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Purpose: For single-source helical Computed Tomography (CT), both Filtered-Back Projection
(FBP) and statistical iterative reconstruction have been investigated. However, for dual-source CT
with flying focal spot (DS-FFS CT), a statistical iterative reconstruction that accurately models the
scanner geometry and acquisition physics remains unknown to researchers. Therefore, our purpose is
to present a novel physics-based iterative reconstruction method for DS-FFS CT and assess its image
quality.

Methods: Our algorithm uses precise physics models to reconstruct from the native cone-beam
geometry and interleaved dual-source helical trajectory of a DS-FFS CT. To do so, we construct a
noise physics model to represent data acquisition noise and a prior image model to represent image
noise and texture. In addition, we design forward system models to compute the locations of
deflected focal spots, the dimension, and sensitivity of voxels and detector units, as well as the length
of intersection between x-rays and voxels. The forward system models further represent the coordi-
nated movement between the dual sources by computing their x-ray coverage gaps and overlaps at an
arbitrary helical pitch. With the above models, we reconstruct images by an advanced Consensus
Equilibrium (CE) numerical method to compute the maximum a posteriori estimate to a joint opti-
mization problem that simultaneously fits all models.

Results: We compared our reconstruction with Siemens ADMIRE, which is the clinical standard
hybrid iterative reconstruction (IR) method for DS-FFS CT, in terms of spatial resolution, noise pro-
file, and image artifacts through both phantoms and clinical scan datasets. Experiments show that our
reconstruction has a higher spatial resolution, with a Task-Based Modulation Transfer Function
(MTF) consistently higher than the clinical standard hybrid IR. In addition, our reconstruction
shows a reduced magnitude of image undersampling artifacts than the clinical standard.
Conclusions: By modeling a precise geometry and avoiding data rebinning or interpolation, our
physics-based reconstruction achieves a higher spatial resolution and fewer image artifacts with smal-
ler magnitude than the clinical standard hybrid IR. © 2021 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.14941]
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1. INTRODUCTION

Dual-source computed tomography (CT) is a popular imag-
ing modality that mounts two x-ray sources and detectors on
the same rotating gantry, and uses a high helical pitch to
rapidly acquire projections with high temporal resolution.
With a dual-source CT design, radiologists can examine heart
and coronary arteries with much fewer motion artifacts than
the single-source design that has few detector rows.' In addi-
tion, patients who have trouble holding still on a patient bed,
such as children and patients with neurological disorders, are
less likely to require anesthesia when being scanned by a
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dual-source CT, thereby reducing the exam cost and sedation
medical risks.’

A high helical pitch for dual-source scanner, however,
reduces sampling rate and in turn causes a degraded spatial
resolution and more undersampling artifacts. To maintain
spatial resolution and minimize artifacts, there are two
approaches among CT vendors to increase the sampling rate
while keeping a high pitch. The first approach is to increase
the CT detector resolution so that each projection has more
samples. An example is the Aquilion Precision Scanner of
Cannon with 0.25 mm detector resolution and a small field-
of-view. The Aquilion Precision Scanner, however, is not in
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clinical use and its diagnostic accuracy is unknown. The sec-
ond approach is to increase the total number of projections,
such as with the widely used Siemens Somatom Force Scan-
ner. Through the flying focal spot (FES) technology, a dual-
source scanner takes multiple interleaved projections at each
view angle without significantly lengthening the scan time.

To reconstruct from the projections of a dual-source flying
focal spot CT, abbreviated as DS-FFS CT, Filtered Back-
Projection (FBP) is the dominant approach for DS-FFS CT in
the published works.>® The general principle of FBP is to
interpolate discretely sampled projections and transform them
back to reconstruction in the spatial domain through Fourier
and inverse Fourier Transform.”® As of today, there is no
exact FBP implementation, such as the algorithms of Katse-
vich,” that can fully model the geometry of DS-FFS CT and
the existing methods for DS-FFS CT are all approximate FBP
techniques that rebin the helical projections into parallel
beams for reconstruction.>*'*!" A clear advantage of the
approximate FBP methods is that they enable a short recon-
struction time by simplifying geometry and saving computa-
tions. The disadvantage is that these approximate FBP
methods produce undesirable cone-beam artifacts when the
cone angle is large and diagnostic errors may increase due to
the cone-beam artifacts.'>!> In addition, both the exact and
the approximate FBP are “continuous to discrete” methods
that map continuously sampled detector signals to discrete
image voxels. The actual CT projections, however, are all dis-
cretely sampled instead of continuously sampled. Therefore,
data interpolation is heavily used in the preprocessing steps
of the FBP methods to transform discrete projections into
continuous signals before performing a reconstruction. When
the discrete projections are not sufficiently many, such as
when the pitch is high, data interpolation may limit the
achievable spatial resolution of the reconstruction and cause
undersampling artifacts.'> In summary, the advantages and
disadvantages of FBP are listed on the left side of Table 1.

In contrast, iterative reconstruction (IR) formulates the
final image as the solution to an optimization problem and
iteratively solves the problem.'? Among different IR methods,
statistical IR reconstruction is a special one with the follow-
ing five components'*:

1. An image model that expresses the unknown object to
be reconstructed in terms of voxels to be estimated
from the projection data. In a Bayesian estimation
framework, the image model is a prior model, such as
L1, L2 norm, and Total Variation.

2. A system model that represents radon transform, scan-
ner geometry as well as acquisition physics. For tomog-
raphy imaging, the system model can be expressed in
the linear form ¥ =AX + E, where Y is sinogram pro-
jections, A is a system matrix, X is the reconstructed
image, and E is the unknown measurement error.

3. A statistical model that describes how the noisy pro-
jection measurements vary around their ideal values
and often the projection noise is assumed to have
Gaussian or Poisson distribution. The statistical model
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TaBLE I. Filtered-back projection (FBP) and statistical iterative reconstruc-
tion (IR) algorithmic comparison.

Scanner FBP Statistical IR
Single-Source Fourier and inverse Fourier Linear Algebra and
No FFS Transform Bayesian

Interpolate projections
May approximate geometry No rebinning

by rebinning Preserved quality at a low
Inferior quality at low dose dose

Artifacts at a large cone Fewer artifacts at a large
angle cone angle

Popular for clinical practice Unpopular for clinical

No interpolation

Short reconstruction time in ~ practice
seconds Much longer runtime in
hours

All above features

Always perform projection
rebinning

Enable a higher sampling
rate

than without FFS

Enable a much higher pitch
than Single-Source

Dual Source
with FFS

No implementation

also assigns weights to each projection based on the
projection noise variance and penalizes noisy projec-
tions.

4. A cost function that is to be minimized to estimate the
image voxels.

5. An iterative numerical algorithm for minimizing the
cost function.

A unique advantage of statistical IR is that the system
model enables the statistical IR to have a “discrete-
to-discrete” mapping from discretely sampled projections to
discrete image voxels. Therefore, no data interpolation or
rebinning is required and the algorithm operates directly on
discrete measurements.”>™” In addition, statistical IR has
great flexibility to incorporate precise scanner hardware char-
acteristics into its data acquisition model."*'® Therefore, sta-
tistical IR has the potential to be more faithful to the true
acquisition physics and the scanner geometry than FBP.
Because of these distinct advantages, statistical IR often pro-
duces clearer image details with fewer artifacts than FBP,
especially when the radiation doses are low and the number
of projections is limited."*'>'®*' The number of operations
for statistical IR, however, is several magnitudes more than
those for FBP.'>!? Therefore, statistical IR has a slow recon-
struction time and is unacceptable for emergency medicine.
In addition to the above disadvantages, the existing imple-
mentation for statistical IR is only applicable to single-source
CT and has no implementation for DS-FFS scanner. The
commercial implementation for DS-FFS scanner, such as Sie-
mens ADMIRE, is a hybrid algorithm that has some features
of IR while keeping the core operations of weighted FBP. It
has a forward model that performs weighted FBP operations
and a prior model for image denoising and artifact removal.
In addition, the forward model has extra loops for artifact
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removal and statistical weighting.”> Therefore, Siemens
ADMIRE meets all the above conditions for statistical IR
except point 2 because the forward model for Siemens
ADMIRE does not have a system matrix and is not based
upon the linear system model of the form ¥ = AX + E. In
summary, the advantages and disadvantages of statistical IR
are listed on the right side of Table I.%**

