nodes are more than NERSC’s 24-hour wall
time limit, noted as >86400 seconds in the table. Since TIMBIR
can only scale to 8 nodes because of the algorithmic constraints
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Figure 8: �e algorithmic convergence rate with di�erent ρ.

(see Section 3.2), runtimes at more than 8 nodes are reported as
NA. �e fourth row is the runtimes for PSV-ICD, which is a single
node implementation and only scales to 68 cores. �e ��h row is
NU-PSV, which is 9776.0 times faster than TIMBIR and 1665.2 times
faster than PSV-ICD. NU-PSV’s speedups come from two di�erent
sources: the per-node speedup and the speedup due to scalability.
For this dataset, the per-node speedup is greater than 83.11 relative
to TIMBIR and 12.49 times relative to PSV-ICD. Moreover, NU-PSV
scales to 69632 cores.

To be�er understand the improved per-node speedup, we start
by analyzing the SIMD speedups from the 3DSV design. Figure 7(a)
shows SIMD speedups at di�erent 3DSV depths. �e SIMD speedup
is 1.21 with depth 1. �e SIMD speedup peaks at 3.28 with depth 8,
and then drops to 2.72 with depth 32. �is con�rms Equation (2)’s
analysis that a larger 3DSV depth proportionally increases the
number of regular memory accesses, o�en leading to be�er SIMD
performance. At the same time, however, a too large depth leads to
more sca�ered groups for measurements in a chunk and greater
sca�er-gather overhead. �erefore, the cache pressure is higher and
the SIMD performance gains are negated. Measurements with the
Intel Vtune Ampli�er shows that the L2 cache miss rate increases
from 6.4% with depth 8, to 32.3% with depth 32.

Another factor for NU-PSV’s improved per-node performance
is the BTB block size. Figure 7(b) shows the SIMD speedups at
di�erent block sizes. �e SIMD speedup is 0.95 with a block size of
1, and 6.45 with a block size of 225. �is result also con�rms the
theoretical analysis in Equation (2) that a larger block size increases
Nrun and leads to be�er SIMD vectorization.

In addition, the increased block size does not increase the sca�er-
gather overhead while the increased depth does increase this over-
head, explaining why the SIMD speedup is more scalable with block
size thanwith 3DSV depth. Vtune Ampli�er also supports this claim
showing that the SIMD speedup is 3.28 and the L2 cache miss rate
is 6.4% at block size 45. When the block size is increased to 225, the
SIMD speedup increases to 6.45, with a lower L2 cache miss rate
of 3.4%. �e cache miss rate is reduced because the sca�er-gather
overhead is lower and spatial locality is be�er exploited.

Although a larger block size leads to more SIMD speedup, as
indicated in Figure 7(b), a larger block size also increases redundant
measurements and leads to extra computations. Figure 7(c) shows
the relationship between Ec and block size, where Ec represents

the fraction of essential measurements in a chunk. From the �g-
ure, we can observe that Ec is inversely proportional to block size.
�erefore, the trade-o� between SIMD performance gains and ex-
tra computations should be considered when choosing an optimal
block size. When the block size is smaller, each core has fewer reg-
ular memory accesses, leading to a smaller SIMD performance gain.
However, a smaller block size also incurs fewer extra computations.
A�er balancing the trade-o�, block size 45 is determined to be the
optimal size for this dataset. Compared to the performance at block
size 225, block size 45 has less SIMD speedup, as seen in Figure 7(b),
but its Ec is also 3.4 times higher.

We now investigate NU-PSV’s scalability. Figure 7(d) shows
NU-PSV’s scalability up to 69632 cores. �e data points along the
plot-line are NU-PSV’s speedups relative to 1 node (each node has
68 cores) at di�erent numbers of cores. For each data point, the �rst
number in the pair represents the number of cores and the second
number represents the speedup. We can observe that NU-PSV’s
speedup at 69632 cores (1024 nodes) is 133.6.

