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Abstract—We study the distribution of the clinical dual-energy
CT (DECT) reconstructions by applying a soft classification
method with Gaussian mixture model. With a pre-described
subclass number, this method estimates the parameters of each
subclass and performs classification based on the posterior proba-
bility. Our study on the clinical data shows that the classification
result relates closely to the actual material composition in the
human body, with each material represented by a particular
cluster. Also, the study shows that the edges in the DECT images
follow a Gaussian mixture distribution, where each subclass has a
distinguishable covariance or direction that represents a particu-
lar type of edges. Potential usage of this soft classification method
includes MRF prior design and accurate material separation.

Index Terms—Computed tomography (CT), dual energy, sta-
tistical method, Gaussian mixture, material separation, material
classification, Markov random field (MRF) design.

I. INTRODUCTION

DUAL-ENERGY CT (DECT) scanners, which collect X-

ray projections with two distinct spectra, are of great

interest in applications such as disease diagnosis [1] and

security inspection [2]. A DECT reconstruction typically pro-

duces cross-sections corresponding to the equivalent densities

of two basis materials, where the linear combination of the

two uniquely determines the energy dependent attenuation

[3]. Typical reconstruction approaches include filtered back-

projection (FBP) methods and statistical iterative methods. The

statistical approaches allow an accurate model for imaging

system and detector noise, which consequently reduce the

noise and improve the resolution of the images as compared

to FBP.

As for statistical iterative reconstruction approaches, it is

critical to build an accurate prior model to represent the image

characteristics. This requires knowledge of the distribution of

the reconstructed quantities. The Markov random field (MRF)

has been applied widely in iterative CT reconstruction as

a prior model during the recent past [4]–[6]. Conventional

MRF priors for single-energy CT only depend on local pixel

differences. However, the distribution of the pixel differences

in clinical DECT reconstructions remains unclear. Applying

the MRF prior to each basis material components separately,
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as stated in [7], ignores the correlation between different

components. Thus, it is necessary to learn the distribution of

the pixel differences in clinical DECT reconstructions. More-

over, since the DECT reconstructions may potentially subject

to contamination between different material components, it

is also beneficial to enforce material separation during the

reconstruction. One possible approach is to introduce material

density information in the MRF prior, which is neglected in

conventional MRF model. This also requires knowledge of the

distribution of clinical DECT reconstructions.

In this paper, we study the distribution of the clinical DECT

reconstructions by using a soft classification method with

Gaussian mixture model. By using this method, we model

the distribution of the reconstructions as a mixture of several

distinct subclasses, each of which follows a multivariate Gaus-

sian distribution. Given the total number of the subclasses,

we estimate the mean, covariance, and prior probability of

each subclass. Based on the estimated parameters, we then

classify each data point based on the posterior probability.

We use the expectation-maximization (EM) algorithm to solve

this problem. The classification result on the clinical data

reveals the distribution of neighboring pixel differences and

pixel densities of the DECT reconstructions.

This soft classification method can also be used to segment

the DECT images. DECT has the potential to determine

the materials in the scanned object. Previous classification

methods generally threshold the reconstructed values to dif-

ferentiate the materials [8], [9]. In particular, Zamyatin et al.
[9] applied a Gaussian-based approach after thresholding to

simply determine the boundary of the clusters produced by

thresholding. These methods substantially depend on prede-

fined thresholds and may not be robust when two distinct clus-

ters overlap extensively. In contrast, the classification method

we use in this paper is fundamentally different from what

Zamyatin used in [9], since in this soft classification method

the prior distribution of each Gaussian is not uniform and

the parameters remain unknown before the algorithm starts.

The clinical result of the soft classification method shows a

desirable segmentation on the DECT images, especially for

highly overlapping soft tissues.

II. METHODOLOGY

A. DECT reconstruction

We use the joint dual-energy model-based iterative re-

construction (JDE-MBIR) approach [7] to reconstruct basis

material densities. The JDE-MBIR method incorporates a
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quadratic approximation to the polychromatic log-likelihood

with an accurate noise model that fully accounts for the

statistical dependency in the decomposed sinograms. This

approach has been demonstrated to reduce noise and improve

spatial resolution as compared to the filtered back-projection

(FBP) and other decomposition-based statistical methods that

employ decoupled likelihood model [7].

