
Vipo: Spatial-Visual Programming with Functions
for Robot-IoT Workfows

Gaoping Huang1, Pawan S. Rao2, Meng-Han Wu1, Xun Qian2, Shimon Y. Nof3, Karthik Ramani1,2,
Alexander J. Quinn1

1School of Electrical & Computer Engineering, Purdue University, West Lafayette, Indiana, USA
2School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA

3School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA

{huang679, rao81, wu784, qian85, nof, ramani, aq}@purdue.edu

Figure 1. Vipo programs are created using standard programming constructs over a 2D foor map using the Vipo editor (left), then tested in simulation
(center), and deployed to mobile robots that interact with IoT devices in the physical environment (right).

ABSTRACT
Mobile robots and IoT (Internet of Things) devices can in-
crease productivity, but only if they can be programmed by
workers who understand the domain. This is especially true
in manufacturing. Visual programming in the spatial context
of the operating environment can enable mental models at
a familiar level of abstraction. However, spatial-visual pro-
gramming is still in its infancy; existing systems lack IoT
integration and fundamental constructs, such as functions, that
are essential for code reuse, encapsulation, or recursive algo-
rithms. We present Vipo, a spatial-visual programming system
for robot-IoT workfows. Vipo was designed with input from
managers at six factories using mobile robots. Our user study
(n=22) evaluated effciency, correctness, comprehensibility of
spatial-visual programming with functions.

Author Keywords
Spatial visual programming; Robots; Internet of Things;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376670

CCS Concepts
•Human-centered computing → User interface program-
ming;

INTRODUCTION
Programming robots and Internet of Things (IoT) devices to-
gether gives rise to vast new opportunities for factory foors,
and is part of a recent trend toward Internet of Robotic Things
[16, 32]. As mobile robots and human workers become more
tightly integrated within IoT environments, the task of instruct-
ing the machines has become increasingly complex. With
more devices to coordinate, human operators must author
workfows that are inherently computational in the context of
dynamic spatial environments.

Factories typify the challenges of coordinating complex work-
fows with mobile robots delivering parts and interoperating
with manufacturing equipment. As manufacturing processes
ever more increasingly depend on customization and prod-
uct changes, the effort needed to create or modify workfows
becomes a bottleneck. Furthermore, some responsibility for
programming robots and their interactions with IoT devices
must shift to the workers directly involved with a given manu-
facturing process [7].

Bringing factory workers into the process will require the
right level of abstraction and context. Task-level programming

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 1

http://dx.doi.org/10.1145/3313831.3376670
mailto:permissions@acm.org
mailto:aq}@purdue.edu

offers a starting point. In this paradigm, expert programmers
write code for robots to perform generalized tasks, which non-
programmers can use to direct the robot [1, 9, 29]. However,
as basic programming skills become more pervasive, the need
becomes less focused on programmers vs. non-programmers,
and more on enabling domain experts to effciently specify
workfows.

We present Vipo, a spatial-visual programming system for
robot-IoT workfows. With spatial-visual programming, pro-
grams are created using visual programming constructs drawn
directly on a map of the operating environment. To start, a
foor map of the physical space is uploaded into Vipo. Then,
users can draw paths for robot movements, and specify loops
and conditionals by connecting paths with shapes. Those con-
structs can also be found in other recently developed spatial-
visual programming systems [11, 23, 10].

Vipo builds on those capabilities in two signifcant ways.

First, the Vipo language allows workers to write programs
using functions. In conventional programming, support (or
non-support) of functions is often viewed as an informal litmus
test for a “real programming language". Far from just another
language feature, functions are a crucial building block that
enables encapsulation, reuse, and scale. Steps and data related
to a meaningful sub-goal can be encapsulated in a function
defnition. Then, the function can be called repeatedly with
different parameters. Functions can even be called recursively.
Support for recursive function calls allows workers to express
programs that could not be expressed without functions (or
stack data structures).

Second, the Vipo architecture integrates IoT devices into the
programming and execution environments with no prior con-
fguration. Using the Vipo protocol, devices broadcast their
location, capabilities, and resource status (e.g., power, sup-
plies, etc.) in a format based on the Resource Description
Framework (RDF). The Vipo architecture uses those messages
to discover devices. Their status and capabilities are automati-
cally integrated into the Vipo IDE, a web-based development
environment used to create programs with Vipo. When the
programmer specifes an action that involves an IoT device, its
capabilities are populated into the editor, and its resource sta-
tus can be checked to ensure the actions are possible. Building
on the Robot Operating System (ROS) [31], the Vipo archi-
tecture compiles the user’s programs into a form that can be
executed by robots, or simulated. Our research provides path-
ways for other researchers to develop more collaborative and
interoperable settings that can improve productivity of humans
and IoT devices in small- and medium-sized organizations.

The key contributions can be summarized as follows:

• The Vipo language is a spatial-visual language for pro-
gramming robot-IoT automations with functions, as well as
conditions, loops, movement, and IoT device operations.

• The Vipo architecture, including the Vipo protocol, enables
real-time integration of mobile robots and IoT devices with
dynamic state information (e.g., locations, capabilities, re-
source availability, etc.).

• The Vipo IDE integrates 1) code creation, 2) test-
ing/simulation, 3) deployment, and 4) monitoring in an
integrated development environment, as a demonstration
of the overarching vision for factory or other robot-IoT
automation.

• Our user study with 22 participants validated the compre-
hensibility, correctness, and effciency of spatial-visual pro-
gramming with functions.

RELATED WORK
Vipo builds on prior work in visual programming languages
and interfaces, spatial-visual programming, and communica-
tion protocols between smart devices.

Visual Programming for Robots and IoT devices
Many approaches have been studied for authoring robot-IoT
workfows, such as programming by demonstration [3], col-
laborative control [15], and visual programming. This work
focuses on visual programming that enables logic and con-
trol fow. Visual programming interfaces make programming
more approachable for non-experts and thus enable workers to
author workfows for robots and/or IoT devices. Many visual
programming interfaces have been developed to program tasks
for IoT devices [5, 14, 4], robots [30, 18, 24, 22, 13, 17, 12],
or for both robots and IoT devices [38, 26, 41, 35].

These interfaces are mainly built on two authoring approaches:
form-flling and visual programming languages. Form-flling
approach allows users to fll a predefned form by adding
actions or triggers via drop-down menus [33, 38, 21]. On
the other hand, visual programming languages provide vi-
sual constructs (e.g., functions, conditions, and loops) to wire
the sensory data and actions of robots or IoT devices into
tasks, such as Blockly [8]. Since form-flling is less fexible
than visual programming languages in authoring dynamic and
complex workfows, most interfaces mentioned above have
adapted or designed visual programming languages to author
workfows in various formats, such as blocks [24, 8], data-fow
[22], fow-chart [5], event-based, [12], or state-fow [26].

