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Abstract—Markov random fields (MRFs) have been widely
used as prior models in various inverse problems such as
tomographic reconstruction. While MRFs provide a simple and
often effective way to model the spatial dependencies in images,
they suffer from the fact that parameter estimate is difficult. In
practice, this means that MRFs typically have very simple struc-
ture that cannot completely capture the subtle characteristics of
complex images.

In this paper, we present a novel Gaussian mixture Markov
random field model (GM-MRF) that can be used as a very
expressive prior model for inverse problems such as denoising
and reconstruction. This method forms a global image model by
merging together individual Gaussian-mixture models for image
patches. Moreover, we present a novel analytical framework
for computing MAP estimates with the GM-MRF prior model
through the construction of exact surrogate functions that result
in a sequence of quadratic optimizations. We demonstrate the
value of the approach with some simple applications to denoising
of dual-energy CT images.

Index Terms—Markov random fields, Gaussian mixture, patch-
based methods, image model, prior model

I. INTRODUCTION

Model-based inversion methods have been widely applied
in applications such as image denoising and reconstruction
[1], [2]. One typical approach to model-based inversion is to
compute the maximum a posteriori (MAP) estimate given by

& ¢ argmax {logp(y|x) +logp(z)}, 1)

where y is the measured data, and « is the unknown image. In
this framework, the conditional density p(y|z) comprises the
forward model of the measurement process, and the density
p(x) comprises the prior model for z.

For model-based inversion methods, it is crucial to have an
accurate prior model that captures the representative features
of the image. The Markov random field (MRF) [3] has been
one of the most popular choices of prior models in many
model-based inversion problems [2], [4]. This model limits
the dependencies in the image such that only local pixel
interaction needs to be taken into account. However, due to
the difficulty of parameter estimation, model-based inversion
methods typically use simple prior models based on pair-wise
interaction with ad hoc potential functions and a small number
of parameters. This severely restricts the expressiveness of the
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prior model. Recently, MRFs with more sophisticated local
models have been proposed [5], [6]. In [5], a high-order MRF
was designed for CT reconstruction to allow enhancement of
high frequency components. In [6], a more complex MRF
model with implicit specification has been proposed. This
method models the conditional probability of a pixel given
its neighborhood as a Gaussian mixture; however, it does not
allow for the explicit specification of the distribution p(x).

Meanwhile, there have been a variety of methods proposed
to exploit image patches for prior modeling. These methods
include dictionary learning [7], field of experts [8], non-
local mean [9], kernel regression [10] and Gaussian scale
mixture [11]. Perhaps the most closely related work is Zoran
and Weiss’s method [12]. This work uses Gaussian mixture
model for patches and collects all the patches as a model
for the whole image. However, in simply performing a hard
classification during optimization, it does not fully exploit the
mixture information.

In this paper, we propose a novel framework for image mod-
eling, which we call a Gaussian mixture MRF (GM-MRF).
The proposed method forms an MRF model by merging to-
gether individual Gaussian-mixture models for image patches.
More specifically, the proposed model first fits the distribution
of all image patches with a multivariate Gaussian mixture
model. Then for each tiling of the patches, which covers
the whole image with non-overlapping patches, we model the
distribution of each tiling as the product of the distributions
of all its patches. Finally, the proposed method constructs the
MREF for the whole image by taking the geometric average
of the distributions of all possible tilings. We also introduce
a novel technical method for computing the MAP estimate
with a GM-MREF prior model that is based on majorization-
minimization using a surrogate function.

A important potential advantage of the proposed GM-MRF
model over existing methods is that it allows for joint modeling
of both the pixel intensities and spatial correlation. This is
particularly important for problems such as dual energy CT
reconstruction, since in this application, the specific pixel
intensities typically correspond to specific materials, each
with their own distinctive spatial structure. Another important
advantage of the GM-MRF model is that it allows the MRF
parameters to be easily estimated using standard methods for
Gaussian-mixture parameter estimation.
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II. PROPOSED ALGORITHM
A. Gaussian Mixture Markov Random Field (GM-MRF)

Let x be an image with pixels s € S, where S is the set
of all pixels in the image. Let z; be a patch in the image
with the pixel s at the upper left corner. More specifically, we
can define z; = {z, : € s + W} where W is a window of p
pixels. We assume that each patch can be modeled as having a
multivariate Gaussian mixture distribution with K subclasses
with the form

Z ™ G

where parameters 7y, (i, B represent the mixture probability,
mean, and inverse covariance of subclass k.

Let Sp,---,S;—1 be a partition of the set of all pixels into
7 sets, each of which tiles the plane. In other words, {zs}ses,,
contains all the pixels in x. A simple example of this is when
each z, is a square M x M patch, and S is set of pixels at
each M*" row and column. Then the set of patches, {z;}scs
tile the plane.