B. Soft classification with Gaussian mixture model

Let Y = {Yn}Nn=1 be a sequence of N multivariate

random vectors of dimension M . Each Yn is modeled by the

same Gaussian mixture distribution with K subclasses. Each

subclass k is specified by the parameters θk = (πk, μk, Rk),
defined as the prior probability, mean, and covariance for

subclass k, respectively. Furthermore, let Xn be a random

variable that determines the subclass label for Yn. Then, the

conditional probability of Yn given Xn = k and parameter θ
is given by

p(yn|k, θ) = 1

(2π)
M
2

|Rk|− 1
2 exp

{
− (yn − μk)

tR−1
k (yn − μk)

2

}
.

(1)

Then the conditional probability of Yn given θ is,

p(yn|θ) =
K∑

k=1

p(yn|k, θ)πk. (2)

The log-likelihood of the entire sequence, Y , is then given by,

log p(y|K, θ) =

N∑
n=1

log

(
K∑

k=1

p(yn|k, θ)πk

)
. (3)

In this paper, we empirically fix the number of subclasses,

K. Then the unknown parameter, θ, can be computed as the

maximum-likelihood (ML) estimate given by

θ̂ = argmax
θ

log p(y|K, θ). (4)

Due to the unknown state of the labels, {Xn}Nn=1, we use

the EM algorithm to solve this problem. The EM algorithm

works by first estimating {Xn}Nn=1 by clustering the data,

{Yn}Nn=1, according to the current subclass parameters, θ.

Then it reestimates θ based on this clustering result. This leads

to an iterative procedure that alternates between classification

and parameter estimation. At the ith iteration, the probability

that yn belongs to subclass k can be computed by using Bayes

rule,

p(k|yn, θ(i)) = p(yn|k, θ(i))πk∑K
j=1 p(yn|j, θ(i))πj

. (5)

This gives the classification at the ith iteration. This is a ”soft”

classification since the membership of yn to each subclass is

represented by a probability. Then based on this classification

result, we can update the parameters by maximizing the

expectation function,

θ(i+1) = argmax
θ

E[log p(y,X|θ)|y, θ(i)]. (6)

A substitution function approach is used to simplify the

computation [10]. The updated parameters for each iteration

are given by

N̄k =
N∑

n=1

p(k|yn, θ(i)), (7)

π
(i+1)
k =

N̄k

N
, (8)

μ
(i+1)
k =

1

N̄k

N∑
n=1

ynp(k|yn, θ(i)), (9)

R
(i+1)
k =

1

N̄k

N∑
n=1

(
yn − μ

(i+1)
k

)(
yn − μ

(i+1)
k

)T

p(k|yn, θ(i)).
(10)

The final classification is computed by

X̂n = argmax
k∈K

p(k|yn, θ̂). (11)

The initial condition can be chosen in the same manner as

stated in [10],

π
(1)
k =

1

K
(12)

μ
(1)
k = yl, where l =

⌊
(k − 1)(N − 1)

(K − 1)

⌋
(13)

R
(1)
k =

1

N

N∑
n=1

yny
t
n (14)

where �·� takes the greatest smaller integer. Notice that the

initial condition does not require any knowledge of each

subclass.

C. Data Formulation

We proposed two different formulations of the reconstructed

values to study the distribution of a single pixel and its

neighbors.
1) Material distances within neighboring pixels: We first

study the distribution of the material distance that is measured

as the difference within the same material between neighboring

pixels. More precisely, let m1 and m2 be the reconstructed

water and iodine density images, respectively. Furthermore,

let s and r be the locations of two pixels in the image. Then

we formulate the 2D distance vector as

y{s,r} = (m1,s −m1,r,m2,s −m2,r).

We then formulate a sequence y as a collection of all such 2D

vectors over the entire 8-neighborhood system, C. The soft

classification is performed on y, with the subclass number,

K, empirically fixed to 7.
2) Material densities within neighboring pixels: We formu-

late a 4D vector that includes the material density information

of a neighboring pixel pair. More precisely, for a neighboring

pair {s, r}, the data vector is formulated as

y′{s,r} = (m1,s,m2,s,m1,r,m2,r).

