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Kinetic Model for Motion Compensation in
Computed Tomography

Zhou Yu, Jean-Baptiste Thibault, Jiao Wang, Charles A. Bouman, and Ken D. Sauer

Abstract—Model based iterative reconstruction (MBIR) al-
gorithms have recently been applied to computed tomography
and demonstrated superior image quality. MBIR algorithms also
have the potential to incorporate sophisticated models of data
acquisition to address artifacts. In this paper, we introduce
kinetic models to the MBIR framework, which allow voxel value
to change as a function of time. Conventional reconstruction
algorithms assume the voxels are constant over time. This
assumptions is not true when patient motion is present, which,
in turn, results in motion artifacts. Our approach to address this
problem is to include such phenomena directly in the models of
the cost function. We introduces a kinetic model for each voxel
which is parameterized by a set of kinetic parameters. We then
reconstruct the image by estimating these parameters in a MBIR
framework. Results on phantom study and clinical data show that
the proposed method can significantly reduce motion artifacts in
the reconstruction.

I. INTRODUCTION

Model based iterative reconstruction (MBIR) algorithms
have recently been applied to computed tomography and
demonstrated superior image quality performance [1], [2], [3].
These methods typically work by estimating the images that
best fit the data based on the models of the system, the noise in
the data, and the reconstructed image. To do this, the images
are estimated by minimizing the following cost function,

= argmin{l(yfAz)TD(yfAm) +U(m)} (1)
x>0 | 2

where x denotes the voxels in the image stored in a vector, and
y denotes the vector form of the projection data. The models
of the system are incorporated in equation (1). The forward
model represented by the matrix A computes synthesized
projection data based on the image. The accurate modeling
of A is important for improving the spatial resolution and
reducing geometric related artifacts. The noise model denoted
by the diagonal matrix D models the signal to noise ratio
of each measurement, and therefore it is important for noise
reduction of the reconstruction. Last but not least, the image
is regularized by the function U(z) derived from a prior
distribution on the image. With accurate modeling of geometry
and noise, the MBIR algorithm can produce high resolution
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images with significantly reduced noise and artifacts. In order
to further improve image quality, this algorithmic framework
also provides the flexibility to incorporate more sophisticated
physical models of the data acquisition process such as the
spectrum of the X-ray [4], the gain fluctuation of the sys-
tem [5], etc.

In this paper, we propose to incorporate a kinetic model
into equation (1), which allows voxel values to change as
a function of time. Conventional reconstruction algorithms
typically assume that voxel values are constant during data
acquisition. This assumption is violated when patient motion
occurs or when using contrast agents in perfusion studies,
for instance, which typically results in motion artifacts in the
reconstructed images. Our approach to address this problem is
to include such phenomena directly in the models of the cost
function. We introduces a kinetic model for each voxel which
is parameterized by a set of kinetic parameters. The objective
is to reconstruct the image by estimating these parameters
in a MBIR framework. To develop the kinetic parameter
iterative reconstruction (KPIR) algorithm, we derive a cost
function of the kinetic parameters. These parameters are then
jointly estimated by minimizing the cost function. Based on
the kinetic parameters, we can present a snapshot image at a
desired point in time to freeze motion. We can also produce
a 4D time sequence using the kinetic parameters to display
the image volume as a function of time. The algorithm we
propose is efficient in the sense that there is limited additional
computational cost added compared to the conventional MBIR
algorithm.

Kinetic modeling of voxel values and parametric reconstruc-
tion algorithms were originally developed for positron emis-
sion tomography (PET) and single photon emission computed
tomography (SPECT). In dynamic PET and SPECT imaging,
direct methods have been developed to estimate physiological
parameters directly from the sinogram data [6], [7], [8],
[9], [10]. The contribution of this paper is to introduce a
kinetic reconstruction algorithm for transmission tomography
problems, and apply it to motion artifact reduction. This paper
is organized as following. In section II, we introduce our
kinetic model, derive the cost function, and describes the
numerical algorithm we used to minimize the cost function.
Finally, in section III, we apply this algorithm to reconstruct
both clinical and phantom data to evaluate the perform ace of
the algorithm.
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II. KINETIC PARAMETER RECONSTRUCTION ALGORITHM

The key idea of our method is to model the voxel values
as a function of time. We discretize the time window of
the measurement into K intervals of width dt seconds. We
use ¥y and 2(®) to denote the vector of measurements and
voxel values in the k*" time interval. A brute force method
to perform temporal reconstruction would estimate one image
for each time interval to obtain a sequence of K images over
time. However, such method would increase the dimension of
the problem by a factor K, and finding a suitable a numerical
algorithm to obtain a stable solution would be challenging.

We reduce the dimension of the problem by introducing dif-
ferent kinetic models that parameterize possible voxel motion
with a small number of parameters. Let ¢ denote a matrix of
kinetic parameters, in which each row ¢ is a vector of kinetic
parameters for voxel s. The kinetic model is a function that
maps ¢ to the image at time ¢, that is,

2™ = F(o,tk) )

where t;, is the sampling time of the k*" time interval.

