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Abstract— Regularization methods have been successfully ap-
plied to various reconstruction and denoising problems. In these
problems, one needs to choose regularization parameters that
properly balance resolution and noise. These parameters need
to be adjusted when the image grid pattern changes. In this
paper, we present a theory on regularization design derived
from a continuous image model so that the regularization
method is invariant to image grid pattern. We can use this
theory to compute regularization parameters for various image
grid patterns. To illustrate the idea, we applied this theory to
regularization design on a rectangular image grid.

Index Terms— Iterative reconstruction, regularization method,
image model, multi-grid

I. INTRODUCTION

Iterative reconstruction (IR) methods have been widely

applied to solve various reconstruction and denoising problems

in medical imaging, security CT, electron-microscopy, etc [1]–

[3]. IR methods typically solve the reconstruction problem by

formulating mathematical models of the physics and statistics

of the imaging process and the image itself.

One important aspect of the modeling is to find a dis-

crete model of the image and physical processes which are

generally speaking continuous in nature. In a p-dimensional

reconstruction problem, we typically model the image object

as a continuous function f(r) : �p �→ �, where r is the vector

representing spatial location. The input to a reconstruction

problem is a set of discrete measurements denoted by a vector

y. The output of the reconstruction is a discrete image array

denoted by vector x. To define a discrete representation of the

image, one can define x to be the samples of f ,

xi = f(ri) (1)

where i is the pixel index and ri are typically chosen to fall

on a periodic grid.

The imaging process can be modeled as a mapping from

f to y, that is, y = F (f). For example, in 2D parallel beam
CT reconstruction, F is the Radon transform. Once we define

a discrete representation of f , we can also derive a discrete

forward model, y ≈ F̃ (x), mapping from x to y. In the CT

reconstruction problem, for instances, various discrete forward

models have been proposed [4]–[7]. Once the models are built,

one can formulate a cost function to find the solution that

best fits the model. In general, the image is reconstructed by
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Fig. 1. This figure shows an example neighborhood on a non-rectangular
periodic 2D image grid.

minimizing a cost function such as,

x̂ = arg min
{

G(F̃ (x), y) + U(x)
}

, (2)

in which G(F̃ (x), y) is the data mismatch term that penalizes
the differences between the image x and the measurement y

according to the forward model F̃ and a statistical model,

and U(x) is the regularization function that penalizes the
roughness in the image [8]–[10]. U(x) is typically derived
from a prior model of the image, such as the Markov random

field (MRF) model [11]. The regularization term U(x) plays
a very important role in defining the image quality [12].

In many imaging problems, the image grid might vary

from case to case. For example, when reconstructing images

on rectangular grids, the sampling rate along each direction

might vary depending on the desired resolution. In other

cases, the images might not necessarily fall on rectangular

grids. Therefore we would like to design a cost function that

is invariant to the image grid. In equation (2), the discrete

forward model F̃ naturally takes the pixel size and location

into consideration. In equation (28) of [13], Oh et.al proposed

a scale invariant design of U(x), assuming the sampling
pattern (in this case, the pixel’s aspect ratio) remains the same.

In this paper, we propose a general theory to design U(x) to
be image grid invariant. To do this, we first approximate U(x)
to be an integral of f . In order to be image grid invariant, this

integral must not depend on the pixel location or the choice of

the neighborhood. Based on this condition, we can derive a set

of sufficient conditions to guide the design of U(x). We found
that these conditions can be satisfied in the case of quadratic

regularization or when U(x) has a special form. To provide an
example of the theory, we describe a design for a commonly

used 3D rectangular grid in section III. Finally, we apply the

design to the 3D CT reconstruction problem as an example.