Although these visual programming languages could represent
workfows in many formats, they lack suitable visual notations
to represent the activities occurring within a spatial environ-
ment, such as delivering parts by mobile robots and interacting
with machines. We design Vipo to provide users with handy
notations to program workfows while maintaining the power
of a programming language in the spatial domain.

Spatial-Visual Programming
The ability to sense the spatial relationship between objects
and environments is one of the key benefts of programming
via augmented reality (e.g., V.Ra [10]), virtual reality (e.g.,
Ivy [14]), or 3D map (e.g., [39]). Such beneft is automatically
gained when authoring in 3D space, but is less obvious to
obtain in 2D space. Given that users are more familiar with
authoring via 2D interface and have easier access to 2D author-
ing tools (e.g., computers), it would be valuable to embrace
the beneft of spatial-awareness in a 2D space.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 2

Spatial-visual programming in 2D space is still in its infancy.
A few research projects have explored this area. For exam-
ple, Vizir [11] allows air traffc controllers (ATC) to author
automation on top of a geographic airport map with a set of
ATC-specifc visual constructs. By placing the visual con-
structs above the map, Vizir tries to maximize the closeness
of the control and actions, as well as the predictability of the
automation. In addition, Ruru [13] designed spatial metaphors
for input sensors to allow the position and orientation of an
input relative to a device to be expressed visually. Kitty [23]
allows users to sketch animated drawings to illustrate the spa-
tial and temporal relationship between entities. RoboShop
[25] supports robot housework assignment by sketching on a
bird’s-eye view of the environment.

Although these approaches enabled users to create simple
workfows or illustrations, they did not support functions that
are essential for a programming language. Functions are sup-
ported in most textual languages and non-spatial visual pro-
gramming languages mentioned earlier. Given that manufac-
turing workfows have the tendency to become more complex
and customizable [7], functions can play an important role
due to its reusability, modularity, and fexibility. In this paper,
we designed and implemented functions in a spatial space.
Along with other spatial constructs, the Vipo language aims to
build an accurate conceptual model of the spatial relationship
between programmed tasks and the environment.

IoT Protocols & ROS
IoT protocol is one of the key components to bridge the digital
programming interface and the physical execution environ-
ment. Specifcally, to program a workfow, users need to have
access to the capabilities and sensory data of robots and IoT
devices. In addition, these capabilities and sensory data should
be represented in a format that is understandable by users.

Many protocols have been proposed to facilitate communi-
cation between connected systems [37, 19, 36, 34, 40]. For
example, MQTT [19] is a publish-subscribe messaging proto-
col that is suitable for mobile applications. In addition, several
protocols have been created to describe data/message in spe-
cifc formats. For example, RDF [27] is a standard model for
data interchange on the Web, while IoT-Lite [2] is a variation
of RDF to describe IoT resources, entities and services.

In this work, we take advantage of the Publisher/Subscriber
functionality provided by ROS [31] to enable status sharing
and task coordination. Furthermore, we adapt the RDF proto-
col to describe the status and capabilities in a way that Vipo
can interpret. This modifed RDF message enables IoT devices
to be automatically discovered and added into Vipo.

DESIGN OF VIPO
The key contribution of this work is the introduction func-
tions—including a notation and interactions—to spatial-visual
programming for robot-IoT workfows. Later in this paper, we
will explain the language design and architectural challenges
that were entailed to bring functions to spatial-visual program-
ming. To establish context for that discussion, we will frst
explain the design goals of Vipo, and the more foundational
elements of the Vipo language.

Requirements and design goals
The requirements and design goals were gathered through a
series of visits by a group of at least three researchers to six
factories. These included manufacturers of construction equip-
ment, automobiles, electronic equipment, and components.

The visits were motivated by other collaborations related to
robot-IoT automation, but on each occasion, the researchers
asked questions related to the frms’ challenges regarding
specifcation of robot-IoT workfows.

Representatives also visited the lab where Vipo was developed
during the development of Vipo. The researchers gave demon-
strations for plant managers and executives, and received feed-
back that guided our understanding of the requirements.

The visits provided design hints that guided the design of
Vipo. For example, representatives from a consulting frm
that supports small- and medium-sized enterprises informed
us about the cost structure of equipment acquisition, which
led to key decisions related to the Vipo architecture.

Language design
Transitional Constructs (move)
Transitional constructs represent operations that transit from
a source to a destination. They are typically used to plan the
motions of mobile robots, including “move", “pick", “drop",
and “carry". All four constructs can be found from the tool-
bar on the left of Figure 10. For example, “pick" means the
robot picks objects from a source and moves to a destination.
“Drop" means the robot moves from source and drops objects
to destination. When users need the robot to pick from source
and drop at destination, they can use “carry", which is a com-
bination of “pick" and “drop". Transitional constructs can
represent the spatial relationship between devices, such as
the direction and distance. Figure 2 shows four transitional
constructs between the paint inventory to paint mixer.

Figure 2. Examples of four transitional constructs.

There are two reasons why we design distinct notations for
“pick", “drop", and “carry", rather than reusing “carry" as
a universal notation. First, these notations leverage spatial
proximity. Specifcally, “pick" is spatially closer to the source,
“drop" is closer to the destination, and “carry" sits in the middle
(Figure 2). Second, a distinct shape may enhance readability
and memorabilityso that users can immediately tell if a nota-
tion is a “pick", “drop", or “carry". To strengthen the concept
that “carry" is a combination of “pick" and “drop", the symbol
of “carry" is also a combination of the symbols of “pick" and
“drop".

In-place constructs (IoT operations)
Upon receiving materials from a robot, an IoT device can use
them for in-place operations such as consuming, processing,

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 3

and/or packing. A “Timer" symbol reveals an estimated execu-
tion time of this operation. Upon clicking the Timer symbol,
a popover allows users to choose an operation, duration, and
other parameters. Figure 3 shows an example in which the
paint mixer is programmed to mix paint for about 5 minutes.

Figure 3. Example of in-place construct: mix paint for 5 minutes. (a)
start to create a timer, (b) use popover to select a machine capability and
enter required parameters, (c) show estimated time in timer.

Control-fow constructs (if and loops)
Vipo supports control-fow through “if" and “while". Both
constructs use a condition to select the next execution path.
Conditions may include operators, numerical values, and/or
device properties (e.g., printer status, oven temperature, avail-
able storage capacity on a shelf, etc.). Figure 5 shows an
example in which the robot is asked to drop the paint can at
mixer A if its jobStatus (i.e., completion progress) is greater
than 80 percent, otherwise drop at mixer B.

Figure 4. Example of "if". (a) The if condition decides which of two
branches to follow, (b) Users select a property of a device, a logic opera-
tor, and enter a value to specify the if condition.

Besides “if" and “while", the aforementioned transitional con-
structs could also be considered as one kind of control fow
constructs: “goto". In most cases, a workfow of a robot is a
linear sequence of actions. However, sometimes users may
draw a path (e.g., one of transitional constructs) that goes back
to its prior action, which forms a loop. When this backward
“goto" path is combined with “if", the workfow is functionally
equivalent to a “while" loop.

