
A Collaborative Filtering Approach to Real-Time Hand Pose Estimation

Chiho Choi, Ayan Sinha, Joon Hee Choi, Sujin Jang, Karthik Ramani
Purdue University

West Lafayette, IN 47907, USA
{chihochoi, sinha12, choi240, jang64, ramani}@purdue.edu

Abstract

Collaborative filtering aims to predict unknown user rat-
ings in a recommender system by collectively assessing
known user preferences. In this paper, we first draw analo-
gies between collaborative filtering and the pose estimation
problem. Specifically, we recast the hand pose estimation
problem as the cold-start problem for a new user with un-
known item ratings in a recommender system. Inspired by
fast and accurate matrix factorization techniques for col-
laborative filtering, we develop a real-time algorithm for es-
timating the hand pose from RGB-D data of a commercial
depth camera. First, we efficiently identify nearest neigh-
bors using local shape descriptors in the RGB-D domain
from a library of hand poses with known pose parameter
values. We then use this information to evaluate the un-
known pose parameters using a joint matrix factorization
and completion (JMFC) approach. Our quantitative and
qualitative results suggest that our approach is robust to
variation in hand configurations while achieving real time
performance (≈ 29 FPS) on a standard computer.

1. Introduction
The easy availability of commercial depth cameras

marked the advent of real time solutions to the human pose
estimation problem [27]. However, the hand pose estima-
tion problem has proved far more challenging. The mani-
fold challenges to robust hand skeleton tracking are that (1)
the hand is a highly articulated object, (2) has many degrees
of freedom (DOF) with self-similar parts which often oc-
clude each other, (3) all fingers are flexible, and (4) there
exists intra-finger and inter-finger motion constraints [9].
Noise in data acquired from depth sensors further con-
founds all current methods for hand tracking. Consequently,
a robust real time solution to the hand pose estimation prob-
lem remains elusive.

The success of hand tracking naturally depends on syn-
thesizing our knowledge of the hand (e.g., geometric shape,
constraints on pose configurations) and latent features of

the RGB-D data stream (e.g., region of interest, key fea-
ture points like finger tips, and temporal continuity) [2].
In this paper, we propose a novel method to achieve this
synthesis by drawing on collaborative filtering approaches
for recommender systems [12]. Our main insight is that a
recommender system (e.g., Netflix) [22] is very similar to
a pose tracking system. Both systems have some intrin-
sic and extrinsic information about its constituent objects,
the users in a recommender system and individual poses
in a tracking system. The intrinsic knowledge of the hand
in a tracking system corresponds to known user ratings in
a recommender system. Similarly, the extrinsic RGB-D
point cloud information corresponds to the metadata avail-
able about users (e.g., geographical locations, background,
and interest). Specifically, the hand pose estimation prob-
lem is analogous to the cold-start problem in recommender
systems.

The cold-start problem in recommender systems is to
suggest personalized items to a new user with unknown
preferences [23]. In analogy to a tracking system, the hand
pose estimation problem is to evaluate the unknown pose
parameters of the kinematic hand model for a new point
clouds appearing at every instant of time via a RGB-D sen-
sor. A common technique to alleviate the cold-start problem
is to suggest items to a new user based on recommendations
available for like-minded users [19]. The like-mindedness
or similarity between users is evaluated using metadata such
as age, gender, geographical location, interests, etc [24].
Following a similar approach, we efficiently find the near-
est neighbors to an arriving point cloud using local shape
descriptors from a large database of hand poses with known
parameter values. Subsequently, the unknown pose param-
eters for this point cloud are estimated by collaboratively
regressing the known parameters of all neighborhood poses.
Our contributions include:

1. Our main contribution is a joint matrix factorization
and completion (JMFC) algorithm to estimate the un-
known pose parameters from the nearest neighbors on
a per frame basis.
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2. Construction of a hand pose library using a synthetic
hand model which mimics real 3D hand gestures.

3. Efficient nearest neighbor retrieval from the pose li-
brary by using a combination of pose clustering, FAST
feature point detectors and BRIEF descriptors.

4. Overall, a pragmatic solution to the real-time hand
pose estimation problem devoid of training parameters
and implementable on a standard computer.

