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Figure 1. Vipo programs are created using standard programming constructs over a 2D foor map using the Vipo editor (left), then tested in simulation 
(center), and deployed to mobile robots that interact with IoT devices in the physical environment (right). 

ABSTRACT 
Mobile robots and IoT (Internet of Things) devices can in-
crease productivity, but only if they can be programmed by 
workers who understand the domain. This is especially true 
in manufacturing. Visual programming in the spatial context 
of the operating environment can enable mental models at 
a familiar level of abstraction. However, spatial-visual pro-
gramming is still in its infancy; existing systems lack IoT 
integration and fundamental constructs, such as functions, that 
are essential for code reuse, encapsulation, or recursive algo-
rithms. We present Vipo, a spatial-visual programming system 
for robot-IoT workfows. Vipo was designed with input from 
managers at six factories using mobile robots. Our user study 
(n=22) evaluated effciency, correctness, comprehensibility of 
spatial-visual programming with functions. 
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CCS Concepts 
•Human-centered computing → User interface program-
ming; 

INTRODUCTION 
Programming robots and Internet of Things (IoT) devices to-
gether gives rise to vast new opportunities for factory foors, 
and is part of a recent trend toward Internet of Robotic Things 
[16, 32]. As mobile robots and human workers become more 
tightly integrated within IoT environments, the task of instruct-
ing the machines has become increasingly complex. With 
more devices to coordinate, human operators must author 
workfows that are inherently computational in the context of 
dynamic spatial environments. 

Factories typify the challenges of coordinating complex work-
fows with mobile robots delivering parts and interoperating 
with manufacturing equipment. As manufacturing processes 
ever more increasingly depend on customization and prod-
uct changes, the effort needed to create or modify workfows 
becomes a bottleneck. Furthermore, some responsibility for 
programming robots and their interactions with IoT devices 
must shift to the workers directly involved with a given manu-
facturing process [7]. 

Bringing factory workers into the process will require the 
right level of abstraction and context. Task-level programming 
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offers a starting point. In this paradigm, expert programmers 
write code for robots to perform generalized tasks, which non-
programmers can use to direct the robot [1, 9, 29]. However, 
as basic programming skills become more pervasive, the need 
becomes less focused on programmers vs. non-programmers, 
and more on enabling domain experts to effciently specify 
workfows. 

We present Vipo, a spatial-visual programming system for 
robot-IoT workfows. With spatial-visual programming, pro-
grams are created using visual programming constructs drawn 
directly on a map of the operating environment. To start, a 
foor map of the physical space is uploaded into Vipo. Then, 
users can draw paths for robot movements, and specify loops 
and conditionals by connecting paths with shapes. Those con-
structs can also be found in other recently developed spatial-
visual programming systems [11, 23, 10]. 

Vipo builds on those capabilities in two signifcant ways. 

First, the Vipo language allows workers to write programs 
using functions. In conventional programming, support (or 
non-support) of functions is often viewed as an informal litmus 
test for a “real programming language". Far from just another 
language feature, functions are a crucial building block that 
enables encapsulation, reuse, and scale. Steps and data related 
to a meaningful sub-goal can be encapsulated in a function 
defnition. Then, the function can be called repeatedly with 
different parameters. Functions can even be called recursively. 
Support for recursive function calls allows workers to express 
programs that could not be expressed without functions (or 
stack data structures). 

Second, the Vipo architecture integrates IoT devices into the 
programming and execution environments with no prior con-
fguration. Using the Vipo protocol, devices broadcast their 
location, capabilities, and resource status (e.g., power, sup-
plies, etc.) in a format based on the Resource Description 
Framework (RDF). The Vipo architecture uses those messages 
to discover devices. Their status and capabilities are automati-
cally integrated into the Vipo IDE, a web-based development 
environment used to create programs with Vipo. When the 
programmer specifes an action that involves an IoT device, its 
capabilities are populated into the editor, and its resource sta-
tus can be checked to ensure the actions are possible. Building 
on the Robot Operating System (ROS) [31], the Vipo archi-
tecture compiles the user’s programs into a form that can be 
executed by robots, or simulated. Our research provides path-
ways for other researchers to develop more collaborative and 
interoperable settings that can improve productivity of humans 
and IoT devices in small- and medium-sized organizations. 

The key contributions can be summarized as follows: 

• The Vipo language is a spatial-visual language for pro-
gramming robot-IoT automations with functions, as well as 
conditions, loops, movement, and IoT device operations. 

• The Vipo architecture, including the Vipo protocol, enables 
real-time integration of mobile robots and IoT devices with 
dynamic state information (e.g., locations, capabilities, re-
source availability, etc.). 

• The Vipo IDE integrates 1) code creation, 2) test-
ing/simulation, 3) deployment, and 4) monitoring in an 
integrated development environment, as a demonstration 
of the overarching vision for factory or other robot-IoT 
automation. 

• Our user study with 22 participants validated the compre-
hensibility, correctness, and effciency of spatial-visual pro-
gramming with functions. 

RELATED WORK 
Vipo builds on prior work in visual programming languages 
and interfaces, spatial-visual programming, and communica-
tion protocols between smart devices. 

