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Abstract—Multi-slice helical Computed Tomography (CT)
scanning offers the advantages of faster acquisition and wide
organ coverage for routine clinical diagnostic purposes. However,
image reconstruction is faced with the challenges of three-
dimensional cone-beam geometry, high pitches, and low dosage.
Of all available reconstruction methods, statistical iterative re-
construction (IR) techniques appear particularly promising since
they provide the flexibility of accurate physical noise modeling
and geometric system description. In this paper, we present
the application of Bayesian iterative algorithms to real 3D
helical data to demonstrate significant image quality improve-
ment over conventional techniques. Specifically, the reduction of
helical cone-beam artifacts has been achieved, concurrently with
enhanced image resolution and lower noise, as demonstrated
by phantom studies. Clinical results also illustrate the noise
reduction capabilities of the algorithm on real patient data.
Although computational load remains a challenge for practical
development, the superior image quality combined with the
advancements in computing technology make IR techniques a

legitimate candidate for future clinical applications.

I. INTRODUCTION

Multi-slice CT scanning is particularly attractive for clinical

applications due to short acquisition times, thin slices, and

large organ coverage. Those acquisition trajectories produce

projection measurements that pass obliquely through the 2-D

reconstructed image planes. As the pitch increases, the devi-

ation from conventional approximate two-dimensional planar

data is further amplified. The accurate handling of this geom-

etry is critical to the elimination of unwanted artifacts in the

reconstructions and overall clinically acceptable image quality.

Recent developments in analytical inversion algorithms give

reason to hope that for many applications, image quality

may be adequate under single-pass, deterministic inversion

culminating in data backprojection. Imaging applications arise,

however, in which characteristics of the scanner hardware

places a limit on quality of reconstructions [1]. Helical streaks

artifacts originate from portions of patient’s anatomy, partic-

ularly in the case of abrupt edges in high-contrast materials,

such as bones and prosthetics.
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Traditionally, images have been reconstructed from CT

data using so-called direct reconstruction algorithms such as

filtered backprojection (FBP) or convolution backprojection

(CBP). The FBP approach to image reconstruction from helical

data that is currently used in commercial CT scanners relies

heavily on helical view weighting interpolation schemes to

account for helical geometry and thus address image arti-

facts [2]. However, approximations are intrinsic to any view

data interpolation approach, and even with many refinements,

CBP and other non-iterative variants are not likely ever to

be able to completely resolve helical cone-beam artifacts.

More complex techniques, such as the Feldkamp algorithm

[3], attempt to address cone beam artifacts by doing three-

dimensional filtered backprojection but do not consider the

exact geometry of acquisition. The algorithms of Katsevich

[4] provide an analytic solution to the helical cone beam scan

inversion, but are derived under assumption of continuously

sampled detector surfaces, not the discrete form necessary with

hardware realizable in the foreseeable future.

As an attempt to provide more flexibility in the reconstruc-

tion choices, iterative reconstruction (IR) algorithms have been

recently introduced for multi-slice helical CT images [5]. Al-

though they typically imply a greater amount of computation

than conventional methods, IR techniques offer the potential

to produce images with significantly reduced artifacts. Rather

than manipulating data to force it to conform to traditional

direct reconstruction models, statistical methods attempt, to

the degree possible, to explicitly include non-idealities in

the problem description. This view of image reconstruction

requires only that we have a description of the way in which

each measurement is influenced by unknown image values.

Errors and incompleteness in data are fully expected and their

description built into the reconstruction process. Rather than

treating all measurements with equal weighting, a statistical

model allows differing degrees of credibility among data. This

gives statistical methods a robustness not easily duplicated in

backprojection techniques. Statistical methods offer flexibility

in dealing with the various non-idealities in the data, as long

as these can be accurately modeled.

Since the introduction of IR methods to CT, much of the

effort has been devoted to demonstrating the feasibility of

the proposed techniques and illustrating some of its benefits

in the general case. The results in this paper focus on the

performance of iterative reconstruction relative to the specific

issue of helical cone-beam artifacts, while demonstrating lower

noise at equivalent or greater resolution in all reconstructed

images.
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II. STATISTICAL MODEL FOR IMAGE RECONSTRUCTION

The objective of IR algorithms is to rely on successive

operations of forward and backward projections in order to

obtain the convergence of a derived optimization criterion

describing the best match with the the measured projections.

Let  be the measurement data, and let ! be the unknown

image to be reconstructed. In general, there will be a matrix"
such that #$%  &'&()* +( " !

where * is the noise free value of the measurement. The ex-

pression

#$%  &' indicates the statistical average, or mean value,
of the data  . Statistical reconstruction methods generally

work by finding a solution to the problem,-./01 2345678 69:  6;< % " ! ' 6=>?@ABCD-: ! >=EFG (1)

where

8 6
may reflect the inherent variations in credibility of

data, and

DF: ! > is a regularization term which encourages

smoothness in the solution.

