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Abstract—Imaging from multi-slice CT data is of particular
interest for its clinical relevance in diagnostic purposes, but
suffers from the difficulty of appropriately handling cone-beam
geometry, high pitches, and low dosage. In this paper, we
develop and investigate the performance of iterative recon-
struction algorithms in order to compare image artifacts with
conventional methods, as an attempt to improve image quality.
We demonstrate the feasibility of such techniques by adapting
existing Bayesian imaging methods to reconstruction from pre-
corrected multi-slice helical CT data, which leads to the first
original comparison between Filtered Back-Projection (FBP) and
iterative reconstruction in a three-dimensional setup similar to
that of a real clinical acquisition.

I. INTRODUCTION

Demands for new clinical applications in CT diagnos-

tic imaging have pushed manufacturers to develop scanning

techniques resulting in faster acquisition and larger coverage

through the use of multi-slice detectors, faster rotation speeds,

and high helical pitches. The large coverage and increased spa-

tial resolution of the detector array makes multi-slice CT very

attractive for clinical applications, enabling shorter acquisition

times and thinner slices. As the number of slices increases,

however, the geometry of the projections evolves into a three-

dimensional space instead of the two-dimensional space where

application of conventional methods of reconstruction is ap-

propriate. High-pitch helical scanning is particularly desirable

when combined with multi-slice detectors as it decreases

acquisition time, but it further increases the deviation from

conventional two-dimensional planar data. Current state-of-

the-art reconstruction algorithms generally require a closed

form formulation, and try to address cone-beam artifacts by

doing forms of three-dimensional filtered back-projection [1],

or by implementing complex view weighting techniques to

achieve superior image quality [2]. They are faced with the

challenge of dealing with inaccuracies inherent to the inter-

polation of the helical data to approximate the measurements

that would be made from an equivalent plane of acquisition.

While much effort is devoted to the improvement and

implementation of these analytical reconstruction methods

because of their computational efficiency, iterative techniques

and their benefits for this application have so far not been

fully investigated. Although they require many more opera-

tions, they offer the potential to produce reconstructions with

substantially reduced artifacts through the inclusion of non-

idealities in the problem description. Rather than treating all

measurements with equal weighting, a statistical model allows

differing degrees of credibility among data. This advantage

of robustness of statistical methods over conventional recon-

struction methods is particularly worth mentioning: helical

view weighting in FBP is very sensitive to inaccuracies, and

small perturbations in the computation of the weights or their

application to the data may result in significant degradation

of image quality, which may prove a difficult challenge for

practical implementation. Rather than manipulating data to

force it to conform to a format suited for direct reconstruction

methods, statistical methods attempt, to the degree possible, to

explicitly include data non-idealities in the problem descrip-

tion.

Direct methods also cannot include image models with

sufficient generality to describe realistic medical imagery.

Limitation to sinogram-domain correction and pre-processing

prevents the use of modern stochastic image models in

conventional reconstruction. These problems are made more

severe if the dosage levels are reduced, as desirable in many

applications. In iterative reconstruction, constraints such as

positivity or spatial smoothness can be enforced to increase

the quality of the reconstructed image in various ways.

Because of the sheer dimension of the inverse problem and

of the alleged computational complexity of their implemen-

tation, there is a tendency to believe that statistical iterative

methods are ill-suited to practical reconstruction of multi-slice

helical CT data, which is the standard on current medical

diagnostic scanners. Allain, Idier, et al, [3] investigated an

iterative regularized approach for helical data that describes

some practical implementation issues, but their work applies

to single-slice only. We generally find that the problem of

iterative reconstruction for multi-slice CT helical data has



been overlooked in the literature. In particular, there has

been no comparison between images reconstructed both with

iterative techniques and state-of-the-art conventional methods

with the dimensions of a clinical setup. For these reasons, we

devote here some efforts toward, to our knowledge, the first

comparison between FBP and iterative reconstructions from

three-dimensional multi-slice helical data.