Spatial Functions
This section shows how the Vipo language supports function
defnition and function call in the spatial domain.

Function defnition
A function is used to represent a workfow that can be tested
and executed alone, or reused by other functions via function
call. A function can include one or more primitive constructs,
or even functions. Each function has a distinct color to differ-
entiate from other functions. The constructs belonging to a
function have the same color as the function. To support peo-
ple with color blindness, users can use different color value.

Functions are displayed as a list on the top-right panel of the
editor (Figure 10). The user can click on a function to display

its content in the main workspace within a tab. A click on
another function opens a new tab. All functions for the same
environment share the same layout map and machines, and are
organized by tabs.

Similar to textual programming languages and other non-
spatial visual languages, defning functions with parameters
can make the workfow more fexible and customizable. There
are two types of parameters: value and location; both of them
start with a dollar sign “$".

• Value parameter (e.g., $n). A value parameter is used to
store a number. With the help of value parameter, users
may replace a constant number with an algebraic expres-
sion. An algebraic expression can be a constant number,
a variable, or algebraic operation on algebraic expressions
(e.g., $n × 2 + 3). For example, the number of objects to
pick/drop/carry can be “$n" instead of a constant number
(Figure 5). Likewise, the condition of “if" and “while" can
use an algebraic expression.

• Location parameter (e.g., $start, $end). A location param-
eter is used to store a machine. With the help of location
parameter, users may change some actions that happen on
one machine to happen on another machine. For example,
a robot may visit and interact with machine A, machine
B, and machine C in linear order. Rather than visiting a
sequence of fxed machines, users may convert machine B
as a location parameter (e.g., $middle). In such case, if we
pass machine D into $middle, the robot will eventually visit
and interact with machine A, D, and C.

Figure 5. Function defnition. Defne a value parameter “$n" for func-
tion “GetPaint" (left); use “$n" in pick, drop, and if-condition (right).

Function call
A function can reuse existing workfows via function call. If
users want to call a function, they can right-click the desired
function in the function list and select "Call this function"
from the context menu. Then users can click on the map
to specify the start and end of the function. This drawing
operation is the same as transitional constructs. The visual
notation of a callee (i.e., the function being called) also looks
like a transitional construct, as shown in Figure 6a. The visual
notation includes the function name and an “Expand" button.
Once clicking on the “Expand" button (Figure 6b), the internal
defnition of the callee will be displayed (Figure 6c). This
allows users to quickly peek the defnition without switching

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 4

between functions. The path color of a callee remains the
same as the callee, which makes it distinct from the constructs
belonging to the caller (i.e., the function that calls callee).

Figure 6. Function call and assign values. (a) call function “GetPaint",
(b) click to expand the detail, (c) the detail of “GetPaint" is displayed
within lightbox

To further customize the callee workfow, users can pass val-
ues and locations to its parameters. Upon clicking the callee
notation, a popover appears to allow editing of the parameters.
Similarly, users can select a different device for a location
parameter. Once a location parameter is assigned to a new
device, the workfow to be executed is changed to visit and in-
teract with the new device. This change can also be visualized
if users click the “Expand" button to see the expanded detail of
callee. This change only affects execution of callees within the
current caller; the function defnition is not otherwise affected.

In addition, since users can expand a callee to see its internal
detail, it enables a unique way of assigning location parameter.
Users can click the “SwitchDevice" button near the bottom-
right corner of each device. Then users can click on a different
device and assign the new device to the corresponding location
parameter, as shown in Figure 7. The originality of our ap-
proach is that a location parameter can be spatially visualized
and also can be assigned to a new device spatially. Once the
location parameter is successfully updated, the constructs that
are related to this location parameter will be automatically
switched to the new device.

ARCHITECTURE
The system can be treated as a three-layer architecture, as
shown in the Figure 8. From top to bottom, it includes a task
planning layer (i.e., Vipo), a task control layer (i.e., ROS Mas-
ter), and a task execution layer (e.g., robots and IoT devices).

The task planning layer is part of the Vipo IDE, a web-based
development and simulation environment that allows users to
program tasks for robots/IoT devices. More details are given
in later section.

The task control layer is ROS Master which acts as the
bridge of the two-way communication between Vipo and
the robots/IoT devices. When RDF message is sent from
robots/IoT, ROS Master maintains a global context that keeps
track of all the connected devices. ROS Master only sends
the difference of two adjacent RDF messages from the same
device to Vipo to reduce network traffc.

When a task script is sent from Vipo, ROS Master creates a
thread for each new task. The task script receives the global
context to fetch the details of the corresponding device. Each

Figure 7. Assigning a new location in expanded callee view. a) The callee
“MixPaint" before expanding, b) click on the “SwitchDevice" button in
the expanded view of callee, c) click on a new device, d) location param-
eter is successfully changed and the constructs are switched to the new
device automatically.

line of task script is translated into ROS-specifc code and sent
to a corresponding machine.

The task execution layer consists of physical or simulated
devices (robots/IoT devices). Each device holds the spatial
information (e.g., location), sensory data (e.g., temperature
and job status), and functionalities (e.g., packing a box, 3D
printing). IoT devices and robots periodically transmit RDF
messages to ROS Master, while receiving command scripts
from ROS Master.

In our system, we adopted a modifed version of RDF to suit
our application. Figure 9 presents a sample RDF message
for a paint mixing machine. The modifed RDF message has
device-information felds (ID, name, description, location etc.),
machine-specifc methods and properties. Methods are the
functions that the machine is capable of performing (like mix-
paint, set-temperature, start, stop etc.) while properties are the
real-time operation parameters (like job-status, temperature,
coolant-level, run-time, health-status etc.)

RDF Messages serve a centrol role in Vipo. The felds dis-
cussed above are directly used by Vipo for different purposes.
Specifcally, felds like the location, iconUrl, and iconSize are
used for rendering the icons on the map. The properties felds
are used for populating the drop-downs of the control-fow
constructs (e.g., jobStatus used in Figure 5). Moreover, the

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 5

IoT IoT Robot Robot Simulation

Web Editor (VIPO)

ROS Master

RDF msg

Task script

ROS script

Control

Execution

Planning

RDF msg

Property.msg

string name
float32 value

Method.msg

string name
string vipo_msg_type
string topic_name

RdfMsg.msg
string id
string name
string description
float32[] location
string size
string imgUrl
bool done
bool error
Property[] properties
Method[] methods

id: "paintMixer02",
name: "Paint Mixer B",
description: "Mixes paint for a

given duration of time",
location: [14.7755,-5.8476,0.5699],
size: "medium",
imgUrl: "/imgs/mixer.png",
done: false,
error: false,
properties:
-
name: "jobStatus",
value: 50

methods:
-
name: "dispense",
vipo_msg_type: "object",
topic_name: "/dev05_dispense"
-
name: "mixPaint",
vipo_msg_type: "time",
topic_name: "/dev05_mixPaint"

Figure 8. The three-layer architecture.

methods felds are used to populate the drop-downs of in-situ
operation constructs as callable functions.

