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ABSTRACT

There is growing interest in the use of deep neural network
(DNN) based image denoising to reduce patient’s X-ray
dosage in medical computed tomography (CT). An effective
denoiser must remove noise while maintaining the texture
and detail. Commonly used mean squared error (MSE) loss
functions in the DNN training weight errors due to bias and
variance equally. However, the error due to bias is often more
egregious since it results in loss of image texture and detail.
In this paper, we present a novel approach to designing a loss
function that penalizes variance and bias differently. Our pro-
posed bias-reducing loss function allows us to train a DNN
denoiser so that the amount of texture and detail retained
can be controlled through a user adjustable parameter. Our
experiments verify that the proposed loss function enhances
the texture and detail in denoised images with only a slight
increase in the MSE.

Index Terms— Low-dose CT, denoising, weighted mean
squared error, bias reduction, deep neural networks

1. INTRODUCTION

X-ray computed tomography (CT) is perhaps the most widely
used 3D medical imaging modality, and over the past decade,
there has been a great deal of progress in the development of
methods to further reduce noise and artifacts while improv-
ing resolution and quality [1]. In particular, noise reduction
methods offer an opportunity to reduce X-ray dosage while
achieving similar image quality.

A variety of methods have been studied for the reduction
of noise in CT images. Iterative reconstruction algorithms
provide good spatial resolution and noise reduction [2, 3].
However, iterative methods tend to be computationally expen-
sive. An alternative approach is to apply denoising in either
the sinogram [4, 5] or space domain [6, 7].

Recently, convolutional neural networks (CNNs) have
become among the most popular methods for denoising CT
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images [8, 9]. While CNNs can be very effective, they re-
quire training with the choice of a loss function and training
data. In particular, the mean squared error (MSE) loss func-
tion is commonly used for training [10] because it results
in a trained network that approximately maximizes the peak
signal-to-noise ratio (PSNR). However, it is also known that
the MSE loss function tends to produce images that are overly
smooth and lack texture [11].

One approach to improving textural details in denoised
images is to use a generative adversarial network (GAN) ar-
chitecture for training. The GAN attempts to produce a de-
noised image with the same distribution as ground truth [12,
13]. While the GANs can help to retain the texture, they could
also possibly add inaccurate or even unreal image detail.

Importantly, MSE loss functions weight errors due to bias
and variance equally. However, bias and variance represent
very different types of errors. Bias represents systematic er-
rors corresponding to noise or artifacts, whereas, variance is
the zero mean error associated with noise. In practice, the er-
ror due to bias is often less desirable since it results in loss of
image texture and detail.

In this paper, we introduce a bias-reducing loss (BR-loss)
function for training DNNs that can be used to enhance tex-
ture and increase detail in the denoised images. The proposed
BR-loss function reduces the weight of the variance term in
the MSE, thereby producing lower bias in the denoised im-
ages. Our experimental results demonstrate that the proposed
estimator learns to retain texture and recovers more structures
in denoised images with only a slight increase in variance.

2. BIAS WEIGHTED MEAN SQUARED ERROR

We formulate the denoising problem in a Bayesian framework
where our goal is to estimate an unknown random image X
from a random noisy image Y . To do this, we will form an
estimate X̂ = f(Y ) with the MSE defined by

MSEX̂ = E[||X̂ −X||2]. (1)

Furthermore, let X̄ = E[X̂|X] be the conditional expectation
of the estimate given X . Note that X̄ is a function of ran-
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Fig. 1: Conceptual represen-
tation of optimal bias-variance
trade-off for an estimator.

Fig. 2: λ vs. α.

dom variable X . Using the definition of X̄ , we can define the
expected squared bias of the estimate as

bias2
X̂

= E
[
‖X̄ −X‖2

]
,

and the variance of the estimate as

varianceX̂ = E
[
‖X̂ − X̄‖2

]
,

and then the MSE can be expressed in the following form

MSEX̂ = varianceX̂ + bias2
X̂
. (2)

Intuitively, the bias term is caused by systematic errors in
denoising such as blurring, streaking, or other artifacts. On
the other hand, the variance term represents the noisy varia-
tion in the estimate.

In practice, bias is often less desirable than variance be-
cause bias would exist even if the noisy variations were av-
eraged out. Therefore, rather than minimizing the MSE, we
propose to minimize a weighted sum of the two terms which
we will refer to as the bias-weighted MSE defined as

BW-MSEλ
X̂

4
= λ varianceX̂ + bias2

X̂
, (3)

where λ > 0 specifies relative importance of the variance er-
ror. With λ < 1, we raise the relative weight of the bias error.
Thus by decreasing λ, we can reduce bias in our estimate.