Visual Programming for Robots and IoT devices 
Many approaches have been studied for authoring robot-IoT 
workfows, such as programming by demonstration [3], col-
laborative control [15], and visual programming. This work 
focuses on visual programming that enables logic and con-
trol fow. Visual programming interfaces make programming 
more approachable for non-experts and thus enable workers to 
author workfows for robots and/or IoT devices. Many visual 
programming interfaces have been developed to program tasks 
for IoT devices [5, 14, 4], robots [30, 18, 24, 22, 13, 17, 12], 
or for both robots and IoT devices [38, 26, 41, 35]. 

These interfaces are mainly built on two authoring approaches: 
form-flling and visual programming languages. Form-flling 
approach allows users to fll a predefned form by adding 
actions or triggers via drop-down menus [33, 38, 21]. On 
the other hand, visual programming languages provide vi-
sual constructs (e.g., functions, conditions, and loops) to wire 
the sensory data and actions of robots or IoT devices into 
tasks, such as Blockly [8]. Since form-flling is less fexible 
than visual programming languages in authoring dynamic and 
complex workfows, most interfaces mentioned above have 
adapted or designed visual programming languages to author 
workfows in various formats, such as blocks [24, 8], data-fow 
[22], fow-chart [5], event-based, [12], or state-fow [26]. 

Although these visual programming languages could represent 
workfows in many formats, they lack suitable visual notations 
to represent the activities occurring within a spatial environ-
ment, such as delivering parts by mobile robots and interacting 
with machines. We design Vipo to provide users with handy 
notations to program workfows while maintaining the power 
of a programming language in the spatial domain. 

Spatial-Visual Programming 
The ability to sense the spatial relationship between objects 
and environments is one of the key benefts of programming 
via augmented reality (e.g., V.Ra [10]), virtual reality (e.g., 
Ivy [14]), or 3D map (e.g., [39]). Such beneft is automatically 
gained when authoring in 3D space, but is less obvious to 
obtain in 2D space. Given that users are more familiar with 
authoring via 2D interface and have easier access to 2D author-
ing tools (e.g., computers), it would be valuable to embrace 
the beneft of spatial-awareness in a 2D space. 
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Spatial-visual programming in 2D space is still in its infancy. 
A few research projects have explored this area. For exam-
ple, Vizir [11] allows air traffc controllers (ATC) to author 
automation on top of a geographic airport map with a set of 
ATC-specifc visual constructs. By placing the visual con-
structs above the map, Vizir tries to maximize the closeness 
of the control and actions, as well as the predictability of the 
automation. In addition, Ruru [13] designed spatial metaphors 
for input sensors to allow the position and orientation of an 
input relative to a device to be expressed visually. Kitty [23] 
allows users to sketch animated drawings to illustrate the spa-
tial and temporal relationship between entities. RoboShop 
[25] supports robot housework assignment by sketching on a 
bird’s-eye view of the environment. 

Although these approaches enabled users to create simple 
workfows or illustrations, they did not support functions that 
are essential for a programming language. Functions are sup-
ported in most textual languages and non-spatial visual pro-
gramming languages mentioned earlier. Given that manufac-
turing workfows have the tendency to become more complex 
and customizable [7], functions can play an important role 
due to its reusability, modularity, and fexibility. In this paper, 
we designed and implemented functions in a spatial space. 
Along with other spatial constructs, the Vipo language aims to 
build an accurate conceptual model of the spatial relationship 
between programmed tasks and the environment. 

IoT Protocols & ROS 
IoT protocol is one of the key components to bridge the digital 
programming interface and the physical execution environ-
ment. Specifcally, to program a workfow, users need to have 
access to the capabilities and sensory data of robots and IoT 
devices. In addition, these capabilities and sensory data should 
be represented in a format that is understandable by users. 

Many protocols have been proposed to facilitate communi-
cation between connected systems [37, 19, 36, 34, 40]. For 
example, MQTT [19] is a publish-subscribe messaging proto-
col that is suitable for mobile applications. In addition, several 
protocols have been created to describe data/message in spe-
cifc formats. For example, RDF [27] is a standard model for 
data interchange on the Web, while IoT-Lite [2] is a variation 
of RDF to describe IoT resources, entities and services. 

In this work, we take advantage of the Publisher/Subscriber 
functionality provided by ROS [31] to enable status sharing 
and task coordination. Furthermore, we adapt the RDF proto-
col to describe the status and capabilities in a way that Vipo 
can interpret. This modifed RDF message enables IoT devices 
to be automatically discovered and added into Vipo. 

DESIGN OF VIPO 
The key contribution of this work is the introduction func-
tions—including a notation and interactions—to spatial-visual 
programming for robot-IoT workfows. Later in this paper, we 
will explain the language design and architectural challenges 
that were entailed to bring functions to spatial-visual program-
ming. To establish context for that discussion, we will frst 
explain the design goals of Vipo, and the more foundational 
elements of the Vipo language. 

Requirements and design goals 
The requirements and design goals were gathered through a 
series of visits by a group of at least three researchers to six 
factories. These included manufacturers of construction equip-
ment, automobiles, electronic equipment, and components. 

The visits were motivated by other collaborations related to 
robot-IoT automation, but on each occasion, the researchers 
asked questions related to the frms’ challenges regarding 
specifcation of robot-IoT workfows. 