Figure 7(e) shows the strong scaling scalability of NU-PSV. �e
data points along the plot-line are the strong scaling e�ciency at
di�erent numbers of cores. Note that the strong scaling e�ciency
drops from 67% at 4352 cores to 13% at 69632 cores. �e e�ciency
drop has two causes: (1) worse SIMD performance at a high number
of cores and (2) a lower ratio of work to synchronization overhead.
At 69632 cores (1024 nodes), each sub-volume has only one slice,
restricting the 3DSV depth to 1. As explained in Figure 7(a), NU-
PSV has worse SIMD performance with depth 1, resulting in lost
parallel e�ciency with a larger number of cores. In addition, a
small 3DSV size resulting from high number of cores leads to less
useful work per core. �erefore, NU-PSV has a lower ratio of work
to synchronization overhead.

Figure 7(f) shows the weak scalability of NU-PSV.�e data points
along the plot-line are the weak scaling e�ciency at di�erent num-
bers of cores. We can observe that the weak-scaling e�ciency
overall is much higher than the strong-scaling one. At 4352 cores,
the weak scaling e�ciency is 93% and it drops to 82% at 69632
cores. Since the per-core work is �xed for weak-scaling experi-
ments, SIMD performance or synchronization overhead doe not get
worse at higher number of cores. �e weak-scaling e�ciency, how-
ever, still drops slowly when the number of cores increases because
checking the algorithmic convergence in step 10 of Algorithm 4
requires a global MPI reduction across nodes.

We now investigate how the alternating random and greedy
updates a�ect convergence. Figure 8 shows the convergence at
di�erent values of ρ, where ρ = 0 (the green curve ) is the result
using greedy updates alone; ρ = 0.2 (the orange curve) is the result
for 20% random updates and 80% greedy updates; ρ = 0.8 (the
blue curve) is the result using 80% random updates and 20% greedy
updates; and ρ = 1 (the yellow curve) is the result using random
updates alone. Among di�erent ρ values, ρ = 0.2 gives the best
convergence rate, reaching full convergence in 16 iterations. From
Figure 8, it is clear that the convergence is signi�cantly faster when
NU-PSV uses both of the random update and the greedy update
procedures, and this conclusion agrees with previous theoretical
�ndings [23, 33].
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Nodes 18 Nodes 80 Nodes 1080 Nodes 2160 Nodes
Cores 1224 Cores 5440 Cores 73440 Cores 146880 Cores
TIMBIR >86400.0 NA NA NA
NU-PSV 1815.6 378.2 32.3 24.8
Table 2: Runtimes in seconds for the slime mold dataset.

5.2 Slime Mold Dataset
�e slime mold dataset is 70 times larger than the iron hydroxide
dataset and it contains 2160 slices. �e sinogram for each slice
has: (1) parallel-beam projections; (2) uniform angle distribution
from 0° to 180°; and (3) a sinogram size of 2560 × 1024, where
2560 is the number of channels, and 1024 is the number of views.
�e reconstructed volume size is 2560 × 2560 × 2160 with a voxel
resolution of 1.3163µm3.

Table 2 summarizes the runtimes for TIMBIR and NU-PSV. �e
single-node PSV-ICD is not included because one node has insuf-
�cient memory to hold the dataset. In Table 2, TIMBIR is only
scalable to 1224 cores because of the algorithmic constraint, dis-
cussed in Section 3.2, whereas NU-PSV scales to 146880 cores, with
a total speedup >3483.9, compared to TIMBIR.

5.3 Security Dataset
�e security dataset is 3 times smaller than the iron hydroxide
dataset and it contains 440 slices. �e sinogram for each slice has:
(1) parallel-beam projections; with (2) uniform angle distribution
from 0° to 180°; and (3) a sinogram size of 1024 × 720, where 1024
is the number of channels, and 720 is the number of views. �e
reconstructed volume size is 512×512×440, with a voxel resolution
of 927.63µm3.