To address these limitations, this paper proposes a statistical
IR algorithm, The Joint Estimation for Native Geometry
(JENG), for DS-FFS CT scanner. This algorithm not only
accounts for the true acquisition geometry and jointly estimates
images from each x-ray source and focal spot, but also pro-
vides a detailed description of how to construct a linear for-
ward system model for DS-FFS CT. In Section 3.B, we
propose a novel physics-based system model for JENG that
imitates the flying focal spot data acquisition and native cone-
beam geometry without projection interpolation, rebinning or
completion. Section 3.C characterizes the interleaved dual-
source helical trajectory at a high helical pitch. With precise
knowledge of the scanner movement, we then reconstruct
images by Consensus Equilibrium to compute the maximum a
posteriori estimate to a joint optimization problem that simul-
taneously fits projections from all focal spots and source-
detector pairs. In Section 5, we evaluated image spatial resolu-
tion and artifacts of JENG on a standard ACR 464 phantom
with respect to Task-Based Modulation Transfer Function
(MTF,), Noise Power Spectrum (NPS), and undersampling
artifacts. Experimental results show that JENG has fewer
image artifacts and a much higher MTF,, than the clinical
standard hybrid IR method (Siemens ADMIRE). In addition,
we also subjectively evaluated the spatial resolution and arti-
facts of JENG and the clinical standard method on five tho-
racic datasets and three abdominal datasets.

2. RELATED WORK

Flohr and Kachelrie3’s papers analyze focal spot move-
ment on a single-source CT and propose a rebinning FBP
method to approximate interleaved helical multislice projec-
tion data as progressive-view and parallel-beam data.> After
the rebinning, a 2D FBP is performed on the rebinned projec-
tion data, slice by slice. Such a method has three issues: (a)
loss of spatial resolution from interpolation and geometry
approximation, and the blurriness is often more pronounced
in CT datasets with a high pitch®; (b) loss of spatial resolu-
tion on the edge of each image slice, as Flohr’s reconstruction
is a stack of 2D images rather than a fully 3D volume; and (c)
noticeable aliasing artifacts in each image slice and windmill
artifacts across image slices, especially when the CT cone
angle is large.'>"?

Flohr and his collaborators further extend the above work
to DS-FFS CT.*® As a dual-source CT gantry often has lim-
ited space to fit two full-size detectors, the dual-source gantry
often has a wide detector covering the full field of view and a
narrow detector covering a truncated center view. Therefore,
voxels that are outside of the narrow detector’s truncated
field-of-view receive no projections from the narrow detector,

Medical Physics, 48 (7), July 2021

3597

despite that these voxels still receive projections from the
wide detector. To perform reconstruction on these voxels with
limited projections, Flohr’s research work completes the
missing projections from the narrow detector by interpolating
projections from the wide detector. Then, the final recon-
struction is the weighted average of the two independent FBP
reconstructions performed on the completed projections from
the two detectors.* Such an approach not only has the same
issues from the single-source implementation as discussed in
the previous paragraph, but can also lead to more image blur-
riness and artifacts from missing data interpolation and
weighted averaging on independent reconstructions.

To address the above-mentioned issues, this paper pro-
poses the JENG algorithm, which is the first physics-based
statistical iterative reconstruction solution for DS-FFS CT
and reconstructs from the scanner native geometry without
data rebinning, interpolation or completion. Thereby, the
images reconstructed by JENG have a higher spatial resolu-
tion and fewer image artifacts than the FBP methods. In addi-
tion, to avoid potential image artifacts from weighted
averaging on two independent reconstructions as in the FBP
methods,4’6 the JENG algorithm uses Consensus Equilibrium
to compute a single reconstruction that simultaneously fits
the projections from all x-ray sources and focal spots.

3. MATERIALS AND METHODS
3.A. CT setup and math formulation

Figure 1(a) shows a CT scanner with a single x-ray source,
also known as an x-ray tube, on one end of a rotating gantry,
and an x-ray detector array opposite the source on the gantry.
Each horizontal detector sensor unit is a channel and each
vertical detector sensor unit is a row. We denote the length of
each detector channel as D, and the length of each detector
row as D,. In addition, the total number of detector channels
is M, and the total number of detector rows is M,. In the
example of Fig. 1(a), the number of detector channels, M., is
7 and the number of detector rows, M,, is 4. The center of the
gantry rotation, known as the isocenter, is denoted as point O
in Fig. 1(a). For ease of understanding, we use a coordinate
system with axis x pointing along the detector channel direc-
tion, axis y pointing upright (together x-y form the trans-
axial plane), and axis z pointing along the rotation axis (axial
plane). The center of the patient body to be scanned is placed
near the isocenter O and the craniocaudal direction is along
the z axis. x-rays emit from a point in the x-ray source, also
known as a focal spot, and are denoted as S in Fig. 1(a), pen-
etrate through the patient body and project onto the x-ray
detector array. Note that in this paper we symbolize the dis-
tance between focal spot, S, and isocenter, O, as ry,. and is
shown in Fig. 1(b). In addition, isocenter, O, is on the same
plane with sector SAB, where points A and B are the two end
points of the detector center row, shown as a bold arc in
Fig. 1(b), and sector SAB is symmetric along line SO. We
also define the view angle, 3, as the angle between line SO
and x axis. In the example of Figs. 1(a) and 1(b), line SO is
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Fic. 1. Single-source computed tomography (CT) scanner geometry and setup. (a) and (b) single-source CT scanner at 90° view angle, where S, O and f are the
focal spot, isocenter, and view angle. (c) CT scanner rotated clockwise to 45° view angle.
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Fic. 2. X-rays intersection with voxels at different view angles. (a) At 90° view angle, an x-ray intersects with voxels X, X», and X3, and we denote the lengths
of intersection between the x-ray and the voxels as A; 1, A1, and A, 3, respectively. (b) At 45° view angle, a different x-ray intersects with voxels X, X, and X3
with intersection lengths A, |, A>,, and A, 3. Note that the length of intersection is unique for each voxel, each x-ray, and each view angle. [Color figure can be

viewed at wileyonlinelibrary.com]

along the y axis and the view angle £ is 90°. When the CT
scanner rotates clockwise by 45° in Fig. 1(c), the view angle
is 45° in this case.

To understand how we formulate the computations for the
JENG algorithm, we use a reconstruction with three voxels,
X1, X5, and X3 as an example. Fig. 2(a) shows an x-ray inter-
secting with three voxels, and a detector sensor unit receives
projection Y. for the x-ray at 90° view angle. We denote the
lengths of intersection for the three voxels at the current view
angle as A, A1z, and A;3 and we use different colors for
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each voxel’s intersection length. Fig. 2(b) shows another
x-ray intersecting with three voxels at 45° view angle with
intersection lengths A, |, A, ,, and A; 3, and a different detec-
tor sensor unit takes a projection Y,. Since projections Y
and Y, are the integral of radiodensity along the path of x-
rays, we can express projections Y; and Y, as: Y| = A;1X,
+A12X2 +A13X3 + E1, and Yy = A1 X1 + Az X + Axs
X3 + E,, where X, X», and X3 are the radiodensity for each
of the three voxels. E; and E, are the measurement errors,
such as electronic and photon quantum noise, and
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(b) (c)

FiG. 3. An x-ray source without flying focal spot. (a) Demonstrates the interior design of an x-ray source. Note that the anode target plane is tilted along the z
axis. (b) The transverse view (axial plane perspective) for the focal spot and the detector at 90° view angle. (c) The side view (sagittal plane perspective) for the

focal spot and the detector.

represent the difference between measured projections, Y
and Y,, and the error-free perfect projections. If we gener-
alize the above equations for all voxels and projections,
then we have:

Y=AX+E, D

In the above equation, Y is a sinogram vector of size M
that includes projections from all view angles and M equals
M, x M. x M,, where M, is the total number of view angles
for the scan. M, and M, are the numbers of detector channels
and rows as defined before. A is an M x N system matrix that
models the geometry of CT, where N is the size of a recon-
struction. Each entry of A, denoted as A;j, represents the
length of intersection between ;" voxel and the x-ray for the
i™ sinogram entry. In addition, A, j 1s unique for each voxel,
detector sensor unit, and view angle. X is a reconstruction
vector of size N and each element of X is the radiodensity for
a voxel. E is a measurement error vector of size M and repre-
sents the difference between Y and Y’s error-free value.
Unfortunately, we cannot directly compute reconstruction X
from Eq. (1) as measurement error E is unknown and cannot
be measured. In addition, inverting system matrix A is
impractical because an inversion takes a huge amount of
computations and requires terabytes of memory. To address
the above challenges, the JENG algorithm computes recon-
struction X as the solution to the following maximum a poste-
riori optimization problem:

X — argmxin{%(Y —AX)"D(Y — AX) +R(X) } )

where D is an M x M diagonal weight matrix and represents
the inverse of the sinogram noise. 1 (Y —AX V'D(Y —AX) is a
forward model that fits reconstruction X with sinogram Y. If
reconstruction X has an anomaly, such as metal, the sinogram
noise will be large and the forward model will be penalized
with a small weight matrix D. Therefore, reconstruction X has
a weak fitting with beam hardened and noisy sinogram Y and
has less image noise or artifacts. Vice versa if the sinogram
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noise is small, the weight matrix D is large and reconstruction
X has a strong fitting with noiseless sinogram Y. R(X) in Eq.
(2) is a prior model for maintaining a good image spatial prop-
erty and denoising. In this paper R(X) is a convex Generalized
Markov Random Field, which denoises and penalizes each
voxel based on the difference between the voxel and its neigh-
boring voxels. A large difference leads to strong denoising and
penalization, while a small difference leads to weak denoising
and penalization. From the machine learning perspective, the
forward model can be understood as the minimum mean
square error of a weighted linear regression model, and R(X)
is a regularizer that prevents data overfitting.

3.B. Flying focal spot geometry modeling

To compute system matrix A in Eq. (2) we start by exam-
ining the structure inside the x-ray source through Fig. 3(a).
The x-ray source consists of an encapsulating glass envel-
ope, a rotating anode, a cathode, and a tilted target plane.
The target plane is also connected with the anode and is
tilted from the X-Y plane by an anode tilt angle 7. From the
cathode, the accelerated electrons denoted as e~ in Fig. 3(a),
hit the focal spot S on the anode target plane and the x-rays
are then produced at the focal spot. Figs. 3(b) and 3(c) show
the x-ray source structure at 90° view angle from transverse
view (axial plane) perspective and side view (sagittal plane)
perspective and we can observe that focal spot S lies on the
tilted target plane. Fig. 3(c) also shows the anode angle 7 as
the angle between y axis and the tilted target plane. Further-
more to the above introduction, the precise coordinate loca-
tion (x;, y,, z5) for focal spot S at any view angle f can be
computed as:

Hr(ﬂ_ﬁO)

Xs =rgoco8(f), and y,=rysin(f), and z,= —
P
3)

where the cosine and sine trigonometry relationship for x;
and y, can be observed in Fig. 1(c). H, is how far the x-ray
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FiG. 4. An x-ray source with flying focal spots. (a) Shows a single-source computed tomography setup with two focal spots, S and S’. (b) Shows the axial plane
transverse view of the focal spots at 90° view angle. (c) The sagittal plane side view of the focal spots. Note that S and S’ are on the same tilted target plane.

source moves along the z axis in a 360° rotation, / is the view
angle in radian, and f is the CT scanner view angle when
7z, =0.

When the scanner is equipped with a flying focal spot,
the cathode quickly wobbles and electrons hit the target
plane at multiple different locations, creating multiple
x-ray focal spots at each view angle. Each focal spot pro-
duces a set of projections and different focal spots produce
different but interleaved projections. By producing conju-
gate sets of projections through flying focal spots, the total
number of projections, M, increases proportionally with
the number of focal spots but the CT scan time does not
significantly lengthen. Fig. 4(a) shows an example single-
source CT scanner with two focal spots, the default focal
spot S and the deflected focal spot S’, and Figs. 4(b) and
4(c) show S and S’ in the axial and sagittal plane perspec-
tives at 90° view angle. We can observe from Figs. 4(a)
and 4(b) that projections from S and S’ overlap but do not
contain each other.

To compute the coordinate location for the flying focal
spot, we denote the displacement vector between S and S’ at
¢ 90. ° view angle as (A,, A,, A,,) in Figs. 4(b) and 4(c).
Since focal spots S and S’ are on the same target plane, A,
and A, have the following trigonometry relationship:
A,, = tan(z)A,, where 7 is the anode tilt angle. The deflected
focal spot, S’, at any view angle f can then be given below

the coordinate (x’s, Vi z;):

/ rsuCOS((ﬁ)) A, sin(f)  cos(f) 0

/| = | Fosin(p +R; | A, , and R;= | —cos(f) sin() 0],
[ ] H.(p—p) [tan(r)Av 0 0 1

=

r e

’ 2
)

where the vector before the addition operator is the coordi-
nate location for the default focal spot from Eq. (3) Ry is a
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rotation matrix that rotates the displacement between S’ and
S at 90° view angle to any view angle, f, assuming that a
helical CT scanner rotates in the x-y plane and translates in
the z direction. After plugging in the Ry expression, Eq. (4)
can be reorganized as:

/ rsoc0s(f) +sin(B)A, +cos(f)A,

xS
V= Fosin(fB) — cos(f)A, +sin(B)A, )
% H,(B =) +tan(7)A,

2

Note that Eq. (5) is a general form for the coordinate loca-
tion of any focal spot, with or without deflection. If A, and
A, are both zeros, then Eq. (5) is the default focal spot coor-
dinate without deflection and is the same as Eq. (3). Readers
should also know that Eq. (5) assumes that a focal spot is a
sizeless point without actual physical shape. Given that CT
scans often use a small focal spot with a size less than 1mm
for optimal diagnostic values, the focal spot size approxima-
tion in Eq. (5) has minimal or no impact on spatial resolution.
In the unusual cases with a focal spot size larger than 1mm,
the sizeless point assumption might lead to sub-optimal spa-
tial resolution.

Knowing the coordinate for the focal spots alone, however,
is not sufficient to compute system matrix entry, A;;. We also
need to know the geometry information for voxel X; and we
introduce two other parameters in this paper, 8 and ¢. @ is
voxel X;’s ray angle in the x-y plane parallel to the x axis, and
Fig. 5(a) depicts 0 in the x-y plane. Fig. 5(a) also denotes
point C as the location where the x-ray hits the detector in the
x-y plane. ¢ is the voxel’s ray angle in the y-z plane and par-
allel to the line connecting S’ and C, and is shown in Fig. 5(
b). With the above definition, 6 and ¢ can then be computed
from the below trigonometry equations:
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FiG. 5. (a) and (b) show x-y plane ray angle € and y-z plane ray angle ¢. (c) Green line segment DF is the length of intersection between a voxel and an x-ray that
goes through the voxel center. (d) Shows a voxel whose projection onto the detector (x-y plane) is completely within a channel. (e) The voxel’s projection partially
overlaps with the detector channel. (f) The voxel’s projection onto the detector (y-z plane) partially overlaps with a row. [Color figure can be viewed at wiley

onlinelibrary.com]

Vi =¥
6= arctan2 | ~—1
arctan <x/7 )

s X

/ p— .
), ¢ = arctan?2 Ll , 6)
;_ ,)2+ /)2
(xs x! (ys yj)

where arctan2 operator returns the arctangent value in the
range of [—x, z], (x,, y,, Z,) is the focal spot coordinate loca-
tion from Eq. (5) and (x;, y;, zj) is voxel X;’s coordinate
location. To ensure that the length of intersection, A;;, is
never negative, we introduce two more parameters, 6 and g;ﬁ
which are 45° rotations of € and ¢, and we clip their values

to [—Z, 1] 6 and ¢ are defined below as:

o (o5 mu] 5 b= [0 5) s
@)

With 6 and cZ), the length of intersection, A, ;, can then be

computed as: A
Ag=—2 ®)

! cosfcos

In the above equation, we denote a voxel’s x-y plane side
length as A,, and z direction side length as A; in Figs. 5(a)
and 5(b). To explain how Eq. (8) is derived, Fig. 5(c) shows
an x-ray intersecting with voxel X; and the intersection
length, line segment DF, is colored in green. Point E in
Fig. 5(c) is the center of the voxel with points D, E, F along
the same line. The length of line segment FH equals A,, and
FH is parallel to y axis with point H on the edge of the voxel.
<DEG is ray angle 6 and <DFH is 6, such that 6 and 0 are
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90° apart in this example. Given that both the length of line
segment FH and S DFH are known, the length of x-ray’s
intersection in the x-y plane, segment DF, can be computed
as . To project line segment DF from the x-y plane to a
three-dimensional space, Eq. (8) divides DF segment length
with cosg.

