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Abstract—In this paper, we investigate the use of model-based
CT reconstruction in conjunction with limited-view scanning
architectures, and we illustrate the value of these methods
using transportation security examples. The advantage of limited
view architectures is that it has the potential to reduce the
cost and complexity of a scanning system, but its disadvantage
is that limited-view data can result in structured artifacts in
reconstructed images. Our method of reconstruction depends
on the formulation of both a forward projection model for the
system, and a prior model that accounts for the contents and
densities of typical baggage. In order to evaluate our new method,
we use realistic models of baggage with randomly inserted simple
simulated objects. Using this approach, we show that model-based
reconstruction can substantially reduce artifacts and improve
important metrics of image quality such as the accuracy of the
estimated CT numbers.

I. INTRODUCTION

While computed tomography (CT) has developed primarily

in the context of medical applications, there has been increas-

ing utilizing of CT systems for transportation security. For

example, many airports have deployed X-ray CT systems as a

central component of baggage screening. While the underlying

theory is largely the same as for medical CT, a different set

of constraints are associated with security CT systems, such

as the physical size and diversity of the scanned objects,

the maximum acceptable X-ray energy, and the scan time

requirements. Such constraints present some new opportunities

and challenges for the CT reconstruction problem.

Scan time is a particularly important constraint for many

security screening systems in order to handle the large volume

associated with a transportation environment. One strategy

to reduce scan time in a CT system is to simply take

measurements at a fewer number of view angles, but this is

generally to the detriment of reconstruction quality due to the

ill-posed nature of the inversion problem [1]. For example, the

traditional filtered backprojection (FBP) algorithm typically

produces severe streaking artifacts in the limited view problem,

which can in turn affect the later stages of security screening.

Recently, there has been growing interest in the use of

model-based reconstruction techniques in CT security systems.

Their potential to produce high-quality reconstructions is facil-

itated by their ability to incorporate knowledge of the physical

and statistical properties of both the scanner and the targets.

These include modeling of system geometry, uncertainty in
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the measurements, and prior knowledge about the solution.

In particular, the modeling of the underlying image plays an

important role in compensating for the missing data in the

limited view problem.

One established class of model-based techniques applies

a regularization on the solution through a Markov random

field (MRF) prior model, describing the statistical distribution

of a voxel given its neighbors. Such methods formulate the

reconstruction as a maximization of the posterior distribution

(of the image, given the measurements), or a MAP estimate.

The optimization is typically solved using an iterative strategy

[2] such as iterative coordinate descent (ICD).

The particular choice of MRF prior model has a strong

influence on the character of the solution. A quadratic, or

Gaussian MRF (GMRF) prior, provides for fast convergence

but tends to over-regularize the solution. The generalized

Gaussian MRF [3] (GGMRF) provides noise suppression

while preserving edges in the image. A further generalization

called the q-generalized Gaussian MRF [4] (qGGMRF) is even

more controllable while providing for fast convergence [5].

At present, only a small number of published studies have

been dedicated to CT reconstruction for transportation security

[6], [7], including the application of FBP [8] and algebraic

reconstruction (ART) [9]. In this paper, we evaluate the

performance of model-based reconstruction for parallel beam

CT in the context of transportation security. We investigate the

effect of reconstruction with a limited number of projection

angles, as well as the effect of background clutter on the

accuracy of the attenuation coefficient estimates. The FBP

algorithm is used as a baseline for comparison.

II. METHODS

A. Projection Model

We assume a linear forward projection model in which, in

the noiseless case, the object density image, x ∈ R
M , and the

projections, y ∈ R
N , are related by a sparse matrix operator

A,

y = Ax . (1)

The matrix coefficient Aij represents the contribution of voxel

j in forming projection element i. In a line-beam model, Aij

is calculated as the length of beam i that intersects voxel j.
In a wide-beam model [10], which accounts for the fact that

photons are collected over a detector area, the coefficient Aij

is computed as the inner product of the projection of voxel j
onto the face of sensor i, with a detector efficiency kernel

which is typically a simple indicator function. All results

presented in this study use the wide-beam model.
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B. Iterative MAP reconstruction

In the statistical framework, we consider the image, x, and
the projection measurements, y, as random vectors, and our

goal is to reconstruct the image by computing the maximum

a posteriori (MAP) estimate given by

x̂ = argmin
x≥0

{− log p(y|x)− log p(x)} (2)

where p(y|x) is the likelihood function associated with the

data model, and p(x) is the prior distribution of x. Note we

also include a positivity constraint on the solution.

