
The Visual Computer
https://doi.org/10.1007/s00371-019-01755-x

ORIG INAL ART ICLE

Latent transformations neural network for object view synthesis

Sangpil Kim1 · Nick Winovich1 · Hyung-Gun Chi1 · Guang Lin1 · Karthik Ramani1

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We propose a fully convolutional conditional generative neural network, the latent transformation neural network, capable
of rigid and non-rigid object view synthesis using a lightweight architecture suited for real-time applications and embedded
systems. In contrast to existing object view synthesis methods which incorporate conditioning information via concatenation,
we introduce a dedicated network component, the conditional transformation unit. This unit is designed to learn the latent
space transformations corresponding to specified target views. In addition, a consistency loss term is defined to guide the
network toward learning the desired latent space mappings, a task-divided decoder is constructed to refine the quality of
generated views of objects, and an adaptive discriminator is introduced to improve the adversarial training process. The
generalizability of the proposed methodology is demonstrated on a collection of three diverse tasks: multi-view synthesis on
real hand depth images, view synthesis of real and synthetic faces, and the rotation of rigid objects. The proposed model
is shown to be comparable with the state-of-the-art methods in structural similarity index measure and L1 metrics while
simultaneously achieving a 24% reduction in the compute time for inference of novel images.

Keywords Object view synthesis · Latent transformation · Fully convolutional · Conditional generative model

1 Introduction

The task of synthesizing novel views of objects from a single
reference frame/view is an important problem which has a
variety of practical applications in computer vision, graphics,
and robotics. In computer vision, view synthesis can be used
to generate 3D point cloud representations of objects from
a single input image [40]; in the context of hand pose esti-
mation algorithms, generating additional synthetic views can
also help reduce occlusion and improve the accuracy of the
estimated poses [12,14]. In computer graphics, view synthe-
sis has been used to apply changes in lighting and viewpoint
to single-view images of faces [24]. In robotics, synthetic
views can be used to help predict unobserved part locations
and improve the performance of object grasping with manip-
ulators [42].However, synthesizing novel views froma single
input image is a formidable task with serious complications
arising from the complexity of the target object and the pres-
ence of heavily self-occluded parts.

B Karthik Ramani
ramani@purdue.edu

Sangpil Kim
kim2030@purdue.edu

1 Purdue University, West Lafayette, IN 47906, USA

Generative models have been shown to provide effective
frameworks for representing complex, structured datasets
and generating realistic samples from underlying data dis-
tributions [7,13]. This concept has also been extended to
form conditional models capable of sampling from condi-
tional distributions in order to allow certain properties of the
generated data to be controlled or selected [26,43]. Gener-
ative models without encoders [5,46] are generally used to
sample from broad classes of the data distributions; however,
these models are not designed to incorporate input data and
therefore cannot preserve characteristic features of specified
input data. Models have also been proposed which incorpo-
rate encoding components to overcome this by learning to
map input data onto an associated latent space representa-
tion within a generative framework [21,25]. The resulting
inference models allow for the defining features of inputs to
be preserved while specified target properties are adjusted
through conditioning [45].

Conventional conditional models have largely relied on
rather simplemethods, such as concatenation, for implement-
ing this conditioning process; however, cGANs [27] have
shown that utilizing the conditioning information in a less
trivial, more methodical manner has the potential to signif-
icantly improve the performance of conditional generative

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01755-x&domain=pdf
http://orcid.org/0000-0001-8639-5135

S. Kim et al.

models. In this work, we provide a general framework for
effectively performing inference with conditional generative
models by strategically controlling the interaction between
conditioning information and latent representations within a
generative inference model. In this framework, a conditional
transformation unit (CTU), Φ, is introduced to provide a
means for navigating the underlyingmanifold structure of the
latent space. TheCTU is realized in the formof a collection of
convolutional layers which are designed to approximate the
latent space operators defined by mapping encoded inputs to
the encoded representations of specified targets (see Fig. 1).
This is enforced by introducing a consistency loss term to
guide the CTU mappings during training. In addition, a
conditional discriminator unit (CDU), Ψ , also realized as
a collection of convolutional layers, is included in the net-
work’s discriminator. This CDU is designed to improve the
network’s ability to identify and eliminate transformation-
specific artifacts in the network’s predictions.

The network has also been equipped with RGB balance
parameters consisting of three values {θR, θG , θB} designed
to give the network the ability to quickly adjust the global
color balance of the images it produces to better align with
that of the true data distribution. In this way, the network is
easily able to remove unnatural hues and focus on estimat-
ing local pixel values by adjusting the three RGB parameters
rather than correcting each pixel individually. In addition,
we introduce a novel estimation strategy for efficiently learn-
ing shape and color properties simultaneously; a task-divided
decoder (TD) is designed to produce a coarse pixel valuemap
along with a refinement map in order to split the network’s
overall task into distinct, dedicated network components.

Summary of contributions:

1. We introduce the conditional transformation unit, with a
family of modular filter weights, to learn high-level map-
pings within a low-dimensional latent space. In addition,
we present a consistency loss termwhich is used to guide
the transformations learned during training.

2. We propose a novel framework for 3D object view syn-
thesis which separates the generative process into distinct
network components dedicated to learning (i) coarse
pixel value estimates, (ii) pixel refinement map, and (iii)
the global RGB color balance of the dataset.

3. We introduce the conditional discriminator unit designed
to improve adversarial training by identifying and elim-
inating transformation-specific artifacts present in the
generated images.

Each contribution proposed above has been shown to
provide a significant improvement to the network’s overall
performance through a series of ablation studies. The result-
ing latent transformation neural network (LTNN) is placed

Fig. 1 The conditional transformation unitΦ constructs a collection of
mappings {Φk} in the latent space which produce object view changes
to the decoded outputs. Conditioning information is used to select the
appropriate convolutional weights ωk for the specified transformation;
the encoding lx of the original input image x is transformed to ̂lyk =
Φk(lx) = conv(lx , ωk) and provides an approximation to the encoding
lyk of the attribute-modified target image yk

through a series of comparative studies on a diverse range of
experiments where it is seen to be comparable with the exist-
ing state-of-the-art models for (i) simultaneous multi-view
synthesis of real hand depth images in real-time, (ii) the syn-
thesis of rotated views of rigid objects given a single image,
and (iii) object view synthesis and attribute modification of
real and synthetic faces.

Moreover, the CTU conditioning framework allows for
additional conditioning information, or target views, to be
added to the training procedure ad infinitum without any
increase to the network’s inference speed.