Equation (8), however, assumes that a voxel’s projection is
entirely taken by a single detector sensor unit. When a voxel’s
projection is taken by multiple detector sensor units, the mea-
surement from any single detector sensor unit, Y;, can no
longer account for the entire voxel’s projection. Instead, Y; is
the projection for the portion of the voxel that is in the way of
the x-rays from the focal spot to the detector sensor unit that
receives Y;. In the example of Fig. 5(d), the voxel’s projection
in the x-y plane, shown as line segment PQ in the figure with
length L, is entirely within a channel. In this example, the pro-
jection taken by the detector channel accounts for the entire
voxel and the computations for Eq. (8) is accurate. In another
example in Fig. 5(e), the voxel is partially in the way of the x-
rays and its projection in the x-y plane, namely line segment
PQ, does not fully overlap with the detector channel. There-
fore, the projection in this example taken by the channel only
accounts for the portion of the voxel shaded in green and Eq.
(8) no longer holds. Similarly, Fig. 5(f) gives an example voxel
whose projection in the y-z plane, line segment PQ with length
L,, does not fully overlap with the detector row.

Therefore, A;; in Eq. (8) must be modified so that A;; not
only reflects the length of intersection between x-rays and
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FiG. 6. (a) and (b) demonstrate how &, is computed, with &, colored as a red segment between points C and W. (c) Shows how §, is computed. Similar to (a), &,

is red segment CW. [Color figure can be viewed at wileyonlinelibrary.com]

voxels, but also reflects the overlap between the voxel’s pro-
jection and the corresponding detector sensor unit. To do so,
A;j is multiplied by a normalization term and is computed in
the following way:

A,.j:mgicxi)s(}[V(ac)*W(ac)] <[V )W), ©)

where 6, is the x-y plane displacement between the center of
voxel X;’s projection and the center of the channel that receives
projection Y. 8, is the y-z plane displacement between the center
of the voxel’s projection and the center of the detector row.
Figs. 6(a)-6(c) depict 6. and 6, as red segments CW, where
point C is the center of the voxel’s projection and point W is the
center of the corresponding detector sensor unit.

In addition to the above notations, V() in Eq. (9) is a voxel
density function and W(-) is a detector sensitivity function. * is
a convolution operation and X is a multiplication operation.
P computes the length of intersection between the x-ray
and voxel X ;, as explained in Eq. (8), whereas [V (5.)*W(8,)] x
[V(8,)*W(5,)] is a normalization term that accounts for the
overlap between voxel X;’s projection and the detector sensor
unit that receives the projection. V(5.)*W(8,) accounts for the
x-y plane overlap and V(§,)*W(5,) accounts for the y-z plane
overlap. When a voxel’s projection completely overlaps with a
detector sensor unit, such as in the example of Fig. 5(d), the nor-
malization term is 1. Otherwise, the normalization term is
between 0 and 1. To define V(6,), V(5,), W(5.), and W(5,), we
assume that each voxel has a uniform radiodensity everywhere
in the voxel and each detector sensor unit has a uniform sensitiv-
ity. For simplicity, we borrow the voxel density and detector sen-
sitivity functions from citation,"” and define V(-) and W(-) as
the following rectangular functions:

y

V(8.) =rect (%) , and V(5,) =rect (%) (10)

c r
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W(6.) = Dicrect <l%> , and W(5,)= %rrect (l%) (11)
where L. and L,, as defined before, are the lengths of the vox-
el’s projection in the x-y plane and y-z plane, and are repre-
sented as line segment PQ in Figs. 5(d)-5(f). D, and D, are
the lengths for a detector channel and row, respectively, and
are colored as blue line segments in Figs. 6(a) and 6(c). After
plugging Egs. (10) and (11) into Eq. (9), we eliminate the
convolution operations and rewrite Eq. (9) in a closed-form
expression:

Ax\- . D(' LL' .
A= Y ____dlip [o, e 5.0, min(Le, DL.)]
DD, cosOcos¢ 2
D,+L,
xclip[O, '; ~ —|8,|, min(L,, D,)}, 12)

with function clip defined as: -clip[a, b, ] = min(max
(a, b), ¢). To compute A;; correctly, 5. and &, in the above
equation must compensate for the flying focal spot deflec-
tion. The value for 6. is clipped to [—(ry+A,)x,
(ra+ A,)7) and can be computed as:

(M.—1)D, i.D,
2(}’5,1 + AV) rea+ A,

§(,z{<07770¢+ +7r> modZﬂfn} (ra+A4y),

13
where y and « are defined as: )

y—/)’—arctan2< A > 14)

rso+Av

s Av SO Av
a = arctan2 (%) — arctan? (%) (15)

u u

In the above equations, @ is the x-ray ray angle in the x-y
plane as defined before; the angle between S’O and x axis,
and both @ and y are pointed out in Figs. 6(a) and 6(b). « is
the detector channel offset, defined as the angle between the
x-ray hitting the detector center in the x-y plane and the x-ray
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passing through the isocenter, O. In the example of Figs. 6(a)
and 6(b), @ is S AS’B. Point A is where the x-ray through
isocenter O hits the detector array in the x-y plane, and point
B is the detector array center in the x-y plane. M, is the total
number of detector channels as defined in Section 3.A. ry, is
the distance from the default focal spot, S, to the isocenter, O.
rsq 1 the vertical distance from S to the detector array, and
both rg, and r,, are indicated in Fig. 6(b). A, and A, are the
focal spot location displacement, along x axis and y axis,
respectively, from S to the deflected focal spot, S’, and are
both indicated in Fig. 6(b). i. is the index for the detector
channel that receives voxel X;’s projection, and we assume
that the index of the leftmost detector channel is zero. In the
example of Figs. 6(a) and 6(b), we use point H to represent
the center of the leftmost detector channel and point W for
the center of the i’ channel.

In Eq. (13), operation 8 —y computes angle S AS’C in
Fig. 6(a). By subtracting a, which is S AS’B, the first three
terms, 8 —y — a, compute S BS’C. The fourth term, %#)AD),
is the approximated angle HS’B. Therefore, the result of
computing the first four terms in Eq. (13) is S HS’C in the
example of Fig. 6(a). The fifth term is the approximated
angle S HS’W. Together, the computations for the first five
terms in Eq. (13) get S CS’W, which is the angular measure
for &,, by subtracting S HS’C from S HS’W. Then, Eq. (13)
clips the angle to the range of [—z, #) and converts from
angular measure to arc length at the end of the equation. Sim-
ilarly, we can compute §, as:

5= a8 (zj—2)+

V=) 4 0 )?

=

Dr + AW - irDr,

16)

where (¥}, y,, 2}) is the coordinate location for a deflected focal
spot S” and (x;, y;, z;) is the coordinate location for voxel X ;. M,
is the number of detector rows. A,, is the focal spot displacement
along z axis from S to S’ and is indicated in Fig. 6(c). i, is the index
for the detector row that receives a projection for voxel X; and we
assume that the leftmost row has index 0. In the example of
Fig. 6(c), we use point H to indicate the center for the leftmost
detector row. The first term in Eq. (16) computes length AC, where
point A is on the detector rows and line S’A is parallel to y axis. The
second term computes length HB, where point B is the center of
the detector array in the y-z plane. The third term, A,,, equals to the
length of AB, and the first three terms together compute length HC.
The fourth term, i.D,, computes length HW. In the end, Eq. (16)
computes J, by subtracting length HC from length HW.