The soft classification is performed on y′, which is the

sequence of all such 4D vectors over C, with K empirically

fixed to 10.
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Fig. 1. Classification of the 2D distance vector for FBP images. The scatter-plot shows the classification result, with each color specifying a particular cluster.
Then five out of seven subclasses are shown individually on the image, with each represent a particular type of edges. The other two subclasses basically
represent DC components and are generally not of great interest.
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Fig. 2. Classification of the 2D distance vector for JDE-MBIR images. The scatter-plot shows the classification result, with each color specifying a particular
cluster. Then five out of seven subclasses are shown individually on the image, with each represent a particular type of edges. The other two subclasses
basically represent DC components and are generally not of great interest.

III. RESULTS

We applied the soft classification method on DECT clinical

reconstructions. Raw data were acquired on a Discovery

CT750 HD scanner (GE Healthcare, WI, USA) in dual-

energy fast kVp switching acquisition mode, with tube voltage

alternating between 80 kVp and 140 kVp in 540 mAs. We use

two methods to reconstruct the water- and iodine-equivalent

densities, the FBP method with a standard reconstruction filter

kernel and the JDE-MBIR method. We then experimented with

the same slice reconstructed by different methods, where the

data y and y′ were formulated in the manner described in Sec.

II-C. We applied the soft classification on y and y′ separately.

Fig. 1 and 2 show the classification results on the 2D

distance vectors for FBP and JDE-MBIR, respectively. The

color-code remains the same for the scatter-plot and the images

and the same for FBP and JDE-MBIR cases as well. The

results show that the clusters correspond to different types of

edges in the images. The clusters have zero mean but different

covariances or directions from each other. This suggests an

MRF prior that models the distribution of each edge cluster

such that different edges can be treated in different ways based

on their covariances.

It is also shown in the scatter-plots in Fig. 1 and 2 that
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(a) reconstructed water density (b) reconstructed iodine density

(c) segmentation map
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(d) color-coded scatter-plot

Fig. 3. Classification of the 4D density vector for FBP images. Upper row
shows the material density images used in the classification. The classification
result is shown on the segmentation map on lower left, with each color
specifying a particular cluster. The classification is also shown in the scatter-
plot on lower right with the same color code.

(a) reconstructed water density (b) reconstructed iodine density

(c) segmentation map
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(d) color-coded scatter-plot

Fig. 4. Classification of the 4D density vector for JDE-MBIR images.
Upper row shows the material density images used in the classification. The
classification result is shown on the segmentation map on lower left, with
each color specifying a particular cluster. The classification is also shown in
the scatter-plot on lower right with the same color code.

JDE-MBIR changes the distribution of edges as compared to

FBP, where the edges between different material components

are positively correlated in JDE-MBIR images. The classifi-

cation result on the JDE-MBIR images captures and separates

different type of edges better than that on the FBP images. As

shown in Fig. 2, the high contrast edges (bone-tissue edges

(red) and air-tissue edges (green)), and the soft tissue edges

(magenta and blue), have been well classified. This is because

the JDE-MBIR method produces shaper edges and smoother

texture than the FBP method [7].

The classification results of the 4D density vectors are

shown in Fig. 3 and 4 for FBP and JDE-MBIR, respectively.

Both results show that the clusters relate closely to different

compositions of human body, such as fat, muscle, bone, blood,

and air. As shown in the images, the soft classification method

performs well in differentiating highly overlapping tissues.

Moreover, the 4D classification also produces clusters that

reflect the edges. For example, the cyan cluster in JDE-

MBIR result stands for air-tissue edges. These results indicate

the possibility of designing an MRF prior that models both

the density distribution and the edge distribution to improve

material separation and edge performance simultaneously.

IV. CONCLUSION

We have presented a study on the distribution of the clinical

DECT reconstructions by using a soft classification method

with Gaussian mixture model. The soft classification method

estimates the parameters of each subclass and performs clas-

sification based on the posterior probability. Clinical results

have shown that the classification results relate closely to

different types of edges in DECT images and different body

compositions. Future investigation includes accurate material

separation and correlation-based MRF prior design.
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