2 Related work

Conditional generative models have been widely used in
computer vision areas such as geometric prediction [30,34,
40,48] and non-rigid object modification such as human face
deformation [1,11,33,47]. Dosovitskiy et al. [8] has pro-
posed a supervised, conditional generative model trained to
generate images of chairs, tables, and cars with specified
attributes which are controlled by transformation and view
parameters passed to the network. MV3D [40] is pioneering
deep learning work for object view synthesis which uses an
encoder–decoder network to directly generate pixels of a tar-
get view with depth information in the loss function along
with view point information passed as a conditional term.
The appearance flow network (AFN) [48] proposed amethod
for view synthesis of objects by predicting appearance flow
fields, which are used to move pixels from an input to a tar-
get view.However, thismethod requires detailed camera pose
information and is not capable of predicting pixels which are
missing in the source views. The M2N from [38] proposed
view prediction using a recurrent network and a self-learned
confidence map iteratively synthesizes views with recurrent
pixel generator with appearance flow. TVSN [30] uses a vis-

123

Latent transformations neural network for object view synthesis

ibility map, which indicates visible parts in a target image to
identify occlusion in different views. However, this method
requires mesh models for each object in order to extract vis-
ibility maps for training the network. The DFN by Jia et al.
[20] proposed using a dynamic filter which is conditioned
on a sequence of previous frames; this is fundamentally
different from our method since the filter is applied to the
original inputs rather than the latent embeddings. More-
over, it relies on temporal information and is not applicable
for predictions given a single image. The IterGAN model
introduced by Galama and Mensink [10] is also designed
to synthesize novel views from a single image, with a spe-
cific emphasis on the synthesis of rotated views of objects
in small, iterative steps. The conditional variational autoen-
coder (CVAE) incorporates conditioning information into the
standard variational autoencoder (VAE) framework [23] and
is capable of synthesizing specified attribute changes in an
identity preserving manner [37,45]. Other works have intro-
duced a clamping strategy to enforce a specific organizational
structure in the latent space [24,33]; these networks require
extremely detailed labels for supervision, such as the graph-
ics code parameters used to create each example, and are
therefore very difficult to implement for more general tasks
(e.g., training with real images). These models are all reliant
on additional knowledge for training, such as depth informa-
tion, camera poses, or mesh models, and are not applicable
in embedded systems and real-time applications due to the
high computational demand and the number of neural net-
works’ parameters since these methods did not consider the
efficiency of the model.

CVAE-GAN [2] further adds adversarial training to the
CVAE framework in order to improve the quality of gen-
erated predictions. The work from Zhang et al. [47] has
introduced the conditional adversarial autoencoder (CAAE)
designed to model age progression/regression in human
faces. This is achieved by concatenating conditioning infor-
mation (i.e., age) with the input’s latent representation before
proceeding to the decoding process. The framework also
includes an adaptive discriminator with conditional infor-
mation passed using a resize/concatenate procedure. To the
best of our knowledge, all existing conditional generative
models are designed for inference use fixed hidden lay-
ers and concatenate conditioning information directly with
latent representations. In contrast to these existing methods,
the proposed model incorporates conditioning information
by defining dedicated, transformation-specific convolutional
layers at the latent level. This conditioning framework allows
the network to synthesize multiple transformed views from
a single input, while retaining a fully convolutional struc-
ture which avoids the dense connections used in existing
inference-based conditional models. Most significantly, the
proposed LTNN framework is shown to be comparable with
the state-of-the-art models in a diverse range of object view

synthesis tasks, while requiring substantially less FLOPs and
memory consumption for inference than other methods.

3 Latent transformation neural network

In this section, we introduce the methods used to define the
proposed LTNN model. We first give a brief overview of
the LTNN network structure. We then detail how conditional
transformation unitmappings are defined and trained to oper-
ate on the latent space, followed by a description of the
conditional discriminator unit implementation and the net-
work loss function used to guide the training process. Lastly,
we describe the task division framework used for the decod-
ing process.

The basic workflow of the proposed model is as follows:

1. Encode the input image x to a latent representation lx =
Encode(x).

2. Use conditioning information k to select conditional, con-
volutional filter weights ωk .

3. Map the latent representation lx to ̂lyk = Φk(lx) =
conv(lx , ωk), an approximation of the encoded latent rep-
resentation lyk of the specified target image yk .

4. Decodêlyk to obtain a coarse pixel valuemap and a refine-
ment map.

5. Scale the channels of the pixel value map by the RGB
balance parameters and take the Hadamard product with
the refinement map to obtain the final prediction ŷk .

6. Pass real images yk as well as generated images ŷk to
the discriminator, and use the conditioning information
to select the discriminator’s conditional filter weightsωk .

7. Compute loss and update weights using ADAM opti-
mization and backpropagation.

3.1 Conditional transformation unit

Generative models have frequently been designed to explic-
itly disentangle the latent space in order to enable high-level
attribute modification through linear, latent space interpo-
lation. This linear latent structure is imposed by design
decisions, however, and may not be the most natural way
for a network to internalize features of the data distribution.
Several approaches have been proposed which include non-
linear layers for processing conditioning information at the
latent space level. In these conventional conditional genera-
tive frameworks, conditioning information is introduced by
combining features extracted from the input with features
extracted from the conditioning information (often using
dense connection layers); these features are typically com-
bined using standard vector concatenation, although some
have opted to use channel concatenation.

123

S. Kim et al.

Fig. 2 Selected methods for incorporating conditioning information; the proposed LTNN method is illustrated on the left, and six conventional
alternatives are shown to the right

In particular, conventional approaches for incorporating
conditional information generally fall into three classes: (1)
apply a fully connected layer before and after concatenating a
vector storing conditional information [24,40,47,48], (2) flat-
ten the network features and concatenatewith a vector storing
conditional information [30], (3) tile a conditional vector to
create a two-dimensional array with the same shape as the
network features and concatenate channel-wise [2,38]. Since
the first class is more prevalent than the others in practice,
we have subdivided this class into four cases: FC-Concat-
FC [47], FC-Concat-2FC [24], 2FC-Concat-FC [48], and
2FC-Concat-2FC [40]. Six of these conventional conditional
network designs are illustrated in Fig. 2 along with the pro-
posed LTNN network design for incorporating conditioning
information.

Rather than directly concatenating conditioning informa-
tion with network features, we propose using a conditional
transformation unit (CTU), consisting of a collection of dis-
tinct convolutional mappings in the network’s latent space.
More specifically, the CTU maintains independent convo-
lution kernel weights for each target view in consideration.
Conditioning information is used to select which collection
of kernel weights, i.e., which CTU mapping, should be used
in the CTU convolutional layer to perform a specified trans-
formation. In addition to the convolutional kernel weights,
each CTUmapping incorporates a Swish activation [32] with
independent parameters for each specified target view. The
kernel weights and Swish parameters of each CTU mapping
are selectively updated by controlling the gradient flow based
on the conditioning information provided.