3.C. Dual-source CT modeling and computations

For a dual-source CT design, two sources and two detec-
tors at the same x-ray energy level are mounted on a rotating
gantry, with each pair of source and detector acquiring conju-
gate but different projections. In addition, different pairs have
different geometry parameters with different detector sizes,
view angles, and x-ray source movement. Fig. 7(a) shows an
example dual-source CT. The first x-ray source is S} and its
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corresponding detector has seven channels and a large field-
of-view. The second x-ray source is S5 and its corresponding
detector has a smaller size with five channels and a smaller
field-of-view, given that the rotating gantry has limited space
to fit two full-size detectors. The focal spot locations between
S" and S} are offset by an angular displacement of A in
the x-y plane and a translation displacement of Azi 2 in the z
direction. Both Ap"? and Az!? are shown in Fig. 7 and Ap"?
is represented by <S|0S} in Fig. 7(a). In practice, AB" is
often chosen to be 90° for an efficient mechanical assembly
of the detector sensor units.

With the above design, the dual-source CT has the unique
advantage to enable high pitch scans and rapid data acquisi-
tion without significantly increasing undersampling image
artifacts. To explain why, Fig. 8 demonstrates the interleaved
helical trajectory of a dual-source CT. Assuming that the scan
has a high pitch, Fig. 8(a) shows detector 1’s movement
along the z axis across time. Time ?, f,, and 3 are the 90°
view angles from three consecutive rotations when detector 1
and its source are in an upright position. In addition, it takes
exactly A, seconds and a distance of H, for the x-ray source
to move from its location at time #; to f, or f, to t3, where H,
is the rotation distance and was defined before in Eq. (3). At
90° view angles, the areas of the patient’s body covered by x-
rays are marked by green line segments. Meanwhile, the high
pitch scan leads to x-ray coverage gaps between consecutive
rotations, shown as red line segments in the figure, and the
gaps are not covered by any x-rays at 90° view angles. Conse-
quently, a reconstruction from detector 1’s projections alone
will lead to unacceptable image quality with significant
undersampling artifacts. To reduce the artifacts, detector 2
and its source are designed to provide extra x-rays coverage
that diminishes the coverage gaps of detector 1 and increases
the number of projection samplings. In Fig. 8(b), detector 2
and its source have a 90° angular displacement from detector
1 and lie horizontally at time #;. In addition, detector 2 has a
z direction translation displacement of Az!* from detector 1.
From time 7, it takes detector 2 and its source exactly %Al
seconds to rotate to an upright position. In the example of
Fig. 8(b), we note that along the z axis, detector 2 at time
t+ %A, is located between the positions for detector 1 at
time #; and f,. Therefore, the x-ray coverage for detector 2
partially fills the gaps of detector 1 and provides the missing
projections for detector 1 in areas where no x-rays are avail-
able. With the additional projections from detector 2, a dual-
source CT thereby minimizes the increase in high pitch
undersampling artifacts.

Despite the benefits above, we can observe from Fig. 8
that the additional projections from detector 2 do not com-
pletely fill the x-rays coverage gaps of detector 1. Therefore, a
high pitch dual-source CT can still lead to noticeable under-
sampling artifacts in reconstructed images due to the projec-
tion undersampling. To make it even worse, the state-of-the-
art FBP methods for dual-source CT heavily utilize data inter-
polation and geometry approximation, leading to even more
pronounced undersampling artifacts.*® In response, this sec-
tion proposes a joint estimation framework for JENG that has
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FiG. 7. Dual-source computed tomography (CT) design and geometry. (a) Shows detector 1 of a dual-source CT covering the full field of view, and detector 2
covering a smaller and central field of view. In addition, the two detectors are offset by a constant rotation angle, Af'2, in the x-y plane. (b) The two detectors are
offset by a displacement Az'? in the y-z plane.
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Fic. 8. Demonstrates the dual-sources’ coordinated movement and shows their x-ray coverage gaps and overlaps. (a) Dual-Source computed tomography detector
1’s movement in the z direction across time. Time 7y, ,, and #3 are three consecutive rotations. Note that the gaps between consecutive rotations are much larger
than the x-ray coverage areas. (b) Detector 2’s z axis movement at time #1, f,, and #3. Note that detector 2’s x-ray coverage areas partially fill the coverage gaps of
detector 1. [Color figure can be viewed at wileyonlinelibrary.com]

no data interpolation and the reconstruction simultaneously
fits projections and geometry from both source-detector
pairs. Consequently, JENG can better take advantage of the
dual-source CT design for more effective artifacts reduction
than FBP. To implement the JENG algorithm, we construct
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the system matrices A' and A for the first and the second
source-detector pairs by following the system matrix compu-
tations in Eq. (12). Then, the following joint estimation cost
function finds a consensus solution that fits projections and
geometry for both source-detector pairs:
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where Y', A!, and D' are the sinogram projections, system
matrix, and weight matrix for the first source-detector pair,
and Y2, A%, and D? are those for the second pair. X is a con-
sensus reconstruction that fits geometries and projections
from both pairs. || Y! —A'X |2, is a short-hand notation for
vector norm (V! fAlX)TD' (Y' —A'X). Similarly, the same
notation is applied to || Y2 —A%X ||2,.

To consider cases when each source-detector pair has mul-
tiple flying focal spots, we construct an independent system
matrix for each focal spot at each source-detector pair. For
example, if a dual-source CT has four focal spots at each
source-detector pair, then we have eight system matrices in
total. In a general case with K system matrices, the joint esti-
mation cost function has the following form:

1 K
XHargn}Kin {2 Y Y -AX |2, JrR(X)}, (18)
k=1

where K is the total number of system matrices that equals to
the number of source-detector pairs multiplied by the number
of focal spots, and k is the index for k™ system matrix and for-
ward model. Y* and D* are the projections and weight matrix
corresponding to the k" system matrix.

As all forward and prior models in the above equation are
strictly convex, there exists a unique global minimum to Eq.
(18). A wide variety of numerical methods can be used to
compute the global minimum of the above cost function,
including Iterative Coordinate Descent,ls’”’zf”27 Gradient
Descent, and Conjugate Gradient Descent.”® Unfortunately,
no matter which numerical method to use, all methods have
trouble with storing the system matrices in memory as the
system matrices have a very large memory requirement and
their memory size is proportional to both the reconstruction
size, N, and the size of the measurements, M. For a large-
scale reconstruction, the system matrices can sometimes take
hundreds of terabytes of memory, which is beyond what a
standard computer workstation can possibly provide.'®

To lower the memory requirement, there exist two
approaches: (1) the ordered-subsets method,”**° and (2) the
on-the-fly method.*' The ordered-subsets method splits mea-
surements and the system matrices into subsets and dis-
tributes them among compute nodes. Therefore, the memory
requirement for each node is the assigned subset only. Each
node then computes a private reconstruction using its
assigned subset and merges the private reconstructions from
all nodes into a consensus solution. The ordered subsets
method, however, is an approximation method and a conver-
gence to the global minimum to Eq. (18) is not guaranteed.””
If measurements are uniformly sampled among subsets, the
ordered-subset method converges to a value close to the glo-
bal minimum. If measurements are partitioned non-
uniformly, the converged solution is far from the global mini-
mum. In contrast, the on-the-fly method divides voxels into
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small groups and updating all groups in sequence. At each
voxel group, the on-the-fly method computes and stores a
small portion of the system matrices that are needed by the
current group. Once the on-the-fly method finishes the
update for the current group and moves on to the next one,
the previous memory storage is emptied and a new portion of
the system matrices for the next voxel group are computed
and stored in memory. Despite that the on-the-fly method has
little memory requirement, the on-the-fly method signifi-
cantly increases the computation cost and reconstruction time
because the on-the-fly method recomputes the entire system
matrices in every iteration of the numerical method.

Recently, a new numerical method, Consensus Equilib-
rium (CE), partitions the system matrices and measurements
across nodes in any order, including any non-uniform sam-
pling.'®¥>3 Then each node computes an individual recon-
struction from its assigned subset and merges individual
reconstructions into a consensus solution that is probably
exactly the global minimum to Eq. (18). Therefore, unlike the
ordered-subsets approximation method, CE is a precise
method and convergence is guaranteed for any partition. In
addition, the CE Method pre-computes and stores partitioned
system matrices and measurements in the memory of each
node. Therefore, the CE Method avoids problems such as
repeated computations and reconstruction time increase that
are prevalent for the on-the-fly method. Although the CE
Method has clear advantages over both the ordered-subsets
and the on-the-fly method, the CE Method has not been used
for DS-FFS CT iterative reconstruction and this section dis-
cusses how the CE Method is used for such purpose for the
first time.