Fig. 1 conceptually illustrates the trade-off between the
minimum bias and variance that can be achieved for an esti-
mation problem [14]. When MSE is minimized the solution
falls at the intersection of the trade-off curve with the dashed
line (slope = −1). However, this solution might be smoother
than is desirable for applications. We would prefer a solution
on the optimal curve with increased variance but reduced bias,
i.e., at the intersection of the trade-off curve with the dotted
line (slope = −1/λ).

3. BIAS-REDUCING LOSS FUNCTION

Next we introduce a bias-reducing loss (BR-loss) function
which approximates the BW-MSE. To do this, we generate

Fig. 3: Architecture for training a denoiser using the bias-
reducing loss function.

a pair of noisy inputs for training by adding two indepen-
dent noise realizations to the same ground truth image. More
specifically, let {Xk}Kk=1 be a set of i.i.d. ground truth images
for training. For each ground truth image, we generate two
conditionally independent noisy images, Yk,1 and Yk,2 with
the same conditional distribution by adding two independent
noise realizations to the ground truth image. Then we obtain
denoised estimates as

X̂k,1 = fθ(Yk,1)

X̂k,2 = fθ(Yk,2) ,

where fθ(·) is a denoising algorithm with parameters θ. Note
that X̂k,1 and X̂k,2 are then conditionally independent given
Xk, and they have the same conditional distribution.

Then the traditional MSE loss function is given by

L(MSE)
θ =

1

2K

{
K∑
k=1

‖X̂k,1 −Xk‖2 + ‖X̂k,2 −Xk‖2
}
,

with MSEX̂ = E[L(MSE)
θ ]. In order to construct the BR-loss

function, we first form the following two new estimates for
α ∈ [0, 1].

Ẑk,1 = αX̂k,1 + (1− α)X̂k,2,

Ẑk,2 = (1− α)X̂k,1 + αX̂k,2.

Then the BR-loss function is defined as

L(BR)
θ,α =

1

2K

{
K∑
k=1

‖Ẑk,1 −Xk‖2 + ‖Ẑk,2 −Xk‖2
}
. (4)

Since X̂k,1 and X̂k,2 are conditionally independent givenXk,

V ar[Ẑk,1|Xk] = α2V ar[X̂k,1|Xk] + (1− α)2V ar[X̂k,2|Xk],

where V ar[·|Xk] is the conditional variance given Xk. Then

varianceẐ = E[‖Ẑk,1 − Z̄k,1‖2] = E[V ar[Ẑk,1|Xk]]

=
[
α2 + (1− α)2

]
E[V ar[X̂k,1|Xk]]

=
[
α2 + (1− α)2

]
E[‖X̂k,1 − X̄k,1‖2]

=
[
α2 + (1− α)2

]
varianceX̂ .
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Furthermore,

Z̄k,1 = E[Ẑk,1|Xk]

= αE[X̂k,1|Xk] + (1− α)E[X̂k,2|Xk] = X̄k,1.

Therefore, we have that bias2
Ẑ

= bias2
X̂

. Then we have that

E[L(BR)
θ,α ] = MSEẐ = varianceẐ + bias2

Ẑ

=
[
α2 + (1− α)2

]
varianceX̂ + bias2

X̂

= BW-MSEλ
X̂
.

So we see that the BR-loss function approximates the BW-
MSE for λ = α2+(1−α)2. Therefore, the adjustable param-
eter α controls the reduction in bias achieved. Fig. 2 shows
the plot of λ as α varies from 0 to 1.

Fig. 3 shows the block diagram used for training with the
proposed BR-loss function, where we use lower-case letters to
denote realizations of the aforementioned random variables.
Note that we generate two independent noise realizations for
each ground truth image. Furthermore, each of the two de-
noising networks share the same parameters, so this is treated
as a Siamese network [15] for training.

Once trained, the standalone denoising network fθ(·) is
used to denoise images. So inference is done without the
training architecture of Fig. 3.

4. EXPERIMENTAL RESULTS

Below we present results of a denoising CNN trained using
the proposed BR-Loss function for a value of α, referred to as
BR-DN-α. For comparison, we also trained the network using
the conventional MSE loss, referred to as MSE-DN. To do
this, we used the architecture of a CNN denoiser adopted from
[16] with a single input channel and 17 convolution layers.

4.1. Methods

We acquired 29 raw clinical scans using a GE Revolution CT
scanner (GE Healthcare, WI, USA), with a X-ray tube voltage
and current varying from scan to scan in the range of 80-140
kVp and 40-1080 mA, respectively. The scans were recon-
structed using the GE’s TrueFidelity DLIR technology [17]
to a slice thickness of 0.625 mm and dimension 512 × 512.
The reconstructed volumes were used as ground truth. 20 of
these volumes comprising 9776 axial slices in total were used
for training and validation, while remaining 9 with 5229 slices
were used for testing.

We also scanned 7 water phantoms, with a tube voltage of
120 kVp and current varying in the range of 350-380mA from
scan to scan. The scans were reconstructed with filtered back-
projection (FBP) to a slice thickness of 0.625mm and used to
generate the noise realizations. 6 of these volumes totaling
1131 axial slices were used for training and validation, while
the 7th volume with 249 slices was kept for testing.