Given that the capabilities of IoT devices and robots often
need users to specify some values, the methods felds of RDF
message can automatically provide the parameter interface
for capabilities. Vipo uses the vipo_msg_type feld as the pa-
rameter interface that specifes what kind of value the method
requires. For example, the "mix-paint" method of a paint
mixer requires users to specify a time. Similarly, a "move"
method of a robot needs to specify the location to move. So
far we have supported four types: time, object, location, and
value, which can be easily extended to support more types.

Figure 9. The schema of modifed RDF (left) and a sample RDF message
(right).

Communication Between Layers
Each layer sends and receives messages from the adjacent
layer(s). Communication is bidirectional.

Bottom-up: Broadcasting spatial and contextual informa-
tion. The goal of this communication is to broadcast the
spatial and contextual information from the execution layer

to the planning layer. The broadcasted messages are used to
setup the programming environment and refect the real-time
status of robots/IoT devices. The format of the message is
based on a modifed version of RDF, as described earlier.

ROS Master forwards these RDF messages to Vipo, which
further renders each robot/IoT at the corresponding location
defned in RDF messages. Moreover, the functionalities in
RDF messages are converted to callable functions that can be
used to program a task.

Top-Down: Deploying Task. Programs created by workers
are transmitted from the planning layer to the execution layer.
First, the Vipo architecture compiles the visual program into a
textual task script. It is then sent to ROS Master, which con-
verts each line of script into ROS-specifc commands, which it
sends to the corresponding robot or IoT device. As the devices
execute the commands, execution status (e.g., success, error)
is sent back to ROS Master as an RDF message.

Vipo IDE - TASK PLANNING LAYER
Vipo IDE has three work modes: Edit, Test, and Deploy, as
shown in the top-right corner of Figure 10. In Edit mode, users
can program workfows in the Vipo language. In Test mode,
users can simulate what the workfow would do before being
deployed to a physical environment. In Deploy mode, the vi-
sual programs are compiled and sent to robots/IoT devices for
execution. At the same time, the real-time status of robots/IoT
devices is monitored and viewed in the editor. This section
introduces how to setup the interface for a new environment,
and then introduces three work modes of the Vipo IDE.

Figure 10. The Vipo IDE displays a toolbar (left), three modes (top-
right), and a 2D layout map with IoT machines at the corresponding
location (center).

Setup
Vipo receives the information from the execution layer to set
up the environment.

The layout map as the background canvas
At the start of the application, the map of the environment is
displayed, as shown in Figure 10. The map is generated by

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 6

the robot after scanning the environment (e.g., via LIDAR).
At the same time, while the robot is scanning, the locations of
IoT devices are obtained (similar to [20]). Both the map and
the locations are sent to ROS Master and eventually to Vipo,
as described in the architecture.

IoT Device Registration
Similar to the map generation, IoT devices periodically broad-
cast their contextual information (e.g., id, name, status, and
supported capabilities) to ROS Master then to Vipo. There-
after, Vipo automatically renders the IoT devices as icons at
the corresponding locations on the 2D layout map, as shown
in Figure 10. The icon image is also defned by the IoT itself.

Edit Mode – Program with The Vipo language
Based on the layout map and icons of IoT devices in the en-
vironment, we designed the Vipo language to program work-
fows using spatially oriented constructs. The syntax and
programming workfow were introduced above.

Test Mode – Simulate Execution
Testing is a mandatory activity before deployment. Users can
click the “Test" button to enter test mode and simulate how
the workfow will be executed by a robot. Three control but-
tons are provided, including playing all steps at once, playing
one step at a time, and starting over from the beginning (Fig-
ure 11a). A robot moves along the path with animation. If
there is a control-fow constructs, the condition is evaluated
to choose which branch to follow (Figure 11c). The condition
may involve the properties of machines, which are dynamic
and external. To enable testing, users can enter test value to
mock the properties (Figure 11b). By passing different test
values, the robot is able to move along both branches of an
“If" statement so that the test coverage is more comprehensive.

Figure 11. Test mode. a) Users switch to the Test mode and use three but-
tons to control the simulation, b) users set test values for dynamic proper-
ties of devices to simulate different execution results, c) once users click
the play button, a robot moves along the path and chooses the proper
branch to follow based on the if condition.

Before the robot moves to the next construct, Vipo checks
the syntax of the next construct and evaluates its value. For

example, if the number to pick/drop is missing or the condition
of “If" statement is not completely flled, a red bulb icon will
be displayed with error message (Figure 10). Moreover, if the
algebraic expression has wrong syntax or the variable is not
defned, the red bulb icon will also be shown to give the error
message. The robot pauses movement until users fx the error.

Unlike other programming languages where the programmed
script and the simulation result are visualized in separate in-
terfaces, the Vipo IDE can show the programmed constructs
and simulation result in the same interface. In other words,
the simulation is running directly on top of the programming
constructs within the environment. This direct coupling may
enhance the predictability of the simulation result. In a loose
sense, Vipo supports “What-You-See-Is-What-You-Expect-To-
Get” in the environment.

Deploy Mode - Execute and Monitor Status
The Vipo IDE can monitor the real-time execution status of
robots and machines, and allows users to visually associate
the robot’s movement with objects in the physical operating
environment. If the physical robot is moving, it is shown in
the interface at the corresponding location. Since the visual
constructs of the task are also displayed in the interface, users
are able to recognize which construct the robot is currently
executing. This direct mapping between the execution in phys-
ical environment and the programming constructs in digital
layout can help users better understand the current state and
predict the next state.

Moreover, if a machine reports an error during execution,
the Vipo IDE shows a red mark to highlight that machine.
This real-time error reporting allows users to notice the error
quickly and fx it to increase productivity.

The Edit mode and Deploy mode are separated in the environ-
ment, so that programmers can focus on authoring programs
without the distraction of animated updates about the physical
robot’s location. When switching back to the Edit mode, the
RDF messages at that time are cached and used to render the
machines statically in Edit mode. Subsequent RDF messages
are ignored until switching back to deploy mode.

USE CASES
To show how Vipo can be used to program tasks for robots/IoT
devices, we present and explain two use cases of our system.

Scalability and Reusability - Recursive Function
The frst use case solves the classic Tower of Hanoi puzzle1, a
commonly used example used to teach recursion in computer
science courses. This puzzle represents a simple but non-
trivial task for robots and IoT devices. The primary operations
used for Towers of Hanoi—pick, move, and drop disk—are a
natural ft for robotics, and have real-world analogs in factory
warehouses (i.e., stacking crates). The three rods can be con-
sidered as IoT devices. Figure 12 shows a recursive solution
expressed in the Vipo language.