Table 3 summarizes the reconstruction runtimes for TIMBIR,
PSV-ICD and NU-PSV. TIMBIR is scalable to 272 cores because the
algorithmic constraints limit the number of cores to approximately
half of the number of slices. PSV-ICD is a single node implemen-
tation, scalable to 68 cores. As a comparison, NU-PSV scales to
29920 cores with a speedup of 2014.8 as compared to TIMBIR, and
a speedup of 101.2 as compared to PSV-ICD.

6 IMPLICATIONS
In this section, we discuss the implications of the NU-PSV algorithm
to the compressive sensing community in general.

�e NU-PSV algorithm serves as a massively parallel framework
for compressive sensing problems. Similar to MBIR’s objective
function (Equation (1)), most of the compressive sensing problems
can be expressed in the form

x̂ = argmin
x ≥0

{
1
2 (y −Ax)

TΛ(y −Ax) + R(x)
}
, (4)

where x is the sensor output of size N , y is measurements of size
M , A is aM × N system matrix that models the physical properties
of sensors, x is the reconstructed sensor output, Λ is a weighting
matrix, and R(x) is a stabilizing regularizer.

Nodes 1 Nodes 4 Nodes 40 Nodes 440 Nodes
Cores 68 Cores 272 Cores 2720 Cores 29920 Cores
TIMBIR 45033.6 32035.2 NA NA
PSV-ICD 1608.9 NA NA NA
NU-PSV 239.1 59.1 18.0 15.9
Table 3: Runtimes in seconds for the security dataset.

When the reconstructed sensor output, x , is viewed as an im-
age, Equation (4) is the mathematical framework for image re-
construction problems5. But o�en, the sensor output, x , is a multi-
dimensional array of measurements of the sample object or environ-
ment. Such applications include absolute shrinkage and selection
operator (LASSO) problems in machine learning [15], geophysics
sensing problems[6] and radar sensing problems [32].

To apply the NU-PSV algorithm, let a sub-volume to be a cluster
of Amatrix columns, so that the statistical correlation among sub-
volumes is minimal. In other words, if S1 and S2 are two clusters,
their statistical correlation,

∑
A∗,i ∈S1,A∗, j ∈S2

∑M
k=1 |Ak,i | · |Ak, j |, is

minimized. �en, all sub-volumes are processed in parallel across
di�erent nodes. �erefore, sub-volumes share minimal measure-
ments in common and the inter-node communication overhead can
be minimal.

Within each sub-volume, 3DSVs are processed in parallel among
cores of a node and we de�ne a 3DSV to be a subset of a sub-volume,
so that the Amatrix columns in the 3DSV has maximal statistical
correlation, de�ned as

∑M
k=1 |Ak,i | · |Ak, j |, where A∗,i and A∗, j are

Amatrix columns in the 3DSV. Since the Amatrix columns in the
3DSV has maximal statistical correlation, each core can maximize
the cache locality bene�t by reusing measurements.

To update 3DSVs in parallel, the alternating update procedures
(random update and greedy update) are used. In the random update
procedure, a random group of 3DSVs is chosen and 3DSVs in the
group are processed in parallel. Since 3DSVs are chosen randomly,
the statistical correlation among 3DSVs are moderately low, leading
to a low communication overhead among cores. In the greedy up-
date procedure, a group of “most-needed” 3DSVs, denoted as д, are
updated in parallel, so that the gradient of this group, |∇д f (x)|, is
maximized. �erefore, the algorithmic convergence can be optimal.

7 CONCLUSIONS
MBIR is a widely-explored 3D image reconstruction technique that
has a large and growing impact on the medical, industrial and scien-
ti�c imaging communities. �e slow computation speed for MBIR,
however, is a bo�leneck for scienti�c advancements in �elds that
use imaging, such as materials. �e computational cost has also
hindered its commercialization besides the medical community.
�is paper describes the NU-PSV algorithm that can signi�cantly
improve the computation speed for MBIR by regularizing data ac-
cess pa�ern, reducing cache misses, enabling more parallelism and
speeding up algorithmic convergence. �erefore, the computation
performance for MBIR can be signi�cantly improved.