II. STATISTICAL RECONSTRUCTION FROM MULTI-SLICE

HELICAL CT DATA

Consider the corruption of measurements by counting statis-

tics in low dosage cases. Rather than treating all measurements

with equal weighting, a statistical model allows differing

degrees of credibility among data. Let  be the measurement

data, and let ! be the unknown image to be reconstructed. In

general, there will be a matrix " such that #$%  &'()*+ ,-./$!
where 01 is the noise-free value of the measurement, and#$% 1 ' indicates the statistical average of the data 1 . Statistical
reconstruction methods generally work by finding a solution

to the problem234567 89:;<=> <;? 1 <@A % "BC;' <DEFGHIJKL? C EMN (1)

where

> <
may reflect the inherent variation in credibility of

data, and

KL? C E is a regularization term which encourages

smoothness in the solution. For example, if a particular

measurement is photon-starved by some highly attenuating

object, a problem which may cause artifacts in conventional

images, a statistical reconstruction simply assigns low weight

to any errors associated with that measurement by reducing

the corresponding

> <
. The regularization term

KL? C E , a feature
of Bayesian image estimation, adds a penalty to behavior

reconstructed in the image C which might be highly atypi-

cal. This penalty, normally extremely simple, is meant only

to encourage the state in which neighboring entries in the

image have similar values. Optimization of the expression

in (1) requires iterative methods which are generally more

computationally expensive than direct reconstruction.

The crucial advantage of statistical image reconstruction

in this framework is that it allows any choice of the matrix" to describe the imaging system. Any scanning geometry

can be accurately modeled by proper computations of the

entries of the matrix " , often referred to as the “forward

projection” matrix. The forward model can be designed to

be as close as possible to reality, although this may come

at the cost of great computational expense. FBP is feasible

primarily in systems in which " describes uniformly spaced,

closely sampled data. Statistical methods have an advantage

in having little dependence in their implementation on the

geometry of data collection. The optimization of (1) is attacked

in the same manner regardless of the scan pattern represented

by " . The problem lies in determining the elements of "
that describe the contribution of any measurement data to any

element of the reconstruction space. Because it is necessary

to include the non-planar character of the measurements of

the helical scan into the forward model, the computation

of the elements of " must be done in the three spatial

dimensions. This computation is a fundamental component

to our approach. It requires software retracing of the slices

of the scan during reconstruction in order to calculate the

interaction between volumetric elements of reconstruction with

X-rays at arbitrary angles in three dimensions. A crude but

workable model involves the calculation of the intersection

between scanner rays and voxels in the reconstruction space.

Although the calculations involved may not be trivial, there is

no fundamental problem in describing it exactly in " for the

statistical methods.

The regularization term

KL? C E enforces smoothness in the

reconstructed images, independently of the formulation of the

forward model. Its parameters provide another level of control

over the noise and resolution of the final image estimate. In

order to account for interdependence of the neighboring planes

in the three-dimensional acquisition volume, the formulation

of the regularization must include all the neighbors of a

given element in the three-dimensional space. The Generalized

Gaussian Markov Random Field (GGMRF) [4] represents a

simple formulation of the prior term with the desired effect:
KL? C E ) OPQRST :UDVWX YZ[\]^_`a VWX Y;b C V

A C Y;b T (2)

where c is the set of all neighboring pixel pairs in three-

dimensions, and R is a measure of the standard deviation of

the noise in the measurements. Equation (2) ensures that sharp

edges are increasingly well preserved as the exponent Ode P ef
decreases, and maintains the desirable convex nature of the

overall problem formulation.

III. SOLUTION OF THE OPTIMIZATION PROBLEM

The computational problem of statistical image recon-

struction is that of optimizing an estimate gC of the three-

dimensional reconstruction space against a functional includ-

ing a statistical measure of the difference between the esti-

mated forward projection space and the true measurements,

as well as the regularization term (2):gCh)ijklmn 2L4567 ]^opqr : < > < ? 1 < A % "sC;' < E G I OPQRST :UtVmX YZ[\]^_ a VWX Y b C V
A C Y b Tmuv

(3)

where w can be chosen as the convex set of positive recon-

structions to describe the physical nature of the image space.