1https://en.wikipedia.org/wiki/Tower_of_Hanoi

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 7

https://1https://en.wikipedia.org/wiki/Tower_of_Hanoi

The ability to defne parameters and use function calls enables
users to program more complex workfow in a spatial domain,
including recursive functions.

Figure 12. Recursive function calls enables a recursive solution to the
classic Towers of Hanoi.

Factory Use Case
To validate the system developed in an industrial context,
we deployed Vipo to author robot-IoT workfows for simple
material-handling applications in a small-scale emulated paint-
ing factory. The industry considered is assumed to have an
advanced factory setup with smart machinery and autonomous
mobile robot (AMR). Workfow of a typical job order com-
prised of the following sequential steps:

1) Source the parts to be painted from the Item Inventory
2) Source paint cans from the Paint Inventory
3) Mix the paint to obtain a given shade using Paint Mixer
4) Paint the parts using the Painting Machine
5) Cure the painted parts at a given temperature in the Oven

Figure 13. System Setup for the factory use-case (A) Autonomous Mobile
Robot (B) IoT Nodes (industrial machinery) (C) The Vipo IDE (D) ROS
Master

System setup (Figure 13) for the use case comprised of (a) an
omnidirectional robot capable of autonomous navigation using
LIDAR (SICK TiM561) and SLAM, (b) a 6-DOF robotic arm
mounted on the mobile base for pick and drop operations, (c)
Six ESP32 microcontrollers emulating six smart industrial
machines, (d) ROS-Master for task fow and execution, and
(e) the Vipo IDE for programming the workfow.

Prior to physical deployment, the workfow was programmed
and simulated in edit and test modes of Vipo. Then the pro-
gram was deployed to the robot to complete the programmed
sequence in the emulated painting factory.

USER STUDY #1: VIPO VS. BLOCKLY
To understand the strength and limitation of spatial-visual
language, we conducted a user study that compared Vipo
with a non-spatial visual programming tool called Blockly [8].
Here, “spatial" means the programming constructs that contain
spatial information, such as direction and distance.

Blockly is chosen as the non-spatial baseline due to three
reasons. First, at the visual programming language level, the
Vipo language and the block-based visual language of Blockly
are imperative programming language and thus able to specify
task for robots as a set of actions. This is unlike other datafow-
based or event-triggered visual languages, such as Node-RED
[5]. Second, Blockly can create customized blocks to represent
machines, functions, and properties, which can be used to
program the same tasks as Vipo. Third, Blocky is a well-
established visual programming tool and has been widely
adapted for programming educational purposes, which serves
as a solid baseline for evaluating Vipo in terms of usability.

In this setting, the key distinction between Vipo and Blockly is
that Vipo uses spatial constructs directly on a 2D map, while
Blockly uses non-spatial constructs in a separate view.

Experiment
Twelve participants were recruited for the study, of which most
are engineering students between the ages of 19-22 years. Of
the 12 total participants, 11 participants were novice program-
mers (0-1 year of experience), and only 1 participant was an
experienced programmer (3+ years of experience). 3 users
had previous experience of visual programming in Scratch (<
6 months of usage).

A within-subject study was conducted in which each partici-
pant was asked to use both Vipo and Blockly to program tasks
in counterbalanced order. In other words, six participants used
Vipo frst and then Blockly, while the other six participants
used Blockly frst and then Vipo.

For each interface, participants had to watch a video tutorial,
fnish six tasks (Task 1-Task 6), and fnally fll in a question-
naire regarding the user experience and cognitive dimensions
for interface evaluation [6]. In the frst fve tasks, participants
were asked to program workfows using basic programming
constructs (e.g., move, pick, drop, and If-Else), as well as
more advanced programming constructs (e.g., Function calls).
For each task, we provided a written document with the goal
and general approach, but no hints on how to structure the pro-
gram. The frst two tasks (Task 1 and Task 2) were designed
such that each was a standalone workfow (e.g., "PickAnd-
Pack" and "StoreItem"), but also could be reused in Tasks 3-5
to form a more complete workfow via function calls. Par-
ticipants were allowed to use the Test-Mode for assistance
(debugging). Once participants fnished all fve tasks, they
were asked to read and comprehend a task programmed by the
authors (Task 6). While participants were programming using
the interface and flling in the questionnaire, the computer
screen was recorded.

The frst fve tasks are the same for both conditions, which
are used to compare the system under the same context. The
last reading task is to test comprehension. However, in order

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 8

Premature commiment

Progressive evaluation

Role−expressiveness

Closeness of mapping

Error−proneness

Hard−mental operations

Diffuseness

Viscosity

Visibility

0 2 4

condition
Blockly
VIPO

to prevent participants from repeating their answers from the
previous interface, we kept the bulk of the programs the same
while used slightly different numbers in If-Else condition. The
hypothesis of this experiment is spatial-visual programs cre-
ated in the Vipo language are more comprehensible than func-
tionally equivalent programs written in a non-spatial visual
programming language.

Figure 14. Results of usability test in 9 cognitive dimensions. None of
them have signifcant difference.

Results & Discussion
In this section, we frst report the results in comprehension
test, then report usability test results.

Spatial constructs make programs more comprehensible
In the comprehension test (Task 6), participants were given
a programmed workfow and asked to answer fve questions,
such as identifying the optimal steps, number of machines
involved, and the source and destination of the program based
on different if-condition. Each question counts as 1 point.
We use the total score of the fve questions to represent a par-
ticipant’s understanding of the program. A paired t-test was
conducted to compare the comprehension test results in Vipo
and Blockly. There was a signifcant difference in the scores
for Vipo (M=3.83, SD=1.03) and Blockly (M=2.83, SD=1.53),
t(10)=2.57, p = 0.03 < 0.05. The results suggest that partic-
ipants had a better understanding of the program when the
workfow is programmed in the Vipo language, which sup-
ports our hypothesis that spatial visual programming language
improves user’s comprehension of the program. The reason
might be that the Vipo language shows the programmed con-
structs in the same interface, therefore participants can easily
infer the results of the workfow without any context switch-
ing. On the contrary, participants have to constantly switch
between the map and the constructs to understand the execu-
tion result of the workfow in Blockly, which increases the
chance of making mistakes.

Usability of Vipo is on par with Blockly
Next, we look at the cognitive usability test results reported
by the participants. After completing all of the programming
tasks (Tasks 1-5), participants were asked to evaluate the sys-
tem by answering questions in 9 different cognitive dimen-
sions [6]. Results are summarized in Figure 14. No signifcant

differences were found between Blockly and Vipo in each
dimension (with all p > 0.05), which indicates that both inter-
faces resulted in similar user experiences.

