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Abstract

We present a method for Bayesian reconstruction from pro-
jections which updates single pixel values, rather than the entire
image, at each step. The technique is similar to Gauss-Seidel
(GS) iteration for the solution of differential equations on finite
grids. The computational cost per iteration of the GS approach
is found to be approximately equal to that of gradient methods.
For continuously valued images, GS is found to have significantly
better convergence at modes representing high spatial frequen-
cies. In addition, GS is well-suited to segmentation when the
image is constrained to be discrete-valued.

1 Introduction

Although convolution backprojection (CBP)[1] is the most com-
mon technique for computed tomography, in many situations the
quality and/or quantity of data is inadequate for conventional
CBP reconstruction[2]. Bayesian estimation allows weightings or
hard constraints on solutions which reflect knowledge concerning
acceptable estimates. In the most previous work on the problem,
the overall cost function specified by the log likelihood for either
maximum likelihood (ML) or Bayesian techniques has been as-
sumed quadratic for tomographic image reconstruction(see ref.
in [2]).

In this paper, we develop a local update method to perform
a Bayesian segmentation from projections. Our approach is sim-
ilar to Gauss-Seidel(GS) iterations employed in the solution of
differential equations on finite grids(3], and we will use the same
terminology. Each step includes only the optimization with re-
spect to a single pixel’s value, making its application very simple
if we follow a monotone increase in likelihood. Reconstruction
of cross-sections which are known to consist of a few distinct
densities is possible with very low SNR when formulated as a
segmentation task for GS. The cost functions in this problem
are generally nonconvex and nondifferentiable, and therefore not
amenable to gradient approaches, which rely on partial deriva-
tives of the cost.

Bayesian estimation by GS is also applicable to the recon-
struction of continuously-valued functions. The computational
cost of a single pass of local updates across the entire image is ap-
proximately the same as that of a single iteration of the gradient
approach. In addition the GS approach has faster convergence
in high spatial frequencies for continuously-valued images than
either simple gradient ascent(GA), or conjugate gradient(CG).

2 Model of Physical System

In practice, reconstruction requires finite-dimensional represen-
tation of both the projection data, p, and the modeled image, f.
The Radon transform equations may be written in the discrete
form
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p=Af

where A is a sparse' MxN matrix with Aj; equal to the length of
the intersection of projection ray j and pixel i.

In transmission tomography the projections, p, are not mea-
sured directly. Instead, raw data are in the form of the number
of photons(\) detected after passing through an absorptive ma-
terial. In order to simplify theoretical analysis, we will also intro-
duce a quadratic approximation to the log likelihood of photon
counts given the image f, resulting from a series expansion of the
exact log likelihood:

1. .
L) = =58~ AS)'D(B - Af)+e(A), 1
where p; and D are defined by

pi = log(Ar/A)
D = diag{z\l, Az, ey AM}

for input photon count Ap. The key to the behavior of (1) is
found in the matrix D. The matrix more heavily weights errors
corresponding to projections with large values of A;. These pro-
jections pass through less dense objects, and consequently have
higher signal-to-noise ratio. In the limit of opaque projections
where no photons pass through the material, the approximation
simply applies no weight to the measurement.

The maximum a posteriori (MAP) estimate under prior dis-
tribution g(f) is the value which maximizes the a posteriori den-

sity given the observations A:

F= argmax {L(Alf) +log g(f)} 2

Here,  is the set of feasible solutions, and upper case letters
denote random entities. The ML estimate may be derived as the
special case where the prior distribution is constant.

When F is continuously valued, we will assume that it is a

"Gaussian random vector, yielding the MAP estimation criterion:

f=argmax{~(p~ APDG-AN-1IRF} ()

where R is symmetric, and %R—l is the covariance matrix for F.
We will assume that, ignoring boundary effects, multiplication by
R has the effect of convolution with a stationary kernel. When
Q = IRV, the solution to this optimization problem may be found
by differentiating with respect to f. The resulting equation has
the form

b=(H+yR)] @

where H = A'DA and b = A'Djp.
A second distinct case results when Q is a proper subset of
IRV due to hard constraints on f. If  is a convex set, there
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is a unique global maximum to (3). The problem of enforcing
lard constraints becomes more difficult when the feasible set is
not convex. This occurs: if each pixel is assumed to have one
of a fixed number of densities. Reconstruction then corresponds
to labeling each pixel with the most appropriate of the discrete
densities. )