In addition, we collected a low-dose clinical exam, ac-
quired at 80 kVp tube voltage and 75 mA tube current. The
exam was reconstructed with the FBP. Since low-dose scans
are noisy, we used this exam for subjective evaluation.

Axial slices in the training and validation volumes were
broken into 128 × 128 patches, with the patches randomly
partitioned as 97% for training and 3% for validation. Each
ground truth patch was added to two randomly selected noise
patches to form two conditonally independent noisy realiza-
tions for the same ground truth patch.

To train the network, we used the Adam optimizer [18]
with an initial learning rate of 0.001 and a mini-batch size
of 32. The learning rate was reduced by a factor of 4 if no
improvement in validation loss occurred for 5 epochs, and the
training was stopped if the validation loss was not improved
for 16 consecutive epochs. The network was implemented in
Keras [19] and trained with two NVIDIA Tesla V100 GPUs.

Quantitative evaluation was done using the volumes kept
aside for testing. The similarity of denoised images with
ground truth images was quantified using the average SSIM
(structural similarity) [20] and PSNR.

4.2. Discussion

Fig. 4 shows the results of applying the proposed denoising
algorithm to the low-dose clinical exam. The first row of the
figure shows the input noisy slices. Slices in various organs as
well as in orthogonal planes have been compared to demon-
strate robustness of the proposed loss function. The second
and third row show denoised results with the MSE-DN and
BR-DN-0.75, respectively. Notice that the proposed BR-DN-
0.75 denoiser retains more texture and detail than in the MSE-
DN denoised images, while still removing most of the noise.

Furthermore, the BR-DN-0.75 denoiser improves the con-
trast and sharpness of vessels as seen in results of the slice 1.
The proposed network recovers vessels and lung fissure miss-
ing in MSE-DN results as pointed by red arrows in results for
slice 2 and 3, respectively. The performance is consistent in
orthogonal planes too as depicted by results of the slice 4.

Fig. 5(a) shows that the proposed BR-DN-0.75 denoising
algorithm improves the average SSIM by 1.48% as compared
to the MSE-DN denoiser. This is likely because the BR-DN-
0.75 retains more detail and texture than the MSE-DN.

Finally, Fig. 5(b) shows the average PSNR for noisy input
images, and denoised images generated with the MSE-DN
and our proposed BR-DN-0.75 denoiser. Since the MSE loss
function is designed to optimize the PSNR, the BR-DN-0.75
denoiser results in a PSNR that is lowered by 0.55%, which
is consistent with our theoretical prediction.

Fig. 6 shows how denoised results depend on α. As the
value of α is reduced from 1.0 to 0.5, the value of the variance
in a uniform region of the image increases. The increase in
variance along with the increase in detail is consistent with
the reduction in bias. The value α = 0.75 produced good
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(a) Noisy input slice 1 (b) Noisy input slice 2 (c) Noisy input slice 3 (d) Noisy input slice 4

(e) MSE-DN slice 1 (f) MSE-DN slice 2 (g) MSE-DN slice 3 (h) MSE-DN slice 4

(i) BR-DN-0.75
slice 1

(j) BR-DN-0.75
slice 2

(k) BR-DN-0.75
slice 3

(l) BR-DN-0.75
slice 4

Fig. 4: Comparison of denoised results with BR-DN-0.75 and MSE-DN for the low-dose
exam. Display window for slice 3 is [-700, 1000] HU and [50, 350] HU for other slices.

(a) SSIM

(b) PSNR

Fig. 5: Quantitative evaluation
results.

(a) BR-DN-1.0 slice 5
ROI std = 2.5 HU

(b) BR-DN-0.875 slice 5
ROI std = 2.7 HU

(c) BR-DN-0.75 slice 5
ROI std = 3.1 HU

(d) BR-DN-0.625 slice 5
ROI std = 3.8 HU

(e) BR-DN-0.5 slice 5
ROI std = 4.3 HU

Fig. 6: Comparison of denoised results for BR-DN-α with α varying over range [0.5, 1.0]. Display window is [50, 350] HU.

results. However, a user can tune α for specific applications.

5. CONCLUSION

We proposed a bias-reducing loss (BR-Loss) function which
weights the variance and bias terms of the mean squared er-
ror differently. The BR-Loss function works by computing
a weighted average of denoised images for a pair of noisy
images obtained using two independent realizations of noise,
and the reduction in bias can be controlled through the choice
of the weighting parameter α.

Our bias-reduced denoised images retained more texture
and detail, resulting in a higher value of SSIM. However, as
the theory predicted, this was at the cost of a slight decrease in
the PSNR. Denoised results of a low-dose exam show that the
proposed loss preserves more texture, detail, and sharpness.
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