Representatives also visited the lab where Vipo was developed 
during the development of Vipo. The researchers gave demon-
strations for plant managers and executives, and received feed-
back that guided our understanding of the requirements. 

The visits provided design hints that guided the design of 
Vipo. For example, representatives from a consulting frm 
that supports small- and medium-sized enterprises informed 
us about the cost structure of equipment acquisition, which 
led to key decisions related to the Vipo architecture. 

Language design 
Transitional Constructs (move) 
Transitional constructs represent operations that transit from 
a source to a destination. They are typically used to plan the 
motions of mobile robots, including “move", “pick", “drop", 
and “carry". All four constructs can be found from the tool-
bar on the left of Figure 10. For example, “pick" means the 
robot picks objects from a source and moves to a destination. 
“Drop" means the robot moves from source and drops objects 
to destination. When users need the robot to pick from source 
and drop at destination, they can use “carry", which is a com-
bination of “pick" and “drop". Transitional constructs can 
represent the spatial relationship between devices, such as 
the direction and distance. Figure 2 shows four transitional 
constructs between the paint inventory to paint mixer. 

Figure 2. Examples of four transitional constructs. 

There are two reasons why we design distinct notations for 
“pick", “drop", and “carry", rather than reusing “carry" as 
a universal notation. First, these notations leverage spatial 
proximity. Specifcally, “pick" is spatially closer to the source, 
“drop" is closer to the destination, and “carry" sits in the middle 
(Figure 2). Second, a distinct shape may enhance readability 
and memorabilityso that users can immediately tell if a nota-
tion is a “pick", “drop", or “carry". To strengthen the concept 
that “carry" is a combination of “pick" and “drop", the symbol 
of “carry" is also a combination of the symbols of “pick" and 
“drop". 

In-place constructs (IoT operations) 
Upon receiving materials from a robot, an IoT device can use 
them for in-place operations such as consuming, processing, 
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and/or packing. A “Timer" symbol reveals an estimated execu-
tion time of this operation. Upon clicking the Timer symbol, 
a popover allows users to choose an operation, duration, and 
other parameters. Figure 3 shows an example in which the 
paint mixer is programmed to mix paint for about 5 minutes. 

Figure 3. Example of in-place construct: mix paint for 5 minutes. (a) 
start to create a timer, (b) use popover to select a machine capability and 
enter required parameters, (c) show estimated time in timer. 

Control-fow constructs (if and loops) 
Vipo supports control-fow through “if" and “while". Both 
constructs use a condition to select the next execution path. 
Conditions may include operators, numerical values, and/or 
device properties (e.g., printer status, oven temperature, avail-
able storage capacity on a shelf, etc.). Figure 5 shows an 
example in which the robot is asked to drop the paint can at 
mixer A if its jobStatus (i.e., completion progress) is greater 
than 80 percent, otherwise drop at mixer B. 

Figure 4. Example of "if". (a) The if condition decides which of two 
branches to follow, (b) Users select a property of a device, a logic opera-
tor, and enter a value to specify the if condition. 

Besides “if" and “while", the aforementioned transitional con-
structs could also be considered as one kind of control fow 
constructs: “goto". In most cases, a workfow of a robot is a 
linear sequence of actions. However, sometimes users may 
draw a path (e.g., one of transitional constructs) that goes back 
to its prior action, which forms a loop. When this backward 
“goto" path is combined with “if", the workfow is functionally 
equivalent to a “while" loop. 

Spatial Functions 
This section shows how the Vipo language supports function 
defnition and function call in the spatial domain. 

Function defnition 
A function is used to represent a workfow that can be tested 
and executed alone, or reused by other functions via function 
call. A function can include one or more primitive constructs, 
or even functions. Each function has a distinct color to differ-
entiate from other functions. The constructs belonging to a 
function have the same color as the function. To support peo-
ple with color blindness, users can use different color value. 

Functions are displayed as a list on the top-right panel of the 
editor (Figure 10). The user can click on a function to display 

its content in the main workspace within a tab. A click on 
another function opens a new tab. All functions for the same 
environment share the same layout map and machines, and are 
organized by tabs. 

Similar to textual programming languages and other non-
spatial visual languages, defning functions with parameters 
can make the workfow more fexible and customizable. There 
are two types of parameters: value and location; both of them 
start with a dollar sign “$". 

• Value parameter (e.g., $n). A value parameter is used to 
store a number. With the help of value parameter, users 
may replace a constant number with an algebraic expres-
sion. An algebraic expression can be a constant number, 
a variable, or algebraic operation on algebraic expressions 
(e.g., $n × 2 + 3). For example, the number of objects to 
pick/drop/carry can be “$n" instead of a constant number 
(Figure 5). Likewise, the condition of “if" and “while" can 
use an algebraic expression. 

• Location parameter (e.g., $start, $end). A location param-
eter is used to store a machine. With the help of location 
parameter, users may change some actions that happen on 
one machine to happen on another machine. For example, 
a robot may visit and interact with machine A, machine 
B, and machine C in linear order. Rather than visiting a 
sequence of fxed machines, users may convert machine B 
as a location parameter (e.g., $middle). In such case, if we 
pass machine D into $middle, the robot will eventually visit 
and interact with machine A, D, and C. 

