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Abstract

We introduce novel multiscale kernels using the random walk framework and derive corresponding embeddings
and pairwise distances. The fractional moments of the rate of continuous time random walk (equivalently diffusion
rate) are used to discover higher order kernels (or similarities) between pair of points. The formulated kernels are
isometry, scale, and tessellation invariant, can be made globally or locally shape aware, and are insensitive to
partial objects and noise based on the moment and influence parameters. Additionally, the corresponding kernel
distances and embeddings are convergent and efficiently computable. We introduce dual GMS signatures based
on the kernels and discuss the applicability of the multiscale distance and embedding. Collectively, we present a
unified view of popular embeddings and distance metrics while recovering intuitive probabilistic interpretations

on discrete surface meshes.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

Key Symbols
o, B,n Influence parameters o, 3; moment parameter n
Aw Laplace-Beltrami operator A with weights w
Ay Scaled Laplace-Beltrami operator
Aot Lazy rate operator
AN Eigenvalue matrix A with eigenvalues A
oo} Eigenvectors
b Stationary distribution vector
T Multiscale kernel (Moment time operator)
Y,v v is diagonal of |Q| with maximum value Y
& Vector of node self-weights
A,vol Area matrix A, volume of graph vol
D.d Degree matrix D with weights d
D Kernel distance

G,G,G | Green’s function of Ay, £, L. respectively
H;, hy Heat kernel H; with values A,

L,L¢ Normalized and conformal Laplacian
M,p Transition matrix M with weights p

N Normalized transition matrix

P p: Markov kernel P; with values p;

0,q Rate matrix Q with weights ¢

t Time

u,w,V Mesh nodes u,v in set V

zZ Fundamental matrix
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1. Frame of Reference

Traditional methods for shape analysis resort to a single level
approach, where the mesh structure is used to formulate
global metrics. However the paradigm is shifting to multi-
scale methods which help understand a shape over multiple
levels and discover salient features on the mesh at global
as well as local scales. Current multiscale methods include
the heat kernel [SOGO09] and multiscale biharmonic ker-
nel [Rusl1b] which operate over the mesh domain with a
tuning parameter, and have been applied to shape segmen-
tation, correspondence and retrieval [BBGO11, SOCGI10,
OMMG10]. These kernels differ in weighting of eigenvalues
and set up the motivating question for this paper, ‘Is there a
generalized principle guiding the weighting of eigenvalues
and hence the construction of multiscale kernels, while be-
ing intuitive in the choice of kernel or scale?’

We aim to answer this challenging question using the
Markov chain framework of random walks. The choice of
this framework is motivated by the fact that Markov chains
emerge as a generalization of the heat equation and the in-
timate relationship between the discrete Laplace-Beltrami
operator and the rate matrix of a random walk. For a gen-
eral discussion on random walks, the reader is asked to re-
fer to the excellent survey by Lovasz [Lov93]. As meshes
are point-sampled and subsequently triangulated, the ran-
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Figure 1: Center: Asymmetric mesh with unequal widths (left strip (blue arrow) > right strip (red arrow)) along with exploded
views. (Right) Distances are measured from point P and viewed as a height function f(D)) above mesh domain (green arrows).
Color changes from blue to red as distance increases. Top Row: Varying t" with n = 2,4,8,16, respectively, scales underlying
asymmetry in path length distribution with n acting as 'frequency filter’. High n separates distance from P to top left and top
right strips displayed using black arrows. Bottom Row: Varying o with o. = 0.995,0.95,0.8,0.4, respectively, makes asymmetry
disappear with ‘scale shift’. At small & all points are at approximately the same distance, apart from points in immediate vicinity

dom walk framework naturally fits into general mesh anal-
ysis. It has already been used in a wide array of applica-
tions including mesh segmentation, cutting, denoising etc.
[SRMLO7,LHMRO0S8,ZZC11]. In this paper, we use random
walks to construct multiscale kernels with two intuitive pa-
rameter choices, which generalize the current approaches
under a single framework. All formulated kernels are proven
to be convergent and positive definite. Hence they inherit all
the ‘nice’ properties of popular kernel embeddings (GPS,
spectral [Lév06], etc.) and kernel distance metrics (bihar-
monic, commute-time, etc.) which we briefly review.

