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Abstract Over the past two decades, rapid system and

hardware development of x-ray computed tomography

(CT) technologies has been accompanied by equally

exciting advances in image reconstruction algorithms. The

algorithmic development can generally be classified into

three major areas: analytical reconstruction, model-based

iterative reconstruction, and application-specific recon-

struction. Given the limited scope of this chapter, it is

nearly impossible to cover every important development in

this field; it is equally difficult to provide sufficient breadth

and depth on each selected topic. As a compromise, we

have decided, for a selected few topics, to provide suffi-

cient high-level technical descriptions and to discuss their

advantages and applications.

Keywords Analytical reconstruction �
Filtered backprojection � Cone-beam reconstruction �
Helical CT � Iterative reconstruction � Model-based

iterative reconstruction

Introduction

Evolution and innovation in CT image reconstruction are

often driven by advances in CT system designs, which in

turn are driven by clinical demands. From a historical

perspective, for example, the fan-beam axial filtered back-

projection (FBP) algorithm was the dominant mode of

image reconstruction for CT for decades until the intro-

duction of helical or spiral CT, which forced the devel-

opment of new reconstruction algorithms to compensate

for helically-induced motion artifacts. The development of

the helical scanner itself, on the other hand, was driven by

the clinical desire to cover an entire human organ in a

single breath-hold. The fan-beam helical algorithm was

later replaced by the cone-beam FBP, necessitated by the

introduction of the multi-slice scanner; while the multi-

slice scanner itself was born to meet the clinical need for

routinely achieving isotropic spatial resolution. With the

huge success of CT as a diagnostic imaging modality,

increased public awareness of CT-induced radiation, and

the need to reduce the associated risks, inspired the

development of low-dose clinical protocols and techniques

which, in turn, accelerated the recent development of sta-

tistical iterative reconstruction.

Besides application-specific reconstruction techniques,

image reconstruction for x-ray CT can be generally clas-

sified into two major categories: analytical reconstruction

and iterative reconstruction. The analytical reconstruction

approaches, in general, try to formulate the solution in a
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closed-form equation. Iterative reconstruction tries to for-

mulate the final result as the solution either to a set of

equations or the solution of an optimization problem,

which is solved in an iterative fashion (the focus of this

paper is more on the iterative solution of an optimization

problem). Naturally, there are pros and cons with each

approach. As a general rule of thumb, analytical recon-

struction is considered computationally more efficient

while iterative reconstruction can improve image quality. It

should be pointed out that many reconstruction algorithms

do not fall into these two categories in the strict sense.

These algorithms can be generally classified as hybrid

algorithms that leverage advanced signal-processing,

image-processing, and analytical reconstruction approa-

ches. Given the limited scope of this chapter, discussions

on these algorithms are omitted.

Analytical Reconstruction

Cone-Beam Step-and-Shoot Reconstruction

The concept of ‘‘cone-beam CT’’ is not as clearly defined as

one may think. In the early days of multi-slice CT develop-

ment, there was little doubt that a 4-slice scanner should be

called a multi-slice CT or multi-row CT, and not a cone-

beam CT. As the number of slices and the z-coverage

increase, the angle, h, formed by two planes defined by the

first and the last detector rows (Fig. 1) increases, and it

becomes increasingly difficult to decide where to draw the

line between a multi-slice scanner and a cone-beam scanner.

The step-and-shoot cone-beam (SSCB) acquisition refers

to the data collection process in which the source trajectory

forms a single circle. During the data acquisition, a patient

remains stationary while the x-ray source and detector rotate

about the patient. The advantage of SSCB is its simplicity

and robustness, especially when data collection needs to be

synchronized with a physiological signal, such as an EKG. If

the anticipated data acquisition is not aligned with the

desired physiological state, as in the case of arrhythmia in

coronary artery imaging, the CT system can simply wait for

the next physiological cycle to collect the desired data. This

acquisition results in a significant reduction in radiation dose

compared with low pitch helical acquisitions [1••, 2]. When

the z-coverage is sufficiently large, the entire organ, such as a

heart or a brain, can be covered during a single gantry rota-

tion to further minimize the probability of motion [3].