For this case, the discrete-valued Markov random field (MRF)
has the advantage of being general and restricting interaction to
be local. Discrete: MRF’s have been used to model the behavior
of pixel labels in a variety of segmentation problems{5]. While
the theory of MRF’s is quite extensive, we will restrict our at-
tention to a simple model based on a 8-poirt neighborhood. To
define this model, we first define two simple functions: t3(f) is
the number of horizontally and vertically neighboring points of
different value in f, and t,(f) is the number of diagonally neigh-
boring points of different value in f. The density function for f
is then assumed to be of the form.

toga(f) = = (i) + %}—Q) + log(2) (5)

where Z is a constant.

3 Optimization Techniques
3.1 Gradient Ascent

We will first consider gradient ascent, an iteraﬁwe scheme whose
update equation may be written in the form of a standard discrete
time system.

[0 < [~ a(A'DA+R)] /) + aADp (6}

[ — ofH +4R)} £7) 4 ab

Each: iteration of (6) requires the computation of a projection, a
backprojection and multiplication by the matrices D and R.
Convergence analysis of (6) is difficult in the general case. We
will gain. insight into the problem by analyzing the convergence
when D = ¢~21 (i.e. the variance of each projection is equal).
Because the matrix H = ¢~2A%A is approximately Toeplitz-
block-Toeplitz4], each row of H represents a spatially shifted
version of a single kernel, Therefore, multiplication of &) by H
is approximately equivalent to convolving the function f0 with
a.2-D kernel, and may be approximated by multiplication i the
spatial frequency domain. We take the 2-D DTFT of (6} to yield

fEN@) = [1 - o(H@) + Y RENFO@) + eb@), (7)

where H (@) is the 2D DTFT of the spatially reversed kernel for
H, and R(@)is that of the smoothing kernel of the prior. The spa-
tial frequency components in f corresponding to frequency @ will
be attenuated or amplified by the factor [} — e{ H(@) + v R(@))}
with each iteration.

The kernel of H is approximately proportional to a. filtered
and sampled version of the function ¢fd where d is the distance
of & pixel from the origin and ¢ is a constant[4]. Since the Fourier
transform of 1/d is 1/|j@]], the rate of convergence at frequency
@ will be approximately

1~ o (c/Wol + 1RE@)).-
In practice the value of H(0), and therefore the low frequency

eigenvalues, are limited by the size of the reconstruction. To
insure convergence, a must satisfy

it

. —Y
0 <o <2 (max( (@) + 1RE})

Since for large windows the value of maxg; H(&) is large, a small
value of & will be needed to insure stability and convergence. But
small values of o will cause the convergence to be slow for large.
values of [[@]]. The conclusion is that the convergence of GA is
poor at high spatial frequencies.

3.2 Gauss-Seidel

Gauss-Seidel iteration is a well-known technique for solving par-
tial differential equations (PDEY) using finite element methods{3].
The GS method can solve a wide variety of problems that in-
corporate hard constraints on . This is particularly important
in the segmentation problem since the gradient based algorithms
implicitly require that @ be a continwous convex set.

We pick the value of a single pixel, f;, to minimize the pos-
terior log likelihood function of (3). This can be done by setting
the derivative with respect to f; equal to zero.

0=b— (I‘T‘i’ 'K'R)itf

The notation (H + yR);. denotes the i*» row of the matrix. We
may use this single equation to solve for the best value of f; in
terms of the remaining values of f. By separating the the matrix
H+4R into its lower triangular, diagonal and upper triangular
parts (L, K and U, respectively), we can derive a matrix ex-
pression for the sequential update. Assuming that the points are
replaced in the order of their index 7, the update equation for all
the pixels has the form

JEH = (K Ly U p (K £ L) (8)

This update equation has the same form as (6) the update equa-
tion. used in the GA. The convergence behavior of this method
will depend on the eigenvalues of the update matrix, (K+E)~*U.
Since H = H* and R = R*, we also have that L. = U’ Using
the Toeplitz-block-Toeplitz property of L and K, we see that (8)
has. the interpretation of linear filtering, yielding the DTFT

DI i ) B S

where L(@) is the DTFT of the spatially reversed kernel for L,
and U(&) = L*(@) by the time reversing property of the DTFT.