II. THEORY

Let us first introduce notation to describe a periodic image

grid. We use i = (i1, i2, . . . , ip) and j = (j1, j2, . . . , jp) to
denote p-dimensional discrete indexes; and s to denote the

coordinates of a pixel. Let S be a lattice of pixels at locations
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si ∈ �p taking on the values f(si). Furthermore, let P ⊂ S2

be a neighborhood system on S, where P consists of all voxel
pairs {i, j} where i is a neighbor of j. We assume that the

lattice S has a periodic structure, so the neighbors of i ∈ S are

j = i+k where k ∈ W , andW is a set of neighboring pixels’

index displacements. We also assume that W is symmetric,

so that if k ∈ W then −k ∈ W . We define J as a p by

p transform matrix that computes the displacement of two

neighboring pixels from k,

sj − si = Jk. (3)

In this notation, the neighborhood is defined by the set W

describing the selection of the neighboring pixels and the ma-

trix J describing the displacement between each neighboring

pixel pair. Fig. 1 shows an exemplary neighborhood on a non-

rectangular periodic 2D image grid, in which each pixel has

6 neighbors.
Let us also assume the prior distribution of x as a Markov

random field (MRF), and we will discuss a general form later.

In the MRF case, U(x) is of the form,

U(x) =
1

α

∑
{i,j}∈P

bj−iρ(xj − xi) (4)

where ρ(·) is the potential function. Our objective is to design
α and bj−i so that U(x) is invariant to the image grid.
We first derive U(x) as a discrete approximation to an

integral of f . To do this, we use the finite difference in the

image to approximate the local directional gradient of f , that

is,

xj − xi ≈ ∇f(si)
tJ(j − i). (5)

Using this approximation, we can rewrite U(x) as,

U(x) =
1

α

∑
{i,j}∈P

bj−iρ(xj − xi)

=
1

2α

∑
i∈S

∑
k∈W

bkρ(xi+k − xi)

≈
1

2α

∑
i∈S

∑
k∈W

bkρ(∇f(si)
tJk)

=
1

2α|J |

∑
k∈W

bk

∑
i∈S

ρ(∇f(si)
tJk)|J |

≈
1

2α|J |

∑
k∈W

bk

∫

�p

ρ(∇f(s)tJk)ds, (6)

where |J | is the determinant of matrix J .

Notice that, in equation (6), the right hand side is a

summation of integrals, in which each integral is based on the

gradient along the direction of a specific neighbor, k. Since the

right hand side approximation still depends on the choice of J

and W , it is not image grid invariant in general. However, in

some special cases, it is possible to use bk to compensate for

the directional change in the neighborhood. In the following,

we derive a sufficient condition that bk needs to satisfy to yield

an image grid invariant regularization in two cases. In the first

case, ρ must be a quadratic function. In the second case, ρ can

be of a general form, however we need to introduce a minor

modification to the form of U(x).

A. Quadratic Regularization

Assume ρ(Δ) = Δ2, then

U(x) ≈
1

2α|J |

∫

�p

∑
k∈W

bk∇f(s)tJkktJ t∇f(s)ds

=

∫

�p

||∇f(s)||2Hds (7)

where,

H =
1

2α|J |

∑
k∈W

bkJ(kkt)J t (8)

To use equation (8) to design U(x), we first need to choose a
desired H matrix, such as an identity matrix. We then choose

the image grid and neighborhood, i.e. J and W . Finally, we

find bk so that the equation (8) holds. Therefore, equation (8)

gives a sufficient condition for image grid invariant regular-

ization design.

B. General Potential Function

In many imaging applications, ρ(x) is designed to suppress
noise while preserving spatial resolution. To apply the theory

to general potential functions, we would like to propose a

different form of U(x), where

U(x) =
1

α

∑
{i,j}∈P

ρ(b2
i−j(xj − xi)

2) (9)

In this form, we sum over the squared difference between each

neighboring voxel pairs first, then apply the penalty function

ρ(·). Similar to the derivation of equation (6) and (7) , U(x)
can be shown to approximate the following integral,

U(x) ≈
1

2α|J |

∫

�p

ρ(||∇f(s)||2H)ds, (10)

where H is given by equation (8)

III. APPLICATION TO 3D RECTANGULAR GRID

In this section, we would like to provide an example design

for a 3D rectangular image grid, with voxels spacing Δx =
Δy , and Δz , where Δx and Δy are voxel sizes along x, y and

z axis respectively.