Correctness and Time spent
Finally, we acknowledge the time spent and correctness in
both interfaces. The time spent is defned as the total time
spent on fnishing Tasks 1-5. Correctness is defned as the
number of tasks that were done correctly by the participants
in all fve tasks. Two paired t-tests were conducted respec-
tively to see whether there were signifcant differences in
time spent and correctness. No signifcant differences were
found in the correctness for Vipo (M=3.25, SD=1.29) and
Blockly (M=3.08, SD=1.44); t(10)=0.4, p = 0.7. There was
a signifcant difference in the total time spent (seconds) for
Vipo (M=1748, SD=559) and Blockly (M=2566, SD=1075);
t(10)=0.4, p = 0.009 < 0.05. The results suggest that partici-
pants spent less time in completing all fve tasks with Vipo.

USER STUDY #2: FUNCTION VS. NON-FUNCTION
In this study, we investigated the pros and cons of supporting
functions in the spatial domain. Participants were asked to
program tasks in two conditions: using Vipo with functions
(condition A) and without functions (condition B).

Experiment
Ten (10) participants were recruited. Most were engineering
students aged 20-31 years old. Six (6) were novice program-
mers (0-1 years experience), two (2) were beginners (1-3 years
experience), and two (2) were experienced programmers (3+
years experience). Two (2) had previous experience with vi-
sual programming in LabView (<6 months of usage).

Participants started with a video tutorial that explained all
features of the Vipo language except functions, and then com-
pleted three tasks (Task1-Task3) as warm-ups. The authors
verifed the accuracy of warm-up tasks and explained any is-
sues that occurred. Next, each participant was asked to use
both condition A and condition B to program tasks in coun-
terbalanced order. They had to complete three tasks in each
condition (Tasks 4a-6a for condition A and Tasks 4b-6b for
condition B), then fll in a questionnaire, and proceed to the
other condition. For condition A, participants needed to watch
a second video tutorial that included functions. Once they
have done both conditions, an exit questionnaire was given
to compare both. While participants were programming, the
computer screen was recorded.

Tasks in both conditions were the same, except that condi-
tion A required the use of function calls while condition B
required the use of basic notations directly. For example, in
Task 5, participants were told that they act as a maintenance
worker trying to fx a broken machine. Therefore, they need
to program robots to collect tools as well as three types of
replacement parts from inventories, use a cutting machine to
cut to specifc shapes, and then carry to the broken machine. In
condition A, participants can defne a function called “getPart"
and call it three times with different numbers and locations.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 9

https://t(10)=2.57

Results & Discussion
This section reports results from the questionnaire, and mea-
sures of report effciency and accuracy based on screen record-
ing and analysis of programs.

Functions had less viscosity
The questionnaire asked participants to answer questions in
the 9 cognitive dimensions. A paired t-test was conducted for
each dimension. We did not fnd a signifcant difference in
eight dimensions. However, there was a signifcant difference
in viscosity between condition A (M=4.50, SD=0.53) and
condition B (M=3.70, SD=1.16), p = 0.04 < 0.05. The reason
might be that participants in condition A only need to update
inside the function being called, while participants in condition
B need to update all occurrences.

Functions made programming faster
The total time of completing Tasks 4-6 was measured. A
paired t-test was conducted to compare the total time. No sig-
nifcant difference was found between condition A (M=17.1)
and condition B (M=20.9), t(9)=-2, p = 0.1. However, if we
look at Task 5 where the participants were asked to program
robots to do the same operation three times, the usage of func-
tion saves time for doing the same operation. As Figure 15
shows, participants in condition A spent about one and a half
times longer on the frst function call (2.63), compared to con-
dition B (1.96). However, for the remaining two sub-tasks,
condition A took about half of the time as that of condition
B. This shows that the learning curve of function is higher at
frst but it helps participants be more effcient once mastered.
Participants in condition A can reuse the workfow while those
in condition B have to repeat the same steps. The time in
condition A of making a function call is constant while the
time in condition B is proportional to the number of steps.

0

1

2

3

#1 #2 #3
Sub−task

Ti
m

e
(M

in
ut

e)

W/ Function
W/O Function

Figure 15. The time spent on three subtasks of Task 5. Learning to use
function takes time, but the efforts pay off when the same operation is
being used several times.

Functions were more error-prone
The accuracy of the programs was measured. A paired t-test
was conducted to compare the number of correct tasks in two
conditions. There was a signifcant difference in the accuracy
between condition A (M=2.20, SD=0.63) and condition B
(M=2.70, SD=0.48), t(9)=-2, p = 0.05. The result suggests
that participants made more errors when using functions, com-
pared to using just basic constructs. This is surprising but

understandable. Participants need to learn how to accurately
use function in a short time which includes: defning a pa-
rameter for the function, replacing the constant number in the
function with the parameter, and fnally passing a different
value to the parameter. These extra steps were challenging
for novice programmers and increased the error proneness.
After checking the created programs, we found one bug that
was particularly common and resulted in the signifcant dif-
ference: fve participants in condition A forgot to replace the
constant number in the function with the defned parameter.
This suggests improving the editor by highlighting unused
variables.

LIMITATIONS AND FUTURE WORK
The system is designed to program tasks for one robot. In fact,
a task may need different types of robots or a collaboration of
multiple robots. Such complexity is abstracted away from the
task planning layer (Vipo), but a more intelligent ROS Master
is required to manage the execution. Furthermore, we assume
a robot is executing one task at a time. In a real factory, the
robot may be shared among different tasks, in which effcient
scheduling and optimization algorithms are required [28].

Vipo was not tested with workers within real factories, because
some issues should be addressed frst, such as adapting exist-
ing machines to use RDF messages, and handling exceptions
during execution.

The current interface has limited visualization on the real-time
status of machines (only the location and success/failure). In
the future, it would be more informative to allow users to
customize the visualization of more kinds of status.

In the future, we envision bringing humans into the work-
fow more explicitly. Workers would broadcast their location
and other available status information via RDF messages. In
such case, users will be able to program tasks to control the
collaboration between humans, mobile robots, and machines.

CONCLUSION
Vipo supports modular visual programming of robot-IoT work-
fows in the spatial context of the operating environment.
Using the Vipo IDE, users can create, test/simulate, and de-
ploy/monitor automations visually, spatially, and interactively.
We implemented two use cases to demonstrate that 1) the Vipo
language can support complex programs involving recursive
functions and 2) the tasks programmed in Vipo can be executed
by robots and machines in physical environments. The user
study (n=22) found that 1) spatial constructs improve program
comprehensibility, and 2) functions speed up programming.

ACKNOWLEDGMENTS
We would like to thank Senthil Chandrasegaran for valuable
feedback, and Manav Wadhawan for assistance fabricating and
assembling the prototype for use cases. This work was par-
tially supported by NSF FW-HTF 1839971 and OIA 1937036,
as well as Purdue Research Foundation (College of Engineer-
ing EFC) and the Donald W. Feddersen endowed chair.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 10

REFERENCES
[1] Colin Archibald and Emil Petriu. 1993. Model for

skills-oriented robot programming (SKORP). In
Applications of Artifcial Intelligence 1993: Machine
Vision and Robotics, Vol. 1964. International Society for
Optics and Photonics, World Scientifc, Orlando, FL,
392–403.

