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Abstract—Iterative reconstruction methods relying on lin-
earization of the relationship between images and projections
have to cope with the inherent representation of the scanned
object by voxel elements. When the voxel size becomes large
enough to reduce the overall computational requirements, partial
volume can become an issue for overall image quality. We propose
in this paper a linear parametric model with the purpose of
providing a better representation of the object in regions of
rapid variations in local density. We show that this approach
is effective at retaining the quality of thin slice reconstructions
without explicitly modeling thinner slices. Good image quality is
obtained at a significantly reduced computation cost relative to
that of using finer sampling of the image volume.

Index Terms—Computed tomography, iterative reconstruction,
parametric model, linear partial volume.

I. INTRODUCTION

With its recent introduction into CT clinical practice,

Model-Based Iterative Reconstruction (MBIR) has been shown

to be effective at improving image quality performance in

both low-dose and high resolution applications [1], [2]. One

of the advantages of this framework is that it supports using

accurate system models to describe the interaction between

image volume and projection space in a manner representative

of the real system. The spatially-varying nature of the forward

model can be taken into account to optimize spatial resolution

while correctly handling the cone-beam geometry and improv-

ing overall statistics by considering large sets of connected

projection components in the log-likelihood. However, the

standard linearized model with

y = Ax+ n, (1)

where y represents the projection data, x the unknown image

volume, and n an additive noise vector, implies a discretization

that often leads to rectangular voxels or “blob” models [3].

Although classical Nyquist theory points to using voxel sizes

equivalent to half the detector sampling [1], modern scanner

technology would require voxel sizes so small that such

models would become computationally impractical. But the

piecewise constant nature of the rectangular image model can
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create difficulties in situations where the continuous object

contains strong gradients of density. For example, high res-

olution reconstructions with high in-plane resolution but low

cross-plane resolution may suffer from image artifacts, such

as the artificial enhancement of bone boundaries and under-

estimation of surrounding soft tissue density in regions of

large local z-gradients in Figure 1. Such issues are greatly

reduced by reconstructing the same volume over a finer grid.

This illustrates the sensitivity of standard voxel-based forward

modeling to linear partial volume effects.

Fig. 1. Iterative reconstruction of a patient’s head from a 32x0.625mm axial
scan. The top image is reconstructed at 0.625mm thickness; the bottom image
at 0.3125mm. Low frequency shading artifacts appear in the thick slice image
around the sinus area which includes strong z-gradients.

In this paper, we present a new parametric approach to

further improve the system model in MBIR by allowing

piecewise linear rather than piecewise constant modeling of

the reconstructed volume to better represent regions of large

gradient in the scanned object. This approach can provide

improved object representation and is more computationally

efficient than simply using a smaller reconstruction grid.
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II. PARAMETRIC FORMULATION

A. Piecewise Linear Forward Model

Standard image reconstruction considers individual voxels

as constant valued. To better represent rapid variations in

density in a quantized framework, we propose a simple linear

model for possible changes of density within each voxel,

where each element of x becomes a two-dimensional vector

representing continuous variation of the density of a voxel

xj(t) = αj + βj × (t− 0.5), (2)

where αj and βj are the DC and slope components of voxel

j, respectively, and t is a parameter representing displacement

along the length of the voxel. In this parametric model, the

reconstructed volume is piecewise linear instead of piecewise

constant. Equation (1) becomes

y = Aα+Bβ + n,

where A = {aij} and B = {bij} are the respective compo-

nents of the forward model for either of the DC and slope

voxel coefficients.
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Fig. 2. Illustration of the calculation of the coefficients of the piecewise linear
forward model in a distance-driven framework. Compared to the conventional
model with constant voxel (dashed line), the value of the voxel is allowed
to change linearly over the length of its projection profile onto the detector
(bold line). α now represents the value of the voxel at its center point, and
β is the slope of the allowed variation along the considered dimension.

In one dimension, using the Distance-Driven (DD) formula-

tion [4], the coefficients of the forward model can be computed

as illustrated in Figure 2. The DD model represents the

convolution of the finite voxel and detector responses. Figure 2

shows the profile of the projection of the voxel onto the

detector axis. Instead of the constant value in the dashed line,

the sloped linear model of (2) allows the density of the voxel

to change along the considered dimension, parameterized by

t ∈ [0, 1] over the face of the projection of the voxel onto the

detector axis. Let tb and te be the values of t at the beginning

and end detector boundaries over that range. The coefficients

associated with each detector value are then:

aij = te − tb

bij =
(te + tb − 1)

2
(te − tb).