The inherent drawback of the SSCB is its incomplete

sampling since the data acquisition does not satisfy the

necessary condition for exact reconstruction [4]. This data

incompleteness can be viewed in terms of Radon space [5]

or in terms of the local Fourier transform of a given image

voxel. In the case of the SSCB acquisition, image artifacts

arise from three major causes: missing frequencies, fre-

quencies mishandled during the reconstruction, and axial

truncation. Missing frequencies (Fig. 2a, low in-plane and

high in z spatial frequencies) refers to the fact that there is a

small void region in the three-dimensional Fourier space of

the collected data for all image locations off the central

slice, and increasingly for more distant slices. Mishandled

frequencies (Fig. 2a, shaded region) refer to the issue of

improper handling of the redundant information in the

Fourier space. Axial truncation (Fig. 2b) is caused by the

geometry of cone beam sampling, in which the object is not

completely contained in the cone beam sampling area over

all views. Figure 3b, c depict coronal images of a CD-

phantom (similar to a Defrise phantom) scanned in heli-

cal and SSCB modes, respectively. Since parallel CDs

are placed horizontally with air gaps in between, the

Fig. 1 Illustration of cone-beam geometry

Fig. 2 Sampling challenges for step-and-shoot cone beam geometry

illustration of missing frequencies and mishandled data in Fourier

space (a) and axial truncation (b)
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corresponding coronal image should exhibit a pattern

similar to Venetian blinds. The image formed with the

SSCB mode clearly shows deficiencies for areas away from

the detector center-plane.

When the cone angle is moderate, various approximate

reconstruction algorithms have been shown to effectively

produce clinically acceptable images. One of the most

commonly used reconstruction algorithm is the Feldkamp–

Davis–Kress (FDK) reconstruction. This algorithm differs

from the conventional fan-beam reconstruction in replacing

the two-dimensional back-projection with a three-dimen-

sional back-projection to mimic the x-ray path as it tra-

verses the object, and in including a cosine weighting in the

cone direction to account for path length differences of

oblique rays [6]. Extensions from the FDK algorithm have

been introduced to solve one of the three major issues with

reconstruction from an arc trajectory.

Several solutions to the first problem of the missing data

have been proposed [7, 8]. These algorithms generally

compensate for the missing information by approximating

it via frequency-domain interpolation or two-pass correc-

tions to estimate the missing frequencies, and are often

sufficient to provide clinically acceptable image quality.

An example of such a correction is shown in Fig. 4.

The second issue of proper weighting of the collected

data is important in the case of a short scan acquisition

where all measured frequency values are not measured the

same number of times. One solution to this problem is the

application of an exact image reconstruction framework

using arc-based cone-beam reconstruction with equal

weighting (ACE) [9••, 10, 11]. The ACE algorithm (Fig. 5)

equally weights the measured frequencies by introducing

non-horizontal filtering lines in the detector, and applies to

any length of arc. In the case of the full scan, the algorithm

is equivalent to the FDK algorithm [6] plus Hu’s correction

[12] based on the derivative along the z direction in the

detector. Another approximation, based on an exact

framework, for the circular trajectory utilizes the back-

projection filtration (BPF) framework [13–15] where the

data is differentiated, back-projected, and filtered along

approximate filtering lines [16]. A study compared these

algorithms for circular short-scan data and showed that the

ACE method provides visually superior image quality to

other algorithms [17].

The third problem of axial data truncation has been

handled by the selective use of measured projection data in

the corner region to avoid relying too heavily on extrapo-

lated data. This has been accomplished by weighting

conjugate rays differently based on their cone-angle [18] or

by essentially using multiple rotated short scan recon-

structions in the corner region [19, 20].

Further reduction of artifacts can be achieved with

modified data acquisition trajectories. Several modified

trajectories, such as circle-plus-arc, circle-plus-line, dual-

circle, or saddle trajectories (Fig. 6; [21–28]) try to resolve

the first problem listed above (missing frequency data). In

Fig. 3 Reformatted images of a CD-phantom. a Phantom. b Coronal image of helical scan. c Coronal image of a single step-and-shoot scan

Fig. 4 Reformatted images of simulated chest phantom reconstruc-

tion, where the vertical axis is orthogonal to the scan plane. a FDK

reconstruction. b Two-pass reconstruction to compensate for missing

frequencies shown in Fig. 2a
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Fig. 7, a phantom known to demonstrate such a problem is

shown for just a single-circle trajectory on the left and a

dual-circle trajectory on the right. Although these ‘circle

plus’ trajectories meet the conditions for mathematically

exact reconstruction, utilization of these trajectories in a

real clinical environment still faces significant challenges

because of many practical considerations: large mass of a

CT gantry, high gantry rotation speed, and desire to min-

imize overall data acquisition time.