Using this notation, the distribution of the full image can
be modeled as the product of the distribution for each patch,

so that
)} .3

where V(zs) = —log{g(zs)}. In this case, p,,,(z) is a proper
distribution that has the desired distribution for each patch.
However, the discrete tiling of the plane introduces artificial
boundaries between patches. In order to remove the boundary
artifacts, we use an approach similar to [13] and take the
geometric mean of each of the tilings of the plane to obtain
the resulting distribution

n—1 1/m
:%(Hpm(x)> =—exp{——ZV Zs }
m=0

s€S
“)
where the normalizing constant z is introduced to assure that
p(z) is a proper distribution after the geometric mean is

computed.
We call (4) a Gaussian mixture MRF (GM-MRF) where
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Then for a typical MAP problem as shown in (1), the
estimate can be equivalently computed as

1 1
50Farggg&{iﬂy—flﬂi*'EZV(ZS)}v (6)
ses
assuming that log p(y|z) is modeled by 1|y — Az||3 with A
as a diagonal weighting matrix.
We estimate the parameters 7y, (ix, and By for each sub-
class k in (2) from training images by using the expectation-
maximization (EM) algorithm using the software in [14].

_ 2
log{zﬂk |Bk\2e {725 QMHB’“}}.

B. Optimization

Notice that the second term in (6) is difficult for direct
optimization due to the mixture of logarithmic and exponential
functions. Therefore, we propose a functional substitution
approach to replace this complicated function with a mixture
of quadratic functions that is computationally simpler.

For the function

S

5€S

)

where V(z,) is given by (5), we define a quadratic function,

u(w; z') Z Z Wi lzs — il + (@), (8)
sES k=0
where 2’ represents the current state of the image,
1 1
7| B |2 exp {QHZQ - Nlc|23k}
’lI)k ) (9)

K—1 1
> 5t exp {5l
Jj=
1 1K 1
o(z) = ;}Z{V(z §Zw,€\|z Mk|3k}(10)
k=0

with 2/, representing a patch in 2. Then by using the following
lemma proved in [15], it can be easily shown that,

u(z),
u(zx),
which implies that u(x;z") is a surrogate function for u(x)

so that majorization minimization methods can be used, and
reduction of u(x; ') ensures reduction of u(x) [16].

u(x';2’) =
u(zya') =

an
12)

Lemma: surrogate functions for logs of exponential mixtures
Let f: RN — R be a function of the form,

flz) = Zwk exp{—v(z)} (13)

where w, € R, > we > 0, and vy : RN — R. Furthermore

Y(z,z') € RV x S%N define the function

glz;2’) & —log (&) + Y Fr(vp(@) —we(a’))  (14)

w exp{—vk (=)}
S,y exp -0, (2T
for —log f(z), and V(z,z') € RV x RV,

where T, = Then ¢(z; ') is a surrogate function

q(asa’) = —log f(a') (15)
q(z;2") > —log f(x) (16)

Therefore, any optimization problem of the form
% « argmin{f(z) + u(z)} (17)

can be implemented as a sequence of optimizations as
repeat{ T + arg mln{f( N +u(z; )}

¥ o~ 2 1,
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where we will be solving an optimization problem with
quadratic priors at each iteration.

Particularly, we use the iterative coordinate descent (ICD)
algorithm [17] to solve this problem. By using ICD, we
sequentially update each pixel by solving a 1-D optimization
problem, with the remaining pixels fixed. In this case, the
surrogate function for a single pixel s can be written as

1 .

u(zs;xl) = % Z Zwk”'zr — pllB, + @) (18)
rePs k

where P represents a set of pixels, each being the upper left

corner of a patch that contains pixel s. Then derived from (6),

we solve the following 1-D optimization problem for pixel s,

19)

g ¢ arg min
€N

Ai
Z E(yz — Ais5)? + ulas; @)

3

where )\, is the i*" diagonal element of A. This is a quadratic
minimization problem for pixel s and can be solved exactly
by any standard rooting algorithm.

III. RESULTS

We apply the proposed GM-MRF model to denoise the dual-
energy CT (DECT) clinical images with additive white noise.
The DECT reconstruction produces two values at one single
pixel, corresponding to the equivalent densities of water and
iodine. The two reconstructed densities typically correspond
to specific materials and therefore are highly correlated. The
ground truth DECT images were reconstructed from the raw
data acquired on a Discovery CT750 HD scanner (GE Health-
care, WI, USA) in the dual-energy acquisition mode, where
we used the JDE-MBIR method [18] for reconstruction since
it produces images with less noise but higher resolution than
traditional filtered back projection. We add white noise to each
of the DECT images separately to generate noisy data.