To understand the CE Method, we use notation V* for the
individual reconstruction that fits projection subset Y* and
system matrix subset A¥. Then the CE Method’s proximal
function, denoted as Fj(X) and defined below, finds a bal-
ance between individual reconstruction, V¥, and the consen-
sus solution, X:

k

vk — argn‘l/ikan(X) :argrlil/in {%H Y* — Akyk ||f)A +%‘/)+%}’

19)
where the first two terms for Fy(X) fit the individual recon-
struction, V¥, with the k™ forward model and the prior model.
The third term, |\V’<2;2x ZH, penalizes the difference between the
individual reconstruction, V¥, and the consensus solution, X.
o controls the convergence rate and the best o for conver-

gence is determined experimentally. In every iteration of the
CE method, each node evaluates Eq. (19), computes the sys-

tem matrix for the k" forward model in Eq. (18), and pro-
duces an individual solution, VX. Then, individual
reconstructions from all nodes are fused for an updated con-
sensus solution, X. If the new consensus solution, X, is differ-
ent from individual reconstruction, V¥, then iterations repeat
until X = V¥, where k is from 1 to K. Otherwise, the consen-
sus solution X is the global minimum to Eq. (18). Since the
CE Method is not a theoretical contribution of this paper but
a new application to DS-FFS CT reconstruction, we
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succinctly summarize the CE Method and its fusing operation
in the following framework:

1. For each forward model k from 1 to K, we introduce a
variable U* as an input change in the proximal map
function and is initialized to equal V¥, In addition, we
introduce W*, which is a temporary copy of V.

2. While individual reconstructions V!, V2, ..., VK are
not equal, we repeatedly do the following steps to each
proximal map function and individual reconstruction:

a. Compute individual reconstruction,

VK — argmin. Fy (X—|— Uk)

Store a copy of W* as (W')*.

Compute Wr «— 2V¥ — X — U*,

d. Update Wk — pW* + (1 — p)(W')¥, where p is a
convergence parameter and is chosen to be
between 0 and 1.

TS

e. X« (Z W*) /K, so that the consensus solution

k=
X is updated to be the arithmetic mean of
whw?, L, wE

f.  The proximal map function input change, U¥, is
updated to be U* «— X — Wk,

In the above framework, step 2a updates each individual
reconstruction by computing their proximal map functions.
Steps 2b to 2f fuse the individual reconstructions into a con-
sensus solution, X. If X does not equal to all individual recon-
structions, the framework repeats.

4. EXPERIMENT SETUP

We acquired data from a dual-source Siemens Somatom
Force CT scanner to assess the performance of the algorithms.
The scanner at its default focal spot location has a 595 mm
source-to-isocenter distance (ry, = 595 mm), and a
1085.6 mm source-to-detector distance (ry; = 1085.6 mm).
Detector sensor units are formed on an arc concentric to the x-
ray source. At the single-source mode, the CT detector has 96
rows and 920 channels, with a detector row spacing of
1.094 mm and a channel spacing of 0.054. At the dual-source
mode, one detector of the scanner has 96 rows and 920 chan-
nels (M, = 96, Mg. = 920), and the other detector has a smal-
ler field-of-view with 96 rows and 640 channels (Mf = 640).
In addition, the two detectors have a z direction translation off-
set of 0.88 mm (Az!* = 0.88 mm), and an angular offset of
95° in the X-Y plane (A 12 = 95°). Each source-detector pair
has nine possible focal spots and a CT scan can use any num-
ber of focal spots, depending on the scan protocol. In this
paper, the exact displacement at each focal spot location,
(A, Ay, A,), is not disclosed as such information is confiden-
tial and protected by Siemens Healthineers.

To evaluate image quality, we first tested the performance
of JENG on a standard CT phantom, CT ACR 464 phan-
tom.>* Then we tested JENG on five clinical thoracic datasets
and three abdominal datasets. The ACR 464 phantom
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contains four modules in total, with each module 40 mm in-
depth and 200 mm in diameter. The first module has four
different inserts to test CT number fidelity. In addition, the
module contains a series of wires for cross-plane resolution
evaluation, shown as white horizontal bars near the center in
Fig. 9(a), and are visible in 0.5 mm z-axis increments. The
second module tests low-contrast resolution, but is not used in
this paper. The third module, shown in Fig. 9(b), is a uniform
cylinder of water-equivalent material of O Hounsfield units
(HU), and we used this module to quantitatively measure
image noise profile and in-plane resolution. The fourth mod-
ule consists of resolution bars of various spatial frequencies
for analysis on high-contrast resolution. To scan the phantom,
the scanner setup used dual sources with two focal spots at
each source. In addition, the projections were acquired using
the same protocol for clinical thoracic scans with 100 KV, a
nominal tube current of 718 mA, and a high helical pitch of
2.8. For all experiments, we compared JENG against the state-
of-the-art Siemens ADMIRE, reconstructed with a BL-64 soft
tissue sharp kernel, and we define ADMIRE as the clinical
standard hybrid IR method for the rest of the paper.

The first experiment we performed was a visual compar-
ison of in-plane spatial resolution between JENG and the
clinical standard hybrid IR. We used the ACR phantom mod-
ule 4 for this evaluation, which has eight resolution bars of
various spatial frequencies from 0.4 mm™' to 1.2 mm™~". To
obtain a fair comparison, we matched the image noise vari-
ance in the uniform regions of JENG and the clinical standard
hybrid IR and studied their in-plane spatial resolution and
undersampling streaking artifacts. In addition, we performed
two sets of experiments. The first set of experiments matched
their image noise variance at the L1 denoising strength of the
clinical standard method with a noise variance of 33926 in
the uniform regions. The second set of experiments matched
their image noise variance at stronger L3 denoising strength
of the clinical standard method with a noise variance of
12988 in the uniform regions.

The resolution bar visual comparison study, however, can be
biased by observer subjectivity and may provide little informa-
tion for spatial resolution beyond a limiting value. Therefore,
we also quantitatively evaluated the Task-Based Modulation
Transfer Function (MTF,,;) of JENG and the clinical standard
hybrid IR for a more complete analysis on in-plane resolution,
using the edge of the uniform water-equivalent material phan-
tom in module 3 as shown in Fig. 9(b). In summary, our
MTF,, analysis was measured with the water-equivalent phan-
tom and averaged all transaxial images in module 3 into a 2D
image. Then the MTF,, analysis computed the oversampled
edge-spread function for the generated 2D image, differentiated
and Fourier transformed the edge-spread function to the fre-
quency domain.*>*® The MTF,, is then the absolute value of
the Fourier Transform result and the source code of our MTF,,
computations can be downloaded from citation.*’

For more complete image analysis, we also measured the
Noise Power Spectrum (NPS) and we visually compared the
cross-plane spatial resolution of JENG and the clinical stan-
dard hybrid IR. The NPS computations followed the same
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FiG. 9. (a) The ACR phantom module 1 with four different inserts for computed tomography number fidelity testing. In addition, two ramps of wires are visible
near the phantom center. The image display window center is 150 HU and the window width is 700 HU. (b) The phantom module 3 with a uniform water-
equivalent radiodensity of 0 HU. The display window center is 0 HU and the window width is 400 HU.

procedures as in citation®® with source code from citation.”’

In summary, we selected multiple regions of interest in mod-
ule 3 and all regions were squares of the same size and had
an average radiodensity of 0 HU. In addition, neighboring
regions of interest overlapped with each other. Then, we per-
formed a Fourier Transform on each region of interest and
the final NPS value equals to the ensemble average of the
squared Fourier Transform. For cross-plane resolution quali-
tative evaluation, we visually compared the wire pattern
image sharpness between the two algorithms for the series of
wires of module 1 from the sagittal view. For qualitative eval-
uations, we reconstructed JENG with a resolution no worse
than the clinical standard hybrid IR and compared image
noise and artifacts between the two algorithms.