Figure 5. Function defnition. Defne a value parameter “$n" for func-
tion “GetPaint" (left); use “$n" in pick, drop, and if-condition (right). 

Function call 
A function can reuse existing workfows via function call. If 
users want to call a function, they can right-click the desired 
function in the function list and select "Call this function" 
from the context menu. Then users can click on the map 
to specify the start and end of the function. This drawing 
operation is the same as transitional constructs. The visual 
notation of a callee (i.e., the function being called) also looks 
like a transitional construct, as shown in Figure 6a. The visual 
notation includes the function name and an “Expand" button. 
Once clicking on the “Expand" button (Figure 6b), the internal 
defnition of the callee will be displayed (Figure 6c). This 
allows users to quickly peek the defnition without switching 
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between functions. The path color of a callee remains the 
same as the callee, which makes it distinct from the constructs 
belonging to the caller (i.e., the function that calls callee). 

Figure 6. Function call and assign values. (a) call function “GetPaint", 
(b) click to expand the detail, (c) the detail of “GetPaint" is displayed 
within lightbox 

To further customize the callee workfow, users can pass val-
ues and locations to its parameters. Upon clicking the callee 
notation, a popover appears to allow editing of the parameters. 
Similarly, users can select a different device for a location 
parameter. Once a location parameter is assigned to a new 
device, the workfow to be executed is changed to visit and in-
teract with the new device. This change can also be visualized 
if users click the “Expand" button to see the expanded detail of 
callee. This change only affects execution of callees within the 
current caller; the function defnition is not otherwise affected. 

In addition, since users can expand a callee to see its internal 
detail, it enables a unique way of assigning location parameter. 
Users can click the “SwitchDevice" button near the bottom-
right corner of each device. Then users can click on a different 
device and assign the new device to the corresponding location 
parameter, as shown in Figure 7. The originality of our ap-
proach is that a location parameter can be spatially visualized 
and also can be assigned to a new device spatially. Once the 
location parameter is successfully updated, the constructs that 
are related to this location parameter will be automatically 
switched to the new device. 

ARCHITECTURE 
The system can be treated as a three-layer architecture, as 
shown in the Figure 8. From top to bottom, it includes a task 
planning layer (i.e., Vipo), a task control layer (i.e., ROS Mas-
ter), and a task execution layer (e.g., robots and IoT devices). 

The task planning layer is part of the Vipo IDE, a web-based 
development and simulation environment that allows users to 
program tasks for robots/IoT devices. More details are given 
in later section. 

The task control layer is ROS Master which acts as the 
bridge of the two-way communication between Vipo and 
the robots/IoT devices. When RDF message is sent from 
robots/IoT, ROS Master maintains a global context that keeps 
track of all the connected devices. ROS Master only sends 
the difference of two adjacent RDF messages from the same 
device to Vipo to reduce network traffc. 

When a task script is sent from Vipo, ROS Master creates a 
thread for each new task. The task script receives the global 
context to fetch the details of the corresponding device. Each 

Figure 7. Assigning a new location in expanded callee view. a) The callee 
“MixPaint" before expanding, b) click on the “SwitchDevice" button in 
the expanded view of callee, c) click on a new device, d) location param-
eter is successfully changed and the constructs are switched to the new 
device automatically. 

line of task script is translated into ROS-specifc code and sent 
to a corresponding machine. 

The task execution layer consists of physical or simulated 
devices (robots/IoT devices). Each device holds the spatial 
information (e.g., location), sensory data (e.g., temperature 
and job status), and functionalities (e.g., packing a box, 3D 
printing). IoT devices and robots periodically transmit RDF 
messages to ROS Master, while receiving command scripts 
from ROS Master. 

In our system, we adopted a modifed version of RDF to suit 
our application. Figure 9 presents a sample RDF message 
for a paint mixing machine. The modifed RDF message has 
device-information felds (ID, name, description, location etc.), 
machine-specifc methods and properties. Methods are the 
functions that the machine is capable of performing (like mix-
paint, set-temperature, start, stop etc.) while properties are the 
real-time operation parameters (like job-status, temperature, 
coolant-level, run-time, health-status etc.) 

RDF Messages serve a centrol role in Vipo. The felds dis-
cussed above are directly used by Vipo for different purposes. 
Specifcally, felds like the location, iconUrl, and iconSize are 
used for rendering the icons on the map. The properties felds 
are used for populating the drop-downs of the control-fow 
constructs (e.g., jobStatus used in Figure 5). Moreover, the 
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IoT IoT Robot Robot Simulation

Web Editor (VIPO)

ROS Master

RDF msg

Task script

ROS script

Control

Execution

Planning

RDF msg

------------------
Property.msg

string name
float32 value

------------------
Method.msg

string name
string vipo_msg_type
string topic_name

------------------
RdfMsg.msg
string id
string name
string description
float32[] location
string size
string imgUrl
bool done
bool error
Property[] properties
Method[] methods

---
id: "paintMixer02",
name: "Paint Mixer B",
description: "Mixes paint for a 

given duration of time",
location: [14.7755,-5.8476,0.5699],
size: "medium",
imgUrl: "/imgs/mixer.png",
done: false,
error: false,
properties:
-
name: "jobStatus",
value: 50

methods:
-
name: "dispense",
vipo_msg_type: "object",
topic_name: "/dev05_dispense"
-
name: "mixPaint",
vipo_msg_type: "time",
topic_name: "/dev05_mixPaint"

---

Figure 8. The three-layer architecture. 

methods felds are used to populate the drop-downs of in-situ 
operation constructs as callable functions. 