In general, the received photon count, λi, corresponding to

projection i follows a Poisson distribution with mean λ̄i =
λT,ie

−Ai∗x, where λT,i denotes the input photon count for

projection i, and Ai∗ denotes the ith row of the projection

matrix. Starting from the Poisson model, a second-order Taylor

expansion can be used to approximate the log likelihood term

by the following [2],

log p(y|x) ≈ −
1

2
(y −Ax)TD(y −Ax) + f(y) (3)

where A is the forward projection matrix, D is a diagonal

weighting matrix given by diag{λ1, ..., λN}, and f(y) is a

function which depends on measurement data only. Note in

this form, the photon count, λi, acts as a weighting coefficient

for the error, (yi − Ai∗x)
2, associated with projection i (i.e.

smaller photon counts are less reliable, so are weighted less

in the cost framework).

We will consider a Markov random field for the prior model,

p(x), where we use a standard 8-point neighborhood. An MRF

distribution is often defined implicitly in terms of conditional

densities, but the Hammersley-Clifford theorem allows the

joint density to be expressed as a Gibbs distribution of the

following form,

p(x) =
1

z
exp







−
∑

{s,r}∈C

bs,rρ(xs − xr)







(4)

where ρ is a positive and symmetric function called the

potential function, C is the set of all pairwise cliques and z is

a normalizing constant. The MAP solution then becomes,

x̂ = argmin
x≥0







1

2
‖y −Ax‖2D +

∑

{s,r}∈C

bs,rρ(xs − xr)







.

(5)

In this study, we consider two different potential functions,

ρ(·). The first is a quadratic, which corresponds to a Gaussian
Markov random field (GMRF). So defining ∆ = xs − xr, we

have ρ(∆) = ∆2. The second, is a q-generalized Gaussian

MRF, or qGGMRF [4], which has the form,

ρ(∆) =
|∆|p

1 + |∆/c|p−q
. (6)

Generally, the qGGMRF potential allows more control over

the behavior since ρ(∆) ≈ |∆|p for small values of ∆ (small

voxel differences), and is proportional to |∆|q for large values

of ∆. The c parameter controls the “transition point” between
these two cases. Of particular interest are the cases where

1 ≤ q ≤ p, which ensures convexity of the potential function.

Common values to use are p = 2 (quadratic near zero), and q
close to 1.

The reconstruction is computed by minimizing the expres-

sion in Eq. (5). We compute the solution by iterative coordinate

descent (ICD) which minimizes the cost with respect to each

voxel serially. Note because of our choice of priors, the global

cost function is convex and ICD is ensured to converge to the

global minimum.

III. RESULTS

This section will present both qualitative and quantitative

analyses on the accuracy of model-based reconstruction. So

that we can evaluate with respect to ground truth, projection

data was simulated by applying a linear wide-beam projector

to a clean high-resolution scan of a duffel bag (see Fig-

ure 2(b)). Sinograms were generated with various numbers of

views ({64,32,16,8} views, at 800 samples per view.) Since we
are principally interested in examining the effect of a reduced

number of view angles, and the effect of clutter in the image,

no photon noise is incorporated for this study. All images were

reconstructed at 800x800 pixel resolution, and the qGGMRF

model parameters were (p=2.0, q=1.0, c=15HU).

For comparison, reconstructions are also computed using

filtered backprojection. The filter employed in these recon-

structions has a ramp frequency response multiplied by a

Hamming window, and a cutoff frequency of 0.8 times the

Nyquist rate. Source code for this reconstruction software is

available for download (See Ref. 11).