Given the kinetic model, the estimate ¢ minimizes the fol-
lowing cost function of ¢ adapted from the MBIR framework.

K
¢ =argmin Y {(y* — A® F(p,t;))" DV ©)
® k=1

(™ — AW F(p, 1))} + U(p)

This cost function has two terms. The first term is a summation
of a series of data mismatch penalty functions for each
sampling time tj, where A®*) represents the forward model
and D) is a diagonal matrix that assigns weights to each
measurement according to the statistical model. The second
term, U (), is a regularization function for the kinetic param-
eters that penalizes noise and outliers in the reconstruction.

Given this framework, developing a kinetic parameter re-
construction algorithm mainly consists of three tasks. First,
we need to select a kinetic model F'(-) appropriate to describe
the realistic changes in object density over the length of the
acquisition. Second, parameter estimation must be stabilized
by choosing a prior model for the kinetic parameters leading
to the explicit formulation of the regularization function U ().
Third, a numerical algorithm must be developed to solve
the optimization problem in equation (4). In the following
paragraphs, we propose various methods for each of these
tasks.

A. Parameterized Kinetic Model

Similar to equation (2), we can write the value of voxel s
as a function of time using the following relation

xs(t) = Fs(‘ﬁsa t) (4)

where F(-) represents the kinetic model parameterized by a
s for each voxel s.

One possible choice is to represent voxel values as a linear
combination of a set of basis functions. In this case, we can

rewrite equation (4) in the following form
ws(t) =D s ibi(t) ®)
i=1

where b;(t) is the i*" basis function. We sample the value of
the voxels at time points tx, k = 1,2,...K, and the sampled
values are given by z, = zs(t;). We use Zs to denote the
K by 1 vector of the values of voxel s sampled at different
tr, which is computed by

where M is a K by 3 matrix formed by sampling the basis
functions, that is, [M],,; = b;(tx)

The choice of basis functions determines the space of the
kinetic functions. In this paper, we use general polynomial
basis functions defined as follows

bi(t) = (t — Ty)" @)

where ¢ = 1,2,3, and T is the time when we would like to
freeze the motion. In this case, the parameter ¢; is the image
at time 7. Other general basis function such as cosine and
spline basis functions can also be used.

B. Prior Model

Estimating multiple parameters per voxel from the same
amount of acquired data as available for conventional MBIR
reconstruction can be unstable without the use of regulariza-
tion. To stabilize this process, we assume the kinetic parame-
ters follow certain prior models. We use U(y) to denote the
regularization function of the kinetic parameters derived from
the prior model.

Using the polynomial basis function described in equation
(7), the parameter ¢, ; is the final image displayed to the user,
and therefore we use the same spatial image regularization
approach as in conventional MBIR for ¢, ;. The regularization
function of ¢, ; can then be written generally as

Uiler) = D begplpsn = ¢q) ®)
{s,q}€0s

where Os denotes the neighborhood of voxel s, by, are
directional coefficients, and p(-) is the potential function that
penalizes large variations in the parameters.

We also apply additional prior models to regularize the
temporal changes in the voxel values. A simple prior model
would assume the kinetic parameters are independent of each
other. In this paper, we use Lo norm regularization for the
kinetic parameters given as follows

1
Uilpi) = — D ©)

where U;(+) is the regularization function for the i** compo-
nent of the kinetic parameters, o7 adjusts the regularization
strength. This particular prior model assumes that motion
with large magnitude is less likely to happen, and therefore
penalizes large values in the kinetic parameters more than
small values.
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C. Parametric Iterative Coordinate Descent Algorithm (PICD)

We use the parametric iterative coordinate descent
(PICD) [6] algorithm to solve the optimization problem in
equation (4). The key idea of the PICD algorithm is to update
one voxel at a time, while all the kinetic parameters of the
voxel are updated simultaneously. When voxel s is updated,
the kinetic parameters of all other voxels are fixed in the cost
function, and we can then minimize the global cost function
over ¢ only.

For each voxel update, we first compute the first and second
derivative of the data mismatch term in the cost function with
respect to the current voxel s. The first derivative, denoted by
01, is a K by 1 vector, and the second derivative, 0, is a K
by K diagonal matrix. #; and 0, are computed directly from
the error sinogram data by

[01]5 Zdi,kai,s,kei,k (10)

[Oalkk < > dikal o, (11)

where a; 5 ) = [A(k)]@s, and e; 1, and d; j, respectively denote
the elements in the error sinogram and the corresponding
statistical weight.

Let ¢, denote the values of the parameter after the update,
and ¢ denote the values before the update. Let Ap, = @5 —
¢s. We can then write the optimization problem for voxel s
as

Aps < arg {Anin {HstAaps + %AapZMSTGQMsAgoS + U(p)
®s

(12)
With Q1 = O{Ms — @ZML;TOQMS and Qg = MSTGQMS, then
it is equivalent to solve

}

. . 1

s < argmin {Qlws + 505 Qaps + U(@)} SNCK)
After the update of ¢, using equation (13), the change in

the parameters is forward projected into the sinogram domain.