Given that the capabilities of IoT devices and robots often 
need users to specify some values, the methods felds of RDF 
message can automatically provide the parameter interface 
for capabilities. Vipo uses the vipo_msg_type feld as the pa-
rameter interface that specifes what kind of value the method 
requires. For example, the "mix-paint" method of a paint 
mixer requires users to specify a time. Similarly, a "move" 
method of a robot needs to specify the location to move. So 
far we have supported four types: time, object, location, and 
value, which can be easily extended to support more types. 

Figure 9. The schema of modifed RDF (left) and a sample RDF message 
(right). 

Communication Between Layers 
Each layer sends and receives messages from the adjacent 
layer(s). Communication is bidirectional. 

Bottom-up: Broadcasting spatial and contextual informa-
tion. The goal of this communication is to broadcast the 
spatial and contextual information from the execution layer 

to the planning layer. The broadcasted messages are used to 
setup the programming environment and refect the real-time 
status of robots/IoT devices. The format of the message is 
based on a modifed version of RDF, as described earlier. 

ROS Master forwards these RDF messages to Vipo, which 
further renders each robot/IoT at the corresponding location 
defned in RDF messages. Moreover, the functionalities in 
RDF messages are converted to callable functions that can be 
used to program a task. 

Top-Down: Deploying Task. Programs created by workers 
are transmitted from the planning layer to the execution layer. 
First, the Vipo architecture compiles the visual program into a 
textual task script. It is then sent to ROS Master, which con-
verts each line of script into ROS-specifc commands, which it 
sends to the corresponding robot or IoT device. As the devices 
execute the commands, execution status (e.g., success, error) 
is sent back to ROS Master as an RDF message. 

Vipo IDE - TASK PLANNING LAYER 
Vipo IDE has three work modes: Edit, Test, and Deploy, as 
shown in the top-right corner of Figure 10. In Edit mode, users 
can program workfows in the Vipo language. In Test mode, 
users can simulate what the workfow would do before being 
deployed to a physical environment. In Deploy mode, the vi-
sual programs are compiled and sent to robots/IoT devices for 
execution. At the same time, the real-time status of robots/IoT 
devices is monitored and viewed in the editor. This section 
introduces how to setup the interface for a new environment, 
and then introduces three work modes of the Vipo IDE. 

Figure 10. The Vipo IDE displays a toolbar (left), three modes (top-
right), and a 2D layout map with IoT machines at the corresponding 
location (center). 

Setup 
Vipo receives the information from the execution layer to set 
up the environment. 

The layout map as the background canvas 
At the start of the application, the map of the environment is 
displayed, as shown in Figure 10. The map is generated by 
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the robot after scanning the environment (e.g., via LIDAR). 
At the same time, while the robot is scanning, the locations of 
IoT devices are obtained (similar to [20]). Both the map and 
the locations are sent to ROS Master and eventually to Vipo, 
as described in the architecture. 

IoT Device Registration 
Similar to the map generation, IoT devices periodically broad-
cast their contextual information (e.g., id, name, status, and 
supported capabilities) to ROS Master then to Vipo. There-
after, Vipo automatically renders the IoT devices as icons at 
the corresponding locations on the 2D layout map, as shown 
in Figure 10. The icon image is also defned by the IoT itself. 

Edit Mode – Program with The Vipo language 
Based on the layout map and icons of IoT devices in the en-
vironment, we designed the Vipo language to program work-
fows using spatially oriented constructs. The syntax and 
programming workfow were introduced above. 

Test Mode – Simulate Execution 
Testing is a mandatory activity before deployment. Users can 
click the “Test" button to enter test mode and simulate how 
the workfow will be executed by a robot. Three control but-
tons are provided, including playing all steps at once, playing 
one step at a time, and starting over from the beginning (Fig-
ure 11a). A robot moves along the path with animation. If 
there is a control-fow constructs, the condition is evaluated 
to choose which branch to follow (Figure 11c). The condition 
may involve the properties of machines, which are dynamic 
and external. To enable testing, users can enter test value to 
mock the properties (Figure 11b). By passing different test 
values, the robot is able to move along both branches of an 
“If" statement so that the test coverage is more comprehensive. 

Figure 11. Test mode. a) Users switch to the Test mode and use three but-
tons to control the simulation, b) users set test values for dynamic proper-
ties of devices to simulate different execution results, c) once users click 
the play button, a robot moves along the path and chooses the proper 
branch to follow based on the if condition. 

Before the robot moves to the next construct, Vipo checks 
the syntax of the next construct and evaluates its value. For 

example, if the number to pick/drop is missing or the condition 
of “If" statement is not completely flled, a red bulb icon will 
be displayed with error message (Figure 10). Moreover, if the 
algebraic expression has wrong syntax or the variable is not 
defned, the red bulb icon will also be shown to give the error 
message. The robot pauses movement until users fx the error. 