A. Effect of Limited View Angles

Figure 1 shows the reconstructions after forward projecting

a ground truth bag scan at a limited number of equally spaced

view angles between 0 and 180 degrees. Illustrated is the effect

of reducing the number of view angles on reconstruction by

filtered backprojection (FBP), and by iterative model-based

reconstruction using a Gaussian Markov random field (GMRF)

prior, and a q-generalized Gaussian MRF prior (qGGMRF).

The corresponding root mean square error (RMSE) from

ground truth for each of these reconstructions is listed in

Table I. The RMSE was computed from only those voxels

having a density greater than air in the ground truth image.

TABLE I
ROOT MEAN SQUARE ERROR OF RECONSTRUCTIONS IN FIG. 1. UNITS ARE

OFFSET HOUNSFIELD (AIR=0).

no. of views FBP GMRF qGGMRF

64 481.0 237.8 112.8
32 628.4 361.1 277.1
16 746.2 498.9 453.8
8 854.4 607.1 598.5
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Fig. 1. Image reconstructions from limited view angle projection data. Four
parallel projection data sets are considered, containing 64, 32, 16, and 8
view angles, uniformly spaced between 0 and 180 degrees. Reconstructions
include filtered backprojection (FBP) and iterative MAP reconstruction using
a Gaussian Markov random field prior (GMRF), and a q-generalized Gaussian
MRF prior (qGGMRF). The gray scale range for all results shown is [0,2000]
HU.

B. Effect of Clutter on CT Accuracy

To examine the effect of image “clutter” on the accuracy of

CT number estimates, we modified the ground truth image

in two respects. First, the contents of the bag scan were

masked out to produce a low clutter scene, and we consider

the original image as a high clutter scene. Second, we inserted

a single round 1.7 cm diameter target of a known uniform CT

value (1400 HU) somewhere inside the perimeter of the bag.

Figures 2(a) and 2(b) illustrate this for the low and high clutter

scenes.

Two experiments were performed. In the first, we produced

32 view angle parallel projection data from the images shown

in Figures 2(a) and 2(b) (without the highlighting box).

Reconstructions were computed using FBP and iterative MAP

reconstruction using the GMRF and qGGMRF priors. A close-

up of the reconstructions around the target region are shown

in Figure 3. Figure 4 shows the reconstructed CT numbers for

voxels along the reference line through the target.

In the second experiment we calculated the average ac-

curacy of the reconstructed target voxels after placing the
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(a) Low clutter scene (b) High clutter scene

Fig. 2. Ground truth images for investigating the effect of clutter on CT
reconstruction accuracy. The bag contents from the ground truth image have
been masked out to create a low clutter scene in (a). For evaluation, a synthetic
target of uniform value (1400 HU) has been added, as highlighted by the box
near the center of the low and high clutter scenes. A close-up of the target in
(c) also shows a reference line highlighting voxels that will be examined in
the experiment.

FBP

L
o
w

 c
lu

tt
e
r

H
ig

h
 c

lu
tt

e
r

GMRF qGGMRF

Fig. 3. Reconstructions zoomed to the target area indicated in Figs. 2(a) and
2(b). All results are from 32 view angle parallel projection data, the top row
generated from the low clutter scene of Fig. 2(a), and the bottom row from
the high clutter scene of Fig. 2(b).

target at various locations in the bag. Specifically, in each trial

we (1) place the synthetic target at a random location inside

the bag perimeter, (2) forward project to produce a 32 view

angle sinogram, (3) reconstruct, and (4) calculate the average

deviation of the target voxels from the true value, as well as

the root mean square of the deviations. Table II summarizes

the results of this procedure averaged over 60 trials of random

placement.

TABLE II
RECONSTRUCTED CT NUMBERS FOR A RANDOMLY PLACED SYNTHETIC

TARGET. THE Dev. IS THE AVERAGE DEVIATION OF RECONSTRUCTED

TARGET VOXELS FROM THE TRUE VALUE. SIMILARLY, THE RMSE IS THE

ROOT MEAN SQUARE DEVIATION FROM THE TRUE TARGET VALUE. ALL

VALUES ARE IN OFFSET HOUNSFIELD UNITS (AIR=0).