The CTU mappings are trained to transform the encoded,
latent space representation of the network’s input in a man-

nerwhich produces high-level viewor attribute changes upon
decoding. In this way, different angles of view, light direc-
tions, and deformations, for example, can be generated from
a single input image. In one embodiment, the training pro-
cess for the conditional transformation units can be designed
to form a semigroup {Φt }t≥0 of operators:

i.e.,

{

Φ0 = id

Φt+s = Φt ◦ Φs ∀ t, s ≥ 0
(1)

defined on the latent space and trained to follow the geomet-
ric flow corresponding to a specified attribute. In the context
of rotating three-dimensional objects, for example, the trans-
formation units are trained on the input images paired with
several target outputs corresponding to different angles of
rotation; the network then uses conditioning information,
which specifies the angle by which the object should be
rotated, to select the appropriate transformation unit. In this
context, the semigroup criteria correspond to the fact that
rotating an object 10◦ twice should align with the result of
rotating the object by 20◦ once.

Since the encoder and decoder are not influenced by the
specified angle of rotation, the network’s encoding/decoding
structure learns to model objects at different angles simulta-
neously; the single, low-dimensional latent representation of
the input contains all information required to produce rotated
views of the original object. Other embodiments can depart
with this semigroup formulation, however, training condi-
tional transformation units to instead produce a more diverse
collection of non-sequential viewpoints, for example, as is
the case for multi-view hand synthesis.

123

Latent transformations neural network for object view synthesis

LTNN Training Procedure

Provide: Labeled dataset
{(

x, {yk}k∈T
)}

with target transformations
indexed by a fixed set T , encoder weights θE , decoder weights θD ,
RGB balance parameters {θR, θG , θB}, conditional transformation unit
weights {ωk}k∈T , discriminatorD with standardweights θD and condi-
tionally selected weights {ωk}k∈T , and loss function hyperparameters
γ, ρ, λ, κ corresponding to the smoothness, reconstruction, adversar-
ial, and consistency loss terms, respectively. The specific loss function
components are defined in detail in Eqs. 3–2 in Sect. 3.2.

1: procedure Train()
2: // Sample input and targets from training set
3: x , {yk}k∈T = get_train_batch()
4: // Compute encoding of original input image
5: lx = Encode[x]
6: for k in T do
7: // Compute true encoding of specified target image
8: lyk = Encode[yk]
9: // Compute approximate encoding of target with CTU
10: ̂lyk = conv(lx , ωk)

11: // Compute RGB value and refinement maps
12: ŷ value

k , ŷ re f ine
k = Decode[̂lyk]

13: // Assemble final network prediction for target
14: ŷk = [

θC · ŷ value
k,C � ŷ re f ine

k,C

]

C∈{R,G,B}
15:
16: // Update encoder, decoder, RGB, and CTU weights
17: Ladv = − log(D(ŷk , ωk))

18: Lguide = γ · Lsmooth(ŷk) + ρ · Lrecon(ŷk , yk)
19: Lconsist = ‖̂lyk − lyk ‖1
20: L = λ · Ladv + Lguide + κ · Lconsist
21: for θ in {θE , θD, θR, θG , θB , ωk} do
22: θ = θ − ∇θL

23:
24: // Update discriminator and CDU weights
25: LD

adv = − log(D(yk , ωk)) − log(1 − D(ŷk , ωk))

26: for θ in {θD , ωk} do
27: θ = θ − ∇θL

D
adv

To enforce this behavior on the latent space CTU map-
pings in practice, a consistency term is introduced into the
loss function, as specified in Eq. 2. This loss term is mini-
mized precisely when the CTUmappings behave as depicted
in Fig. 1; in particular, the output of the CTU mapping asso-
ciated with a particular transformation is designed to match
the encoding of the associated ground truth target view.More
precisely, given an input image x , the consistency loss asso-
ciated with the kth transformation is defined in terms of the
ground truth, transformed target view yk by:

Lconsist = ∥

∥Φk(Encode[x]) − Encode[yk]
∥

∥

1. (2)

3.2 Discriminator and loss function

The discriminator used in the adversarial training process
is also passed conditioning information which specifies the
transformation which the model has attempted to make. The
conditional discriminator unit (CDU), which is implemented
as a convolutional layer with modular weights similar to the

CTU, is trained to specifically identify unrealistic artifacts
which are being produced by the corresponding conditional
transformation unitmappings. This is accomplished bymain-
taining independent convolutional kernel weights for each
specified target view and using the conditioning information
passed to the discriminator to select the kernel weights for the
CDU layer. The incorporation of this context-aware discrim-
inator structure has significantly boosted the performance of
the network (see Table 1). The discriminator, D , is trained
using the adversarial loss term LD

adv defined in Eq.3. The
proposed model uses the adversarial loss in Eq. 4 to effec-
tively capture multimodal distributions [36], which helps to
sharpen the generated views.

LD
adv = − logD(yk, ωk) − log

(

1 − D(ŷk, ωk)
)

(3)

Ladv = − logD(ŷk, ωk). (4)

Reducing the total variation is widely used in view synthe-
sis methods [30,47]. In particular, the Lsmooth term is used
to reduce noise in the generated images by reducing the vari-
ation of pixels, which is inspired by total variation image
denoising. Experimental evidence shows that the inclusion
of the Lsmooth loss term leads to an improvement in the over-
all quality of the synthesized images (see Table 1). We have
experimented with various shift sizes and found that the shift
size τ = 1 yields the best performance.

Additional loss terms corresponding to accurate structural
reconstruction and smoothness [19] in the generated views
are defined in Eqs. 5 and 6:

Lrecon = ‖ŷk − yk‖22 (5)

Lsmooth =
∑

i∈{0,±1}

∑

j∈{0,±1}

∥

∥ ŷk − τi, j ŷk
∥

∥

1, (6)

where yk is the modified target image corresponding to an
input x , ωk are theweights of theCDUmapping correspond-
ing to the kth transformation,Φk is the CTUmapping for the
kth transformation, ŷk = Decode

(

Φk
(

Encode[x])) is the
network prediction, and τi, j is the two-dimensional, discrete
shift operator. The final loss function for the encoder and
decoder components is given by:

L = λ ·Ladv + ρ ·Lrecon + γ ·Lsmooth + κ ·Lconsist (7)

with hyperparameters typically selected so that λ, ρ 	 γ, κ .
The consistency loss is designed to guide the CTUmappings
toward approximations of the latent space mappings which
connect the latent representations of input images and target
images as depicted in Fig. 1. In particular, the consistency
term enforces the condition that the transformed encoding,
̂lyk = Φk(Encode[x]), approximates the encoding of the kth
target image, lyk = Encode[yk], during the training process.