The sinogram update is done in two steps. First, we compute

the change in the vector Ts using the following relation.

AZs = M;Aps (14)

Next, for each sample time ¢;, we project the change in voxel
value Az, onto the error sinogram

ok e+ AP AT (15)

III. EXPERIMENTAL RESULTS

We implemented the KPIR algorithm using the Kkinetic
models described in equation (7), and the prior model given
by equations (8) and (9). We used PICD as the numerical
algorithm to solve the optimization problem.

This algorithm was applied to both a motion phantom and
clinical reconstructions. Figure 1 compares the reconstructions
on the Quasar motion phantom. This motion phantom has a
dense insert with an air chamber in the center moving at the
programmable speed of 40 beats per minute in this particular
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Fig. 1. Comparison of algorithms on the Quasar motion phantom. The con-
ventional reconstruction in (a) shows motion artifacts appearing as shadings
near the moving air chamber. These artifacts are significantly reduced by
KPIR as shown in (b). In (c¢) and (d), we compare the converged residual
error sinograms computed by forward projecting the image and subtracting
the data for both reconstructions: the conventional reconstruction in (c), and
the KPIR in (d). The large remaining inconsistency in (c) cannot be explained
by the conventional model as it is caused by the phantom motion. The error
is significantly reduced in (d).

(d)

scan. Figure 1 (a) shows the reconstruction without motion
correction: significant motion artifacts appear as shadings in
a large area around the air pocket. After applying KPIR, the
reconstruction in (b) shows that the motion artifacts are signif-
icantly reduced and localized near the air bubble. The artifact
reduction can also be verified by comparing the converged
residual error sinograms. Figure 1 (c) and (d) shows the error
sinogram corresponds to the reconstructions in (a) and (b).
The residual error sinogram computed as Ax —y illustrates the
inconsistency between the image and the measurements. By
comparison with the error sinogram without motion correction
shown in (c), it is clear that the large errors are significantly
reduced by the KPIR algorithm in (d).

The proposed algorithm also have the flexibility to re-
construct images with different choices of 7. We typically
choose Ty = T, where Ty o is the center of the temporal
window during which the voxel is measured by X-ray. Fig-
ure 2 shows the reconstruction of the motion phantom with
Ty =T,0—0.25,Ts 9, and Ts = T o+0.25 second, separately.
Although there are some remaining motion artifacts, we can
clearly see how the air bubble enters this slice, and its diameter
grows as a function of time. In clinical reconstructions, this
feature would allow us to choose T to reconstruct images at
different phases.
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Fig. 2. Comparison of the images reconstruct with different T’s. The image
in (b) is reconstructed using KPIR with T's = T o, the center of the temporal
window of measurement. The image in (a) and (c) are reconstruct with T's =
Ts,0 —0.25 sec and Ts = T 0 + 0.25 sec respectively. Although there are
some remaining motion artifacts, we can clearly see how the air bubble enters
this slice, and its diameter grows as a function of time.

() (b)

Fig. 3. Comparison of the algorithms on clinical study. The conventional
reconstruction in (a) shows a ghosting artifact near the heart wall and blurred
vessels due to cardiac and respiratory motion. These artifacts are significantly
reduced by KPIR as shown in (b).

Figure 3 compares the reconstruction using various algo-
rithms on a clinical case. The images are zoomed into the
chest region to focus on respiratory motion. Figure 3 (a) shows
the conventional reconstruction without kinetic modeling. Due
to cardiac and respiratory motion, the heart wall boundary
shows a ghosting artifact and one of the vessels in the lung is
significantly blurred. In this case, the KPIR algorithm appears
effective in reducing both artifacts, as illustrated in (b).

Figure 4 compares the convergence speed between KPIR
and MBIR algorithm. We run both algorithms for 20 iterations
to produce a set of reference images. Then we compute the
root mean square error (RMSE) for both algorithm during the
reconstructions. In (a), the computational cost is measured by
number of updates in the unit of iteration. The plot shows that
KPIR and MBIR has very similar per iteration convergence
speed. In (b), the computational cost is measured by the wall
clock time normalized by 1 iteration time of MBIR. In this
plot, KPIR is slightly slower since the computational cost per
voxel update of KPIR is about 15% higher than MBIR on
average.

IV. CONCLUSION

In this paper, we present a method of model based motion
artifact reduction by introducing kinetic models to the MBIR
framework. The phantom and clinical results show that the
proposed algorithm can effectively reduce motion artifacts.
The kinetic model we use in this paper is relatively simple.
In the future, we can potentially improve this method by

Iteration

(@)

2 3
Normalized Wall Clock Time

(b)

Fig. 4. This figure compares the convergence speed between KPIR and the
MBIR. The image quality is measured by the RMSE of the image, and the
computational cost is measured by the iteration in (a), and by the wall clock
time normalized by the time of 1 iteration of MBIR in (b).

introducing more sophisticated kinetic model or prior model
of the kinetic parameters.
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