We may draw conclusions about the preperties of the conver-
gence rate

yirs) — L‘(B)'
PEY= 5Ty

by applying the local minimization interpretation. With each
pixel replacement, (3} is reduced {unless f is at the global mini-
mum}. If the kernel of H+ R is positive definite, then the norm
of the difference between the current and the MAP estimate may
not. increase indefinitely. This implies that [P(®)[ < I for all @.
Since the solution of the MAP estimation problem is unique if
and only if the kernel of H + ¥R is positive definite, we see that
a positive definite kernel implies that [P(&)| < 1.

Fig. I shows the corresponding number of iterations of GS
required to achieve 99% reduction of errar energy at each fre-
quency when y = 0. These plots indicate that the convergenceis
rapid, especially for the high spatial frequencies.

Because the matrix update equation (8) involves the inversion
of 4 large and relatively full matrix, K + I, this method would
seem to be computationally expensive. However, GS has approx-
imately equivalent computational cost per iteration to GA. By
differentiating (3) with respect to Af;, the change in: pixel 7, we
find its optimum value is

AE,';DA.; + ¥Ry »
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Figure 1: The maximum number of jterations required for 99%
error reduction, as a function of spatial frequency, when no reg-

ularization is used (y = 0).

Computation is dominated by the first term in the numerator,
which for a single scan of the image(one iteration), has at most
50%more multiplies per pixel than GA. In practice, however, we
have found that a single iteration of GS runs as fast as GA on a
general purpose serial computer.

The GS method will also be used to solve the segmentation
problem. For this discrete problem the gradient based methods
of GA and CG are not applicable. However, the GS method may
still be applied by choosing each pixel’s value to minimize the
a posteriori probability. The best choice for pixel ¢ will depend
only on the neighbors of f;, and the updated value is chosen from
the feasible set of densities Q2. Since Q is not convex, determining
a global maximum will generally not be possible. However, it is
possible to guarantee convergence to a local minimum by chang-
ing the density of a pixel only when it strictly increases the log
likelihood.

4 Experimental Results

Experimental data presented here result from very low photon
dosages relative to most systems. The input photon count (Ar)
for each ray in our trials was 2000, orders of magnitude below
dosages of commercial medical CT scanners[1]. Our goals in
terms of reconstructed image quality, however, are also much
more modest. CBP will serve as a good initial starting point for
the iterations in most cases. The phantom is shown in Fig. 6(a),
and contains only two non-zero densities. The background is
of absorptivity 0.2cm~!, while the four high-density regions are
0.48cm~1. The physical diameter of the phantom is 20cm. At
the given photon dosages, rays passing through the larger high-
density regions are essentially blocked, making the given trials
similar to hollow projection reconstruction. In each case, the
number of raysums collected per angle was 128. We chose a
single value for « in (6) for all applications of GA, based on
the best experimental convergence across the set of simulations.
Both methods were compared to conjugate gradient (CG), which
has about the same per-iteration cost as GA, and generally sig-
nificantly faster convergence.

Initial trials were used to verify the analysis of Sec. 3, and
were therefore performed with v = 0 in (3), corresponding to
ML estimation. For results presented here, however, the diago-
nal entries of D are photon counts. Fig. 2 illustrates convergence
in terms of log likelihood as expressed in (1). CG and GS are

comparable in convergence rates, with GS showing an apprecia-
ble advantage. Both are much faster than GA. Our analysis
predicted this behavior for high frequencies in the difference be-
tween the CBP starting point and the Bayesian estimate. Asis
illustrated in the periodogram spectral estimate of Fig. 3, the er-
ror image was of predominantly high frequency spectral content.
Similar relative convergence behavior appeared when D was di-
agonal. GS appears more useful than the gradient methods for
problems where the difference between the starting state and the
optimal estimate is dominated by high frequencies. But ML es-
timates may have ezcessive high frequency content, in contrast
to many images of practical interest. The ML estimate images
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Figure 2: Convergence comparison for real projection weighting
matrix

whose convergence was discussed above, in fact, are of very poor
visual quality.

