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Abstract—Markov random fields (MRFs) are a broadly use-
ful and relatively economical stochastic model for imagery
in Bayesian estimation. The simplicity of their most common
examples allows local computation in iterative optimization, and
statistical descriptions of image ensembles which discourage
dramatic behavior, particularly under models with strictly convex
potential functions. This simplicity may be a liability, however,
when the inherent bias of minimum mean-squared error or
maximum a posteriori probability (MAP) estimators attenuate all
but the lowest spatial frequencies. For applications where more
flexibility in spectral response is desired, potential benefit exists
in models which accord higher a priori probabilities to content
in higher frequencies. This paper illustrates the gains possible
with MRF design similar to inner bone emphasis in conventional
X-ray CT reconstruction.

I. INTRODUCTION

X-ray CT imaging appears to be a rich potential field

of application for iterative reconstruction techniques [1]–[6].

Among the approaches promoted for clinical application, sev-

eral take advantage of a priori image modeling in the Bayesian

estimation view of the problem, in which the regularization

function has an probabilistic interpretation. The Markov ran-

dom field (MRF) model has long played a prominent role in

this sort of Bayesian image estimation. It is economical in

its parameterization of multidimensional random phenomena,

but provides a powerful ensemble of models and effective

regularization in inverse problems. A generic Gibbs distri-

bution, whose equivalence to the MRF is established by the

Hammersly-Clifford Theorem [7], has the form

pX(x) = Z−1 exp(−U(x)). (1)

The normalization constant Z is essential in MRF parameter

estimation, but is not of great interest in the present setting,

where we estimate only the image. In most common MRFs,

the probability measure for the realization x of the random
field X may be written in the form

U(x) = γ
∑

{i,j}∈Ω

wi,jρ(xi − xj), (2)
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with Ω the collection of cliques describing the neighborhood

of each pixel, {wi,j} the set of weights for penalizing local
differences according to relative spatial locations, γ a scaling

factor, and ρ(·) describing the penalty as a function of the
magnitude of local pixel differences.

The set {wi,j} is typically chosen to penalize differences
between pairs of image pixels inversely proportionally to

distance between sites, or some such minimally committal

form. Gauss-Markov models [8] feature a log prior of

log pX(x) = −(1/2)γxTRx+ constant, (3)

which incorporates inverse spatial covariance of the model into

the matrix R, equivalently considered the regularizing norm.
The implicit spectral model of X is therefore the inverse of

the power spectral density modeled by R. Second-order MRFs
meant to be invariant to rotation have essentially one degree

of freedom in choosing the weighting coefficients: the ratio of

diagonal to horizontal and vertical weights. This limits spectral

description to a crude low-pass model.

In this paper we explore the potential of larger neigh-

borhoods in MRFs considered from the point of view of

probabilistic modeling of spatial frequency content. This leads

naturally to the inclusion of frequency response in the design

of stochastic inverse operators, and is useful for the design of

explicit characteristic image behavior such as noise and spatial

resolution trade-off for practical applications. We consider

particularly the preservation of detail in bone structure in X-

ray CT.

II. FREQUENCY RESPONSE IN LINEARIZED INVERSE

While we may apply new stochastic models with both

quadratic and non-quadratic penalties in the function ρ of (2),

we begin with linear analysis for approximation of the fre-

quency response characteristics of inverse operators. Consider

the inverse problem posed by

y = Ax+ n, (4)

in which the distribution of the noise in n dictates a quadratic
log-likelihood function with norming matrix (e.g. inverse

covariance)D. Under quadratic MRFs as described above, the
maximum a posteriori probability estimate, which coincides

with the minimum mean-squared error (MMSE) estimate of

x, is

x̂ = (ATDA+ γR)−1ATDy. (5)
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Fig. 1. (a) Two-dimensional R(ω) for conventional 2nd-order MRF; (b)
1-D FIR design for frequency emphasis near 0.5. (c) R(ω) from McClellan
transformation of 1-D filter; (d) corresponding MRF clique weights.

In this case, using a frequency-domain representation of the

total transformation, the system response to x is

G(ω) =
AD(ω)

AD(ω) + γR(ω)
, (6)

where AD(ω) is a local spectral representation of the operator
ATDA, and the filter exhibits the familiar Fourier represen-
tation of the Wiener filter for shift-invariant linear filtering as

solution to the estimation problem. The bias toward zero of

the estimate of each frequency component in x̂ is observed as

γR(ω)

AD(ω) + γR(ω)
.

That is the reduction of magnitude according to noise-to-signal

ratio in the pursuit of MMSE at each frequency.

Particularly if we wish to make the estimator adaptive to

local texture or boundaries, large a priori probabilities of

prominent narrow-band signal components may be appropri-

ate. Conditioned on detection of a known texture category

through either hard or soft classification, or in objects charac-

terized by presence of strong elements of a known frequency

band, it may be desirable to suppress noise differentially by

an R(ω) which treats specific frequencies as having high
probability. The very simple spectral model of the signal to

be recovered which is implied by low-order MRF models

allows little tuning of the inverse operator to specific spectral

characteristics. Expanding the number of two-member cliques

enriches the a priori modeling greatly in its ability to focus

spectral characteristics.