[2] Maria Bermudez-Edo, Tarek Elsaleh, Payam Barnaghi,
and Kerry Taylor. 2016. IoT-Lite: a lightweight semantic
model for the Internet of Things. In 2016 Intl IEEE
Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing,
Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE,
IEEE Computer Society, Washington, D.C., 90–97.

[3] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and
Stefan Schaal. 2008. Robot Programming by
Demonstration. In Springer Handbook of Robotics,
Bruno Siciliano and Oussama Khatib (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 1371–1394. DOI:
http://dx.doi.org/10.1007/978-3-540-30301-5_60

[4] Michael Blackstock and Rodger Lea. 2012. WoTKit: A
Lightweight Toolkit for the Web of Things. In
Proceedings of the Third International Workshop on the
Web of Things (WOT ’12). ACM, New York, NY, USA,
3:1–3:6. DOI:
http://dx.doi.org/10.1145/2379756.2379759

[5] Michael Blackstock and Rodger Lea. 2014. Toward a
Distributed Data Flow Platform for the Web of Things
(Distributed Node-RED). In Proceedings of the 5th
International Workshop on Web of Things (WoT ’14).
ACM, New York, NY, USA, 34–39. DOI:
http://dx.doi.org/10.1145/2684432.2684439

[6] Alan F. Blackwell and Thomas R. G. Green. 2000. A
Cognitive Dimensions questionnaire optimised for users.
(2000). http://ppig.org/library/paper/
cognitive-dimensions-questionnaire-optimised-users

[7] Thorsten Blecker and Nizar Abdelkaf. 2006. Mass
Customization: State-of-the-Art and Challenges. In
Mass Customization: Challenges and Solutions,
Thorsten Blecker and Gerhard Friedrich (Eds.). Springer
US, Boston, MA, 1–25. DOI:
http://dx.doi.org/10.1007/0-387-32224-8_1

[8] Blockly. Retrieved 2019. Blockly. (Retrieved 2019).
https://developers.google.com/blockly/

[9] Simon Bøgh, Oluf Skov Nielsen, Mikkel Rath Pedersen,
Volker Krüger, and Ole Madsen. 2012. Does your robot
have skills?. In Proceedings of the 43rd International
Symposium on Robotics, Vol. 6. Verlag, VDE Verlag
GMBH, Berlin, Germany, 1–6.

[10] Yuanzhi Cao, Zhuangying Xu, Fan Li, Wentao Zhong,
Ke Huo, and Karthik Ramani. 2019. V.Ra: An In-Situ
Visual Authoring System for Robot-IoT Task Planning
with Augmented Reality. In Proceedings of the 2019 on

Designing Interactive Systems Conference (DIS ’19).
ACM, New York, NY, USA, 1059–1070. DOI:
http://dx.doi.org/10.1145/3322276.3322278

[11] Stéphane Conversy, Jérémie Garcia, Guilhem Buisan,
Mathieu Cousy, Mathieu Poirier, Nicolas Saporito,
Damiano Taurino, Giuseppe Frau, and Johan Debattista.
2018. Vizir: A Domain-Specifc Graphical Language for
Authoring and Operating Airport Automations. In UIST
2018, 31st ACM Symposium on User Interface Software
and Technology (2018-10) (UIST ’18 The 31st Annual
ACM Symposium on User Interface Software and
Technology). ACM SIGCHI, New York, NY, USA,
Pages 261–273/ ISBN: 978–1–4503–5948–1. DOI:
http://dx.doi.org/10.1145/3242587.3242623

[12] C. Datta, C. Jayawardena, I. H. Kuo, and B. A.
MacDonald. 2012. RoboStudio: A visual programming
environment for rapid authoring and customization of
complex services on a personal service robot. In 2012
IEEE/RSJ International Conference on Intelligent
Robots and Systems (2012-10). IEEE, Vilamoura,
Algarve, Portugal, 2352–2357. DOI:
http://dx.doi.org/10.1109/IROS.2012.6386105

[13] J. P. Diprose, B. A. MacDonald, and J. G. Hosking.
2011. Ruru: A spatial and interactive visual
programming language for novice robot programming.
In 2011 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (2011-09). IEEE,
New York, NY, USA, 25–32. DOI:
http://dx.doi.org/10.1109/VLHCC.2011.6070374

[14] Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle
Annett, Pourang Irani, and George Fitzmaurice. 2017.
Ivy: Exploring Spatially Situated Visual Programming
for Authoring and Understanding Intelligent
Environments. In Proceedings of the 43rd Graphics
Interface Conference (2017) (GI ’17). Canadian
Human-Computer Communications Society, School of
Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, 156–162. DOI:
http://dx.doi.org/10.20380/GI2017.20 event-place:
Edmonton, Alberta, Canada.

[15] T. Fong, C. Thorpe, and C. Baur. 2003. Multi-Robot
Remote Driving with Collaborative Control. IEEE
Transactions on Industrial Electronics 50, 4 (Aug.
2003), 699–704. DOI:
http://dx.doi.org/10.1109/TIE.2003.814768

[16] L.A. Grieco, A. Rizzo, S. Colucci, S. Sicari, G. Piro, D.
Di Paola, and G. Boggia. 2014. IoT-Aided Robotics
Applications. Comput. Commun. 54, C (Dec. 2014),
32–47. DOI:
http://dx.doi.org/10.1016/j.comcom.2014.07.013

[17] Justin Huang and Maya Cakmak. 2017. Code3: A
system for end-to-end programming of mobile
manipulator robots for novices and experts. In 2017 12th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI. IEEE, IEEE, New York, NY, USA,
453–462.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 11

http://dx.doi.org/10.1007/978-3-540-30301-5_60
http://dx.doi.org/10.1145/2379756.2379759
http://dx.doi.org/10.1145/2684432.2684439
http://ppig.org/library/paper/cognitive-dimensions-questionnaire-optimised-users
http://ppig.org/library/paper/cognitive-dimensions-questionnaire-optimised-users
http://dx.doi.org/10.1007/0-387-32224-8_1
https://developers.google.com/blockly/
http://dx.doi.org/10.1145/3322276.3322278
http://dx.doi.org/10.1145/3242587.3242623
http://dx.doi.org/10.1109/IROS.2012.6386105
http://dx.doi.org/10.1109/VLHCC.2011.6070374
http://dx.doi.org/10.20380/GI2017.20
http://dx.doi.org/10.1109/TIE.2003.814768
http://dx.doi.org/10.1016/j.comcom.2014.07.013

[18] Justin Huang, Tessa Lau, and Maya Cakmak. 2016.
Design and Evaluation of a Rapid Programming System
for Service Robots. In The Eleventh ACM/IEEE
International Conference on Human Robot Interaction
(HRI ’16). IEEE Press, Piscataway, NJ, USA, 295–302.
http://dl.acm.org/citation.cfm?id=2906831.2906883

[19] Urs Hunkeler, Hong Linh Truong, and Andy
Stanford-Clark. 2008. MQTT-S-A publish/subscribe
protocol for GWireless Sensor Networks. In 2008 3rd
International Conference on Communication Systems
Software and Middleware and Workshops
(COMSWARE’08). IEEE, IEEE, New York, NY, USA,
791–798.