Finally, we tested the qualitative clinical results of JENG
on five thoracic and three abdominal scan datasets in terms
of spatial resolution, artifacts, image noise, and low-contrast
detectability. All clinical scans were retrospective and were
acquired during routine clinical practice at a major children’s
hospital in the United States. All thoracic scans used the same
settings as in the ACR phantom scans, except that the tube
current was modulated differently for each patient based on
their body thickness, weight, and age. The abdominal scans,
however, had a reduced helical pitch at 0.6 to improve low-
contrast lesion detectability. For all clinical images in this
paper, the clinical standard hybrid IR used a soft tissue high-
contrast kernel for reconstructions and we compared the
image noise and artifacts of JENG and the clinical standard
hybrid IR after we matched their spatial resolution.

5. RESULTS
5.A. ACR phantom study

Figure 10 is an example image for resolution bars and the
spatial frequencies for the bar patterns from top going clock-
wise are 1.2, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 mm™".
Fig. 10(a) is the resolution bars reconstructed by the clinical
standard hybrid IR at L1 denoising strength. Figure 10(b) is
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JENG reconstructed at an image noise variance comparable
to the L1 denoising. Figure 10(c) is the clinical standard
hybrid IR at a stronger L3 denoising strength and we can
observe that the result at L3 denoising leads to less image
noise than the result at L1 denoising in Fig. 10(a). Fig-
ure 10(d) is JENG at an image noise variance comparable to
the L3 denoising. To help readers better see the image quality
difference between the clinical standard hybrid IR and JENG,
Fig. 11 is the difference image between the two algorithms at
L1 denoising. A noticeable difference between the clinical
standard hybrid IR and JENG is that the clinical standard
method in Figs. 10(a) and 10(c) have strong undersampling
aliasing artifacts near the phantom periphery, which show a
pattern of high-density streakings and the streakings point
along the direction of x-rays. In addition, the magnified sub-
figures show that the bar pattern at 0.8 cycles/mm is unre-
solved with blurry details. In contrast, JENG in Figs. 10(b)
and 10(d) effectively decimates the undersampling artifacts
and the bar pattern in the magnified sub-figures of JENG is
completely resolved with clearer details.

For the clinical standard hybrid IR, a possible cause for
its loss of image resolution and the presence of aliasing arti-
facts in the image periphery can be explained by the
Nyquist-Shannon sampling theorem. Nyquist-Shannon sam-
pling theorem concludes that the discrete projection sam-
pling rate for an application that requires Fourier Transform
and data interpolation must be sufficiently high to avoid
alias in the frequency domain and capture all the needed
information in the continuous image domain. Given that the
clinical standard hybrid IR involves Fourier Transform and
data interpolation operations, the low projection sampling
rate at a high helical pitch of 2.8 might lead to aliasing arti-
facts and a loss of spatial resolution for the clinical standard
method. In contrast, JENG has no Fourier Transform or data
interpolation operations and is completely based on linear
algebra and acquisition physics modeling. Therefore, JENG
is not limited by Shannon-Nyquist Theorem and its images
are less susceptible to aliasing artifacts and show clearer bar
patterns.
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(¢) Clinical Standard (L3 Denoising)

3608

(d) JENG (L3 Denoising)

FiG. 10. Clinical Standard hybrid IR versus JENG performance, with a display window center of 650 HU and a window width of 1500 HU. The spatial frequen-
cies for bar patterns from top going clockwise are 1.2, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 mm™". (a) The clinical Standard hybrid IR at L1 denoising strength using
a soft tissue high-contrast kernel. Note that significant aliasing streaking artifacts are present near the bar patterns. (b) JENG at a comparable L1 noise level but
with much clearer bar pattern and fewer artifacts than the clinical standard hybrid IR. (c) The clinical standard hybrid IR at a stronger denoising strength of L3.
(d) JENG at a comparable L3 noise level. [Color figure can be viewed at wileyonlinelibrary.com]

To corroborate with our visual assessment that JENG has
a higher in-plane resolution than the clinical standard hybrid
IR, we compare the two algorithms’ image sharpness quanti-
tatively through MTF. in Fig. 12(a), measured with a
water-equivalent material phantom. We observe that the
MTF,,q for the clinical standard hybrid IR drops to 0.1 at
around 0.7 mm~', where an MTF,q value of 0.1 is often
considered the lowest contrast sensitivity for human visual
observation. This observation aligns with our qualitative
assessment in Fig. 10, which shows that bar patterns for the
clinical standard hybrid IR become unintelligible at a spatial
frequency near 0.7 mm™'. In contrast, JENG has a higher
MTF,, than the clinical standard method at nearly all spatial
frequencies ranging from 0.3 mm™' to 1 mm™". In addition,
the MTF, value of JENG drops to 0.1 at around 1.0 mm™,
suggesting that JENG can clearly show bar patterns until spa-
tial frequency reaches 1 mm™'. Therefore, both qualitative
and quantitative assessments have an agreed conclusion that
JENG has a higher in-plane spatial resolution than the clini-
cal standard hybrid IR for the phantom study.
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The image noise profile is another topic of interest.
Fig. 12(b) is the NPS for JENG at three noise levels with
image noise variances at 833 HU? 1970 HU?, and
4855 HU?. 1t is not surprising to observe that at all spatial
frequencies JENG at higher noise variance has a larger NPS
magnitude than that at lower noise variance. We also note that
a lower noise variance shifts the NPS peak of JENG toward a
lower spatial frequency, and this phenomenon indicates that
stronger denoising for JENG might alter the image noise tex-
ture. Furthermore, we observe that at an extremely low spatial
frequency below 0.1 mm™', JENG retains moderate noise
with an NPS magnitude at 750 HU? and fails to denoise fur-
ther. To understand why JENG has limited success in denois-
ing at a very low spatial frequency, we need to revisit JENG’s
prior model, R(X), in Eq. (2). As explained before, R(X) is a
local-neighbor Markov Random Field, and denoise each
voxel based on the voxel’s difference with its neighbors. The
Markov Random Field prior model, however, is a low-pass
filter. Therefore, R(X) can suppress high-frequency noise
well and preserve high-contrast image edges, but has limited
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Fic. 11. Difference image between the clinical standard hybrid IR and JENG
at a denoising strength of L1.

success in low-frequency denoising and retains some very
low frequency noise in the JENG images.

For many clinical applications, cross-plane resolution is
equally important to in-plane resolution. To evaluate cross-
plane resolution, we visually compared the clinical standard
hybrid IR and JENG’s wire series in module 1 from sagittal
view with neighboring wires 0.5 mm apart from each other
along the z axis. Fig. 13(a) is the wire series from cross-plane
sagittal view, reconstructed by the clinical standard hybrid
IR. We can observe that some of the wire series have blurry
smears and the visibility of the wire series is impacted by sig-
nificant image noise. Figure 13(b) is the wire series recon-
structed by JENG with a resolution no worse than the clinical
standard hybrid IR. We observe that the wire series are more
visible due to less image noise. In addition, the wire series

1ho=s ——JENG (Denoising L1)
N - JENG (Denoising L3)
— — Clinical Standard IR (L1)
0.8 Clinical Standard IR (L3)
X
5
806
[N,
®=
=
0.4 r
0.2
ol . . . h
0 0.2 0.4 0.6 0.8

spatial frequency (cycles/mm)

(a) MTF plot
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have fewer smearing artifacts than the clinical standard hybrid
IR.

5.B. Clinical cases

None of the spatial resolution and artifact reduction
advantages would hold unless JENG shows image quality
improvement over the clinical standard method on patient
datasets. To do so, we evaluated JENG on five thoracic and
three abdominal CT scans and all scans used the same param-
eter settings as those for the ACR phantom scan, except that
the tube current and the pitch is modulated individually for
each patient. The exact experiment setup was discussed in
Section 4. For a fair image quality comparison, we matched
the resolution of JENG and the clinical standard hybrid IR
and studied their image noise and artifacts.