5Such as whole body CT, PET scan, MRI imaging, electron microscopy, synchrotron
imaging, proton imaging and ultrasound imaging.
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�e technical innovations of this paper will yield immediate
results to the imaging community. �e slime mold dataset from the
Lawrence Berkeley National Laboratory takes more than 200,000
NERSC hours for a single reconstruction and imposes a signi�cant
wall-clock delay for the results of experiments. Our techniques,
however, can reduce that with a 2 orders of magnitude improve-
ment to 1860.5 NERSC hours at 73440 cores. For the sparse-view
iron hydroxide experiments, similar bene�ts will accrue. In addi-
tion, MBIR requires signi�cantly fewer measurements than typical
reconstruction methods. �erefore, NU-PSV also has the potential
to improve the utilization of the imaging instrument. In the security
domain, bag scans require high image quality and a per-bag recon-
struction time in less that 15 seconds. �e NU-PSV algorithm is the
only MBIR algorithm that is close to meeting these constraints.
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Figure 9: Demonstrates the dimensions of a chunk. �e
voxel-line trace is colored in red and the redundantmeasure-
ments are colored in yellow.

A APPENDIX: EQUATIONS’ DERIVATIONS
Figure 9 shows a chunk in a BTB, where the voxel-line trace (essen-
tial measurements) is colored in red and redundant measurements
are colored in yellow. �e chunk length, HG, equals toNb∆β , where
Nb is the block size, β is the view angle, ranging from 0 to π , and
∆β is the view angle spacing; the chunk width, GK, is Nd∆x , where
Nd is the depth of the 3DSV and ∆x is the voxel width; the chunk
height, EG, is Lpw +m(ϕ)Nb∆β , where Lpw is the average voxel
trace width, ϕ is the angle between the voxel trace and the view
direction,m(ϕ) is the average voxel trace absolute slope. Relating
to Figure 9, Lpw equals to the length of EF,m(ϕ)Nb∆β equals to the
length of FG, �en, Lpw +m(ϕ)Nb∆β equals to the chunk height,
EG. With the dimensions of the chunk, the volume of the chunk,
denoted as Vc , can be computed as:

Vc = Nb∆βNd∆x
(
Lpw +m(ϕ)Nb∆β

)
(5)

�en, the average number of regular memory accesses in a chunk,
denoted as Nrun , can then be computed as:

Nrun =
Vc

∆β∆x∆d
(6)

where ∆d is the detector channel spacing, ∆β∆x∆d is the size
of a single entry in the BTB, and Vc

∆β∆x∆d
represents the number

of element entries in a chunk. By plugging the expression of Vc to
Equation (6), we can then get:

Nrun =
NdNb

(
Lpw +m(ϕ)Nb∆β

)
∆d

. (7)

In this equation, Nd and Nb are known constants, chosen to
optimize computing performance. ∆β and ∆d are also known con-
stants about the dataset. Lpw and m(ϕ), however, are unknown
parameters. To compute Equation (7), we must �rst compute these
two parameters.

Δ":	voxel width
𝛽:		view angle
r:	detector displacement
𝛿% 𝛽 :	length of projection on the detector

voxel

Δ"

Δ"𝑟

𝛿%(𝛽)

𝛽

𝛽

𝑧

Figure 10: Shows a voxel modeled as a square. �e length of
projection, δ1(β), is shown as the green bar.

Computing parameter Lpw To compute Lpw , we model a
voxel to be a square with voxel width ∆x , as shown in Figure 10. In
addition, we denote δ1(β), shown as a green bar in Figure 10, as the
length of projection on the X-ray detector at view angle β . δ1(β)
can be computed as in [28]:

δ1(β) =
{√

2∆x cos( π4 − β), if β ∈ [0, π2 )√
2∆x sin(β − π

4 ), if β ∈ [ π2 ,π )
(8)

Unfortunately, Equation (8) is not ideal because δ1(β) must be
approximated to be a multiple of ∆d in real applications.