This paper is organized as follows: We review relevant
literature in section 2. We discuss the creation of a hand
pose library using a synthetic 3D hand model and tech-
niques for nearest neighbor retrieval using local shape de-
scriptors. We propose our novel JMFC algorithm for esti-
mating pose parameters and discuss the details of its imple-
mentation in Section 4. Section 5 demonstrates the quan-
titative performance and we qualitatively show the efficacy
of our approach. Conclusions and future work are presented
in section 6.

2. Related Work
A variety of approaches have been proposed over the

last decade for hand pose estimation. These include, with-
out claim of exhaustivity, wearable (e.g., camera, gloves)
and marker based approaches, techniques reliant on RGB
input from single or multiple cameras, and more recently
depth camera or RGB-D input based approaches. We re-
view some work relevant to our depth-camera based ap-
proach and readers are referred to [9] for a comprehensive
review of literature.

Approaches for hand-pose estimation can be classified
as either model-based (generative) methods, or appearance-
based (discriminative) methods. An explicit hand model
guides model-based methods to recover the hand pose,
whereas appearance-based methods establish a map be-
tween image features and a library of hand pose configura-
tions. Current model-based approaches use particle swarm
optimization (PSO) [21] or a Gauss-Seidel solver [20] to re-
solve the hand configuration. Although straight forward to
implement, these methods depend on prior motion for ini-
tializing the solvers and have high computational complex-
ity. As a result, the pose estimates from these methods are
poor for non-contiguous data and they often rely on a GPU
for real-time processing.

Following the pioneering work in human-pose estima-
tion [27], similar appearance based methods are proposed
for hand pose estimation in [15, 16, 31]. Compared to a hu-
man body, the human hand is smaller, more flexible, and
severely affected by self-occlusion. Consequently, these
methods lose track under low resolution, output kinemat-
ically invalid solutions and lack robustness against occlu-
sion. Discriminative approaches employing inverse kine-

Symbol Description
H(θ, φ) Synthetic hand model
θ 18 joint angle parameters
φ 3 global translation parameters
s Hand skeleton vertex coordinates
v Visible point cloud for a hand pose
d Euclidean distance to poses in basis
c Shape descriptor for a pose
A,B,C Latent factor matrices
D Distance matrix
P Parameter matrix
k Number of nearest neighbors

Table 1: Summary of key notations used in the paper.

matics (IK) for pose refinement are 6D Hands which per-
forms nearest neighbor search from a hand pose database
[34] and deep convolutional neural network based hand
pose recovery system [33]. Nearest neighbor methods per-
form poorly when introduced to unseen poses not in the
database, while training a deep convolutional network is no-
toriously time-consuming. Although we use nearest neigh-
bors to estimate the pose parameters, our JMFC algorithm
circumvents the errors due to unseen poses without any
training. Some approaches for hand-tracking locally regress
[8] the hand pose parameters to the input image [28, 30, 32].
However, these methods either require a large and compre-
hensive training dataset to ensure robust tracking [30, 32],
or their heuristic initialization [28] causes it to lose track for
poses with severe self-occlusion.

The methods in [35, 26] are hybrid methods similar in
spirit to ours and leverage the paradigm of ‘analysis by syn-
thesis’. These methods first create a population of hand
poses and then select the hand pose that best fits the ob-
served depth data by optimizing a scoring function. The
heavy computational burden of this optimization means that
the system either achieves low frame rates (12 FPS in [35])
or needs to be accelerated using a GPU (as in [26]). Unlike
these methods which explicitly maximize the scoring func-
tion among all individual pose candidates, our approach im-
plicitly optimizes a scoring function by collectively assess-
ing the population of possible hand poses. We use fast al-
gorithms for matrix factorization [1, 7] in our JMFC model
to do this optimization.

3. Database creation

In this section, we first describe the 3D hand model and
the procedure used to create a large library of hand poses.
The pose library is annotated with labels we use for deter-
mining the hand pose from a depth map. We cluster the
poses in the library to generate a set of pose exemplars use-



Figure 1: An overview of algorithm pipeline. Background noise in depth map is removed ((a) – (b)). We use a local shape
descriptor to retrieve nearest neighbors from the labeled database of various hand configurations ((c) – (d)). The extracted
neighbors serve as seed postures to a JMFC model, and unknown joint parameters are estimated using a matrix factorization
and completion process ((e) – (g)).

ful for efficient nearest neighbor retrieval. Nearest neigh-
bors are retrieved at runtime by evaluating the shape de-
scriptor distance between the arriving depth data and simu-
lated depth data of the pose exemplars.