Figure 1 includes a simple example in two dimensions.

The most common formulation of 2nd-order MRF weights

implies the inverse signal power spectral density on the top

left. The estimator resulting from this image model strongly

attenuates the normalized frequencies above 0.3. As is obvious

in (5), the linear least-squared error estimator biases the signal

only toward zero, as all components of the expression are

positive. Within conventional estimation, this is desirable, but

if perceived image qualities become more important than

quantitative measure, or if a particular spectral component’s

amplification is desired for greater visibility, negative values

in R(ω) present another option. This notion immediately
challenges the stochastic image model’s correctness, as it con-

tradicts the non-negative definiteness of the autocorrelation,

and makes the a priori image model decidedly improper.

However, we observe that the great majority of MRFs, which

penalize only pixel differences, are also improper probability

densities. In the Gaussian case, this penalty presents a rank-

deficient inverse covariance matrix. Improper densities are

routinely and profitably applied in Bayesian estimation [9],

with reliance on combination with likelihood functions to

formulate stable estimates. From the equations above, we note

that the condition

γR(ω) > −AD(ω) (7)

maintains stability in the MAP estimate provided the a pos-

teriori density is viable for the entire observation space of

Y .
As an example, consider the inverse (improper) spectral

density R(ω) shown in Figure 1. This function is con-

structed through one-dimensional non-uniformly spaced fre-

quency sampling design, with negative values between nor-

malized frequency 0.5 and 0.6, intended to boost intermediate

frequency components. The resulting filter in Fig. 1(b) is

transformed into an 11 × 11 two-dimensional equivalent via
the McClellan transform to form the function R(ω) of Fig.
1(c). The corresponding set of coefficients in Fig. 1(d) includes

negative values, which positively sanction some larger local

differences.

III. NON-QUADRATIC MODELS

Non-Gaussian MRFs do not strictly follow the linear

analysis of estimator forms and properties explained above.

Nonetheless, we will attempt to exploit what we learn in the

linear case to extend these ideas to Bayesian estimation under

more general models. Despite differences in the energy func-

tion and consequent variation in rendering of discontinuities,

we conjecture that the spatial frequency properties of the linear

case will to a great degree be shared by nonlinear estimates.

Much innovation has been focused on the function ρ(·), with
the classical quadratic smoothing penalty often replaced by

alternatives which penalize large differences less dramatically

in order to better preserve discontinuities in pixel values

[10], [11]. Strict convexity of the negative log a posteriori

probability density is highly desirable for reliable convergence

and stable estimation. At a minimum, positive-definiteness of

the Hessian of the negative log a priori density requires the

diagonal terms satisfy

∑

i∈Nj

wij
∂2

∂x2

j

ρ(xj − xi) ≥ 0 (8)

over the entire feasible set for the image X . Nj is the
neighborhood of pixel j, composed of all pixels which are
part of cliques including site j.
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For image quality and favorable numerical behavior, forcing

ρ(·) to have quadratic shape at the origin has proven valuable.
We have found the q-Generalized Gaussian MRF (q-GGMRF)

[12], with

ρ(∆) =
|∆|p

1 + |∆/c|p−q
, (9)

to provide both appropriate low-intensity smoothing as well

as edge preservation. The parameter q forms the penalty

for large differences, and is typically chosen near 1.2, with

p = 2. The threshold c determines the location of approximate
transition from low-intensity, Gaussian behavior to edge mode.

This model features an upper bound on the individual second

derivatives in (8) and therefore relatively simple conditions

for meeting (8) on a reasonable feasible set. These conditions

are quite restrictive for the q-GGMRF, and for such designs

as featured in Fig. 1(d), we sacrifice the convexity of the log

prior. Though the total log a posteriori probability may remain

convex in most regions of interest, we expect it will be non-

convex in sparsely sampled regions, where the likelihood term

is relatively weak.

In order to accelerate each voxel update in ICD algorithm,

we have proposed a 1D optimization using a quadratic substi-

tute function to upper bound the local 1D log prior function

[6]. We form the substitute function by replacing each function

ρ(xi − xj) in (2) with fij(u). The function fij(u) is chosen
to have a simple quadratic form

fij(u) = aiju
2 + biju+ cij , (10)

so that it is easy to minimize. Let x̃j be the current state of
the voxel whose value is to be optimized. The coefficients

aij , bij , cij are chosen such that fij(u) and ρ(xi − u) are
tangent to each other at u = x̃j and fij(u) is greater than
or equal to ρ(xi − u) for all u. With non-negative wij , this
substitution guarantees descent of the true cost function with

simplified computation of the derivatives of f . In the presence
of negative weights resulting from our MRF spectral design,

we propose a modified substitute function with a simple linear

form

fij(u) =

{

aiju
2 + biju+ cij , wij ≥ 0

biju+ cij , wij < 0,
(11)

so that the convexity of the substitute log prior is guaranteed

by giving the sub-function properties above to the components

of U(x) having negative coefficients. Although the true cost
function may be non-convex, this modified substitute function

guarantees monotonic descent to at least a local minimum of

the true cost.