The crucial advantage of statistical reconstruction methods

is that they allow any choice of the matrix
"
. Any scanning

geometry can be accurately modeled by proper computation of

the entries in
"
, regardless of the three-dimensional sampling.

The model can be designed to be as close as possible to reality,

although this may come at the cost of great computational

expense. Because it is necessary to include the non-planar

character of the measurements of the helical scan into the

forward model, the computation of the elements of
"

must

be done in the three spatial dimensions. This is a fundamental

component to our approach. It requires software retracing of

the slices of the scan during reconstruction in order to calculate

the interaction between volumetric elements of reconstruction

with X-rays at arbitrary angles in three dimensions. A crude

but workable model involves the calculation of the intersection

between scanner rays and voxels in the reconstruction space.

An alternate technique with greater appeal in computation time

and minimal loss in resolution involves resampling voxel and

detector boundaries to calculate the contributions [6].

Because statistical reconstruction relies heavily on modeling

of the “forward” process of data collection in the scanner, the

greatest amount of effort must be applied to developing an

accurate, yet manageable statistical description of the scanner’s

behavior. The elements

8 6
in quadratic form of (1) represent

a measure of data credibility. For example, if a particular

measurement H 6 is photon-starved by some highly attenuating
object, a problem which may cause artifacts in conventional

images, by reducing the corresponding

8 6
, the statistical model

reduces any error associated with that measurement.

The regularization term

DF:IJK>
enforces smoothness in the

reconstructed images, independently of the formulation of

the forward model. This penalty, normally extremely simple,

is meant only to encourage the state in which neighboring

entries in the image have similar values. Its parameters provide

another level of control over the noise and resolution of the

final image estimate. In order to account for interdependence

of the neighboring planes in the three-dimensional acquisition

volume, the formulation of the regularization must include all

the neighbors of a given element in three-dimensional space.

The Generalized Gaussian Markov Random Field (GGMRF)

[7] has the desired effect and allows different level of edge-

preservation by tuning the exponent parameter:D-:IJL> ( MNKO5P 4Q3R9S TUVWXYZ[\ R9S T]^
J R <_J T]^ P (2)`

is the set of all neighboring pixel pairs in three-dimensions,

and O is a measure of the standard deviation of the noise

in the measurements. Equation (2) ensures that sharp edges

are increasingly well preserved as the exponent Mabcdebfg
decreases, and maintains the desirable convex nature of the

overall problem formulation.

III. DERIVATION OF THE SOLUTION

The best optimization method to minimize the functional (1)

is independent of the form of the estimator. Its choice must be

based on its efficiency to reach the solution, while the final im-

age is fully determined by (1). Statistical methods have a great

advantage in the high-pitch multi-slice helical case, in having

little dependence in their implementation on the geometry of

data collection. We attack the estimation/optimization of (1)

in the same manner regardless of the scan pattern represented

by
"

or the selected prior

D-:hJK>
. We propose to optimize over

the full 3D volume through a sequence of one-dimensional

updates where the image estimate iJ isiJ (jklmnop,-./0q XYrstu 45678 65: H 6&< % v J ' 63> @ B Md O;w 4QxRnS TyVzXYZ{\ R9S T]^
J R <_J T]^ wn|}

and ~ is the convex set of positive reconstructions. This

approach, called Iterative Coordinate Descent (ICD) [8], has

shown rapid convergence properties provided a good choice

of initial conditions, such as the FBP images. While the cost

of each iteration remains high relative to FBP, a full 3D

reconstruction typically converges in fewer than 20 iterations.

IV. RESULTS

For this study, the reduction of helical streak artifacts has

been a major goal of applying iterative techniques to CT. The

various origins of these artifacts pose a significant difficulty for

all algorithms. To illustrate this, we first selected a rib phantom

scanned in 8x1.25mm collimation mode at helical pitch 13.4

on a Lightspeed scanner. The orientation of the Teflon ribs

in three dimensions creates rapid variation of density in the

z direction. Figure 1 illustrates how IR can remove nearly all

the artifacts around the ribs caused by such variation. Greater

accuracy in the forward model and some tuning of the prior

parameters were necessary. Interestingly, IR techniques may

also benefit more than FBP from increased spatial sampling

of the reconstructions: simply by decreasing the size of the

voxels, Figure 1 shows improvement in the resolution of rib

details. In the FBP image, blurring of the ribs is evident when
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Fig. 1. Rib Phantom: 2D FBP (left) vs. Iterative (right), 8  1.25 Helical,
Pitch 13.4, 320mA, 0.5 sec/rotation, WW=400; Iterative parameters:

!"#$%
!"&'%

0.479mm,
!'()%

0.625mm, *
%

1.2

compared to the better defined edges and smaller in-plane size

of the ribs in the IR image.