3.1. Hand model and synthetic data generation

We statistically generate hand poses using a synthetic 3D
hand model. The size of our synthetic hand model repre-
sents the median quartile of male hand sizes [11]. Our 3D
hand model consists of 1,179 vertices and 2,126 triangular
faces. This model is explicitly scaled for individual sub-
jects. We adopt a kinematic hand model with 21 degrees of
freedom (DOF), H(θ, φ), as standard in hand pose estima-
tion problems (see Figure 1d). θ denotes the set of 18 joint
angle parameters and φ is the set of 3 global translation pa-
rameters (x, y and z) of the hand.

Manually creating a library of hand poses using differ-
ent individuals is a tedious task. Instead, we (1) impose
constraints for joint configurations and finger movement
as discussed in [18] and [17]; and (2) uniformly sample
each of the 18 joint parameters in this restricted configura-
tion space, in order to automatically simulate 118K realistic
hand poses. These hand poses are effectively mesh modeled
with corresponding skeletal information. In order to syn-
thetically generate point clouds consistent with those visible
to a depth camera under occlusion, we process these mesh
models using a hidden point removal [14] strategy. Thus,
each pose instance in the database is a mesh model with

labels (θ, s,v), where s are the coordinates of the skeletal
vertices and v are coordinates of the visible vertices from
the viewpoint of a depth camera.

3.2. Pose exemplars and basis

In order to reduce redundancy of poses in the library,
we cluster the poses and extract pose exemplars. Density
based approaches can automatically detect arbitrary shaped
clusters in high dimensional data. To identify pose clusters,
we use a combination of two density-based clustering ap-
proaches, OPTICS [3] and DBSCAN [10], on the shape de-
scriptor distance described below. The OPTICS algorithm
does not explicitly generate clusters, but instead provides an
ordering of all hand poses based on their similarities. The
density parameters (minimum number of cluster members
and maximum cluster radius) are estimated by investigating
the output of OPTICS, and these parameters serve as input
to DBSCAN. We then extract clusters using DBSCAN, and
set the pose with minimum average distance to other cluster
members to be the pose exemplar. We identify 1,030 ex-
emplars among the 118K poses in the library, thus greatly
improving the efficiency of nearest neighbor retrieval while
maintaining accuracy (see Figure 3b).

Additionally, we evaluate (θ, s,v) for a set of 15 poses
from the alphabets of American Sign Language (see Fig-
ure 2). A 15 dimensional vector, d, is calculated for each
pose exemplar, wherein each element is the sum of all pair-
wise Euclidean distances between v of a pose in the basis
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Figure 2: Illustration of 15 hand models used as basis
adopted from American Sign Language.

and v of a pose exemplar. This vector serves as metadata
for pose exemplars, akin to a feature vector for users in a
recommender system.

3.3. Shape descriptor distance

We associate a local shape descriptor, c, to each pose ex-
emplar. Nearest neighbor retrieval at runtime, proceeds by
first determining the shape descriptor of the arriving point
cloud, calculating its shape descriptor distance of all pose
exemplars, and then selecting the nearest neighbors less
than a threshold. The computation of the shape descriptor
distance between two depth maps is described next.

We use the FAST feature point detectors on a depth map
to identify corner points [25]. For each detected FAST fea-
ture point, a BRIEF descriptor [6] is computed, which en-
codes information about surrounding regions. Details of
FAST and BRIEF computation are skipped for brevity. Cor-
respondences are established between FAST feature points
of two depth maps by iteratively (1) finding the pair with
minimum Hamming distance (bitwise XOR operation) be-
tween their corresponding BRIEF descriptors, and (2) re-
moving this matched pair for evaluating subsequent corre-
spondences. The shape descriptor distance is then the av-
erage Hamming distance between BRIEF descriptors of all
matched pairs of FAST feature points. Note that this dis-
tance varies with the hand’s orientation, and hence outputs
similarly oriented hand poses from the library as nearest
neighbors. This feature is desirable in our approach as the
in-plane rotation angles can then be robustly estimated us-
ing these nearest neighbors in the JMFC algorithm. Also,
the descriptors for all pose exemplars are pre-computed
to reduce computational overhead and only the descriptor
for the input depth map is evaluated at runtime for nearest
neighbor computation.

