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Abstract—Markov random fields (MRFs) have been broadly
used as prior models in tomographic reconstruction problems
since they provide a simple and often effective way to model the
spatial dependencies in images. However, due to the difficulty in
parameter estimation, typical MRFs have very simple structures
that may not fully capture various characteristics of complicated
images. Recently, we developed a novel Gaussian mixture Markov
random field (GM-MRF) model, which comprises a global image
model by merging together individual Gaussian mixture models
(GMM) for image patches. GM-MRF can capture complex image
structures through patch GMMs, while the MRF parameters can

be easily estimated using standard Gaussian mixture parameter
estimation. In this paper, we apply GM-MRF as a prior model in
model-based iterative reconstruction (MBIR). We present a novel
analytical framework to calculate MAP estimates with a GM-
MRF prior by using surrogate functions that lead to a sequence of
quadratic optimizations. We demonstrate the value of the model
with reconstructions of real clinical scans.

Index Terms—Model-based iterative reconstruction, Markov
random field, Gaussian mixture, patch-based model, prior model

I. INTRODUCTION

Model-based iterative reconstruction (MBIR) algorithms

have been widely applied to X-ray CT reconstruction problems

[1]. MBIR algorithms typically incorporate an accurate system

model, statistical noise model, and image prior model, which

collectively improve image quality by reducing noise and

improving resolution [2].

Finding good image priors is important for MBIR algo-

rithms. The Markov random field (MRF) [3] has been one

of the most popular choices of prior models in reconstruction

problems. This model limits the dependencies in the image

such that only local pixel interaction remains important. How-

ever, due to the difficulty in parameter estimation, MBIR

algorithms typically use simple MRFs based on pair-wise

interaction with a small number of parameters, which severely

limits the expressiveness of the prior model. Recently, a more

complex MRF model with implicit specification was used for

CT reconstruction [4]; however, this model did not allow for

explicit specification of the distribution of the whole image.

In recent years, there have been a number of efforts to im-

prove the quality of priors through the use of more expressive
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models. In [5], Wang and Qi adapted a non-local prior model

using as a mechanism to capture subtler image characteristics.

A variety of research also adapted the ideas of dictionary learn-

ing to the problem of prior modeling in CT reconstruction [6].

More recently, there has been growing interest in modeling the

multivariate distribution of the image using Gaussian mixture

models (GMM). Since it is impractical to fit a single GMM

to an entire image, most efforts have focused on modeling

patches of the image with GMMs and then piecing together

an integrated image model from the GMM patches. In [7] and

[8], this approach was taken to modeling the image. However,

the reconstruction method depends on the joint estimate of

the image and the discrete GMM component for each patch.

This discrete estimation process is essentially equivalent to

the classification of each patch. However, erroneous patch

classification has the potential to produce unwanted image

defects. Moreover, accurate classification becomes problematic

if a large number of GMM components are used to accurately

model the patch characteristics.

Most recently, in [9] we proposed a method for creating a

single integrated prior model of the entire image by seaming

together GMM patch models using the geometric mean of the

probability densities. This approach, which is similar to the

product-of-experts technique [10], produces a single consistent

probability density for the entire image. We call this inte-

grated image model a Gaussian mixture Markov random field

(GM-MRF). Importantly, we also derived an exact surrogate

function for the GM-MRF’s log likelihood function. This

surrogate function allows for tractable minimization of the

MAP function using a majorization-minimization approach.

Moreover, this approach avoids the need to classify individual

patches and allows for the use of much higher order GMM

mixtures that can be more expressive.

In this paper, we incorporate a 3D GM-MRF prior model

into X-ray CT reconstruction using MBIR. A major advantage

of the GM-MRF model over existing prior models is that

it allows for joint modeling of both the pixel intensities

and spatial correlation. This is particularly important for CT

reconstruction problems since the specific pixel values in such

applications typically correspond to particular materials, each

with their own distinctive spatial structure. Another important

advantage is that the GM-MRF model is simple to train but

expressive. In practice, it can be trained on high quality clinical

images to capture real and important image characteristics,

and the GM-MRF parameters can be easily estimated using

standard methods for GMM parameter estimation such as

the EM algorithm [11]. Each iteration of the reconstruction
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algorithm computes a vector of soft classifications for each

patch followed by a quadratic minimization step over the entire

image. Our experimental results on low and high dosage CT

scanner data indicate that the GM-MRF model can better

render fine detail and edges in both high and low density

regions of the reconstruction.