123

S. Kim et al.

Table 1 Ablation/comparison
results of six different
conventional alternatives for
fusing condition information
into the latent space and ablation
study of conditional
transformation unit (CTU),
conditional discriminator unit
(CDU), and task-divided
decoder (TD)

Model Elevation Azimuth Light Direction Age

SSIM L1 SSIM L1 SSIM L1 SSIM L1

LTNN (CTU + CDU + TD) .923 .107 .923 .108 .941 .093 .925 .102

LTNN w/o Lsmooth .918 .118 .921 .114 .935 .112 .911 .110

CTU + CDU .901 .135 .908 .125 .921 .121 .868 .118

CTU .889 .142 .878 .135 .901 .131 .831 .148

Channel Concat + Conv .803 .179 .821 .173 .816 .182 .780 .188

2-FC + Concat + 2-FC .674 .258 .499 .355 .779 .322 .686 .243

2-FC + Concat + FC .691 .233 .506 .358 .787 .316 .687 .240

FC + Concat + 2-FC .673 .261 .500 .360 .774 .346. .683 .249

FC + Concat + FC .681 .271 .497 .355 .785 .315. .692 .246

Reshape + Concat + FC .671 .276 .489 .357 .780 .318 .685 .251

For valid comparison, we used identical encoder, decoder, and training procedure with synthetic face dataset
Bold values indicate the best performance

Fig. 3 Proposed task-divided design for the LTNN decoder. The coarse
pixel value estimation map is split into RGB channels, rescaled by the
RGB balance parameters, and multiplied element-wise by the refine-
ment map values to produce the final network prediction

3.3 Task-divided decoder

The decoding process has been divided into three tasks: esti-
mating the refinement map, pixel values, and RGB color
balance of the dataset. We have found this decoupled frame-
work for estimation helps the network converge to better
minima to produce sharp, realistic outputs without addi-
tional loss terms. The decoding process begins with a series
of convolutional layers followed by bilinear interpolation
to upsample the low-resolution latent information. The last
component of the decoder’s upsampling process consists of
two distinct convolutional layers used for task divide; one
layer is allocated for predicting the refinement map, while

Fig. 4 The proposed network structure for the encoder/decoder (left)
and discriminator (right) for 64× 64 input images. Features have been
color-coded according to the type of layer which has produced them.
TheCTUandCDUcomponents both store and train separate collections
of 3×3 filter weights for each conditional transformation; in particular,

the number of distinct 3 × 3 filters associated with the CTU and CDU
corresponds to the number of distinct conditional transformations the
network is designed to produce. For 256 × 256 input images, we have
added two Block v1/MaxPool layers in the front of encoder and two
Conv/Interpolation layers at the end of the decoder

123

Latent transformations neural network for object view synthesis

Fig. 5 Layer definitions for Block v1 and Block v2 collaborative fil-
ters. Once the total number of output channels, Nout, is specified, the
remaining Nout − Nin output channels are allocated to the non-identity
filters (where Nin denotes the number of input channels). For the Block
v1 layer at the start of the proposed LTNN model, for example, the
input is a image with Nin = 3 channels and the specified number of
output channels is Nout = 32. One of the 32 channels is accounted for
by the identity component, and the remaining 29 channels are the three
non-identity filters. When the remaining channel count is not divisible
by 3, we allocate the remainder of the output channels to the single
3× 3 convolutional layer. Swish activation functions are used for each
filter; however, the filters with multiple convolutional layers do not use
activation functions for the intermediate 3 × 3 convolutional layers

the other is trained to predict pixel values. The refinement
map layer incorporates a sigmoidal activation functionwhich
outputs scaling factors intended to refine the coarse pixel
value estimations; the pixel value estimation layer does not
use an activation so that the output values are not restricted
to the range of a specific activation function. RGB balance
parameters, consisting of three trainable variables, are used
as weights for balancing the color channels of the pixel value
map. The Hadamard product, �, of the refinement map and
the RGB-rescaled value map serves as the network’s final
output:

ŷ = [̂yR, ŷG , ŷB] where

ŷC = θC · ŷ value
C � ŷ

re f ine
C for C ∈ {R,G, B} (8)

In this way, the network has the capacity to mask values
which lie outside of the target object (i.e., by setting refine-
mentmap values to zero)which allows the valuemap to focus
on the object itself during the training process. Experimental
results show that the refinement maps learn to producemasks
which closely resemble the target objects’ shapes and have
sharp drop-offs along the boundaries. No additional infor-
mation has been provided to the network for training the
refinement map; the masking behavior illustrated in Figs. 3
and 6 is learned implicitly by the network during training
and is made possible by the design of the network’s archi-
tecture. As shown in Fig. 3, the refinement map produces a
shape mask and mask out errors in each pixels by masking
values which lie outside of the target object (i.e., by setting
refinement map values to zero).

4 Architecture details

The overview of the pipeline is shown in Fig. 4. Input images
are passed through a Block v1 collaborative filter layer (see
Fig. 5) along with a max pooling layer to produce the fea-
tures at the far left end of thefigure.At the bottleneck between
the encoder and decoder, a conditional transformation unit
(CTU) is applied to map the 2 × 2 latent features directly to
the transformed 2×2 latent features on the right. This CTU is
implemented as a convolutional layerwith 3×3 filter weights
selected based on the conditioning information provided to
the network. The features near the end of the decoder compo-
nent are processed by two independent convolution transpose
layers for non-rigid object and bilinear interpolation for the
rigid object: one corresponding to the value estimation map
and the other corresponding to the refinementmap. The chan-
nels of the value estimation map are rescaled by the RGB
balance parameters, and the Hadamard product is taken with
the refinement map to produce the final network output. For
rigid object experiment, we added tangent hyperbolic activa-
tion function after the Hadamard product to bound the output
values range in [−1, 1]. TheCDU is also designed to have the
same 3×3 kernel size as the CTU and is applied between the
third and fourth layers of the discriminator. For the stereo face
dataset [9] experiment, we have added an additional Block v1
layer in the encoder and additional convolutional layer fol-
lowed by bilinear interpolation in decoder to utilize the full
128×128×3 resolution images and two Block v1 layers and
two convolutional layers followed by bilinear interpolation
for the 256×256×3 resolution image of rigid object views.

The encoder incorporates two main block layers, as
defined in Fig. 5, which are designed to provide efficient fea-
ture extraction; these blocks follow a similar design to that
proposed by Szegedy et al. [39], but include dense connec-
tions between blocks, as introduced by Huang et al. [16]. We
normalize the output of each network layer using the batch
normalization method as described in [18]. For the decoder,
we have opted for a minimalist design, inspired by the work
of [31]. Standard convolutional layers with 3 × 3 filters and
same padding are used through the penultimate decoding
layer and transpose convolutional layers with 1 × 1 filters
for non-rigid objects and 5 × 5 for other experiments. We
have used same padding to produce the value estimation and
refinement maps. All parameters have been initialized using
the variance scaling initialization method described in [15].