We get a set of 1,030 pose exemplars with labels r =
(θ, s,v,d, c) after the above pre-processing steps. Next we

discuss the steps of our solution at runtime.

4. Joint matrix factorization and completion
The pipeline of our approach is demonstrated in Figure 1.

The input depth is first processed to remove the background
and only contains the depth pixels of the hand. The global
parameters, φ are directly estimated from this processed
depth map. Next, the local shape descriptor of this depth
map is evaluated and the nearest neighbors are retrieved
from the labeled database using the shape descriptor dis-
tance. These neighbors serve as seed postures to the JMFC
model and the joint angle parameters, θ, are estimated, fol-
lowed by some final post-processing to output the tracked
hand skeleton.

4.1. Model initialization

Background removal and estimation of φ: We use a
simple heuristic to estimate the global translation param-
eters, φ. The depth map is pruned to exclude the back-
ground by only including points within the distance range
of (15, 50) cm to the depth camera, under the assumption
that the hand lies in this region of interest. We determine
the points corresponding to the hand in the depth map by
considering the pixels enclosed in the longest continuous
contour [29]. Extraneous noise in the detected blob is miti-
gated by using a median filter [13]. The translation param-
eters φ, are then set equal to the centroid of the remaining
points in the depth map. Our experimental results suggest
that this heuristic is fast and works well in practice. We pro-
pose to develop more sophisticated algorithms to estimate
the translation parameters in future work.

Nearest neighbor retrieval and distance matrix: The
k nearest neighbors [5] to depth map are calculated at each
instant of time using the shape descriptor distance described
in the previous section. The choice of parameter k is criti-
cal to the JMFC model. A small k compromises the robust-
ness of the θ estimation, whereas too large a k increases
computational complexity making the model infeasible for
real-time applications. Hence, we determine the k̂ nearest
neighbors below a threshold for the shape descriptor dis-
tance and set k equal to:

k = min(max(32, k̂), 64); (1)

This is because k between [32, 64] ensures fast and robust
parameter estimation (see Figure 3a). The distance thresh-
old for the shape descriptor distance is set at 15 for all our
experiments. Next, we impute two matrices P1 and D1 of
dimensions k × n and k ×m respectively, with the known
joint angles, θ (n = 18) and Euclidean distance vector, d
(m = 15) for the k indexed neighbors in the preprocessed
database. We also calculate the 15-dimensional distance
vector, d2, as the sum of all pairwise Euclidean distances
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Figure 3: (a) Choice of nearest neighbor, k. Joint angle er-
ror is minimum for 32 < k < 64. (b) Choice of number of
exemplars, N . N ≈ 1000 optimally trades off between ac-
curacy and computational time. (c) Choice of regularization
parameters, µ, λ. Joint angle error color coded with blue
denoting low error and yellow denoting high error. Best
choice is µ = 0.1, λ = 0.1 indicated by ×.

between v of each pose in the basis and points on the re-
fined depth map. Our algorithm for estimating the joint
angle parameters, p2, using P1,D1,d2 independently for
each frame is discussed next.

4.2. The JMFC Model

As discussed previously, we use a joint matrix factoriza-
tion and completion (JMFC) approach to estimate the un-
known joint angles for a given depth map. Our rationale for
using the JMFC model in analogy to a recommender system
described in parenthesis is as follows: We have a matrix P1

with joint angles (known ratings) for a set of similar poses
to the input depth (like-minded users to a new user). Ad-
ditionally, matrix D1 contains auxiliary information about
nearest neighbor poses relative to a basis (metadata about
like-minded users) and vector d2 which contains the same
auxiliary information about the new pose (metadata about
new user) whose parameters p2 (unknown personalized rat-
ings) are to be estimated. Our task is then to uncover the
latent factors, a2 governing the parameters, p2 by deter-
mining the latent factors for (1) nearest neighbor poses, A1

(2) known joint angles, C and (3) known distances to basis
models, B. Mathematically, we find a factorization of ma-
trices P1,D1 and vector d2 in terms of the latent factors
A1,a2,B,C, and use these information to impute the un-
known vector, p2. In other words, we simply find low rank
approximations of known matrices in order to estimate the
unknown pose parameters. Using the above intuition, our
JMFC model is succinctly expressed as:

argmin
A1,a2,B,C

1

2

∥∥∥∥[ D1

d2

]
−
[

A1

a2

]
B

∥∥∥∥2
F

+
µ

2
‖P1 −A1C‖2F .