We assume W to be a 3 by 3 by 3 cubic neighborhood,

therefore, W = {−1, 0, 1}3. In this case,

J =

⎡
⎣

Δx 0 0
0 Δy 0
0 0 Δz

⎤
⎦

The geometry of the voxel neighborhood is illustrated in

Fig. 2, in which θ is the angle between k = (1, 0, 1)t and the x

axis as shown in (a), and γ is the angle between k = (1, 1, 1)
and the x − y plane as shown in (b). Thus, cos θ = 1√

1+β2

and cos γ =
√

2√
2+β2

, where β = Δz

Δx
is the aspect ratio of the

voxel in this particular case where Δx = Δy . When the aspect

ratio changes, the direction between two neighbor voxels,

Jk, also changes. Without proper compensation using bk, the

regularization might be stronger in one direction relative to
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the other. Let us assume we would like the regularization to

be isotropic. Therefore, we choose H = I . In the following

we will derive a solution for bk so that equation (8) holds in

this case.
Let Rk = (Jk)tJk

||Jk||2 , so that we can rewrite equation (7) as

1

2α|J |

∑
k∈W

bk||Jk||2Rk = H (11)

A sufficient condition for equation (11) to hold is α = 1
2|J| ,

bk = wk

||Jk||2
, where wk satisfy,

∑
k∈W

wkRk = H (12)

Notice that, ||Jk|| is the distance between the two-voxel pair
(i, i + k). Therefore, in this case, bk is inversely proportional
to the squared distance, and wk is computed to compensate
for the different effective regularization strength along the
direction of the neighbors defined by the image grid. We can
derive the Rk matrices for each direction as follows:

R±1,0,0 =

[
1 0 0
0 0 0
0 0 0

]
, R0,±1,0 =

[
0 0 0
0 1 0
0 0 0

]
;

R0,0,±1 =

[
0 0 0
0 0 0
0 0 1

]
; R±1,±1,0 =

[
1

2
±

1

2
0

±
1

2

1

2
0

0 0 0

]
;

R±1,0,±1 =

[
cos2 θ 0 ± sin θ cos θ

0 0 0
± sin θ cos θ 0 sin2 θ

]
;

R0,±1,±1 =

[
0 0 0
0 cos2 θ ± sin θ cos θ

0 ± sin θ cos θ sin2 θ

]
;

R±1,±1,±1 =

⎡
⎣

1

2
cos2 γ ±

1

2
cos2 γ ±

1
√

2
cos γ sinγ

±
1

2
cos2 γ 1

2
cos2 γ ±

1
√

2
cos γ sinγ

±
1

√

2
cos γ sinγ ±

1
√

2
sin γ cos γ sin2 γ

⎤
⎦

(13)

In general the solution to equation (12) might not be unique.

In the following we will derive a solution for wk when H = I .

Instead of solving for 26 unknown wk coefficients, we propose

to apply a constraint on the solution such that neighbor voxel

pairs of symmetric directions will have the same wk values.

This allows us to reduce the problem to 7 unknown variables.

We assign the weight wx to the direction k = (±1, 0, 0) and
wy to k = (0,±1, 0). Next, we assign wxy to the set of

directions k = (±1,±1, 0), so that

∑
k1=±1,k2=±1,k3=0

wxyRk1,k2,k3
= 4wxy

⎡
⎣

1
2 0 0
0 1

2 0
0 0 0

⎤
⎦

Notice that the matrices sum up to be a diagonal matrix.

Similarly, we assign wz to directions k = (0, 0,±1), wxz to

directions k = (±1, 0,±1), wyz to directions k = (0,±1,±1),
and wxyz to the directions k = (±1,±1,±1)
Substituting (13) into (12), we can verify that by setting the
coefficients in the symmetric way, the non-diagonal entries
will all cancel out. Therefore, we only need to consider the
constraints of the three diagonal entries, which give us the
following equations{

2wx + 4 ×
1

2
wxy + 4wxz cos2 θ + 8 ×

1

2
wxyz cos2 γ = 1

2wy + 4 ×
1

2
wxy + 4wyz cos2 θ + 8 ×

1

2
wxyz cos2 γ = 1

2wz + 4wxz sin2 θ + 4wyz sin2 θ + 8wxyz sin2 γ = 1

(14)

The above equations still do not have a unique solution.