Our method has been implemented and developed using
the TensorFlow framework. The models have been trained
using stochastic gradient descent (SGD) and theADAMopti-
mizer [22] with initial parameters: learning_rate = 0.005,
β1 = 0.9, and β2 = 0.999 (as defined in the TensorFlow
API r1.6 documentation for tf. train.AdamOptimizer), along
with loss function hyperparameters: λ = 0.8, ρ = 0.2, γ =
0.000025, and κ = 0.00005 (as introduced in Eq.7). The

123

S. Kim et al.

Fig. 6 Qualitative comparison of 360◦ view prediction of rigid objects.
A single image, shown in the first column of the “Ground” row, is used
as the input for the network. Results are shown for the proposed network
with and without task division (“w/o TD”) as well as a comparison with

M2N. The pixel value map and refinement maps corresponding to the
task division framework are also provided as well as an inverted view
of the refinement map for better visibility

discriminator is updated once every two encoder/decoder
updates, and one-sided label smoothing [36] has been used to
improve the stability of the discriminator training procedure.

5 Experiments and results

We conduct experiments on a diverse collection of datasets
including both rigid and non-rigid objects. To show the gen-
eralizability of our method, we have conducted a series
of experiments: (i) hand pose estimation using a synthetic
training set and real NYU hand depth image data [41] for
testing, (ii) synthesis of rotated views of rigid objects using
the 3D object dataset [4], (iii) synthesis of rotated views
using a real face dataset [9], and (iv) the modification of
a diverse range of attributes on a synthetic face dataset [17].
For each experiment, we have trained the models using

80% of the datasets. Since ground truth target depth images
were not available for the real hand dataset, an indirect
metric has been used to quantitatively evaluate the model
as described in Sect. 5.2. Ground truth data were avail-
able for all other experiments, and models were evaluated
directly using the L1 mean pixel-wise error and the struc-
tural similarity index measure (SSIM) [44] used in [30,38].
To evaluate the proposed frameworkwith existingworks, two
comparison groups have been formed: conditional inference
methods, CVAE-GAN [2] and CAAE [47], with compara-
ble hourglass structures for comparison on experiments with
non-rigid objects, and view synthesis methods, MV3D [40],
M2N [38], AFN [48], and TVSN [30], for comparison on
experiments with rigid objects. Additional ablation experi-
ments have been performed to compare the proposed CTU
conditioning method with other conventional concatenation
methods (see Fig. 2); results are shown in Fig. 9 and Table 1.

123

Latent transformations neural network for object view synthesis

Table 2 FLOPs and parameter counts corresponding to inference for a
single image with resolution 256 × 256 × 3

Model Parameters (Million) GFLOPs/image

Ours 17.0 2.183

M2N 127.1 341.404

TVSN 57.3 2.860

AFN 70.3 2.671

MV3D 69.7 3.056

These calculations are based on code provided by the authors and the
definitions prescribed in the associated papers. Smaller numbers are
better for parameters and GFLOPs/Image
Bold values indicate the best performance

Table 3 Quantitative comparison for 360◦ view synthesis of rigid
objects

Model Car Chair

SSIM L1 SSIM L1

Ours .902 .121 .897 .178

Ours (w/o TD) .861 .187 .871 .261

M2N .923 .098 .895 .181

TVSN .913 .119 .894 .230

AFN .877 .148 .891 .240

MV3D .875 .139 .895 .248

Smaller numbers are better for L1 and higher numbers are better for
SSIM.Weperformed ablation experimentwith andwithout task-divided
decoder (TD) and compared with other methods
Bold values indicate the best performance

5.1 Experiment on rigid objects

Rigid object experiment We have experimented with novel
3D view synthesis tasks given a single view of an object with
an arbitrary pose. The goal of this experiment is to synthe-
size an image of the object after a specified transformation
or change in viewpoint has been applied to the original view.
To evaluate our method in the context of rigid objects, we
have performed a collection of tests on the chair and car
datasets. Given a single input view of an object, we leverage
the LTNN model to produce 360◦ views of the object. We
have tested our model’s ability to perform 360◦ view estima-
tion on 3D objects and compared the results with the other
state-of-the-art methods. The models are trained on the same
dataset used in M2N [38]. The car and chair categories from
the ShapeNet [3] 3Dmodel repository have been rotated hor-
izontally 18 times by 20◦ along with elevation changes of 0◦,
10◦, and 20◦. The M2N and TVSN results are slightly better
for the car category; however, these works have incorporated
skip connections between the encoder layers and decoder lay-
ers, proposed in U-net [35], which substantially increases the
computational demand for these networks (see Table 2). As
can be seen in Tables 2 and 3, the proposed model is compa-

Fig. 7 Quantitative evaluation for multi-view hand synthesis using the
real NYU dataset

Fig. 8 Comparison of CVAE-GAN (top) with the proposed LTNN
model (bottom)using the noisyNYUhanddataset [41]. The input depth-
map hand pose image is shown to the far left, followed by the network
predictions for nine synthesized view points. The views synthesized
using LTNN are seen to be sharper and also yield higher accuracy for
pose estimation (see Fig.11)

rable with existing models specifically designed for the task
of multi-view prediction while requiring the least FLOPs for
inference compared with all other methods. The low com-
putational cost of the LTNN model highlights the efficiency
of the CTU/CDU framework for incorporating conditional
information into the network for view synthesis. Moreover,
as seen in the qualitative results provided in Fig. 6, using a
task-divided decoder helps to eliminate artifacts in the gener-
ated views; in particular, the spokes on the back of the chair
and the spoiler on the back of the car are seen to be synthe-
sized much more clearly when using a task-divided decoder.

5.2 Experiment on non-rigid objects

Hand pose experiment To assess the performance of the pro-
posed network on non-rigid objects, we consider the problem
of hand pose estimation. As the number of available view
points of a given hand is increased, the task of estimating
the associated hand pose becomes significantly easier [14].
Motivated by this fact, we synthesize multiple views of a

123

S. Kim et al.

Fig. 9 LTNN ablation experiment results and comparison with alterna-
tive conditioning frameworks using synthetic hand dataset. Ourmodels:
conditional transformation unit (CTU), conditional discriminator unit
(CDU), task-divide decoder (TD), and LTNN consisting of all previous
components. Alternative concatenation methods: channel-wise con-
catenation (CH Concat), fully connected concatenation (FC Concat),
and reshape fully connected feature vector concatenation (RE Concat)

hand given a single view and evaluate the accuracy of the
estimated hand pose using the synthesized views. The under-
lying assumption of the assessment is that the accuracy of
the hand pose estimation will be improved precisely when
the synthesized views provide faithful representations of the
true hand pose. Since ground truth predictions for the real
NYU hand dataset were not available, the LTNN model has
been trained using a synthetic dataset generated using 3D
mesh handmodels. The NYU dataset does, however, provide
ground truth coordinates for the input hand pose; using this,
we were able to indirectly evaluate the performance of the
model by assessing the accuracy of a hand pose estimation
method using the network’s multi-view predictions as input.
More specifically, the LTNN model was trained to generate
nine different views which were then fed into the pose esti-
mation network from Choi et al. [6] (also trained using the
synthetic dataset). For an evaluation metric, the maximum
error in the predicted joint locations has been computed for
each frame (i.e., each hand pose in the dataset). The cumula-
tive number of frameswithmaximumerror below a threshold
distance εD has then been computed, as is commonly used in
hand pose estimation tasks [6,29]. A comparison of the pose
estimation results using synthetic views generated by the pro-
posed model, the CVAE-GAN model, and the CAAE model
are presented in Fig. 7, alongwith the results obtained by per-
forming pose estimation using the single-view input frame