Unlike other programming languages where the programmed 
script and the simulation result are visualized in separate in-
terfaces, the Vipo IDE can show the programmed constructs 
and simulation result in the same interface. In other words, 
the simulation is running directly on top of the programming 
constructs within the environment. This direct coupling may 
enhance the predictability of the simulation result. In a loose 
sense, Vipo supports “What-You-See-Is-What-You-Expect-To-
Get” in the environment. 

Deploy Mode - Execute and Monitor Status 
The Vipo IDE can monitor the real-time execution status of 
robots and machines, and allows users to visually associate 
the robot’s movement with objects in the physical operating 
environment. If the physical robot is moving, it is shown in 
the interface at the corresponding location. Since the visual 
constructs of the task are also displayed in the interface, users 
are able to recognize which construct the robot is currently 
executing. This direct mapping between the execution in phys-
ical environment and the programming constructs in digital 
layout can help users better understand the current state and 
predict the next state. 

Moreover, if a machine reports an error during execution, 
the Vipo IDE shows a red mark to highlight that machine. 
This real-time error reporting allows users to notice the error 
quickly and fx it to increase productivity. 

The Edit mode and Deploy mode are separated in the environ-
ment, so that programmers can focus on authoring programs 
without the distraction of animated updates about the physical 
robot’s location. When switching back to the Edit mode, the 
RDF messages at that time are cached and used to render the 
machines statically in Edit mode. Subsequent RDF messages 
are ignored until switching back to deploy mode. 

USE CASES 
To show how Vipo can be used to program tasks for robots/IoT 
devices, we present and explain two use cases of our system. 

Scalability and Reusability - Recursive Function 
The frst use case solves the classic Tower of Hanoi puzzle1, a 
commonly used example used to teach recursion in computer 
science courses. This puzzle represents a simple but non-
trivial task for robots and IoT devices. The primary operations 
used for Towers of Hanoi—pick, move, and drop disk—are a 
natural ft for robotics, and have real-world analogs in factory 
warehouses (i.e., stacking crates). The three rods can be con-
sidered as IoT devices. Figure 12 shows a recursive solution 
expressed in the Vipo language. 

1https://en.wikipedia.org/wiki/Tower_of_Hanoi 
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The ability to defne parameters and use function calls enables 
users to program more complex workfow in a spatial domain, 
including recursive functions. 

Figure 12. Recursive function calls enables a recursive solution to the 
classic Towers of Hanoi. 

Factory Use Case 
To validate the system developed in an industrial context, 
we deployed Vipo to author robot-IoT workfows for simple 
material-handling applications in a small-scale emulated paint-
ing factory. The industry considered is assumed to have an 
advanced factory setup with smart machinery and autonomous 
mobile robot (AMR). Workfow of a typical job order com-
prised of the following sequential steps: 

1) Source the parts to be painted from the Item Inventory 
2) Source paint cans from the Paint Inventory 
3) Mix the paint to obtain a given shade using Paint Mixer 
4) Paint the parts using the Painting Machine 
5) Cure the painted parts at a given temperature in the Oven 

Figure 13. System Setup for the factory use-case (A) Autonomous Mobile 
Robot (B) IoT Nodes (industrial machinery) (C) The Vipo IDE (D) ROS 
Master 

System setup (Figure 13) for the use case comprised of (a) an 
omnidirectional robot capable of autonomous navigation using 
LIDAR (SICK TiM561) and SLAM, (b) a 6-DOF robotic arm 
mounted on the mobile base for pick and drop operations, (c) 
Six ESP32 microcontrollers emulating six smart industrial 
machines, (d) ROS-Master for task fow and execution, and 
(e) the Vipo IDE for programming the workfow. 

Prior to physical deployment, the workfow was programmed 
and simulated in edit and test modes of Vipo. Then the pro-
gram was deployed to the robot to complete the programmed 
sequence in the emulated painting factory. 

USER STUDY #1: VIPO VS. BLOCKLY 
To understand the strength and limitation of spatial-visual 
language, we conducted a user study that compared Vipo 
with a non-spatial visual programming tool called Blockly [8]. 
Here, “spatial" means the programming constructs that contain 
spatial information, such as direction and distance. 

Blockly is chosen as the non-spatial baseline due to three 
reasons. First, at the visual programming language level, the 
Vipo language and the block-based visual language of Blockly 
are imperative programming language and thus able to specify 
task for robots as a set of actions. This is unlike other datafow-
based or event-triggered visual languages, such as Node-RED 
[5]. Second, Blockly can create customized blocks to represent 
machines, functions, and properties, which can be used to 
program the same tasks as Vipo. Third, Blocky is a well-
established visual programming tool and has been widely 
adapted for programming educational purposes, which serves 
as a solid baseline for evaluating Vipo in terms of usability. 

In this setting, the key distinction between Vipo and Blockly is 
that Vipo uses spatial constructs directly on a 2D map, while 
Blockly uses non-spatial constructs in a separate view. 

Experiment 
Twelve participants were recruited for the study, of which most 
are engineering students between the ages of 19-22 years. Of 
the 12 total participants, 11 participants were novice program-
mers (0-1 year of experience), and only 1 participant was an 
experienced programmer (3+ years of experience). 3 users 
had previous experience of visual programming in Scratch (< 
6 months of usage). 