B. Modified Cost Function

Under this linear parametric model, the cost function of the

maximum a posteriori (MAP) estimation problem, with the

usual quadratic approximation to the log-likelihood, is written

as:

{

α̂, β̂
}

= argmin
α,β

{

1

2
||y −Aα−Bβ||2

W
+ U(α, β)

}

.

(3)

Here, W is a statistical weighting matrix with entries ap-

proximately inversely proportional to the variance in the raw

measurements, and U(·, ·) is a (possibly joint) regularization

function for each of the voxel components.

With twice as many image coefficients to compute as in

the standard piecewise constant model, proper regularization is

important to stabilize the estimation process. We consider here

simple independent spatial regularization of α and β using

standard regularization framework developed for MBIR, with

the advantage of retaining the strict convexity of the overall

cost function for reliable convergence and the associated

frequency characteristics designed for the resulting image. We

have found the q-Generalized Gaussian MRF (q-GGMRF) [1],

noted here Uq(·) to provide both appropriate low-intensity

smoothing as well as edge preservation, and propose

U(α, β) = Uq(α) + Uq(β). (4)

We note that the nature of the slope coefficient pushes it near

zero in relatively homogeneous regions occurring with high

probability in medical imaging applications. This indicates that

L1 regularization of β may prove beneficial, which we leave

for further research at this time.

C. Computation of the Solution

Our overall optimization approach follows the sequential

pattern used in iterative coordinate descent (ICD), with the

normal image vector augmented to contain both the DC and

slope components in x = [α, β]T . ICD has demonstrated

satisfactory convergence in many reconstruction problems in

fewer than 10 iterations when initiated with the FBP recon-

struction. To further optimize convergence, we use spatially

non-homogeneous ICD (NH-ICD), which focuses computation

where it is most needed according to the history of voxel

updates [5].

The ICD algorithm decomposes the global optimization

problem into a sequence of greedy one-dimensional update

calculations for each voxel xj while keeping all others in

a fixed state. In the case of the two-valued model for the

piecewise linear approach, however, this turns into the joint

optimization of αj and βj for each voxel, as

{

α̂j , β̂j

}

= arg min
αj ,βj

{

1

2

∑

i

wi (yi − aijαj − bijβj − Ci,j)
2

+ U(αj , βj)

}

, (5)

where Ci,j is a constant for voxel j dependent on the pro-

jection of the full image volume except for xj . The solution

of this parametric estimation problem follows from the frame-

work originally developed in [6] for PET kinetic parameter

reconstruction.
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Let’s turn our attention to the log-likelihood term in equa-

tion (5). The quadratic nature of this function leads to an

equation of the form:

1

2
xT
j Qxj + bTxj (6)

where

Q =

[

q11 q12
q21 q22

]

(7)

and b = [b1, b2]
T

. The coefficients of Q are

q11 =
∑

i

wia
2

ij

q12 = q21 =
∑

i

wiaijbij

q22 =
∑

i

wib
2

ij .

The two components of b can be computed directly from the

error sinogram e based on the state of the current voxel x̃j

such that

ei = yi − aijα̃j − bij β̃j − Ci,j .

Let’s introduce the intermediate vector θj = [θ1, θ2]
T with

θ1 =
∑

i

wieiaij

θ2 =
∑

i

wieibij .

Then

b = θj +Qxj . (8)

Armed with the formulation of equation (6) supported by (7)

and (8), the joint optimization of (αj , βj) follows the normal

rules of standard quadratic framework. For edge-preserving

regularization, however, the efficient handling of the non-

quadratic prior term in the update equations requires the

functional substitution methodology introduced in [7], with

implied modifications to Q, θ1, and θ2 to take into account

the coefficients of the prior model estimated around the current

point on the cost function curve.

III. RESULTS

We apply this approach on a scan of a patient’s head

acquired on a GE LightSpeed CT750 HD scanner obtained

from an axial 32x0.625mm protocol. The acquisition is tilted

by 16 degrees relative to the table axis in order to minimize

radiation dose to the eyes. However this has the consequence

of increasing density gradients between bone and soft tissue

in the trans-axial reconstruction direction. Figure 3 show the

magnitude of the density gradients relative to both the slice

before and the slice after the image of interest. The largest

magnitude regions are located around the sinuses at the base

of the skull where the brain turns into high density bone.