[20] Ke Huo, Yuanzhi Cao, Sang Ho Yoon, Zhuangying Xu,
Guiming Chen, and Karthik Ramani. 2018. Scenariot:
Spatially Mapping Smart Things Within Augmented
Reality Scenes. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 219, 13
pages. DOI:http://dx.doi.org/10.1145/3173574.3173793

[21] ifttt. Retrieved 2019. IFTTT. (Retrieved 2019).
https://ifttt.com

[22] J. Jackson. 2007. Microsoft robotics studio: A technical
introduction. IEEE Robotics & Automation Magazine
14, 4 (2007), 82–87. DOI:
http://dx.doi.org/10.1109/M-RA.2007.905745

[23] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014. Kitty: Sketching
Dynamic and Interactive Illustrations. In Proceedings of
the 27th Annual ACM Symposium on User Interface
Software and Technology (UIST ’14). ACM, New York,
NY, USA, 395–405. DOI:
http://dx.doi.org/10.1145/2642918.2647375

[24] James Floyd Kelly. 2010. Lego Mindstorms NXT-G
Programming Guide. Apress, New York City, New York,
USA.

[25] Kexi Liu, Daisuke Sakamoto, Masahiko Inami, and
Takeo Igarashi. 2011. Roboshop: Multi-Layered
Sketching Interface for Robot Housework Assignment
and Management. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’11). Association for Computing Machinery, New
York, NY, USA, 647–656. DOI:
http://dx.doi.org/10.1145/1978942.1979035

[26] Joaquin López, Diego Pérez, and Eduardo Zalama. 2011.
A framework for building mobile single and multi-robot
applications. Robotics and Autonomous Systems 59, 3-4
(2011), 151–162.

[27] Eric Miller. 1998. An Introduction to the Resource
Description Framework. Bulletin of the American
Society for Information Science and Technology 25, 1
(1998), 15–19. DOI:
http://dx.doi.org/10.1002/bult.105

[28] Gérard Morel, Carlos Eduardo Pereira, and SY Nof.
2019. Historical survey and emerging challenges of

manufacturing automation modeling and control: A
systems architecting perspective. Annual Reviews in
Control 47 (2019), 21–34.

[29] Mikkel Rath Pedersen, Dennis Levin Herzog, and
Volker Krüger. 2014. Intuitive skill-level programming
of industrial handling tasks on a mobile manipulator. In
2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, IEEE, New York, NY, USA,
4523–4530.

[30] Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and
Bruno Maisonnier. 2009. Choregraphe: a graphical tool
for humanoid robot programming. In RO-MAN
2009-The 18th IEEE International Symposium on Robot
and Human Interactive Communication. IEEE, IEEE,
New York, NY, USA, 46–51.

[31] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y.
Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software in
robotics (2009), Vol. 3. IEEE, New York, NY, USA, 5.

[32] Partha P. Ray. 2016. Internet of Robotic Things:
Concept, Technologies, and Challenges. IEEE Access 4
(2016), 9489–9500. DOI:
http://dx.doi.org/10.1109/ACCESS.2017.2647747

[33] Michaela R Reisinger, Johann Schrammel, and Peter
Fröhlich. 2017. Visual languages for smart spaces:
End-user programming between data-fow and
form-flling. In 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC).
IEEE, IEEE, New York, NY, USA, 165–169.

[34] Leonard Richardson and Sam Ruby. 2008. RESTful web
services. " O’Reilly Media, Inc.", Sebastopol, CA.

[35] Fetch Robotics. Retrieved 2019. Cloud Robotics and
Automation: FetchCore from Fetch Robotics. (Retrieved
2019). https://fetchrobotics.com/

[36] Peter Saint-Andre. 2011. Extensible messaging and
presence protocol (XMPP): Core. Technical Report.
Cisco.

[37] Zach Shelby, Klaus Hartke, and Carsten Bormann. 2014.
The constrained application protocol (CoAP). Technical
Report. Universitaet Bremen TZI.

[38] Franz Steinmetz, Annika Wollschläger, and Roman
Weitschat. 2018. RAZER—A HRI for Visual Task-Level
Programming and Intuitive Skill Parameterization. IEEE
Robotics and Automation Letters 3, 3 (2018),
1362–1369.

[39] Daniel Szafr, Bilge Mutlu, and Terrence Fong. 2017.
Designing planning and control interfaces to support
user collaboration with fying robots. The International
Journal of Robotics Research 36, 5-7 (2017), 514–542.
DOI:http://dx.doi.org/10.1177/0278364916688256

[40] Steve Vinoski. 2006. Advanced message queuing
protocol. IEEE Internet Computing 10, 6 (2006), 87–89.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 12

http://dl.acm.org/citation.cfm?id=2906831.2906883
http://dx.doi.org/10.1145/3173574.3173793
https://ifttt.com
http://dx.doi.org/10.1109/M-RA.2007.905745
http://dx.doi.org/10.1145/2642918.2647375
http://dx.doi.org/10.1145/1978942.1979035
http://dx.doi.org/10.1002/bult.105
http://dx.doi.org/10.1109/ACCESS.2017.2647747
https://fetchrobotics.com/
http://dx.doi.org/10.1177/0278364916688256

[41] Igor Zubrycki, Marcin Kolesiński, and Grzegorz
Granosik. 2017. Graphical programming interface for
enabling non-technical professionals to program robots
and internet-of-things devices. In International

Work-Conference on Artifcial Neural Networks.
Springer, Springer, Cham, New York, NY, USA,
620–631.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 541 Page 13

	Introduction
	Related Work
	Visual Programming for Robots and IoT devices
	Spatial-Visual Programming
	IoT Protocols & ROS

	Design of VIPO
	Requirements and design goals
	Language design
	Transitional Constructs (move)
	In-place constructs (IoT operations)
	Control-flow constructs (if and loops)

	Spatial Functions
	Function definition
	Function call

	Architecture
	Communication Between Layers

	Vipo IDE - Task Planning Layer
	Setup
	The layout map as the background canvas
	IoT Device Registration

	Edit Mode – Program with The Vipo language
	Test Mode – Simulate Execution
	Deploy Mode - Execute and Monitor Status

	Use Cases
	Scalability and Reusability - Recursive Function
	Factory Use Case

	User Study #1: VIPO vs. Blockly
	Experiment
	Results & Discussion
	Spatial constructs make programs more comprehensible
	Usability of Vipo is on par with Blockly
	Correctness and Time spent

	User Study #2: Function vs. Non-function
	Experiment
	Results & Discussion
	Functions had less viscosity
	Functions made programming faster
	Functions were more error-prone

	Limitations and Future Work
	Conclusion
	Acknowledgments
	References