(2)

where B and C are r-dimensional latent factors for the
distances (D) and joint angle parameters (θ), respectively;
A1 and a2 are the r-dimensional latent factors for the k-

nearest neighbors and input depth map respectively, and µ
is regularization parameter which trades off the losses due
to matrix factorization and accuracy of matrix completion.
P1 decomposes as a product of latent factors A1 and C,
(P1 ≈ A1C), D1 decomposes as a product of latent factors
A1 and B, (D1 ≈ A1B), whereas the row d2 decomposes
as a2B (see Figure 1f). To prevent overfitting, we add a
regularization term, λ to the Frobenius norms of A1,a2,B
and C which gives us the following minimization problem:

argmin
A1,a2,B,C

1

2

∥∥∥∥[ D1

d2

]
−
[

A1

a2

]
B

∥∥∥∥2
F

+
µ

2
‖P1 −A1C‖2F

+
λ

2

(
‖A1‖2F + ‖a2‖2F + ‖B‖2F + ‖C‖2F

)
.

(3)

We use the Alternative Least Squares (ALS) [4] to solve the
above minimization problem, and it is summarized in Algo-
rithm 1. Additional details about the objective function and
the derivation of the algorithm are discussed in the supple-
mentary material.

Algorithm 1: The JMFC algorithm

1 Input: D1, d2, P1, µ, λ
2 Initialize: A1, a2, B, C
3 while stopping criterion not met do
4 A1 ←(

D1B
T + µP1C

T
) (

BBT + µCCT + λI
)−1

5 a2 ←
(
d2B

T
) (

BBT + λI
)−1

6 B←
(
AT

1 A1 + aT2 a2 + λI
)−1 (

AT
1 D1 + aT2 d2

)
7 C←

(
µAT

1 A1 + λI
)−1 (

µAT
1 P1

)
8 end
9 p2 ← a2C

The parameters λ and µ are empirically set to 0.1 and
0.1, respectively (see Figure 3c). The rank r of latent fac-
tors is set to 5 as it optimally trades off between accuracy
and efficiency. The ALS procedure in Algorithm 1 repeats
until the difference between output values of equation 2 for
subsequent iterations is less than 10−6 or the number of it-
erations exceed 600. As a final step, the pose parameters p2

are estimated as p2 ≈ a2C and further refined by imposing
the pose constraints mentioned in Section 3.1. This ensures
that the final solutions comply with kinematically feasible
hand configurations.

5. Experiments
In this section, we evaluate our approach for synthetic

hand poses as viewed from a depth camera and real depth
data. We perform quantitative analysis on a synthetic



dataset of hand poses generated by uniformly sampling in
the constrained hand configuration space. This ensures ade-
quate coverage, and hence an unbiased evaluation of our ap-
proach. Further, we perform the same quantitative analysis
using realistic hand pose data captured from a commercial
depth camera. The prime difference between real and syn-
thetic data is the presence of noise in real depth streams. We
first describe the datasets and set baselines before proceed-
ing to the performance evaluation. All our experiments are
performed on Intel Xeon E3-1240 CPU with 16GBs RAM.

5.1. Datasets

We generate a synthetic dataset of 1,000 randomized
hand postures following the procedure in [26] as follows.
The 18 joint angle parameters and 3 global translation pa-
rameters are uniformly sampled in the constrained hand
configuration space to generate a synthetic hand configu-
ration, and the depth map of this pose is rendered within the
view frustum. All constraints for this configuration space
simulating realistic hand poses are listed in the supplemen-
tary material. Consequently, we get varied poses with cor-
responding ground truth. Note that we can use this ap-
proach to evaluate performance because our algorithm does
not depend on temporal information and re-initializes at ev-
ery frame.

We capture depth streams using the SoftKinetic’s Depth-
Sense DS325 and use this information for evaluating our
algorithm on real datasets. Four sequences are captured,
each from a different person, and each sequence contains
300 frames (≈ 10 seconds) of hand movement. The ground
truth is first roughly initialized using FORTH [21] with 256
particles and 75 generations, followed by manual refine-
ment. Even with the large number of particles and genera-
tions, FORTH contains subtle errors in the hand pose which
we manually remove.