Regularization both speeds convergence, and prevents exces-
sive oscillation in the estimate. For the following results, we use
an R with the form of a discrete 5-point Laplacian. Typical
convergence rates are shown in Fig. 4 for MAP estimation with
the same optimization methods and v = 100cm?. (This corre-
sponds to a standard deviation of a pixel given its neighbors of
0.1cm™!) The associated error spectrum has substantial energy at
very low frequencies, plus an approximately flat spectral content
across the higher frequencies. Here CG enjoys a slight advantage
in convergence rate, and both CG and GS are essentially com-
pletely converged at fewer than 15 iterations. GA is much slower,
as expected. Trials with larger v yielded still faster convergence,
but very similar relationships among the three techniques.

Fig. 5 shows the images resulting from the Bayesian enhance-
ment of the CBP reconstruction. The artifacts of 5(a) are amelio-
rated substantially, with varying degrees of smoothing according
to the choice of 4. Note that we have applied a particularly sim-
ple prior here (4-point neighborhood); improvement is possible
with more accurate choices.

If an object is known to consist of only a few distinct densi-
ties, we can perform an approximate MAP segmentation as an
enhancement of the CBP starting point. While gradient methods
are not directly applicable, the GS algorithm is well-suited to this
problem. Experimental results for a projection data set consist-
ing of 128 rays at each of 16 equally spaced angles appear in the
images of Fig. 6. The phantom and dosage per ray are the same
as in the previous simulations. The CBP reconstruction is shown
in 6(b), with the result of thresholding midway between the two
known densities in 6(c). After less than 3 full iterations, GS pro-
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duced the segmentation of 6(d). Nearly all the artifacts resulting
from the radio-opaque regions of the object are removed.

5 Coneclusion

The GS method shows very good convergence properties, and is
applicable to a broad class of optimization problems. In the case
of continuously valued reconstruction, these convergence advan-
tages are due to its excellent suppression of high frequency error.
The GS method
but. an important augmentation of the process awaits investiga-
tion. Lower fnequency components can be forced to converge
much more quickly by multi-grid unplementaﬂon. We envision a
similar generalization of the discrete-valued version of GS. Per-
for mg greedy minimization at maultiple resolutions has shown
promise in other applications to image segmentation[7}, in terms
of both computational efficiency and quality of segmentation.

References

1} G T. Henman, I’mzage Rewmtmctwu jr@m Pm;eehoms The Fun-
3 1zed T Press, New

{ Ak ;aw

Yo:k 1980

R} R.M. Ranggayyan, A.T. Dhawan, and R. Gordon, “Algorithms
for Limited-View Computed Tome raphy: An Annotated Bibli-
ography and a Challenge,” Apph?f Optics, vol. 24, no. 23, pp.
4000-4012, Dec. 1985.

[8] D. M. Young, Herative Solution of Large Linegr Systems, Aca-
demic Press, New York, 1971.

[4} K.D. Sauer and C.A. Bouman, “A Eocal Update Method for Itera-
t; e%ecoustwctwn from: Projections,” submitted to IEEE Trans.
roe

and H Elhott “Med@ﬁmg and Segmentation of Noisy
Images Using Gibbs Random Fields,” IEFE Trans.
Pat. An. MaclL I“niefi vab PAML9, pp. 39-55, Yan. 1987.

[6] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distri-
butions, and the Bayesm.n Restoration of Images, * IEEE Trans.

Pattern Anal and Mach. Intell,, vol. PAMLS, no.6, pp. 721-741,

Nov. 1984.

[7]; C: Bouman and B. Liu, “Multiple Resolution Segmentation of Tex-
tured Images,” to aprpe.ar in the IEBE Trans. on Pat. An. Mach.
Intell., Feb. 1990.

| not shiow the fastest convergence in all cases,

Figure 4: Convergence comparison for real projection weighting
matrix D and regularization using a Gaussian prior.

Figure 5: (al CBP reconstruction fmm 128 x 128 noisy projec-
tmns (h) Bayesian estimate with ¥ = 100. (¢} v = 200. (d)
Y=

Figure 6: (a) Original phantom. (b} CBP' recanstrucmon from
16 x 128 noisy projections. (¢} Threshold segmentation of CBP
image. (d) Gauss-Seidel approximation of MAP estimate.
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