IV. MRF DESIGN APPLIED TO X-RAY CT

We apply the MRF design above to Bayesian three-

dimensional reconstruction from axial X-ray CT scans on a GE

LightSpeed VCT scanner. While the reconstructions are fully

three-dimensional, our expanded MRF design is restricted

to the transaxial direction; in the axial direction we use a

conventional, first-order Markov description in a separable

model. Similar design, however, may easily be applied in three

dimensions.

The data producing Figure 2(a) are combined from multiple

realizations of acquisitions taken at the highest available dose

setting to form a scan set equivalent to a single very high dose

acquisition, providing accurate detail in a conventional filtered

backprojection (FBP) reconstruction. We therefore view the

first image as “ground truth” in this experiment. FBP allows

linear filter selection for varying frequency response shapes,

with Fig. 2(b) image illustrating a choice emphasizing interior

bone structure. In the first Bayesian reconstruction, we apply

the q-GGMRF with a conventional 3× 3 neighborhood in the
(x, y) plane. This model has proven effective in broad clinical
applications but, for the particular choice of parameters shown

in Fig. 2(c), limits detail content in the trabecular bone regions.

For a first case with the spectral MRF design, we consider

the linear case resulting from the quadratic a priori. We use

the coefficients from Figure 1 for the in-plane regularization.

Although R(ω) is negative at some frequencies, the response
in (6) is everywhere positive, and the estimate is well-posed.

The result in Fig. 2(d) shows an emphasis of the typical

inner bone frequencies similar to that of bone-enhanced FBP,

while still suppressing noise at the higher frequencies. Thus in

this case, we see the potential to fruitfully control frequency

response of the Bayesian inverse operator.

An axial clinical scan appears in Figure 3. The first image

again illustrates the result of conventional MAP reconstruction

under the q-GGMRF, small-neighborhood prior, with good

noise suppression, soft tissue rendering, and high frequency

bone detail such as in the inner ear, but limited trabecular

structure. Fig. 3(b) matches our linearized analysis, with a

quadratic log-prior density and coefficient design from Fig. 1.

In several aspects of interior bone detail and narrow bone edge

rendering this reconstruction has advantage over the previous.

Finally, Figs. 3(c) and (d) result from applying the same

coefficients to the q-GGMRF model. This result illustrates the

greater tolerance to discontinuities of the q-GGMRF, while

retaining the enhancement of the spatial frequency band as

in the linear estimation case. The last image shows there

little cost in reducing the size of the original spectral MRF

design for reduced computation. In the optimization of these

results, we monitored the second derivatives for the condition

of (8), and found they remained positive throughout, despite

the negative coefficients. Thus the non-convexity issue may be

minor in practice.

V. CONCLUSION

The MRF discussed has not been particularly carefully

designed in order, or in frequency characteristic. Surely better

results and/or lower order MRFs with similar results will be

possible with further experimentation and analysis of bounds

for convexity of the log a posteriori density. However, we

have shown that some degree of useful manipulation of the

spatial frequency response of Gaussian MRF-based Bayesian

estimators is possible even with relatively simple design.

This result comes, of course, at the expense of added

computation due to the larger neighborhood involved in each

pixel’s update. Reconstructions with the 11 × 11 neighbor-
hood spectral design consumed approximately double the
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(a) (b) (c) (d)

Fig. 2. (a) “Ground truth” image, taken from high-dose scan of a pig cadaver’s head; (b) filtered backprojection reconstruction using bone-enhancing filter;
(c) MAP reconstruction with conventional image model and parameters adjusted for soft tissue rendering; (d) MAP reconstruction with spectral design of
11× 11 MRF coefficients and Gaussian MRF model. Optimization was achieved with iterative coordinate descent.

(a) (b) (c) (d)

Fig. 3. (a) MBIR reconstruction of clinical axial head reconstruction with conventional q-GGMRF; (b) MBIR with quadratic penalty, 11 × 11 spectrally
designed MRF; (c) MBIR with q-GGMRF, 11× 11 spectrally designed coefficients. (d) same, with 7× 7 neighborhood.

reconstruction time of the conventional MRF estimate in

a straightforward serial implementation, although this could

be efficiently optimized on modern hardware. An adaptive

implementation, which could apply these more complicated

priors parsimoniously, may also eliminate the majority of

that cost. The degree to which the iterative forward and

backward projection operations dominate computational cost

will affect the relative computational penalty such modeling

enhancements incur.
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