To o�set this error, a constant term ∆d is added to Equation (8)
and the new equation becomes:

δ1(β) ≈
{√

2∆x cos( π4 − β) + ∆d , if β ∈ [0, π2 )√
2∆x sin(β − π

4 ) + ∆d , if β ∈ [ π2 ,π )
(9)

With Equation (9), Lpw can then be computed to be the average
value for δ1(β), shown as:

Lpw =

∫ π
0 δ1(β)dβ

π
≈ 4∆x

π
+ ∆d

(10)

Computing parameterm(ϕ) For the jth voxel in a slice, illus-
trated as a red square in Figure 11(a), we denote its coordinate as
(x j ,yj ). In addition, we denote its voxel trace amplitude in the sino-
gram at view angle β as r j (β), shown as a yellow bar in Figure 11(b).
Analytically, r j (β) can be expressed as [28]:

r j (β) = yj cos β − x j sin β (11)

and the voxel trace slope in the sinogram at view angle β is then:

r
′
j (β) = −yj sin β − x j cos β (12)

�erefore, the average absolute slope for a voxel trace in the
sinogram space, denoted as m̃, can be computed as:

m̃ =

∫ Nx
2

−Nx
2

∫ Nx
2

−Nx
2

∫ π
0 |r

′
j (β)| dβ dx j dyj

NxNxπ

(13)
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Figure 11: (a) �e red square in the slice is the jth voxel, whose coordinate is (x j ,yj ). (b) �e red trace is the measurements for
the jth voxel. �e yellow bar r j represents the voxel trace amplitude in the sinogram space.

Where Nx is the slice dimension. To simplify Equation (13), we
use polar coordinate and we let x j = −γ cos β , yj = −γ sin β and
γ =

√
x2j + y

2
j . �erefore,

m̃ =
8
∫ π

4
0

∫ Nx
2 cos β

0 2γ 2 dγ dβ
NxNxπ

=
Nx
3π

(√
2 + ln(1 +

√
2)

) (14)

Similar as before, Equation (14) must compensate for errors.
�erefore, a constant term is added to Equation (14) and m̃ is ap-
proximated to be:

m̃ ≈ Nx
3π

(
1 +
√
2 + ln(1 +

√
2)

)
(15)

A�ermeasurements are copied from the sinogram space to a BTB,
all voxel traces are �a�ened with a much smaller amplitude and
slope (see Section 4.1 for more detail). To calculate the voxel trace
average absolute slope in the BTB,m(ϕ), a 3DSV can be viewed as a
slice, whose length and height is Nwh∆x , where Nwh is the number
of voxels along the width and height of the 3DSV. �erefore,m(ϕ)
can be calculated by replacing Nx with Nwh∆x in Equation (15):

m(ϕ) ≈ Nwh∆x
3π

(
1 +
√
2 + ln(1 +

√
2)

)
(16)

A�er plugging Equations (10) and (16) into Equation (7), we can
then get:

Nrun =

(
Nwh∆xNb∆β

3π∆d

(
1 +
√
2 + ln(1 +

√
2)

)
+

4∆x
π∆d

+ 1
)
NdNb

(17)

Since ∆β can also be computed as π
Nv [28], the full analytical

expression for Nrun becomes:

Nrun =

(
Nwh∆xNb
3∆dNv

(
1 +
√
2 + ln(1 +

√
2)

)
+

4∆x
π∆d

+ 1
)
NdNb

(18)
If we let constant C1 =

∆x
3∆dNv

(
1 +
√
2 + ln(1 +

√
2)

)
and con-

stant C2 =
4∆x
π∆d
+ 1, then Nrun can be simply stated as follows:

Nrun = (NwhC1N
2
b +C2Nb )Nd (19)

where NwhC1N 2
bNd is the number of regular memory access for

redundant measurements and C2NbNd is the number of regular
memory access for essential measurements. �e percentage of
essential measurements, Ec , can then be computed as the ratio of
essential measurement entries to Nrun :

Ec =
C2NbNd
Nrun

=
C2

NwhC1Nb +C2
(20)
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