A within-subject study was conducted in which each partici-
pant was asked to use both Vipo and Blockly to program tasks 
in counterbalanced order. In other words, six participants used 
Vipo frst and then Blockly, while the other six participants 
used Blockly frst and then Vipo. 

For each interface, participants had to watch a video tutorial, 
fnish six tasks (Task 1-Task 6), and fnally fll in a question-
naire regarding the user experience and cognitive dimensions 
for interface evaluation [6]. In the frst fve tasks, participants 
were asked to program workfows using basic programming 
constructs (e.g., move, pick, drop, and If-Else), as well as 
more advanced programming constructs (e.g., Function calls). 
For each task, we provided a written document with the goal 
and general approach, but no hints on how to structure the pro-
gram. The frst two tasks (Task 1 and Task 2) were designed 
such that each was a standalone workfow (e.g., "PickAnd-
Pack" and "StoreItem"), but also could be reused in Tasks 3-5 
to form a more complete workfow via function calls. Par-
ticipants were allowed to use the Test-Mode for assistance 
(debugging). Once participants fnished all fve tasks, they 
were asked to read and comprehend a task programmed by the 
authors (Task 6). While participants were programming using 
the interface and flling in the questionnaire, the computer 
screen was recorded. 

The frst fve tasks are the same for both conditions, which 
are used to compare the system under the same context. The 
last reading task is to test comprehension. However, in order 
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to prevent participants from repeating their answers from the 
previous interface, we kept the bulk of the programs the same 
while used slightly different numbers in If-Else condition. The 
hypothesis of this experiment is spatial-visual programs cre-
ated in the Vipo language are more comprehensible than func-
tionally equivalent programs written in a non-spatial visual 
programming language. 

Figure 14. Results of usability test in 9 cognitive dimensions. None of 
them have signifcant difference. 

Results & Discussion 
In this section, we frst report the results in comprehension 
test, then report usability test results. 

Spatial constructs make programs more comprehensible 
In the comprehension test (Task 6), participants were given 
a programmed workfow and asked to answer fve questions, 
such as identifying the optimal steps, number of machines 
involved, and the source and destination of the program based 
on different if-condition. Each question counts as 1 point. 
We use the total score of the fve questions to represent a par-
ticipant’s understanding of the program. A paired t-test was 
conducted to compare the comprehension test results in Vipo 
and Blockly. There was a signifcant difference in the scores 
for Vipo (M=3.83, SD=1.03) and Blockly (M=2.83, SD=1.53), 
t(10)=2.57, p = 0.03 < 0.05. The results suggest that partic-
ipants had a better understanding of the program when the 
workfow is programmed in the Vipo language, which sup-
ports our hypothesis that spatial visual programming language 
improves user’s comprehension of the program. The reason 
might be that the Vipo language shows the programmed con-
structs in the same interface, therefore participants can easily 
infer the results of the workfow without any context switch-
ing. On the contrary, participants have to constantly switch 
between the map and the constructs to understand the execu-
tion result of the workfow in Blockly, which increases the 
chance of making mistakes. 

Usability of Vipo is on par with Blockly 
Next, we look at the cognitive usability test results reported 
by the participants. After completing all of the programming 
tasks (Tasks 1-5), participants were asked to evaluate the sys-
tem by answering questions in 9 different cognitive dimen-
sions [6]. Results are summarized in Figure 14. No signifcant 

differences were found between Blockly and Vipo in each 
dimension (with all p > 0.05), which indicates that both inter-
faces resulted in similar user experiences. 

Correctness and Time spent 
Finally, we acknowledge the time spent and correctness in 
both interfaces. The time spent is defned as the total time 
spent on fnishing Tasks 1-5. Correctness is defned as the 
number of tasks that were done correctly by the participants 
in all fve tasks. Two paired t-tests were conducted respec-
tively to see whether there were signifcant differences in 
time spent and correctness. No signifcant differences were 
found in the correctness for Vipo (M=3.25, SD=1.29) and 
Blockly (M=3.08, SD=1.44); t(10)=0.4, p = 0.7. There was 
a signifcant difference in the total time spent (seconds) for 
Vipo (M=1748, SD=559) and Blockly (M=2566, SD=1075); 
t(10)=0.4, p = 0.009 < 0.05. The results suggest that partici-
pants spent less time in completing all fve tasks with Vipo. 

USER STUDY #2: FUNCTION VS. NON-FUNCTION 
In this study, we investigated the pros and cons of supporting 
functions in the spatial domain. Participants were asked to 
program tasks in two conditions: using Vipo with functions 
(condition A) and without functions (condition B). 

Experiment 
Ten (10) participants were recruited. Most were engineering 
students aged 20-31 years old. Six (6) were novice program-
mers (0-1 years experience), two (2) were beginners (1-3 years 
experience), and two (2) were experienced programmers (3+ 
years experience). Two (2) had previous experience with vi-
sual programming in LabView (<6 months of usage). 