Fig. 10 Qualitative evaluation for view synthesis of real faces using the
image dataset [9]

alone. In particular, for a threshold distance εD = 40mm,
the proposed model yields the highest accuracy with 61.98%
of the frames having all predicted joint locations within a
distance of 40mm from the ground truth values. The second
highest accuracy is achieved with the CVAE-GAN model
with 45.70% of frames predicted within the 40mm thresh-
old.

A comparison of the quantitative hand pose estimation
results is provided in Fig. 7 where the proposed LTNN
framework is seen to provide a substantial improvement
over existing methods; qualitative results are also available
in Fig. 8. Ablation study results for assessing the impact
of individual components of the LTNN model are also pro-
vided in Fig. 9; in particular, we note that the inclusion of the
CTU, CDU, and task-divided decoder each provides signifi-
cant improvements to the performance of the network. With
regard to real-time applications, the proposed model runs at
114 fps without batching and at 1975 fps when applied to a
mini-batch of size 128 (using a single TITAN Xp GPU and
an Intel i7-6850K CPU).
Real face experiment We have also conducted an experiment
using a real face dataset to show the applicability of LTNN
for real images. The stereo face database [9], consisting of
images of 100 individuals from 10 different viewpoints, was
used for experiments with real faces. These faces were first
segmented using the method of [28], and then we manu-
ally cleaned up the failure cases. The cleaned faces have
been cropped and centered to form the final dataset. The
LTNN model was trained to synthesize images of input
faces corresponding to three consecutive horizontal rotations.
Qualitative results for the real face experiment are provided
in Fig. 10; in particular, we note that the quality of the views
generated by the proposedLTNNmodel is consistent for each
of the four views, while the quality of the views generated

123

Latent transformations neural network for object view synthesis

Fig. 11 Quantitative evaluation with SSIM of model performances for
experiment on the real face dataset [9]. Higher values are better

Fig. 12 Quantitative evaluation with L1 of model performances for
experiment on the real face dataset [9]. Lower values are better

using other methods decreases substantially as the change
in angle is increased. This illustrates the advantage of using
CTU mappings to navigate the latent space and avoid the
accumulation of errors inherent to iterative methods. More-
over, as shown in Figs. 11 and 12, the LTNNmodel provides

substantial improvements to alternativemethodswith respect
to the SSIM and L1 metrics and converges much faster as
well.

5.3 Diverse attribute exploration

To evaluate the proposed framework’s performance on a
more diverse range of attribute modification tasks, a syn-
thetic face dataset and other conditional generative models,
CVAE-GAN and CAAE, with comparable hourglass struc-
tures to the LTNNmodel have been selected for comparison.
The generated images from the LTNNmodel are available in
Fig. 13. These models have been trained to synthesize dis-
crete changes in elevation, azimuth, light direction, and age
from a single image. As shown in Tables 4 and 5, the LTNN
model outperforms the CVAE-GAN and CAAEmodels by a
significant margin in both SSIM and L1 metrics; additional
quantitative results are provided in Table 1, along with a col-
lection of ablation results for the LTNN model.

Multiple attributes can also be modified simultaneously
using LTNN by composing CTU mappings. For example,
one can train four CTUmappings {Φlight

k }3k=0 corresponding
to incremental changes in lighting and four CTU map-
pings {Φazim

k }3k=0 corresponding to incremental changes
in azimuth. In this setting, the network predictions for
lighting and azimuth changes correspond to the values
of Decode[Φlight

k (lx)] and Decode[Φazim
k (lx)], respectively

(where lx denotes the encoding of the original input image).
Topredict the effect of simultaneously changing both lighting
and azimuth, we can compose the associated CTUmappings
in the latent space; that is, we may take our network predic-
tion for the lighting change associated withΦ

light
i combined

with the azimuth change associated with Φazim
j to be:

Fig. 13 Simultaneous learning of multiple attribute modifications.
Azimuth and age (left), light and age (center), and light and azimuth
(right) combinedmodifications are shown.Thenetworkhas been trained

using fourCTUmappings per attribute (e.g., four azimuthmappings and
four age mappings); results shown have been generated by composing
CTU mappings in the latent space and decoding

123

S. Kim et al.

Table 4 Quantitative results for light direction and age modification on
the synthetic face dataset

Model Light direction Age

SSIM L1 SSIM L1

Ours .941 .093 .925 .102

CVAE-GAN .824 .209 .848 .166

CAAE .856 .270 .751 .207

Bold values indicate the best performance

Table 5 Quantitative results for azimuth and elevation modification on
the synthetic face dataset

Model Elevation Azimuth

SSIM L1 SSIM L1

Ours .923 .107 .923 .108

CVAE-GAN .864 .158 .863 .180

CAAE .777 .175 .521 .338

Bold values indicate the best performance

ŷ = Decode[̂ly] where

̂ly = Φ
light
i ◦ Φazim

j (lx) = Φ
light
i

[

Φazim
j (lx)

]

. (9)

5.4 Near-continuous attribute modification

Near-continuous attributemodification is alsopossiblewithin
the proposed framework; this can be performed by a simple,
piecewise-linear interpolation procedure in the latent space.
For example, we can train nine CTU mappings {Φk}8k=0 cor-
responding to incremental 7◦ changes in elevation {θk}8k=0.
The network predictions for an elevation change of θ0 = 0◦
and θ1 = 7◦ are then given by the values Decode[Φ0(lx)] and
Decode[Φ1(lx)], respectively (where lx denotes the encod-
ing of the input image). To predict an elevation change of

3.5◦, we can perform linear interpolation in the latent space
between the representations Φ0(lx) and Φ1(lx); that is, we
may take our network prediction for the intermediate change
of 3.5◦ to be:

ŷ = Decode[̂ly] where ̂ly = 0.5 · Φ0(lx) + 0.5 · Φ1(lx).