II. PROPOSED ALGORITHM

MBIR algorithms typically work by computing the maxi-

mum a posteriori (MAP) estimate given by

x̂← argmin
x∈Ω

{
1

2
‖y −Ax‖2Λ − log p(x)

}
, (1)

where y is the measured data, and x is the unknown image.

In this framework, the log-likelihood function 1
2‖y − Ax‖2Λ

comprises the forward model of the measurement process, and

the density p(x) comprises the prior model for x, which will

be discussed in detail in the following section.

A. Gaussian Mixture Markov Random Field (GM-MRF)

Let x be an image with pixels s ∈ S, where S is the

set of all pixels in x. Let Ps ∈ Z
p×|S| be a patch operator

that extracts a p-dimensional patch at pixel s from the image.

More precisely, Ps is a rank p matrix that has a value of 1 at

locations belonging to the patch and 0 otherwise. Furthermore,

we assume that each patch, Psx, can be modeled as having a

multivariate Gaussian-mixture distribution with K subclasses,

g(Psx) =

K−1∑
k=0

πk|Bk|
1
2

(2π)p/2
exp

{
−
1

2
‖Psx− µk‖

2
Bk

}
, (2)

where parameters πk, µk, Bk represent the mixture probability,

mean, and inverse covariance of subclass k.

Then let S0, · · · , Sη−1 be a partition of the set of all pixels

into η sets, each of which tiles the plane. In other words,

{Psx}s∈Sm
forms a set of non-overlapping patches, which

contains all pixels in x. Using this notation, we model the

distribution of each tiling as the product of distributions of all

its patches, as

pm(x) =
∏

s∈Sm

g(Psx) = exp

{
−
∑
s∈Sm

V (Psx)

}
, (3)

where V (Psx) = − log{g(Psx)}. In this case, pm(x) is a

proper distribution that has the desired distribution for each

patch. However, the discrete tiling of the plane introduces

artificial boundaries between patches. To remove the boundary

artifacts, we use an approach similar to the product-of-experts

approach in [10] and take the geometric average of the

probability densities for all η tilings of the plane to obtain

the resulting distribution

p(x) =
1

z

(
η−1∏
m=0

pm(x)

)1/η

=
1

z

(∏
s∈S

g(Psx)

)1/η

, (4)

where z is a normalizing factor introduced to assure that

p(x) is a proper distribution after the geometric average is

computed.

Therefore, we formulate a Gaussian mixture MRF (GM-

MRF) model from (4) as

p(x) =
1

z
exp {−u(x)} , (5)

with the energy function

u(x) =
1

η

∑
s∈S

V (Psx), (6)

and the potential function

V (Psx) = − log

{
K−1∑
k=0

πk|Bk|
1
2

(2π)p/2
exp

{
−
1

2
‖Psx− µk‖

2
Bk

}}
.

(7)

B. MAP Estimation with GM-MRF model

By substituting (5) into (1), we can calculate the MAP

estimate with the GM-MRF prior as

x̂← argmin
x∈Ω

{
1

2
‖y −Ax‖2Λ + u(x)

}
. (8)

However, the second term in (8) is difficult for direct optimiza-

tion due to the mixture of logarithmic and exponential func-

tions. Therefore, we propose a functional substitution approach

to replace this complex function with a mixture of quadratic

functions that is computationally simpler to minimize.

For the function in (6), we define a quadratic function,

u(x;x′) =
1

2η

∑
s∈S

K−1∑
k=0

w̃s,k‖Psx− µk‖
2
Bk

+ c(x′), (9)

where x′ represents the current state of the image,

w̃s,k =

πk|Bk|
1
2 exp

{
−
1

2
‖Psx

′ − µk‖
2
Bk

}
K−1∑
j=0

πj |Bj |
1
2 exp

{
−
1

2
‖Psx

′ − µj‖
2
Bj

} , (10)

and c(x′) is only a function of the current state and therefore

can be treated as a constant during optimization. Then it can

be easily shown by using the lemma in [9],

u(x′;x′) = u(x′), (11)

u(x;x′) ≥ u(x), (12)

which implies that u(x;x′) is a surrogate function for u(x)
so that majorization minimization methods can be used, and

reduction of u(x;x′) ensures reduction of u(x).
Therefore, the optimization in (8) can be implemented as a

sequence of optimizations as

repeat{ x̂ ← argmin
x

{
1

2
‖y −Ax‖2Λ + u(x;x′)

}
x′ ← x̂ },

with one quadratic optimization problem at each iteration.
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Fig. 1. Training data for 3D GM-MRF model: a normal-dose clinical CT
reconstruction. Coronal view. Display window: window level (WL) 40 HU,
window width (WW) 400 HU.