Figures 14(a) and 14(b) are an example thoracic scan
image from a staging dataset for a 12 year old with osteosar-
coma with pulmonary metastases prior to a surgery. Fig-
ure 14(a) is the clinical standard hybrid IR image
reconstructed with a BL-64 soft tissue sharp kernel and dis-
play in the lung window. Aliasing streaking artifacts from
undersampling are present almost everywhere in the image
and artifacts are more pronounced near the image periphery.
Figure 14(b) is the same image slice reconstructed by JENG
at a comparable resolution. We notice that the image recon-
structed by JENG can significantly decimate streaking arti-
facts, despite that the upper left lobe of the image still retain
some undersampling artifacts. Figure 14(c) is another clinical
standard hybrid IR image from the same dataset and is dis-
played in the soft tissue window. In this example image, a
metastatic cancer nodule can be found in the image near the
upper left lobe. Overall, the image quality is negatively influ-
enced by its strong image noise and aliasing streaking arti-
facts. In contrast, JENG at a comparable resolution in
Fig. 14(d) can significantly reduce image noise and aliasing
artifacts without degrading the diagnostic values. Despite the
clear benefits of the JENG algorithm, the current implemen-
tation of JENG does not correct the beam hardening artifacts.

7000
——JENG, var=833 HU?
6000 ~JENG, var=1970 HU?
—— - 2
5000 JENG, var=4855 HU
£ 4000
o~
2 3000
% 2000
1000 \f!/w\\
0
0 0.5 1 1.5

spatial frequency (cycles/mm)

(b) NPS plot

Fic. 12. (a) The MTF,, for the clinical standard hybrid IR and JENG, measured with a water-equivalent phantom. Note that JENG has a higher MTF, than
the other at frequencies ranging from 0.3 mm™" to 1 mm™". (b) The 3D NPS for JENG at different noise levels. Note that a lower noise variance shifts JENG’s
NPS peak toward a lower spatial frequency. This phenomenon indicates that strong denoising for JENG can alter image noise texture. [Color figure can be viewed

at wileyonlinelibrary.com]
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(a) Clinical Standard Hybrid IR
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(b) JENG

FiG. 13. Cross-plane spatial resolution comparison between the clinical standard hybrid IR and JENG. (a) The clinical standard hybrid IR, with a display window
center at 650 HU and a window width of 1500 HU. Note that some wires are obscured in the image. (b) At a resolution no worse than the clinical standard hybrid
IR, note that JENG better suppresses image noise and has fewer smear artifacts than the clinical standard hybrid IR.

(c) Clinical Standard Hybrid IR

(d) JENG

FiG. 14. Qualitative clinical results from a thoracic computed tomography (CT) staging dataset for a 12 year old with osteosarcoma with pulmonary metastases.
The clinical standard hybrid IR is shown on the left and JENG is on the right. (a) The clinical standard hybrid IR in lung window with a window center of
—600 HU and a window width of 1500 HU. (b) JENG at a resolution comparable to the clinical standard, but with less noise and fewer artifacts. (c) The clinical
standard hybrid IR in soft tissue window with a window center of 55 HU and a window width of 440 HU. A metastatic lung cancer nodule can be found in the
left upper lobe. (d) JENG in soft tissue window at a comparable resolution, but with less noise and fewer artifacts. Note that JENG is not fully corrected for beam

hardening artifacts. [Color figure can be viewed at wileyonlinelibrary.com]

Therefore, mild beam hardening artifacts from the cancer
nodule can be seen near the upper left lobe.

Figure 15 is an example cross-plane image from the
coronal view. Figure 15(a) is reconstructed by the clinical
standard hybrid IR and Fig. 15(b) is reconstructed by JENG
at a comparable resolution. A major advantage for JENG is

Medical Physics, 48 (7), July 2021

its better detectability of small bone openings near the
shoulder, better aliasing artifact reduction, and more effec-
tive image denoising. In addition, JENG provides a much
more uniform image texture for the soft tissues. In compar-
ison, the clinical standard hybrid IR in Fig. 15(a) has more
difficulty to detect small bone openings and shows an
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(a) Clinical Standard Hybrid IR

(b) JENG

FiG. 15. An example cross-plane image from the same thoracic dataset as in Fig. 13. (a) A coronal-view image slice of the clinical standard hybrid IR in soft tis-
sue window. (b) JENG at a comparable resolution but with reduced image noise and artifacts.

(a) Clinical Standard hybrid IR

(b) JENG

FiG. 16. An example liver image with a magnified sub-figure showing low-contrast cysts in the liver. (a) The clinical standard hybrid IR in soft tissue window.
(b) JENG at a marginally better low-contrast resolution but with reduced image noise and artifacts. [Color figure can be viewed at wileyonlinelibrary.com]

inferior capability to suppress aliasing artifacts and image
noise.

One concern people might have for JENG is that its better
capability of artifact removal and denoising might lead to a
worse low-contrast lesion detectability. To address this con-
cern and show that JENG does not have a compromised low-
contrast lesion detectability, Fig. 16 shows a liver image from
a CT abdominal scan with magnified sub-figures for low-
contrast liver cysts with Fig. 16(a) for clinical standard hybrid
IR and Fig. 16(b) for JENG. Notice that the JENG image has
less image noise and fewer artifacts than the clinical standard
hybrid IR, despite that JENG also has a marginally better
low-contrast detectability than the clinical standard with liver
cysts clearly shown in the magnified sub-figure. In addition,
the image texture in the liver is more uniform in JENG than
the clinical standard hybrid IR.

6. DISCUSSION AND CONCLUSION

Although an important feature for DS-FFS CT is to mini-
mize scan time by enabling a high helical pitch while simulta-
neously reducing undersampling artifacts, it is not easy to
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fully leverage the acquisition physics and geometry of the
scanner and the clinical standard methods have limited suc-
cess to reduce undersampling artifacts. In addition, the pro-
jection data interpolation, rebinning, and completion may
also cause a compromised spatial resolution. In response, we
presented the first physics-based iterative reconstruction algo-
rithm for DS-FFS CT and used the native cone-beam geome-
try and the precise dual-source helical trajectory to achieve
higher spatial resolution and eliminate undersampling arti-
facts. Experimental results on phantom and clinical datasets
show that our new algorithm, JENG, has a task-based MTF
much higher than the clinical standard hybrid IR method
while significantly reducing undersampling artifacts.

With a higher spatial resolution, radiologist can potentially
use the JENG algorithm to better distinguish different objects
or tissues located within a small proximity to each other. In
the example of thoracic CT scans, JENG’s improved image
spatial resolution and contrast can lead to more accurate
imaging on small indeterminate lung nodules and pulmonary
emboli caused by intravascular disease. In addition, given
that undersampling artifacts are quantization artifacts caused
by insufficient projections, JENG’s capability to reduce
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undersampling artifacts allows us to acquire fewer projections
without compromising image diagnostic values, and thereby
lower radiation doses received by patients.

Although JENG has the benefits discussed above, the NPS
analysis shows that the existing implementation for JENG has
an insufficient denoising capability at very low spatial fre-
quency. Since the prior model for JENG is a Generalized
Markov Random Field and is a low pass filter, JENG is suc-
cessful in denoising high-frequency content, but has limited
success at very low frequency. The relatively high NPS at a
very low spatial frequency (<0.1 mm™"), however, is unli-
kely to impair diagnostic values. Since image signals often
have substantial energy at low frequencies but have much less
energy at high frequencies, the Signal Noise Ratio (SNR) is
high at low frequencies and image signals are readily appar-
ent despite the noise. In contrast, the SNR is lower at high
frequencies and a prior model with good high-frequency
denoising, such as the Markov Random Field prior model,
can significantly improve image quality. One adverse effect
from a low pass filtering prior model is that the noise texture
of JENG can appear different from that of FBP, and can nega-
tively influence a radiologist’s image perception if he is not
used to the noise texture of JENG.

Another drawback in this paper’s technical contribution is
the lack of modeling on focal spot size and this paper
assumes that the focal spot is a sizeless point. For most CT
scans that require a high spatial resolution, the focal spot size
is often less than 1 mm. In these applications, this paper’s
focal spot modeling as a sizeless point is a good assumption
for high image quality. In a few other applications that require
a large focal spot and reconstructions might benefit more
from a precise focal spot size modeling, the sizeless point
assumption can potentially lead to a loss of spatial resolution.
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