Optimization over the full 3D volume may be attacked

by iteratively visiting each voxel of the reconstruction space.

Sequential voxel updates are calculated using Iterative Coordi-

nate Descent (ICD) [5], which has shown rapid convergence in

other tomographic problems. Greedy updates of voxel values

may be computed directly in the purely quadratic case of

the Gaussian prior model, but require a one-dimensional line

search for other cases of the GGMRF such as the edge-

preserving model of Pxy- O in (2). While the cost of these

iterations remains high relative to FBP, a full 3D reconstruction

typically converges in fewer than 20 iterations.



(a) (b)

Fig. 1. Rib phantom reconstructions using helical scan data with normalized pitch 1.675:1 at 1.25 mm detector collimation, 0.5 second per rotation, 120kV,
320 mAs, with a window width of 300 and level of 0. Reconstructions performed using (a) helical view weighting FBP; (b) Iterative reconstruction with
q=2.0;  !" #$%

. Iterative reconstruction has comparable quality to FBP reconstructions with increased artifacts in some areas and reduced artifacts in others.

IV. RESULTS

The following reconstructions result from multislice helical

scan data acquired at 0.5 second rotation speed, 1.25 mm

detector collimation, with 984 views per rotation, and pitch

of helical scan adjusted for minimum complete coverage. The

3D reconstruction includes all image planes intersected by one

full rotation of the gantry. Planes are separated by 1 mm

in the results shown here. Figure 1 uses an oval phantom

with Teflon simulated ribs to compare the quality of helical

view weighting FBP to the current iterative reconstruction

algorithm using a Gaussian prior model. The resulting iterative

reconstruction has comparable or slightly better quality than

the FBP reconstruction, with reduced helical artifacts in some

locations and increased artifacts in others.

Figure 2 uses a GE Performance phantom with little vari-

ation in the z direction in an attempt to look specifically at

the performance of the iterative method in terms of spatial

resolution. The quality of the FBP reconstruction is therefore

essentially equivalent to that of a purely axial scan. The

iterative reconstruction algorithm uses a non-Gaussian prior

model with greater tolerance for sharp edges. Table I gives

the tabulated values of the 50% modulation transfer function

(MTF) and noise computed in the reconstructions, and Fig. 3

shows a windowed portion of the two reconstructions used in

MTF computations. In this case, the iterative reconstruction

has significantly better resolution with slightly reduced noise

as compared to the FBP reconstruction.

TABLE I

MTF AND NOISE EVALUATION FOR GE PERFORMANCE PHANTOM

RECONSTRUCTIONS USING (A) FBP RECONSTRUCTION; (B) ITERATIVE

RECONSTRUCTION WITH &'" #()*#
;  +",-(. .

FBP Recon Iterative Recon

50% MTF (lp/cm) 4.44 8.21

Noise std. dev. (water) 11.02 9.35

V. CONCLUSION

Preliminary results shown here demonstrate that Bayesian

iterative methods may offer significantly improved resolution

at comparable noise level, and artifact suppression in helical

scan X-ray CT, at the cost of increased computation. Such a

performance-cost tradeoff appears valuable for the reconstruc-

tion of high pitch and/or low SNR helical scan data.
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Fig. 2. Reconstructions of GE Performance phantom obtained using (a) FBP; (b) Iterative reconstruction with q=1.1 and  ! "#$ with a window width of
300 and a level of 0. Iterative reconstruction with non-Gaussian image model produces significantly higher resolution than FBP with slightly reduced noise.
(See Table I.)

(a) (b)

Fig. 3. Windowed versions of GE Performance phantom region used to compute MTF performance estimates (window level 600). Two images show
reconstructions using (a) helical view-weighted FBP reconstruction; (b) Iterative reconstruction with q=1.1;  =25.