Another relatively recent discovery is the fact that, in

order to reconstruct a given region of interest (ROI), one

does not need 180� plus the fan angle of the system [10,

29]. The 2D sufficiency condition is similar to Tuy’s

condition [4] for 3D exact reconstruction, in that any line

which can be drawn through the ROI must intersect the

source trajectory at least once. This condition can be

exploited to reduce the temporal window of acquisition for

off-center ROI imaging [30, 31].

Multi-Slice Helical Reconstruction

Since the introduction of helical scanning over two decades

ago, significant research efforts have been devoted to the

subject of cone-beam helical reconstruction, and the

majority of the clinical protocols have switched from step-

and-shoot to helical mode. In the helical mode of data

acquisition, the table is indexed along the z-axis while the

gantry rotates about the patient to collect projection

measurements.

Approaches to analytic helical cone beam reconstruction

can be generally divided into two major categories: exact

reconstruction methods and approximate reconstruction

methods. The exact reconstruction methods, as the name

implies, try to derive analytical solutions that match the

scanned object in mathematical precision if the input pro-

jections are the true line integrals [32]. One of the most

exciting developments in the past few years is the devel-

opment of exact FBP algorithms as first developed by

Katsevich [9••, 33••, 34]. This algorithm falls into the

Fig. 5 Slices through the Shepp Logan phantom with window

parameters of [0.98 1.05]. Note the improvement in the soft tissue

away from the central slice as well as the reduction in streaky cone-

beam artifacts (arrows) which are due to improper weighting. The

vertical direction in these images is the z direction, which is

orthogonal to the plane of the source trajectory

Fig. 6 Alternative source

trajectories to enable complete

sampling: circle-plus-line (a),

circle-plus-arc (b), dual-circle

(c), and saddle (d)

Fig. 7 An example of exact reconstruction from the source trajectory

of two concentric circles. On the left is the contribution to the final

image from the horizontal circle only. In the center, is contribution

from the vertical circle only and the sum is on the right. Reprinted

from [24], with permission
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category of FBP with a shift-invariant one-dimensional

filter, and the flow of this reconstruction algorithm is

similar to that of the fan-beam FBP. Since its invention,

many new algorithms have been proposed and developed

to allow more general trajectories, more efficient use of the

projection samples, and region-of-interest reconstruction

[14, 35–39]. The advantage of these algorithms is of course

their mathematical exactness. However, to date, these

algorithms have yet to be implemented widely in com-

mercial products, mainly due to their noise properties,

limited robustness to patient motion, and lack of flexibility.

For example, in a cardiac acquisition, a half-scan is typi-

cally used to improve the temporal resolution. In clinical

practice, a sub-volume of the heart (in z) needs to be

reconstructed for each half-scan acquisition to keep the

overall acquisition time to a minimum. This is difficult to

achieve with the exact reconstruction algorithms.

The second algorithm category is the approximate

reconstruction approaches derived from the original FDK

algorithm [40–48]. Each projection is weighted, filtered on

a row-by-row basis, and back-projected three-dimension-

ally into the object space. Although these algorithms are

approximate in nature, they do offer distinct advantages,

such as volume reconstruction in a single half-scan

acquisition. Because of their flexibility, their ability to

intrinsically handle data from long objects and their com-

putational efficiency, the approximate reconstruction

algorithms are still the dominant force behind most com-

mercial CT reconstruction engines.

It should be pointed out that the non-exact algorithms

often borrow techniques developed in the exact reconstruc-

tion algorithms. For example, the Katsevich algorithm per-

forms the projection filtration along a set of j-curves (instead

of row-by-row) as shown in Fig. 8, and each filtered ‘‘virtual

row’’ falls along a tangent to the helix. The same approach

can be incorporated into the approximate reconstruction to

significantly improve image quality. Figure 9 shows a

computer simulated phantom with (1) an approximate

algorithm with tangential filtering [47] and (2) the Katsevich

algorithm: comparable image quality between the exact and

approximate reconstruction algorithms can be observed.