(10)

More generally, we can interpolate between the latent
CTU map representations to predict a change θ via:

ŷ = Decode[̂ly] where ̂ly = λ·Φk(lx)+(1−λ)·Φk+1(lx),

(11)

where k ∈ {0, . . . , 7} and λ ∈ [0, 1] are chosen so that
θ = λ · θk + (1 − λ) · θk+1. In this way, the proposed
framework naturally allows for continuous attribute changes
to be approximated while only requiring training for a
finite collection of discrete changes. Qualitative results for
near-continuous attribute modification on the synthetic face
dataset are provided in Fig. 14; in particular, we note that
views generated by the network effectively model gradual
changes in the attributes without any noticeable degradation
in quality. This highlights the fact that the model has learned
a smooth latent space structure which can be navigated effec-
tively by the CTUmappings while maintaining the identities
of the original input faces.

6 Conclusion

In this work, we have introduced an effective, general
framework for incorporating conditioning information into
inference-based generative models. We have proposed a
modular approach to incorporating conditioning information

Fig. 14 Near-continuous attribute modification is attainable using
piecewise-linear interpolation in the latent space. Provided a grayscale
image (corresponding to the faces on the far left), modified images cor-
responding to changes in light direction (first), age (second), azimuth
(third), and elevation (fourth) are produced with 17 degrees of varia-

tion. These attribute-modified images have been produced using nine
CTU mappings, corresponding to varying degrees of modification, and
linearly interpolating between the discrete transformation encodings in
the latent space

123

Latent transformations neural network for object view synthesis

using CTUs and a consistency loss term, defined an efficient
task-divided decoder setup for deconstructing the data gen-
eration process into manageable subtasks, and shown that
a context-aware discriminator can be used to improve the
performance of the adversarial training process. The perfor-
mance of this framework has been assessed on a diverse range
of tasks and shown to perform comparably with the state-
of-the-art methods while reducing computational operations
and memory consumption.

Acknowledgements Karthik Ramani acknowledges the US National
Science Foundation Awards NRI-1637961 and IIP-1632154. Guang
Lin acknowledges the US National Science Foundation Awards DMS-
1555072, DMS-1736364 and DMS-1821233. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
funding agency. We gratefully appreciate the support of NVIDIA Cor-
poration with the donation of GPUs used for this research.

References

1. Antipov, G., Baccouche, M., Dugelay, J.L.: Face aging with con-
ditional generative adversarial networks (2017). arXiv preprint
arXiv:1702.01983

2. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: CVAE-GAN: fine-
grained image generation through asymmetric training (2017).
arXiv preprint arXiv:1703.10155

3. Chang, A., Funkhouser, T., Guibas, L., Hanrahan, P., Huang,
Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.:
An information-rich 3D model repository. 1(7), 8 (2015). arXiv
preprint arXiv:1512.03012

4. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q.,
Li, Z., Savarese, S., Savva,M., Song, S., Su, H., Xiao, J., Yi, L., Yu,
F.: ShapeNet: an information-rich 3D model repository. Technical
Report, StanfordUniversity—PrincetonUniversity—Toyota Tech-
nological Institute at Chicago (2015). arXiv:1512.03012 [cs.GR]

5. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I.,
Abbeel, P.: InfoGAN: interpretable representation learning by
information maximizing generative adversarial nets. In: Advances
in Neural Information Processing Systems, pp. 2172–2180 (2016)

6. Choi, C., Kim, S., Ramani, K.: Learning hand articulations by
hallucinating heat distribution. In: Proceedings of the IEEEConfer-
ence on Computer Vision and Pattern Recognition, pp. 3104–3113
(2017)

7. Dinerstein, J., Egbert, P.K., Cline, D.: Enhancing computer graph-
ics through machine learning: a survey. Vis. Comput. 23(1), 25–43
(2007)

8. Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to gen-
erate chairs with convolutional neural networks. In: Proceedings of
the IEEEConference onComputerVision and PatternRecognition,
pp. 1538–1546 (2015)

9. Fransens, R., Strecha, C., Van Gool, L.: Parametric stereo for
multi-pose face recognition and 3D-face modeling. In: Interna-
tional Workshop on Analysis andModeling of Faces and Gestures,
pp. 109–124. Springer (2005)

10. Galama, Y., Mensink, T.: Iterative GANs for rotating visual objects
(2018)

11. Gauthier, J.: Conditional generative adversarial nets for convo-
lutional face generation. In: Class Project for Stanford CS231N:
Convolutional Neural Networks for Visual Recognition. Winter
Semester 2014(5), 2 (2014)

12. Ge, L., Liang, H., Yuan, J., Thalmann, D.: Robust 3D hand pose
estimation in single depth images: from single-view CNN tomulti-
view CNNs. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3593–3601 (2016)

13. Goodfellow, I.J.: NIPS 2016 Tutorial: Generative Adversarial Net-
works (2017). CoRR arXiv:1701.00160

14. Guan, H., Chang, J.S., Chen, L., Feris, R.S., Turk, M.: Multi-view
appearance-based 3D hand pose estimation. In: 2006 Confer-
ence on Computer Vision and Pattern Recognition Workshop
(CVPRW’06), pp. 154–154. IEEE (2006)

15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers:
surpassing human-level performance on imagenet classification.
In: Proceedings of the IEEE International Conference onComputer
Vision, pp. 1026–1034 (2015)

16. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.:
Densely connected convolutional networks (2016). arXiv preprint
arXiv:1608.06993

17. IEEE: A 3D Face Model for Pose and Illumination Invariant Face
Recognition (2009)

18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. In: International
Conference on Machine Learning, pp. 448–456 (2015)

19. Jason, J.Y., Harley, A.W., Derpanis, K.G.: Back to basics: unsuper-
vised learning of optical flow via brightness constancy and motion
smoothness. In: Computer Vision—ECCV 2016 Workshops, pp.
3–10. Springer (2016)

20. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic
filter networks. In: Advances in Neural Information Processing
Systems, pp. 667–675 (2016)

21. Kim, S., Kim, D., Choi, S.: Citycraft: 3D virtual city creation
from a single image. Vis. Comput. (2019). https://doi.org/10.1007/
s00371-019-01701-x

22. Kingma, D., Ba, J.: Adam: a method for stochastic optimization
(2014). arXiv preprint arXiv:1412.6980

23. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes
(2013). arXiv preprint arXiv:1312.6114

24. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep
convolutional inverse graphics network. In: Advances in Neural
Information Processing Systems, pp. 2539–2547 (2015)

25. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adver-
sarial autoencoders (2015). arXiv preprint arXiv:1511.05644

26. Mirza, M., Osindero, S.: Conditional generative adversarial nets
(2014). arXiv preprint arXiv:1411.1784

27. Miyato, T., Koyama, M.: cGANs with projection discriminator
(2018). arXiv preprint arXiv:1802.05637

28. Nirkin, Y., Masi, I., Tuan, A.T., Hassner, T., Medioni, G.: On face
segmentation, face swapping, and face perception. In: 2018 13th
IEEE International Conference on Automatic Face and Gesture
Recognition (FG 2018), pp. 98–105. IEEE (2018)