Low clutter High clutter

Dev. RMSE Dev. RMSE

FBP -895.1 899.1 -647.8 702.7
GMRF -157.2 280.4 -179.8 332.7

qGGMRF -14.2 25.8 -87.3 209.2
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(a) Low clutter (b) High clutter

Fig. 4. CT values from limited view reconstructions of Fig. 3 for voxels
along a line through the center of the target region. Also shown are the true
voxel values from ground truth.

IV. DISCUSSION

The most apparent advantage of model-based reconstruction

from Figure 1 is a reduced susceptibility to streaking artifacts,

whereas FBP quickly devolves into streaks as the number of

views becomes small. While streaking patterns can be seen

in dense regions of the MAP-GMRF result at 64 views, the

spatial extent of the streaks is much more localized than in

FBP, and the regularization of the qGGMRF prior further

reduces these dramatically.

In fact, for each data set in Figure 1 the qGGMRF prior

produces a result with less structured error and a clearer edges

that the GMRF prior. However, for extremely low view angles

such as the 8-views case, the advantage of the qGGMRF over

GMRF is minimal because the edge locations are not always

accurate. These points are also reflected in the RMSE values

listed in Table I. In each case, the qGGMRF RMSE is smaller

than the GMRF RMSE, with the difference becoming less

significant as the number of views decreases.

Of note in Table I is the result that, in the mean square sense,

MAP-qGGMRF produces a more accurate reconstruction than

FBP using only a quarter of the number of views. Specifically,

the RMSE of qGGMRF at 16 views is smaller than that of

FBP at 64 views, and qGGMRF at 8 views is smaller than

FBP at 32 views. If this result generalizes, this is a particularly

significant consideration since the number of views can have a

direct correlation to system cost, scan time, and reconstruction

time. Of course this marked difference in RMSE does not

necessarily translate in the qualitative sense because visual

inspection can somewhat compensate for the streaking in FBP.

It should also be noted that one reason for the relatively high

RMSE in the FBP reconstructions is a general underestimation

of the CT numbers (which is apparent in Figure 1) partly

due to image energy dispersal in the streaking. Presumably an

appropriate image-dependent rescaling could be employed to

provide a degree of compensation for this.

The 32-view synthetic target experiment of Figs. 3 and 4

reinforces several of the above observations. Namely, MAP-

qGGMRF produces a much more accurate reconstruction in

terms of both CT numbers overall, and in terms of edge clarity.

The low clutter scene results in effectively no visible streaking

in any case, with qGGMRF producing very accurate CT

numbers and very little blurring of the target boundary. In the

high clutter scene, FBP fully splits the target into two disjoint

objects, while the GMRF prior produces a recognizable object

but with highly non-uniform CT numbers. The qGGMRF prior

produces a significantly more uniform reconstruction of the

target and reproduces the edges with remarkable accuracy by

comparison.

The results of the random placement experiment summa-

rized by Table II are a more general confirmation of the

observations about the reconstructions in Fig. 3. Since the

target position is allowed to vary, the results are not strongly

dependent on any particularly strong streaking artifacts caused

by the metallic objects in the image. Of note is the factor

of 10 improvement in the accuracy in the low clutter scene,

going from the GMRF to the qGGMRF prior. As observed

in Fig. 4(a), this is due to the much more accurate edge

reconstruction afforded by the qGGMRF model. Similar, while

not as dramatic, improvements are produced for the high

clutter scene.

V. CONCLUSION

This paper presented the application of iterative model-

based reconstruction on limited view angle parallel projection

data, generated from a typical bag scan. We compared MAP

reconstructions using two different prior models, a Gaussian

Markov random field (GMRF) and a q-generalized Gaussian

Markov random field (qGGMRF), to the standard filtered

backprojection algorithm. Qualitative and quantitative mea-

sures demonstrated potentially great strengths in model-based

reconstruction applied to transportation security, both in terms

of reconstruction of form and in the CT number accuracy.
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