Iterative Reconstruction

Over the years, many algorithmic approaches have been

proposed to reduce image artifacts and noise during the

image generation process [49–51]. Noise and artifact

reductions are necessary steps toward dose reduction in CT.

The recent burst of research activities in iterative recon-

struction can also be credited to the increased awareness of

the radiation dose generated by a CT scan [52–59], and

advancements in reconstruction hardware capability.

The use of an iterative reconstruction to solve the inverse

problem of x-ray computed tomography has a long history.

As a matter of fact, reconstruction of the very first clinical

image utilized an iterative technique called algebraic

reconstruction technique (ART) to invert a large matrix
Fig. 8 An example of the j-curves used in the filtering operation of

the Katsevich algorithm (helical pitch 87/64)

Fig. 9 Simulated body phantom with 64 9 0.625 mm detector

configuration and 63/64 helical pitch. a Modified FDK algorithm

with tangential filtering and 3D weighting. b Katsevich reconstruction

algorithm
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[60, 61]. Although the objective of ART at the time was to

find a solution to a complicated inverse problem and did not

involve complex modeling of the CT system, it nonetheless

demonstrated the efficacy of IR techniques for x-ray CT.

If we look beyond the CT reconstruction, statistical IR

has been used extensively in single photon emission com-

puted tomography (SPECT) and positron emission tomog-

raphy (PET) to combat photon starvation issues and to show

great benefits in noise reduction and improved accuracy in

the reconstructed images. Although the success of IR in

SPECT and PET seemingly implies a straightforward

transfer of such technology to CT, reality has shown that

such a transition has been met with great challenges due to

the significant differences between the modalities. First, in

x-ray CT, pre-processing and calibration steps are numer-

ous and critical to the production of CT images, and these

correction steps significantly change the statistical proper-

ties of the measured projection samples. If proper modeling

is not performed, the desired noise or dose reduction is

difficult to achieve. Second, spatial resolution is much

higher in x-ray CT than either SPECT or PET. Achieving

high spatial resolution in IR requires carefully modeling the

optics of the system as well as using an ‘‘edge-preserving’’

regularization design to control image properties and avoid

needless sacrifice of spatial resolution for noise reduction.

Third, due to the large amount of data and complexity of the

inverse CT problem and associated models, IR calls for the

design of robust and stable converged results by carefully

crafting an optimization cost function, the solution of which

is performed iteratively and typically demands long

reconstruction time. This has prevented wide application of

IR in clinical practice until recent advancements in com-

puter hardware and fast algorithms.

Unlike the analytical reconstruction algorithms where

each projection sample is weighted, filtered, and back-

projected to formulate an image, iterative reconstruction

arrives at the final solution in an iterative manner: the

initial reconstructed images are refined and modified iter-

atively until certain criteria are met. The criteria are written

in the form of a cost function to be minimized, which

measures the fit of the image to the data according to a

model of the imaging system. However, the enormous size

of the optimization problem as well as the complexity of

the model makes it difficult to solve, and the cost function

needs to be minimized iteratively. Each iteration typically

involves the forward- and back-projection of an interme-

diate image volume. The forward-projection step simulates

the x-ray interactions with the ‘‘object’’ (the intermediate

images) and produces a set of synthesized projections. The

synthesized projections are compared against the real

projection measurements collected by the CT scanner

according to a statistical metric, and the differences

between the two are attributed to the ‘‘error’’ or ‘‘bias’’ in

the intermediately estimated image volume. The error is

then used to update the intermediate image volume to

reduce the discrepancy between the image and the acquired

data. The new intermediate image is then forward-pro-

jected again in the next iteration, and, provided the choice

of an adequate cost function and a globally convergent

optimization algorithm, the image volume will converge to

an estimate near the minimizer of the cost function after

several iterations.

In the context of this chapter, due to limited space, we

consider only statistical IR as defined in an optimization

sense, whereby the reconstructed result is achieved by

minimizing a cost function that determines the desired

characteristics of the final image estimate as it relates to the

measurement data, and the iterative approach mostly deter-

mines the speed of the convergence to that solution. Other IR

formulations exist, which do not always provide the same

properties of predictable convergence and stable results.