Furthermore, we evaluate ours against two state-of-the-
art approaches [21, 28] on the large and challenging dataset
released with [28] in order to demonstrate that our method
is applicable in a general setting. The dataset consists of
76,500 depth images captured from 9 subjects, using a In-
tel’s Creative Senz3D camera compatible with DepthSense
camera resolution. The depth maps comprise of 17 hand
gestures under large viewpoint changes and span diverse
finger articulations and hand configurations.

5.2. Evaluation Metrics and Baselines

Metric Four standard metrics are used for our quanti-
tative evaluation: (1) individual joint angle error averaged
over all frames, (2) individual joint distance error averaged
over all frames, (3) proportion of correct frames as a func-
tion of maximum allowed joint angle error, and (4) propor-
tion of correct frames as a function of maximum allowed
joint distance error described in [26, 31]. Metrics 1 and 2

Input Depth Nearest Neighbors Result

Figure 4: Qualitative analysis on the synthetic dataset. Left:
randomly generated input poses. Middle: selected near-
est neighbors (including outliers) from our pose exemplars.
Right: the estimated hand pose.

indicate the estimation errors for individual joints whereas
metrics 3 and 4 are indicative of overall robustness of an
algorithm.

Baselines We demonstrate the efficacy of our overall al-
gorithm by comparing our method to the following base-
lines: (a) NN-only wherein we estimate pose parameters us-
ing a single nearest neighbor among the pose exemplars and
(b) JMFC-full wherein all 1,030 pose exemplars are used
for pose estimation, i.e., nearest neighbors are not retrieved.
We compare our algorithm to real-time implementation of
FORTH on the realistic datasets by setting the parameters
equal to 64 particles and 25 generations.

5.3. Experiments on Synthetic Dataset

Quantitative Analysis We evaluated our approach on
the generated synthetic poses. Figure 5 shows the quanti-
tative evaluation of our algorithm in terms of the accuracy
metrics, relative to the two baselines.

Figure 5a and 5b show the average error of estimated
joint angles and distances relative to the ground truth. Our
algorithm performs better than the two baselines with re-
spect to both metrics. In Figure 5a we see that the errors
in joint angles for JMFC-full are generally less than NN-
only, except for the palm angle, meaning that the joint an-
gles are robustly estimated by the JMFC model even in the
presence of extraneous poses not similar to the input depth
map. However, the high error in palm angle for JMFC-full
makes the estimated pose very different from the ground
truth. This error in JMFC-full propagates to other joints



(a) (b) (c) (d)

Figure 5: Quantitative analysis on the synthetic dataset with respect to four metrics, relative to baselines (T: tip, M: mid, and
B:base). (a) The average joint angle error in degrees. (b) The average joint distance error in millimeters. (c) and (d) show the
proportion of depth maps (y-axis) with joint angle and distance error less than a threshold (x-axis).

(a) (b) (c) (d)

Figure 6: Quantitative analysis on the realistic dataset with respect to four metrics, relative to baselines (T: tip, M: mid, and
B:base). (a) The average joint angle error in degrees. (b) The average joint distance error in millimeters. (c) and (d) show the
proportion of depth maps (y-axis) with joint angle and distance error less than a threshold (x-axis).

leading to large distance errors relative to NN-only as seen
in Figure 5b. Figure 5c and 5d show that our algorithm per-
forms better than NN-only and JMFC-full at all thresholds
for maximum allowed joint angle and distance error. The
proportion of correctly identified frames is about 90 per-
cent when the threshold for the joint distance error is set to
40 mm as seen in Figure 5d. The comparative result can be
found in [26] (figure 9c). Although we do not have access to
their datasets, this qualitative comparison to their state-of-
the-art method under the same experimental settings is very
promising. Also unlike their approach, we do this without
considering temporal information and without a GPU.

Qualitative Analysis We perform a qualitative analysis
of our approach in Figure 4. The central sub-figures indi-
cate the nearest neighbors retrieved from the pose library.
We observe that even though some nearest neighbors share
very little similarity to the input depth map, the final solu-
tion is robustly estimated. This robustness against outliers
is attributed to the vector d2 (the vector of distances to basis
models) in the JMFC model, which implicitly mitigates the
effect of faulty nearest neighbors. Intuitively, the incorrect
pose parameter values of these faulty neighbors are weighed
less in the collaborative assignment of pose parameters to
the unknown pose.