Participants started with a video tutorial that explained all 
features of the Vipo language except functions, and then com-
pleted three tasks (Task1-Task3) as warm-ups. The authors 
verifed the accuracy of warm-up tasks and explained any is-
sues that occurred. Next, each participant was asked to use 
both condition A and condition B to program tasks in coun-
terbalanced order. They had to complete three tasks in each 
condition (Tasks 4a-6a for condition A and Tasks 4b-6b for 
condition B), then fll in a questionnaire, and proceed to the 
other condition. For condition A, participants needed to watch 
a second video tutorial that included functions. Once they 
have done both conditions, an exit questionnaire was given 
to compare both. While participants were programming, the 
computer screen was recorded. 

Tasks in both conditions were the same, except that condi-
tion A required the use of function calls while condition B 
required the use of basic notations directly. For example, in 
Task 5, participants were told that they act as a maintenance 
worker trying to fx a broken machine. Therefore, they need 
to program robots to collect tools as well as three types of 
replacement parts from inventories, use a cutting machine to 
cut to specifc shapes, and then carry to the broken machine. In 
condition A, participants can defne a function called “getPart" 
and call it three times with different numbers and locations. 

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 9

https://t(10)=2.57


Results & Discussion 
This section reports results from the questionnaire, and mea-
sures of report effciency and accuracy based on screen record-
ing and analysis of programs. 

Functions had less viscosity 
The questionnaire asked participants to answer questions in 
the 9 cognitive dimensions. A paired t-test was conducted for 
each dimension. We did not fnd a signifcant difference in 
eight dimensions. However, there was a signifcant difference 
in viscosity between condition A (M=4.50, SD=0.53) and 
condition B (M=3.70, SD=1.16), p = 0.04 < 0.05. The reason 
might be that participants in condition A only need to update 
inside the function being called, while participants in condition 
B need to update all occurrences. 

Functions made programming faster 
The total time of completing Tasks 4-6 was measured. A 
paired t-test was conducted to compare the total time. No sig-
nifcant difference was found between condition A (M=17.1) 
and condition B (M=20.9), t(9)=-2, p = 0.1. However, if we 
look at Task 5 where the participants were asked to program 
robots to do the same operation three times, the usage of func-
tion saves time for doing the same operation. As Figure 15 
shows, participants in condition A spent about one and a half 
times longer on the frst function call (2.63), compared to con-
dition B (1.96). However, for the remaining two sub-tasks, 
condition A took about half of the time as that of condition 
B. This shows that the learning curve of function is higher at 
frst but it helps participants be more effcient once mastered. 
Participants in condition A can reuse the workfow while those 
in condition B have to repeat the same steps. The time in 
condition A of making a function call is constant while the 
time in condition B is proportional to the number of steps. 
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Figure 15. The time spent on three subtasks of Task 5. Learning to use 
function takes time, but the efforts pay off when the same operation is 
being used several times. 

Functions were more error-prone 
The accuracy of the programs was measured. A paired t-test 
was conducted to compare the number of correct tasks in two 
conditions. There was a signifcant difference in the accuracy 
between condition A (M=2.20, SD=0.63) and condition B 
(M=2.70, SD=0.48), t(9)=-2, p = 0.05. The result suggests 
that participants made more errors when using functions, com-
pared to using just basic constructs. This is surprising but 

understandable. Participants need to learn how to accurately 
use function in a short time which includes: defning a pa-
rameter for the function, replacing the constant number in the 
function with the parameter, and fnally passing a different 
value to the parameter. These extra steps were challenging 
for novice programmers and increased the error proneness. 
After checking the created programs, we found one bug that 
was particularly common and resulted in the signifcant dif-
ference: fve participants in condition A forgot to replace the 
constant number in the function with the defned parameter. 
This suggests improving the editor by highlighting unused 
variables. 

LIMITATIONS AND FUTURE WORK 
The system is designed to program tasks for one robot. In fact, 
a task may need different types of robots or a collaboration of 
multiple robots. Such complexity is abstracted away from the 
task planning layer (Vipo), but a more intelligent ROS Master 
is required to manage the execution. Furthermore, we assume 
a robot is executing one task at a time. In a real factory, the 
robot may be shared among different tasks, in which effcient 
scheduling and optimization algorithms are required [28]. 

Vipo was not tested with workers within real factories, because 
some issues should be addressed frst, such as adapting exist-
ing machines to use RDF messages, and handling exceptions 
during execution. 

The current interface has limited visualization on the real-time 
status of machines (only the location and success/failure). In 
the future, it would be more informative to allow users to 
customize the visualization of more kinds of status. 

In the future, we envision bringing humans into the work-
fow more explicitly. Workers would broadcast their location 
and other available status information via RDF messages. In 
such case, users will be able to program tasks to control the 
collaboration between humans, mobile robots, and machines. 

CONCLUSION 
Vipo supports modular visual programming of robot-IoT work-
fows in the spatial context of the operating environment. 
Using the Vipo IDE, users can create, test/simulate, and de-
ploy/monitor automations visually, spatially, and interactively. 
We implemented two use cases to demonstrate that 1) the Vipo 
language can support complex programs involving recursive 
functions and 2) the tasks programmed in Vipo can be executed 
by robots and machines in physical environments. The user 
study (n=22) found that 1) spatial constructs improve program 
comprehensibility, and 2) functions speed up programming. 
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