In helical scans, IR is not inherently limited to spatial res-

olution matching the detector spacing, and gains in resolution

are achievable beyond the limits of traditional methods like

FBP by reconstructing smaller voxels. This is demonstrated

more dramatically in Figure 2 from a 16x1.25mm scan of

a head phantom at pitch 15. To further induce the artifact,

the scan parameters were chosen beyond the recommended

limits for clinical diagnostic scanning of this anatomy. The

phantom itself, with the cracks in the skull varying rapidly

from plane to plane, was also selected as a typical source of a

high level of artifacts. The top-left image shows the artifact-

free FBP for reference. In order to illustrate that the root cause

of the artifact does not lie in geometric inaccuracies in the

reconstruction method, we reconstructed the other images with

major approaches proposed to tackle the multi-slice helical

problem: a Feldkamp-based approach, Katsevitch’s algorithm,

and MAP-ICD. Even though all of them treat the exact

geometry of acquisition with varying degrees of accuracy, the

artifacts remain highly visible with all methods but IR. The IR

images show better definition of the breaks in the bone which

cause artifacts, as well as attenuating the streaks themselves.

Appropriate prior modeling combined with increased spatial

resolution through sub detector row width voxel sampling

generates the benefit.

In addition to reducing helical cone-beam artifacts, the

results in Figures 1 and 2 seem to qualitatively indicate the

potential of IR methods to achieve greater resolution while sig-

nificantly reducing the noise level in the reconstructed images.

The gain in resolution/noise trade-off with iterative methods

remains to be demonstrated by quantitatively comparing with

conventional FBP. For this purpose, we considered the GE

performance phantom scanned in 8x2.5mm helical mode at

pitch 7 and 100mA. The wire section and resolution bars

provide means to accurately measure the modulation transfer

function (MTF), while the standard deviation of noise can

be measured in the homogeneous regions of the phantom

(water and plexiglass). The results are shown in Figure 3 and

Table I. We compare both the standard kernel and the bone

Fig. 2. Head Phantom: reference FBP (top left); Feldkamp-based (bottom
left); Katsevich-based (top right); Iterative (bottom right); 16  1.25 Helical,
Pitch 15.0, 320mA, 1 sec/rotation, WW=400; Iterative parameters:

!+#,%
!+&"%

0.479mm,
!+()%

0.625mm, * % 1.3

FBP Standard FBP Bone Iterative

50% MTF (line pair/cm) 4.18 8.79 8.95

10% MTF (line pair/cm) 6.92 13.02 14.84

Water Std. Dev. 12.54 66.67 2.69

Plexiglass Std. Dev. 12.02 77.33 1.95

TABLE I

COMPARISON OF FBP AND IR FOR MEASUREMENT OF MTF AND NOISE

kernel for conventional FBP to the IR images. The iterative

reconstruction image may be regularized slightly too heavily,

as witnessed by some loss of the fine resolution in the square

hole at the lower left region of the bottom image of Figure

3. Nonetheless, the measured MTF is comparable to that of

the FBP image reconstructed with bone kernel, while noise

attenuation is 50
-
or more better in the IR image than in the

FBP image with standard kernel.

Finally, the results of this study would not hold without

successful application to real clinical data. For this, we se-

lected a clinical head scan, in order to observe both soft tissue

and bone. Figure 4 confirms that on clinical data as well, IR

allows some improvements in resolution while dramatically

reducing the noise level. Small structures present in the fat and

soft tissue at the bottom of the head or the side of the orbits

appear clearly in the IR image while they remain hidden by

noise in the FBP images. The improvement in resolution is

particularly visible around the sinus area, where the thin walls

between the sinus cavities are clearly visible in the IR image.
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Fig. 3. Performance phantom: FBP standard kernel (top); FBP bone kernel
(center); Iterative (bottom), 8  2.5 Helical, Pitch 7, 100mA, 1 sec/rotation,
WW=400; Iterative parameters:

!"# $ !"%&$
0.122mm,

!'("$
1.0mm, ) $

1.1

Meanwhile, the reduction of noise in the posterior fossa region

allows better examination of the brain tissue. The fine detail in

soft tissue is better preserved, but small variations in the bone

are also compromised at a different window level. This points

to some aspects of the non-Gaussian image model which may

need to be adapted for better bone imaging.

V. CONCLUSION

We have presented a statistical framework for iterative

image reconstruction for CT that produces very good image

results. As the reconstruction technique remains independent

from the exact form of the forward model, this method is

applicable to any geometry, and particularly the multi-slice

helical problem. Through appropriate selection of reconstruc-

tion parameters, iterative reconstruction achieves significant

helical artifact reduction, at improved resolution and lower

noise. Phantom results are confirmed on clinical data.
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