5.4. Experiments on Realistic Dataset

Quantitative Analysis We evaluate our approach on the
generated realistic dataset affected by noise with respect to
three baselines, NN-only, JMFC-full and FORTH1.

Figure 6a and 6b show the average error of estimated
joint angles and distances relative to the manually refined
ground truth over all four sequences. We observe that over-
all our method is superior to all baselines with respect to all
four error metrics. Unlike FORTH, our model does not need
any temporal information, and hence, avoids errors accumu-
lating over time. It is also interesting to note that noise in
real datasets confounds nearest neighbor estimation leading
to poorer performance than synthetic datasets. One solution
to reduce the effect of noise is to use training for accurately
generating pose hypothesis as done in [26] instead of using
nearest neighbors, a possible direction for future work.

We observe that the performance of our algorithm to es-
timate joint angles on realistic dataset (Figure 6c) is very
similar to the synthetic dataset. However, the performance
as measured by error metric (d) deteriorates relative to syn-
thetic dataset (Figure 6d). This hints at a compounded effect
of poor nearest neighbor estimation and incorrect estima-

1The algorithm in [21] is reimplemented using our depth camera.
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Figure 7: Qualitative comparison of our method with 3
baselines: FORTH, NN-only, JMFC-full in that order.

Figure 8: Quantitative comparison of our method with [21,
28] on a public dataset released with [28] with respect to
proportion of depth maps (y-axis) with joint distance error
less than a threshold (x-axis).

tion of global translation parameters. The latter problem,
however, is easily solvable by replacing our heuristic based
method by methods implemented in [33, 26] for accurate re-
gion of interest detection. However, the thrust of our contri-
bution is the JMFC model for joint angle estimation which
is effectively validated.

Qualitative Analysis Figure 7 qualitatively evaluates
our approach against the baselines. All depth maps are
centered for effective visualization. The top column shows
the input depth map and each row corresponds a baseline
method. We observe that our approach is robust to the vari-
ous types of hand configurations under occlusion.

The average frame rate of our complete algorithm for

hand pose estimation on the realistic datasets is ≈ 29Hz,
and hence applicable in a real-time environment. In com-
parison, our implementation of FORTH with NVIDIA
Quadro K4000 GPU resulted in an average frame rate of
16Hz. Additionally, we do not require temporal informa-
tion as our algorithm proceeds on a per frame basis.

Quantitative Analysis on Public Dataset We compare
our algorithm on the dataset of [28] with FORTH and the
Holistic, Hierarchical and HPR-2D+Rot regression meth-
ods proposed in [28]. We indirectly compare our method
with [30] as Hierarchical pose regression [28] has been
shown to be better than [30] in [28] and with [35] which
is similar in spirit to HPR-2D+Rot [28]. Figure 8 displays
the proportion of depth maps (y-axis) with joint distance er-
ror less than a threshold (x-axis) for the 5 methods2. We
see that our approach achieves better accuracy than FORTH
and comparable performance to Hierarchical pose regres-
sion method of [28]. Our method has the highest fraction of
frames with maximum allowed distance to ground truth in
the [0, 15] mm and [40, 80] mm domain, validating that our
approach is overall more robust to finger articulations and
applicable to hand pose estimation in a general setting.

6. Conclusion
In this paper we present a novel approach for the hand

pose estimation problem based on a joint matrix factoriza-
tion and completion model. We present strong evidence of
the applicability of our approach for hand tracking in a real-
time environment. Although we demonstrate the efficacy
of our approach for estimating joint angle parameters of
the human hand, the overall idea is also applicable to the
human pose estimation problem. More generally, our ap-
proach conclusively validates that advances in collaborative
filtering approaches for recommender systems can be effec-
tively synergized with pose estimation and tracking prob-
lems. This opens up several avenues for future work. One
promising direction is the use of nuclear norm regulariza-
tion instead of the Frobenius norm in the JMFC objective
function to get low rank factors. We also wish to explore
techniques for determining the best basis and effectively in-
tegrating RGB information in our future work. Overall, we
believe our JMFC model based approach for hand pose es-
timation opens up new avenues for real-time solutions in
computer vision.
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2Performance of Holistic, Hierarchical and HPR-2D+Rot methods are
estimated from figure 5a in [28] which displays the same error metric.
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