These locations correspond to the areas of partial volume

artifacts in the top image of Figure 1. Reconstruction slice

thickness equal to the detector row size is standard practice

for analytical methods, but is sub-optimal compared to the

0.3125mm sampling dictated by Nyquist for higher quality,

Fig. 3. Density gradients relative to the slice before (left) and after (right) for
the image of interest reconstructed in 0.625mm thickness from a patient’s axial
head scan. The stronger gradients in the trans-axial direction occur around the
sinuses at the base of the skull.

Fig. 4. Top: Piecewise linear iterative reconstruction of the same data as
in Figure 1 in 0.625mm image thickness. The linear partial volume artifact
around the sinus area has been resolved. Bottom: Slope coefficient for the
slice above. As expected, the slope coefficient remains near zero except in
those areas of strong longitudinal gradient.

as illustrated with the bottom image of Figure 1. To retain

the computational advantages of estimating the volume with

0.625mm voxels, we apply the linear parametric model of

section II in the longitudinal direction, which better represents

the strong gradients in the object. The joint three-dimensional

reconstruction is initialized with FBP images for the DC

image component, and the first order local gradient computed

from these FBP images for the slope coefficient. The result

in Figure 4 shows that the partial volume issue has been

successfully eliminated. The quality of this image compares

favorably to the 0.3125mm reconstruction achieved at higher

computation cost.
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Fig. 5. Residual error sinogram after convergence down to 1HU of average
change to the image volume of Figures 1 and 4 for the standard 0.625mm
constant voxel reconstruction (top), the thin slice 0.3125mm constant voxel
reconstruction (middle), and the 0.625mm piecewise linear iterative recon-
struction (bottom). The magnitude of the residual error is clearly reduced
when using the piecewise linear model.

Interestingly, it is also apparent from the residual error sino-

gram plots in Figure 5 that the piecewise linear model results

in a better outcome. Once convergence has been achieved, the

residual is mostly comprised of model mismatch error. That

is, the remaining error includes the features of the acquired

data that cannot be explained well by the reconstruction

model. In this case, the choice of 0.625mm piecewise constant

longitudinal voxels does not explain well the gradients in the

data, and the residual error contains structures of relatively

large magnitude in the top image of Figure 5. Those structures

are significantly reduced in the residual error of both the

0.3125mm constant voxel model and the 0.625mm piecewise

linear models at the middle and bottom of Figure 5. Although

some structured error still remains because the models are

not strictly representative of reality, one might argue that the

piecewise linear model corresponds to the better description

of all three models.

In spite of double the number of unknowns, convergence

down to less than 1 HU change over the reconstructed volume

was achieved in the same number of iterations for all models.

NH-ICD was conditioned by the DC image component updates

for each voxel to control the voxel selection process. Overall

computation was only increased by 15% for a straightfor-

ward implementation of the algorithm running on an Intel

Nehalem platform. This contrasts with significantly longer

reconstruction for the 0.3125mm grid. Significant potential for

optimization remains. In particular, the extra computation for

the slope component can be done only in parts of the volume

with strong gradients by simple thresholding. As illustrated in

Figure 4, the image of the slope coefficient remains near zero

in all regions with small gradient magnitude along z and could

be ignored. This would significantly speed up the execution

as regions affected by partial volume are limited to a very

small number of voxels compared to the full volume. This

kind of flexibility is well supported by the sequential voxel-

based approach of ICD. It would be more difficult for global

update methods to capitalize on this potential optimization.

IV. CONCLUSION

We have proposed a framework for parametric modeling

of the reconstructed image volume to address issues of linear

partial volume in regions of strong density gradients at reduced

computational cost. Although the method has been illustrated

in a one-dimensional context looking at quality as a function of

reconstructed slice thickness, this approach can be extended to

other dimensions as well for in-plane improvements. Whereas

image pixel size is sufficiently small relative to CT detector

angular sampling for most practical targeted situations, full

field of view reconstructions on small grids have been found to

emphasize aliasing in some situations. This could be addressed

using piecewise linear or higher order image models, similarly

to the model proposed in this paper.
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