Here we propose to formulate a cost function that minimizes

the total energy of the wk coefficients subject to (14) and a

non-negativity constraint.

w∗ = arg min
wk≥0

∑
k∈W

w2
k

= arg min
wk≥0

{2w2
x + 2w2

y + 2w2
z

4w2
xy + 4w2

xz + 4w2
yz + 8w2

xyz} (15)

The above constrained optimization problem yields the fol-

lowing analytical solution

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

wx

wy

wxy

wz

wxz

wyz

wxyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/12 17 β4+4+24 β6+9 β8

14 β4+4+8 β2+10 β6+3 β8

1/12 17 β4+4+24 β6+9 β8

14 β4+4+8 β2+10 β6+3 β8

1/12 17 β4+4+24 β6+9 β8

14 β4+4+8 β2+10 β6+3 β8

1/6 12 β2+2 β4+12+β8

14 β4+4+8 β2+10 β6+3 β8

1/12
(1+β2)(5 β4+4+16 β2+2 β6)
14 β4+4+8 β2+10 β6+3 β8

1/6
(2+β2)(5 β4+1+2 β2+β6)
14 β4+4+8 β2+10 β6+3 β8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where β = Δz

Δx
. Fig. 3 shows wk as a function of β.

IV. EXPERIMENTAL RESULTS

In this section, we apply the proposed regularization model

to 3D CT reconstruction problems. In computed tomography,

the resolution and noise properties are mainly determined by

system geometry and scan techniques. Therefore, this paper

does not focus on achieving specific image quality properties

such as uniform or isotropic resolution in the general case for

any scanning geometry. Instead, we would like to demonstrate

that with the proposed model, image quality is less sensitive

to voxel size changes compared to the baseline methods.

The methods in comparison are the proposed regularization

model, and two baseline methods. In the first baseline method,

we choose α = 1
2|J| and bk = 1

||Jk||2 , that is, we set wk

to be a constant in all directions. In the second baseline

method, we choose bk = 1
||Jk||2 and α to be a constant for all

voxel sizes. In both baseline methods, we adjust the over-

all regularization strength to match the proposed model at

dx = dy = dz = 0.625mm. At this point, all three models

yield identical regularization parameters.

To measure image quality, we simulated a 3D digital

phantom containing an array of high contrast point sources as

shown in Fig. 4. We test the proposed and baseline algorithms

with various voxel sizes dx = dy at fixed dz = 0.625mm. In
Fig. 5, we measure the 50% MTF (lp/cm) in x− y plane, full

width half maxium (FWHM) in mm along the z axis and noise

standard deviation (HU) in the uniform portion of the phantom.

Considering the variations of these image quality metrics when

the voxel size changes, we notice that the proposed method is

less sensitive to the voxel size change compared to the baseline

methods. Furthermore, the baseline 1 is also less sensitive

compared to the baseline 2, since it is closer to the proposed

model.
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Fig. 2. This figure illustrates the geometry of the voxel neighborhood on a
rectangular grid. In (a), we show the voxels in the x − z plane. The angle
between the diagonal voxel and the x axis is denoted as θ. In (b), we show
the voxels in the first octant, in which γ is the angle between the corner voxel
shown in red and the x − y plane.
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Fig. 3. This figure shows wk as a function of voxel aspect ratio parameter
β

Fig. 4. The figure shows the digital phantom used in the experiment.

Fig. 5. The figure shows the IQ metrics when dx = dy changes at fixed
dz. The proposed method appears less sensitive to such changes compared to
the baseline methods.

V. DISCUSSION

The theory proposed in this paper can be useful in many

reconstruction as well as denoising problems. In our example,

we change the pixel size independently of slice thickness,

which yields a non-isotropic voxel. Without modeling non-

isotropic sampling in U(x), one could end up with over-
regularized results along certain directions while other di-

rections are under-regularized. In 4D reconstructions (3D +

temporal), the voxel size and temporal sampling rate can also

be adjusted independently. The proposed theory can be used

to yield a consistent design balancing spatial and temporal

resolution. Although our derivation assumes a periodic lattice,

the theory can also be extended to non-periodic lattices where

bk needs to be computed for each location.
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