We use the iterative coordinate descent (ICD) algorithm [12]

to solve this quadratic minimization problem. To do this, we

solve the following 1D optimization problem for each pixel s,

x̂s ← arg min
xs∈Ω

{
θ1xs +

1

2
θ2(xs − x′

s)
2 + u(xs;x

′

s)

}
, (13)

with

u(xs;x
′

s) =
1

2η

∑
r∈Ss

∑
k

w̃r,k‖Prx− µk‖
2
Bk

+ c(x′), (14)

where θ1, θ2 are the first two derivatives of the log-likelihood

function [12] and Ss represents a set of pixels whose patches

contain pixel s. This quadratic minimization problem can be

solved exactly by any standard rooting algorithm.

III. RESULTS

We train a 3D GM-MRF model consisting of 66 GMM

subclasses for 5 × 5 × 3 image patches, that is, a stack of 3

layers with a 5×5 patch at each 2D layer, by using the standard

EM algorithm with the software in [11]. Training data contain

3 × 105 overlapping patches extracted from reconstructed

images of a normal-dose clinical CT scan, which was collected

on a Discovery CT750 HD scanner (GE Healthcare, WI, USA)

in 64×0.625 mm helical mode, with 100 kVp, 312 mAs, 360

mm FOV, and pitch 1.375:1. Fig. 1 illustrates the 3D training

images in the coronal view.

We apply the trained GM-MRF as a prior model in the

MBIR algorithm. Experimental data was collected from the

same patient as for the training data, with same scan setting

except for a much lower dose level, which was 32 mAs.

We compare the MBIR using GM-MRF prior with two other

methods: FBP using a standard kernel, and MBIR using a

traditional pair-wise MRF prior, the q-GGMRF model. Note

that we intentionally reduced the regularization for MBIR with

the q-GGMRF prior so as to obtain higher resolution, which

lead to much higher noise as well.

Figs. 2, 3, and 4 present the comparison in different display

windows and view planes. As compared to FBP, MBIR with

GM-MRF prior produces images with sharper bones, more

lung details, as well as less noise and streaks in soft tissues.

When compared to MBIR with traditional q-GGMRF prior, as

shown in Figs. 2 and 4, MBIR with GM-MRF prior reduces

speckle noise in flat regions and along soft-tissue edges

without impacting the edge definition. These improvements

are due to better edge definition in the patch-based model over

traditional pair-wise models. Moreover, Figs. 3 and 4 show

that MBIR with GM-MRF prior reveals more fine structures

and details in lung and bone regions. This indicates that the

GM-MRF model is also a very flexible prior and inherently al-

lows different regularization strategies for different anatomical

regions in the CT images. This flexibility allows CT images

with great soft-tissue quality and at the same time preserving

the resolution in regions with larger variation, such as bone

and lung.

IV. CONCLUSION

In this paper, we present a method for using GM-MRF

priors in MBIR. The proposed method forms a global im-

age model by merging together individual GMMs for image

patches. In order to compute the MAP estimate using the GM-

MRF prior, we use an exact surrogate function to make the

optimization tractable. We compare the result with standard

FBP as well as MBIR using a traditional pair-wise MRF prior

in reconstruction experiments with high and low dosage clin-

ical scans. The results demonstrate improved image quality.
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(a) FBP (b) MBIR w/ q-GGMRF w/ reduced regularization (c) MBIR w/ GM-MRF prior

Fig. 2. Comparison between different reconstruction methods and models with low-dose data. Coronal view. Display window: WL 40 HU, WW 400 HU.
The result of MBIR with q-GGMRF prior was produced with reduced regularization so as to obtain higher resolution, which lead to higher noise as well.

(a) FBP (b) MBIR w/ q-GGMRF w/ reduced regularization (c) MBIR w/ GM-MRF prior

Fig. 3. Comparison between different reconstruction methods and models with low-dose data. Coronal view. Display window: WL -500 HU, WW 1800 HU.
The result of MBIR with q-GGMRF prior was produced with reduced regularization so as to obtain higher resolution, which lead to higher noise as well.

(a) FBP (b) MBIR w/ q-GGMRF w/ reduced regularization (c) MBIR w/ GM-MRF prior

Fig. 4. Comparison between different reconstruction methods and models with low-dose data. Axial view. Display window: WL 40 HU, WW 400 HU. The
result of MBIR with q-GGMRF prior was produced with reduced regularization so as to obtain higher resolution, which lead to higher noise as well.
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