29. Oberweger, M., Lepetit, V.: Deepprior++: improving fast and
accurate 3D hand pose estimation. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 585–594 (2017)

30. Park, E., Yang, J., Yumer, E., Ceylan, D., Berg, A.C.:
Transformation-grounded image generation network for novel 3D
view synthesis. In: 2017 IEEEConference onComputer Vision and
Pattern Recognition (CVPR), pp. 702–711. IEEE (2017)

31. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep
neural network architecture for real-time semantic segmentation
(2016). arXiv preprint arXiv:1606.02147

32. Ramachandran, P., Zoph, B., Le, Q.V.: Swish: a self-gated activa-
tion function (2017). arXiv preprint arXiv:1710.05941

33. Reed, S., Sohn, K., Zhang, Y., Lee, H.: Learning to disentangle
factors of variation with manifold interaction. In: International
Conference on Machine Learning, pp. 1431–1439 (2014)

34. Rezende, D.J., Eslami, S.A.,Mohamed, S., Battaglia, P., Jaderberg,
M., Heess, N.: Unsupervised learning of 3D structure from images.

123

http://arxiv.org/abs/1702.01983
http://arxiv.org/abs/1703.10155
http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1608.06993
https://doi.org/10.1007/s00371-019-01701-x
https://doi.org/10.1007/s00371-019-01701-x
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1802.05637
http://arxiv.org/abs/1606.02147
http://arxiv.org/abs/1710.05941

S. Kim et al.

In: Advances inNeural Information Processing Systems, pp. 4996–
5004 (2016)

35. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional net-
works for biomedical image segmentation. In: International Con-
ference on Medical Image Computing and Computer-Assisted
Intervention, pp. 234–241. Springer (2015)

36. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-
ford, A., Chen, X.: Improved techniques for training GANs. In:
Advances in Neural Information Processing Systems, pp. 2234–
2242 (2016)

37. Sohn, K., Lee, H., Yan, X.: Learning structured output represen-
tation using deep conditional generative models. In: Advances in
Neural Information Processing Systems, pp. 3483–3491 (2015)

38. Sun, S.H., Huh, M., Liao, Y.H., Zhang, N., Lim, J.J.: Multi-view to
novel view: Synthesizing novel viewswith self-learned confidence.
In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 155–171 (2018)

39. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with con-
volutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–9 (2015)

40. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Multi-view 3Dmodels
from single images with a convolutional network. In: European
Conference on Computer Vision, pp. 322–337. Springer (2016)

41. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous
pose recovery of human hands using convolutional networks. ACM
Trans. Gr. 33(5), 169 (2014)

42. Varley, J., DeChant, C., Richardson, A., Ruales, J., Allen, P.: Shape
completion enabled robotic grasping. In: 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp.
2442–2447. IEEE (2017)

43. Wang, Q., Artières, T., Chen,M., Denoyer, L.: Adversarial learning
for modeling human motion. Vis. Comput. (2018). https://doi.org/
10.1007/s00371-018-1594-7

44. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qual-
ity assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 13(4), 600–612 (2004)

45. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2image: conditional
image generation from visual attributes. In: European Conference
on Computer Vision, pp. 776–791. Springer (2016)

46. Zhang, S., Han, Z., Lai, Y.K., Zwicker, M., Zhang, H.: Stylistic
scene enhancement GAN: mixed stylistic enhancement generation
for 3D indoor scenes. Vis. Comput. 35(6–8), 1157–1169 (2019)

47. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by con-
ditional adversarial autoencoder. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
5810–5818 (2017)

48. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View syn-
thesis by appearance flow. In: European Conference on Computer
Vision, pp. 286–301. Springer (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Sangpil Kim is a Ph.D. student in
the Electrical and Computer Engi-
neering at Purdue University. He
received his B.S. degree from the
Korea University, South Korea, in
2015. His current research inter-
ests are in computer vision and
deep learning.

Nick Winovich is a Ph.D. candi-
date in the Department of Math-
ematics at Purdue University. He
earned his B.A. in Mathematics
and Spanish at the University of
Notre Dame in 2012 and subse-
quently received an M.S. in Math-
ematics at the University of Ore-
gon in 2015. His current research
focuses on the intersection of
probability theory and numerical
computing, with an emphasis on
applications of Gaussian processes
and neural network models for
partial differential equations.

Hyung-gun Chi is a Master’s stu-
dent in Mechanical Engineering
at Purdue University. He received
his B.S. degree from the school
of Mechanical Engineering, Yon-
sei University, South Korea, in
2017. His current research inter-
ests lie at the intersection of com-
puter vision and robotics.

123

https://doi.org/10.1007/s00371-018-1594-7
https://doi.org/10.1007/s00371-018-1594-7

Latent transformations neural network for object view synthesis

Guang Lin is the Director of
Purdue Data Science Consulting
Service, Associate Professor of
Mathematics and School of
Mechanical Engineering at Pur-
due University, with courtesy
appointment in Statistics. He earn-
ed his B.S. in mechanics from
Zhejiang University in 1997, and
an M.S. and a Ph.D. from Brown
University in 2004 and 2007 in
applied mathematics, respectively.
He received many awards from
the National Science Foundation
and other organizations. He has

served as the Associate Editor of SIAMMultiscale Modeling and Sim-
ulations and in the editorial board of many International Journals. In
2019, he received University Faculty Scholars from Purdue University.

Karthik Ramani is the Donald W.
Feddersen Professor of School of
Mechanical Engineering at Pur-
due University, with courtesy
appointments in Electrical and
Computer Engineering and Col-
lege of Education. He earned his
B.Tech from the Indian Institute
of Technology, Madras, in 1985,
an M.S. from Ohio State Univer-
sity, in 1987, and a Ph.D. from
Stanford University in 1991, all
in Mechanical Engineering. His
research interests are in collabora-
tive intelligence, human–machine

interactions, spatial interfaces, deep shape learning, and manufactur-
ing productivity. He has published recently in ACM [CHI & UIST],
IEEE [CVPR, ECCV, ICCV], ICLR, ICRA, Scientific Reports, and
ASME JMD.

123

	Latent transformations neural network for object view synthesis
	Abstract
	1 Introduction
	2 Related work
	3 Latent transformation neural network
	3.1 Conditional transformation unit
	3.2 Discriminator and loss function
	3.3 Task-divided decoder

	4 Architecture details
	5 Experiments and results
	5.1 Experiment on rigid objects
	5.2 Experiment on non-rigid objects
	5.3 Diverse attribute exploration
	5.4 Near-continuous attribute modification

	6 Conclusion
	Acknowledgements
	References