Advantages and Requirements

To understand the advantages of a model-based iterative

reconstruction (MBIR) over other approaches, let us

examine a typical CT system and the assumptions being

made to derive the FBP algorithm, or analytical recon-

struction algorithms in general. Figure 10 depicts a sche-

matic diagram of a CT scanner with intentionally enlarged

x-ray source, detector, and image voxel for easier illus-

tration. In the derivation of an FBP algorithm, a series of

assumptions are made regarding the physical dimension of

the x-ray focal spot, the detector cell, and the image voxels

in order to make the mathematics manageable. Specifically,

Fig. 10 Schematic diagram of CT system
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the size of the x-ray focal spot is assumed to be infinitely

small and therefore can be approximated as a point source.

Although the detector-cell spacing is correctly considered

in the derivation of the reconstruction filters, the shape and

dimension of each detector cell are ignored, and all x-ray

photon interactions are assumed to take place at a point

located at the geometric center of the detector cell. Simi-

larly, the image voxel’s shape and size are ignored and

only the geometric center of the voxel is considered. These

assumptions lead to the formation of a single pencil beam

representing the line integral of the attenuation coefficients

along the path which connects the x-ray source and a

detector cell. In addition, each of the projection measure-

ments is assumed to be accurate and is not influenced by

the fluctuation induced by photon statistics or electronics

noise.

The CT system model traditionally used by analytical

algorithms clearly does not represent physical reality. For

most clinical CT scanners, typical focal spot size is about

1 mm 9 1 mm and detector cell spacing is slightly larger

than 1 mm with an active area of 80–90 % of the spacing.

The image voxel is normally modeled as rectangular in

shape with its dimensions determined by the reconstruction

field-of-view (FOV) and slice thickness (Due to limited

scope, other image voxel shapes, such as a blob, will not be

discussed). For example, for a 512 9 512 matrix size image

representing a 50 cm FOV and 5 mm slice thickness, the

reconstructed pixel is 0.98 mm 9 0.98 mm 9 5 mm in x,

y, and z. Because each projection sample is acquired over a

finite sampling duration (less than a millisecond on modern

scanners) with limited x-ray flux, each measurement at a

detector cell has finite photon statistics. The statistical

fluctuation is further complicated by the fact that the elec-

tronics used in the data acquisition system has an inherent

noise floor which contributes to the overall noise in the

measurement. There is little doubt that the simplifications

made in the derivation of an FBP should have an impact on

reconstructed image quality.

MBIR Algorithms

One way of incorporating an accurate system model while

overcoming the mathematical intractability of an analytical

reconstruction is to use a technique called model-based

iterative reconstruction, MBIR. In 1982, by incorporating

only the noise properties of emission tomography, an

expectation–maximization algorithm (EM) was proposed

for SPECT and was published in a classic paper [62••]. The

development of IR techniques for x-ray computed tomog-

raphy, however, started a few years later due to its tech-

nical complexities and the perception that less benefit was

possible than in emission CT [63•, 64••, 65, 66••, 67••,

68–70, 71•, 72–75].

The accuracy of modeling is critical to the quality of the

MBIR reconstruction. There are three main key models in

the IR algorithm: the forward model, the noise model, and

the image model. The forward model accounts for the

system optics and all geometry-related effects. An accurate

system model is necessary to ensure that modeling errors

do not grow during the iterative convergence process to

form artifacts in the reconstructed images One example of

an accurate forward model is casting of multiple pencil-

rays through the x-ray focal spot, the image voxel, and the

detector cell. These pencil-beams mimic different x-ray

photon paths going through the object, and the complicated

CT optics is approximated by a weighted summation of

many simplistic line integral models, as depicted in Fig. 11

[76]. One strategy to ensure an unbiased coverage of dif-

ferent points on the focal spot, different locations on a

detector cell, and different sub-regions inside an image

pixel is to sub-divide the focal spot, detector cell, and pixel

into equal-sized small elements. Needless to say, this

process is time consuming.

