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Abstract—Iterative reconstruction (IR) of x-ray computed
tomographic (CT) images replaces single-pass computation with
recursive refinement of the match between measured data and
simulated forward projection of a candidate reconstruction.
Whereas conventional filtered backprojection (FBP) includes a
ramp filter which suppresses the DC component of the sinogram
data, iterative methods seek a reconstruction which matches all
components. Incorrect gains used in normalizing the sinogram

projections for tube signal strength frequently occur with trun-
cated scans of larger, low attenuation objects, and may produce
artifacts in IR. A joint estimation of the true gain parameters
and the image greatly reduces the artifacts in typical clinical CT
imagery.

Index Terms—Computed tomography, sensor gain correction,
iterative methods, maximum a posteriori estimation.

I. INTRODUCTION

Iterative methods of CT image reconstruction show promise

in improving noise suppression and enhancing resolution in

applications where limiting radiation exposure is essential, or

data are limited. During the past decade, these algorithms have

advanced significantly toward clinical applicability [1]–[4]. A

common practical problem is the truncation of projections

to the scanner’s fan beam, which may occur with a large

patient, poor placement of the patient, or the presence of

blankets and other attenuating materials which fall outside

the beam for some angles, and may even rest on the scanner

gantry cover. An advantage of iterative reconstruction (IR) is

that such image content may be estimated from limited angle

information.

Raw data from the x-ray detector array typically undergo

a number of corrections before reconstruction, regardless

of the algorithm to be applied. Among these is reference

normalization, which addresses the impact of fluctuations in

the x-ray tube current output on the projections. For this

purpose, a set of reference channels is placed slightly outside

the scan field-of-view to measure the x-ray photons directly

from the x-ray tube without attenuation by the scanned object.

Coefficients calculated from these channels monitor the x-ray

flux, and are used to normalize the projections relative to one
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another [5]. When an object is present outside the scan field-

of-view, however, the reference channels are at least partially

blocked, and pre-processing may not accurately compute the

correction coefficients. This may result in inaccurate projection

measurements generating image artifacts.

Fig. 1. CT reconstruction of a patient scan in 70cm field of view, with
display window centered at  1000 Hounsfield units (HU), and of width 400
HU.

The image in Figure 1 illustrates a patient lying atop a

plastic membrane, or slicker, that is intended to protect the

scanner from fluids that could otherwise enter the mechanism

of the CT table. In this case, the slicker falls well outside the

cone of the scanner and rests on the gantry cover on both sides.

It therefore interferes with the reference channel measurements

for multiple projection angles.

Complete blockage of the reference channels is easily

detected but partial blockage, as in the case above with

interference by low-attenuation material, is less obvious. The

result of this attenuation of normalization rays is spurious

oscillation in the multiplicative factor applied to each view’s

received intensity of radiation. Figure 2 shows a temporally

varying x-ray tube signal strength whose normalization would

be expected to be proportional to the inverse of the upper

signal. The lower plot shows the received normalization factors

as a function of view angle. The approximately periodic oscil-

lations in the normalization signal correspond to intermittent
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Fig. 2. X ray tube signal strength (above) as a function of view angle;
reference normalization values (below).

partial blockage of the normalization channels by the slicker

pictured in Figure 1.

This offset in the multiplicative factor  i for correction of

x-ray intensity values λi translates into approximately additive

errors in the estimated integral attenuation values yi, as

yi ≈ ln

(

λT

 iλi

)

(1)

if the tube signal strength in conversion is modeled as the

constant λT .

Reconstructions from FBP have the contribution of any

constant-valued (DC) component suppressed by the high-

frequency emphasis ramp filter. Though rebinning may trans-

form the fan-beam view-by-view bias into a more general

low-frequency error, it is still heavily attenuated by the ramp

provided gain fluctuations are not very high frequency in the

view angle (and temporal) variable. The effects of gain fluctu-

ation are evident in Figure 3, where low frequency shading

is problematic in the IR image, but negligible in the FBP

image. It is possible to replace the detector-based reference

normalization with simply the inverse of the tube strength

settings, but such a change would sacrifice valuable calibration

Fig. 3. FBP reconstruction of patient shoulder scan (above) and IR version
of the same slice without correction for gain fluctuations (below). The display
window width is 400 HU.

information concerning tube output variation relative to input

power.

II. GAIN FACTOR ESTIMATION

A. Statistical Modeling

The log-likelihood function, parameterized in integral pro-

jection values, can be usefully approximated by a quadratic of

the form

ln p(y|β, x) ≈  
1

2
(y  β  Ax)

T
W (y  β  Ax) + c(y) (2)

in which y is the projection data, x is the unknown 3D image,

A is the forward projection operator,W is a weighting matrix

with entries proportional to the received radiation strength,

c(y) is constant in the parameter vector x, and β is the

vector of transformed gain factors from βi = ln  i. The βi

are assumed fixed for any particular row and view, which

guarantees that the number of parameters to be estimated for

gain correction is small relative to the number of voxels in the

3D image. This constraint allows the complete set of sinogram

corrections to be written as β = Bf for a M  L matrix B

with M >> L and all entries 0 or 1.

We pursue a maximum a posteriori probability (MAP)

reconstruction with a simple a priori model for x:

ln g(x) =  
∑

j,k

bj,k (xj  xk) + const. (3)

The function  ( ) is strictly convex. For the results in this
paper, we employ:

 (δ) =
|δ|p

1 +
∣

∣

δ
c

∣

∣

p q
(4)
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with p = 2.0 and q = 1.2, which approximates a quadratic
penalty for small local differences and less rapidly increasing

penalties for large differences. As the estimator of the image

x, we seek:

(x̂, f̂) = arg max
x,f

{ln p(y|f, x) + ln g(x)} .