We learn the GM-MRF model from 2 x 10° overlapping
patches of size 3 x 3, which are extracted from one slice of
the clean DECT images, as shown in Figure 1. Since each pixel
in this case has two density values corresponding to water and
iodine respectively, we have an 18-dimensional patch vector.
The resulting GMM model is chosen to have 20 subclasses.
The denoising is performed jointly on both of the material
images by using the GM-MRF model with 3 x 3 patches.

We compare the proposed model with the state-of-the-art
K-SVD method !. We experiment with two sets of parameters
for K-SVD. In the first set, we use the same patch size as
GM-MRF does, which is 3 x 3; while in the second set, we
select the patch size as suggested in [7], which is 8 x 8. For
each of the above cases, we use two distinct dictionaries, one
for water and the other for iodine. Each dictionary has 256
atoms, which is trained by using the corresponding material
image in Figure 1. The K-SVD denoising is then performed
separately on each material density of the testing images, with
the regularization tuned to produce the best PSNR.

'We use the K-SVD denoising code from http://www.cs.technion.ac.il/ ron-
rubin/software.

(a) water

(b) iodine

Fig. 1. Training data: one slice of dual-energy clinical images from
an abdominal scan. Left: iodine-equivalent density; Right: water-equivalent
density. For DECT reconstruction, each pixel has two values instead of one.

Figure 2 and 3 show the iodine and water results respec-
tively. The results show that the GM-MRF model with 3 x 3
patches produces images with much less noise as compared
to the K-SVD with same patch size. As compared to the K-
SVD with larger patch size, the GM-MRF produces visually
sharper images and retains more details with consistently
higher PSNR. The K-SVD results with different patch sizes
also indicate that increasing the patch size for the GM-MRF
model may improve the performance.

IV. CONCLUSION

In this paper, we presented a novel GM-MRF model for im-
age denoising and reconstruction. The proposed method forms
a global image model by merging together individual models
for image patches, with each patch following a multivariate
Gaussian mixture distribution. We use a surrogate function to
replace the complicated potential function so as to make the
optimization tractable. We compared this model with the state-
of-the-art K-SVD method in a denoising experiment for dual-
energy CT images and demonstrated the quality improvement
by our model. Future investigation will optimize the patch size
and apply the GM-MRF model to more applications such as
CT reconstruction.

REFERENCES

[1] C. R. Vogel and M. E. Oman, “Iterative methods for total variation
denoising,” SIAM Journal on Scientific Computing, vol. 17, no. 1, pp.
227-238, 1996.

[2] J.-B. Thibault, K. D. Sauer, J. Hsieh, and C. A. Bouman, “A three-
dimensional statistical approach to improve image quality for multislice
helical CT,” Med. Phys., vol. 34, no. 11, pp. 4526-4544, Nov. 2007.

[3] J. Besag, “Spatial interaction and the statistical analysis of lattice
systems,” Journal of the Royal Statistical Society. Series B (Method-
ological), pp. 192-236, 1974.

[4] T. Hebert and R. Leahy, “A generalized EM algorithm for 3-d Bayesian
reconstruction from Poisson data using Gibbs priors,” IEEE Trans. on
Medical Imaging, vol. 8, no. 2, pp. 194-202, 1989.

[5] J. Wang, K. Sauer, J.-B. Thibault, Z. Yu, and C. Bouman, ‘“Prediction
coefficient estimation in Markov random fields for iterative x-ray CT
reconstruction,” in SPIE Medical Imaging, 2012, p. 831444.

[6] E. Haneda and C. Bouman, “Implicit priors for model-based inversion,”
in Proc. of IEEE Int'l Conf. on Acoust., Speech and Sig. Proc., 2012,
pp. 3917-3920.

[71 M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736-3745, 2006.

[8] S. Roth and M. J. Black, “Fields of experts: A framework for learning
image priors,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 2, 2005, pp. 860-867.

1091



(c) GM-MREF, 3 x 3 patch, PSNR: 34.11 (d) KSVD, 3 x 3 patch, PSNR: 30.67

(e) KSVD, 8 x 8 patch, PSNR: 33.00

Fig. 2. Denoising results on iodine densities with different priors. With the same patch size, GM-MRF produces much less noisy result than K-SVD, while
as compared to K-SVD with larger patch size, GM-MRF retains more details with higher PSNR.

Fig. 3.

(a) ground truth

(¢c) GM-MREF, 3

x 3 patch, PSNR: 33.51 (d) KSVD, 3 x 3 patch, PSNR: 32.46

(e) KSVD, 8 x 8 patch, PSNR: 33.15

Denoising results on water densities with different priors. With the same patch size, GM-MRF produces much less noisy result than K-SVD, while

as compared to K-SVD with larger patch size, GM-MRF retains more details with higher PSNR.
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