2An alternative approach is to model the ‘‘shadow’’ cast

by each image voxel onto the detector and rely on point-

response functions to perform the optics modeling, as

shown in Fig. 12 [71•, 77•]. In this approach, only one ray is

cast between the center of the focal spot and the center of

the image voxel to locate the point of intersection on the

detector, and a response function is used to distribute the

contribution of the image voxel to different detector cells

during the forward-projection process. The response func-

tion is non-stationary and changes with the voxel location to

account for different magnifications and orientations.

Compared to the ray casting approach, this method is

computationally more efficient, and can introduce advanced

Fig. 11 Illustration of modeling the system optics with ray casting
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system modeling such as detector effective area, cross-talk,

or focal spot energy distribution.

Note that accurate system modeling implies accounting

for spatially-varying behavior where the projection of an

image voxel onto the detector depends on its shape and

position relative to the x-ray source, contrary to simplistic

models used in FBP-type reconstruction. Using this accu-

rate system model, it is also important that the forward- and

back-projection operators remain adjoint to each other in

order to prevent the propagation of errors in the

reconstruction.

The modeling of noise distributions in the projections is

not as straightforward as one may think, complicated by

the fact that the CT projection measurement undergoes

complicated pre-processing and calibration processes prior

to its use in the reconstruction. Although the original x-ray

photon statistics follow approximately the Poisson distri-

bution (approximation due to the poly-energetic x-ray

source used in CT), the projection data after the calibration

process no longer exhibits this behavior. The same com-

plication applies to the electronic noise after the pre-pro-

cessing steps. If a simplistic model is used to approximate

the statistical properties, suboptimal results are likely to

result. It should be pointed out that the level of bias or error

introduced by the simplified model increases with the

reduction of the x-ray flux received at the detector, and the

image quality degradation increases as a result. This is

undesirable when considering the fact that one of the major

driving-forces behind MBIR is dose reduction, which leads

naturally to a reduced x-ray flux on the detector.

Once the projection noise is properly modeled, the

philosophy behind MBIR is to treat each projection sample

differentially based on its estimated noise variance. In

general, a higher confidence is placed on samples with high

signal-to-noise ratio (SNR) and lower weights are placed

on samples with low SNR. This is in direct contrast to the

noise treatment in analytical reconstruction where all

samples are treated equally from a statistical point of view.

The image model is somewhat more subjective. The

general approach is to model the image volumes as Markov

random fields, which results in a cost function term that

penalizes noise-induced intensity fluctuations in the

neighborhood of a voxel. By carefully examining the

human anatomy, one naturally concludes that the attenua-

tion characteristics of a voxel-size element inside the

human body are not completely isolated from or indepen-

dent of the surrounding elements. Therefore, if a voxel CT

number is far from its neighbors, it should be penalized and

modified. The term used to enforce such conditions in the

cost function is often called the regularization term in IR.

Although the concept looks simple, several challenges

need to be addressed in the design of the regularization

term. The differentiation of the noise from the real struc-

tures in the image can be quite difficult, since real object

structures are often buried in the noise and there is little

prior information available about the object itself. The

general approach taken by researchers is to construct an

‘‘edge-preserving prior’’ that preserves structural edges

[71•, 78, 79]. Another challenge is to maintain the uniform

image quality across the volume. In CT reconstruction, the

noise distribution in the image varies as a function of local

attenuation; highly attenuated regions tend to have higher

noise. Therefore, it requires a spatially varying design of the

regularization term to achieve uniform image resolution and

noise behavior [80]. Another difficulty is to properly bal-

ance the regularization and data likelihood terms in the cost

function to achieve the desired IQ: designing for robust IQ

behavior across a range of clinical scenarios without end-

user interaction can pose a significant challenge.

The MBIR cost function typically incorporates all the

models discussed above. High spatial resolution is usually

a direct result of an accurate forward model combined with

appropriate regularization. For demonstration, Fig. 13a, b

depict a clinical example of standard FBP and MBIR

reconstructions of the same projection data. The MBIR

image exhibits not only significantly reduced noise but also

much improved spatial resolution as demonstrated by the

visibility of fine anatomical structures.

It is clear from the discussion that fully modeled IR is

more computationally intensive than analytical recon-

struction methods. Although it provides superb image

quality in terms of spatial resolution, noise reduction, and

artifact correction, the time delay in the image generation

process is not negligible. In today’s clinical environment,

‘‘real time’’ image reconstruction is often demanded and

Fig. 12 Illustration of modeling the system optics with a response

function
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the CT operator expects all images will become available

shortly after the completion of the data acquisition.