The Heat Kernel Signature (HKS), related to diffusion ker-
nels [NLCKOS] [KL02], was proposed as a point signature.
The idea is to extract information about the object using
time ¢ as a scaling parameter. However, choosing a suitable
t is not an easy task and most approaches rely on heuristic
tuning with no straightforward interpretation [ASC11]. Our
approach to this problem comes from the mixing rate of a
Markov chain which is intimately connected to the rate of
change of the heat kernel, and hence, the diffusion process.
As the kernel approaches uniform distribution, we contend
its rate of convergence to equilibrium is equally (if not more)
informative. This is the central motivation of this paper and
key separating factor from other approaches, i.e., to extract
information about shapes using the rate of diffusion in a ran-

dom walk setting. Our work is also inspired by the multi-
scale biharmonic kernel and biharmonic distance [LRF10].
The biharmonic distance derived from the biharmonic oper-
ator (square of Laplacian) is a parameter free distance met-
ric on meshes with inverse square weighting of the eigen-
values. Rustamov’s multiscale biharmonic paper advances a
novel way to construct general multiscale kernels by mini-
mizing the Laplacian energy subject to the sparsity induc-
ing lasso constraint. On the surface, it is unclear how the
inverse exponent weighting of eigenvalues achieves the scal-
ing. As demonstrated in [Rus11a], the answer is interlinked
with wavelet transforms on graphs and point clouds. Similar
observations have been made in the machine learning com-
munity in the context of iterated ranking on manifolds using
the Green’s function [ZBS11]. Our approach provides an in-
tuitive explanation while generalizing the biharmonic kernel,
GPS embedding [Rus07], biharmonic distance and commute
time distance [QHO7, FPmRS06] on meshed surfaces.
Specifically, the multiscale kernels T are constructed by
integrating the moments of the probability transition rates of
a random walk and governed by two parameters n and o
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where ¢ is time, M is the transition matrix and Ay is the
lazy rate matrix. Note Section 2 ties M and Agys with the
Laplace-Beltrami operator A. Figure 1 displays the multi-
scale distances from the green point P for the asymmetric
mesh displayed in the center of the figure. The bottom left
strip (blue arrow) is thicker than the bottom right strip (red
arrow), and hence, there are more diffusion pathways from
point P to nodes on the top left side of the mesh relative
to the right. This underlying asymmetry in connecting path-
ways from P emerge as we increase the moment parameter
n from 2 to 16, i.e., distances to nodes on the top right strip
relative to the top left strip gradually increase (marked using
arrows in top figure), made visible using color plot (red im-
plies large distance) and height field (distance along vertical
direction with mesh as base). Decreasing o has the opposite
effect of progressively suppressing the asymmetry (see bot-
tom row). For o0 = 0.4, the entire mesh is approximately at
the same distance from P, apart from the points in the imme-
diate vicinity. These observations can be explained in terms
of equation 1:

e First, replacing Agys with A, one immediately establishes
that the Ae~** term in the integrand is the differential of
the heat operator e~ hence equal to the negative rate of
heat diffusion.

e Second, the n'" moment of diffusion rate with respect to
time, ", scales the rate of diffusion, i.e., say n = 2 weights
the diffusion rate between two points at large times more
heavily than say n = 1 over the integral. In effect, dif-
fusions occurring over long time periods are penalized for
high values of n and are equally weighted for n = 0, hence
the moment extracts scale (see Figure 1). From a signal
processing viewpoint, the role of n is to filter frequen-
cies similar to parameter ¢ in the heat kernel, i.e., higher
frequencies are progressively suppressed by increasing n
[ASCI11].

e As Ay can be written as I — oM (see Section 2), each
element of the operator e’ Awt can be expanded using the

Maclaurin series of ¢~/ =®M) 4
—tAam —t v k sk (l)k
e (u,v)=e k;)ot M (M’V)W (2)

M*(u,v) can be interpreted as the sum of all random walks
of length k joining points u and v [BWHOS]. In the series,
paths of length k get weight X and hence shorter paths
(say k1) will be weighted more than longer ones (say k3)
forO<a <1 ( ak < Ock‘) [New10]. From a signal pro-
cessing viewpoint, the role of a is to shift the scale of
analysis as it is implicitly added to eigenvalues (see Fig-
ure 1 and Section 3).

o o and ¥ are multiplicative parameters in equation 2 and
aid each other, i.e., decreasing o suppresses longer path
lengths and large 7 discovers longer paths connecting two
points. This is intuitive as time and distance are cou-
pled notions. Allowing dual parameters o and n to con-
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trol scale provides greater flexibility and reveals different
multiscale information (see Section 4).

o Finally, integrating over the entire time interval eliminates
the choice of the appropriate time interval and replaces it
with the range of moment parameter which we perceive to
be more intuitive. It also makes the kernel robust to noise
and small topology changes.