This may be interpreted as the MAP estimate of the parameters

(x, f) with a non-informative prior on f . The variation of the

gains in f may also be assigned an a priori model, but the

results in this paper do not include it.

B. Computation of the Estimate

The introduction of gain correction into the IR process

has very little effect on computational cost. The least-squares

optimization for the correction of each row and view involves

only a number of variables equal to the number of detector

channels. Suppose the detectors for a given row and view are

indexed consecutively from m to n and receive the k-th gain

factor in f . Let the vector e represent the differences between

sinogram and forward projection values in the current state,

y  Bf  Ax. The update of the fk for these data is:

∆fk
=

∑n

j=m wjej
∑n

j=m wj

, (5)

the weighted average of entries in e. We have suppressed

indices of the iteration step for simplicity.

Our overall optimization approach follows the sequential

pattern used in our previous IR, iterative coordinate descent

(ICD), with the image vector augmented by the gain param-

eters of f . We use spatially non-homogeneous ICD (NH-

ICD), which mixes full passes among active voxels with

updates according to voxels’ history [6]. During the latter of

these two phases, those voxels with the largest last update

magnitudes are visited first. A full, sequential pass through

f , optimizing with respect to the shift in each view and row,

follows a number of voxel updates equivalent to a pass through

approximately 1/4th of the image x.

ICD has demonstrated satisfactory convergence in many

reconstruction problems in fewer than 10 iterations when

initiated with the FBP reconstruction. The forward projection

of the FBP image yields a relatively accurate, consistent set

of low-frequency components to compare with the sinogram

data. This allows an initial correction for most of the error

in gain. In Figure 4, we see that the estimates of f converge

quite rapidly, showing little movement after 5 update steps,

which corresponds to less than two iterations of NH-ICD.

To establish the global convergence of the iterates, we

may simply augment the vector x with all the {fk} to form
x̃ and add the same number of columns to A to form Ã

with unity in its columns capturing the proper element of

f for each datum. The modified, approximate log-likelihood

function then appears as

ln p(y|x̃) ≈  
1

2
(y  Ãx̃)T W (y  Ãx̃),

that is in the same form as in previous incarnations without

gain correction. Assuming that the null space of Ã is empty,

4500
4600

4700
4800

4900
5000

5100
5200

0

5

10

15

−1000

−500

0

500

1000

1500

2000

Helical View Number

DC correction in row 16 across steps

Image Update Steps

Fig. 4. Estimates of residual constant offset, resulting from gain error, in row
16 of a 32 row scan, estimated after successive image updates. Sums along
update steps for fixed view yield the final estimate of βi’s for row 16 and
corresponding view.

the complete objective function is strictly concave in x̃. The

second derivatives of the MAP cost function in all voxel

values are bounded above by the log prior, and the second

derivative with respect to fk is equal to  
∑n

j=m wj , using

the same indices for computing the k-th correction factor as

in (5). Given this formulation for the MAP objective function,

the ICD iterates applied to all elements of x̃ are guaranteed

globally, monotonically convergent by the results of [7].

C. Results of Gain Correction

Because the gain parameters are relatively few, their estima-

tion is robust and convergence is rapid. The shading artifacts

resulting from inaccurate normalization are removed from the

IR images of the patient shoulder scan considered above, as

shown in Figure 5. The joint image/gain correction estimate

shows the advantages in noise suppression more typical of IR

reconstructions.

Although this method may be thought of as a removal of the

DC component from the error state vector for iterative recon-

struction, it is important to emphasize that we are performing

estimation of gain in addition to image content, and nothing

in this process prevents improvement in the DC content of

the image from its initial state. Without special processing,

truncated projections necessarily lead to FBP reconstructions

with mass in projection data which is unrecovered in the

image, and induce significant artifacts at the edge of the

scan field-of-view where truncation occurs. Estimation of this

truncated content is crucial for high-quality iterative image

estimates, where the reconstruction of all sources of measured

x-ray attenuation is necessary to ensure consistency between

the IR image and the projection data.

To demonstrate the capability of iterative methods with gain

correction to recover truncated material from the FBP initial

reconstruction, we have scanned a phantom protruding beyond

the fan of the scanner beams, with the FBP result shown in

Figure 6 (top). This reconstruction serves as the initial state
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Fig. 5. FBP reconstruction with standard data (above) and IR reconstruction
with gain fluctuation correction (below). The display window width is 400
HU.

for MAP-ICD estimation with the modified log-likelihood

for gain correction. Because reference channel blockage is

detected when the phantom intervenes, gain fluctuations are

not a serious problem here. The IR results, first without, then

with the gain correction, are shown in the lower figures (center

and bottom, respectively). While the reconstruction of the edge

of the phantom may be imperfect, it does show useful recovery

of image information outside the normal field of view. The

gain correction does not prohibit the proper estimation of the

truncated regions of the scanned object, but rather allows some

improvement in the uniformity of the result relative to the IR

image without gain correction.

III. CONCLUSION

Preliminary results suggest that we can simply, effectively

remove the artifacts due to spurious gain fluctuation in sino-

gram data by using the iterative reconstruction process to

estimate the additive sinogram errors due to multiplicative

error at the detectors. The joint estimation of the gains with

other image content does not negatively affect reconstruction

from truncated projections. Further research will test the

effectiveness of the method on an ensemble of clinical data

sets.
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