Extensive research has been conducted over the years to

speed-up IR algorithms. Fast hardware implementation,

distributed parallel processing, and efficient algorithm

convergence properties are equally important to achieve

this goal. To speed up convergence, one approach is to

improve the update strategy at each iteration. There are two

types of update strategies: global updates, or local updates.

Algorithms using the global update strategy update the

entire image volume at once. These algorithms are rela-

tively easy to parallelize. However, since the inverse

problem is typically ill-conditioned based on the large

number of unknowns relative to the measurements and the

range of data statistics, simple global update algorithms

such as gradient descent and conjugate gradient tend to

require a large number of iterations to converge. Therefore,

various acceleration techniques such as preconditioner-

based methods [81] and ordered-subset (OS) methods [75]

have been proposed to accelerate the convergence of global

update algorithms. The OS algorithms perform their

updates based on a subset of the projection data: at each

iteration, image updates start with one subset of the data,

and rotate around all consecutive subsets until all projec-

tion data are used. Today, this acceleration technique is

used extensively in commercial PET and SPECT scanners.

Contrary to global updates, local updates focus on

updating a single voxel or a subset of voxels at a time. These

voxels are selected according to a pattern, possibly random,

and their modifications are estimated based on all projection

data. After the first set of voxels is updated, another set is

selected and updated in sequential fashion. An example of

such algorithm is the iterative-coordinate-descent (ICD)

algorithm [63•, 64••, 71•, 72]. If we define the single update

of all voxels in the image as one full-iteration, the local

update strategy generally takes only a few iterations to

reach acceptable convergence. The convergence speed can

be further improved by exploring the flexibility to update

certain pixels more frequently than others in the so-called

non-homogeneous update strategy [72, 82].

From an implementation point of view, however, it can

be difficult to parallelize a local update algorithm to run on

a large number of threads to take full advantage of massive

parallel computer architectures. The global update strategy

seems to be just the opposite: it is easier to parallelize, but

typically needs a larger number of iterations to reach

convergence. Historically, the computational complexity of

MBIR was one of the most important factors that prevented

its application to CT. Although the same issue is still

present today, the magnitude of the obstacle has been

significantly reduced. With renewed research interests, this

issue is likely to be resolved in the near future with the

combination of advanced computer architectures and

improved algorithm efficiency. It needs to be stated that the

investigation of MBIR for CT is still in its infancy and new

clinical applications of MBIR are likely to be discovered.

Discussion and Conclusion

Given the limited scope of this chapter, it has been nec-

essary to focus only on a few major areas of tomographic

reconstruction. Unfortunately, many exciting developments

to address special clinical needs could not be adequately

covered. For example, despite the novel scanner hardware

development, cardiac coronary artery imaging still poses

Fig. 13 Example of coronal

images reconstructed with

a FBP and b MBIR

Curr Radiol Rep

123



Fig. 14 Advanced motion correction examples (heart rate: 84 bpm). a Conventional FBP algorithm. b With advanced motion correction
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significant challenges to CT due to the presence of irregular

and rapid vessel motion. Motion-induced artifacts even

appear in patients with low heart-rates, resulting from the

relatively high velocities of some of the coronary arteries

[83]. Recent development of an advanced algorithm seems

to offer good solutions to address this issue [84••]. The

motion-correction algorithm characterizes the vessel

motion using images reconstructed from slightly different

cardiac phases and utilizes these motion vectors to correct

for the imaging artifacts. Figure 14 depicts an example of a

patient’s cardiac images without (a) and with (b) the

motion compensation. The improvement in image quality

is obvious.

New developments in other areas, such as the generation

of material-density images and monochromatic images in

dual-energy CT, variable-pitch helical acquisition and

reconstruction, metal artifact reduction algorithms, and

region-of-interest scanning and reconstruction, are equally

exciting. As technology evolves, it is expected that tomo-

graphic reconstruction algorithms and other advanced

algorithmic approaches will play an even greater role in CT.

Disclosure J. Hsieh, B. Nett, Z. Yu, and J.B. Thibault are

employees of General Electric Healthcare-Company; K. Sauer: none;

C.A. Bouman: none.
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