The main contribution of this paper is the formulation of the
dual-multiscale kernels (over n and o), associated embed-
dings and distances (Section 3), after formalizing the dis-
crete graph based random walk framework (Section 2). The
theoretical properties, relationship with existing kernels and
metrics along with applications are established (Section 4).
Finally we discuss the conclusions and proposed future work
(Section 5).

2. Preliminaries

In this section we explain the construction of probability
transition matrix M for discrete random walks, and the con-
struction of rate matrix Q for continuous time random walks
on a triangulated surface mesh. We derive relevant spectral
decompositions which are used in subsequent sections. The
triangulation (discrete state space) assumption is consistent
with general analysis on point-sampled meshes.

2.1. Graph Construction

The rate matrix Q is negative of the discrete Laplace-
Beltrami operator A. This stems from the fact that Brown-
ian motion and heat flow both satisfy the diffusion equation,
and that Brownian motion is a generalization of continuous
time random walks to continuous state spaces. This relation-
ship can be directly observed by comparing the heat diffu-

sion equation % = —AH; (H; is the heat kernel) and Kol-

mogorov’s backward equation % = QP; (P; is the Markov
kernel) for continuous time Markov chains [Law06]. The
Brownian interpretation of heat kernel was briefly explained
in [SOGO09].

It is well known that the Laplace-Beltrami operator A
is a generalization of the Laplacian from flat spaces to
manifolds [MDSBO02]. The operator can be constructed
using the common cotangent discretization [MDSBO02]. The
weights w of the Laplace-Beltrami operator are given by

cota, y+cotb, . 7
Yy —%5g if v=u
cotay,y+cotb,, .
W(u,V) = B cota, 2 lf Y g Nl (u)
— ﬁ if (M7 V) € EB
0 otherwise

where N (u) is the set of 1-ring neighbours of vertex u,
au,v,by,y are the two angles supporting the edge connecting
vertices u and v, A, is the associated surface patch or finite
volume (usually barycentric or Voronoi) and Ep indicates
a boundary edge. The by, term drops out for boundary
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points imposing the von Neumann boundary conditions. We
assume that the triangulation is regular, i.e., ayy +buy < T
so that all weights are positive. Another commonly used
operator, the conformal Laplacian L. [PP93] is related to
the Laplace-Beltrami operator by A = AL, where A is a
diagonal matrix of the Voronoi, barycentric or mixed area
(Ay for point u). As Q = —A, the weights g of the rate
matrix are given by

Zv —(cotayy+cotb,,) if

A, Vv=u
7 Cota“,vzjgcatbu_\, if vC N] (u)
q(”? V) - cota, , u .
7 if (u,v) €Ep
0 otherwise

Verify that ), gu» = 0 Vv € V where V is the set of all nodes,
which means that the sum of all transition rates to or from a
node is conserved, i.e., flow conservation. For discrete ran-
dom walks, the probability transition matrix M satisfies:

Property 1: The single-step transition probability of jump-
ing from any node u to an adjacent node v ((puv),en, (u))
is positive, i.e., 0 < puy

Property 2: The probability of a random walker to jump
from state u to any stateis 1,i.e., Y, puw = 1 Vv € V (con-
servation property).

We use the uniformization technique of Markov chains to
build M satisfying the above properties. Uniformization is
a technique to simulate continuous time chains using a dis-
crete chain analog (see Lawler [Law06] for a detailed expo-
sition). Suppose Vv, represents the absolute diagonal values
of the rate matrix Q and Y = max, vy, then the uniformized
chain is given by

if u#v
1—3 if u=vy
Using the above transformation, the elements of the transi-
tion matrix M are

cota, ,+cotb, .
1y, +Cotby,y .
B coa_ZTJ;co if VQN](M)
PUv) =19 cora 2 TAu _
v if (M, V) € EB
0 otherwise

It is easy to verify that regular triangulation and scaling by
Y ensure satisfaction of Property 1 and 2 respectively. Note
Property 1 does not hold for general meshes. The diagonal
elements of the transition matrix are zero only if u coincides
with the index of the maximum element Y. The non-zero
diagonal values &, indicate presence of self-loops wherein
a random walker remains in the same state with positive
probability and with probability (1 —&,) hops to a 1-ring
neighbour (also called the lazy random walk). For notational
consistency, we scale the values of the Laplace-Beltrami
operator A by 1/Y and represent it by Ays. Note the relations
O = —YAy and Agyr = 1 — oM, where Agyy is the lazy rate
operator and ¢ is a tuning parameter discussed in Section 3.

2.2. Random Walks

Random walks can be viewed as special cases of finite
time-reversible irreducible Markov chains. Let D be a di-
agonal matrix with elements d, = YA, called the degree
matrix. Note the equivalence of the following relations:
M=1— D_ch = I — Ay. While M is asymmetric, it is
easy to bring it to a symmetric form by considering N =
D'2MD~'/? with the corresponding Laplacian denoted by
L, and termed the normalized Laplacian as per standard
graph terminology. £ = DI/ZAMDfl/2 =D '2L.p~'/?
which is similar to Ay, i.e., the same eigenvalues and u"
component of the eigenvector scaled by the inverse square
root of its degree (1/ vd,). The relationship between the
normalized Laplacian and transition matrix is given by M =
D~ '2(1— £)D'/?. The spectral decomposition of the nor-
malized Laplacian is given by £ = ®A®D’ where A is a diag-
onal matrix with ordered eigenvalues, i.e., 0 =X} < A;... <
Au..., @ is a matrix with the corresponding eigenvectors as
columns. The eigen decomposition of the normalized tran-
sition matrix is N = ®A'®’ with the same set of eigenvec-
tors and eigenvalues related as A =T1—A (see [Chu97]).
The stationary distribution 7 or the probability of being at
a vertex after the walk has reached equilibrium (after long
time or at = 00) is independent of the initial distribution.
It can be proved that m = 1D/vol where 1 is a vector with
all coordinates 1 and vol =Y, dy called the volume of the
graph [Chu97]. Intuitively, the stationary distribution is pro-
portional to the area term A, and it reproduces local informa-
tion around a node. With these definitions handy, we briefly
discuss continuous time random walks.

Continuous Time Random Walk : Discrete random walks
take place over discrete time steps starting from ¢ = 0 over
the positive integer domain. The difference between the dis-
crete and the continuous setting of a random walk is the wait-
ing time between hops of a random walker, i.e., constant
1 for the discrete walk (as r = 0,1,2...) and an exponen-
tial distribution for continuous time. Recall, the exponential
distribution characterizes the waiting time in a Poisson pro-
cess, and hence, the number of jumps completed by a ran-
dom walker at time ¢ is a Poisson distribution. We solve the
Kolmogorov backward equation to determine the probability
distribution over the state spaces at time ¢ and the solution is
naturally the heat kernel

SH, _

5.~ = —AmH; with solution, H; = et

Using the orthogonality of the eigenvectors (QDiTCI) i =8,
the relation Ay = D '2®A®"D'/? and noticing that the
normalized Laplacian matrix is diagonalizable, the matrix
exponential is calculated as H; = D~ '2@pe "N p'/2,
Hence, the spectral decomposition of the heat kernel at time
tis

Hyy =m0+ Y e ()i (), / % 3)

i>2

(© 2013 The Author(s)
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Figure 2: (a) Disc of radius 5. (g) 3D plot of rate of diffusion from center (red point) of disc viewed as height function and color
coded (rate decreases as color changes from red to blue). (b)-(f) and (h)-(1): 2D plot of function z”[AaMe_tA"M | for different
values of t,n,q, viewed as height field (function value) along vertical axis and distance from center along horizontal axis. The
quadruple indicates [t,n,q, G| values where ¢ is the maximum value of function indicative of weightage in the integral

The uv'" entry ., of the heat kernel H; evaluates the prob-
ability of transition from u to v in time . This probability
tends to the stationary distribution (7,) in the long time limit
as A > 0. Hence, H; becomes uninformative for large ¢ val-
ues as the equilibrium value at nodes are proportional to the
corresponding area. Also, the conservation property (Prop-
erty 2) holds for all non-negative values of ¢, i.e., ¥, }, = 1
Vv € V [KL02].

3. Formulation

The formulation of the multiscale kernels is based on two
parameters- a moment parameter n and an influence param-
eter o, given by equation 1

oo
= [ t"[Aqpre” M dr

=0
Although " can be replaced by general functions of ¢, we
restrict our attention to powers in ¢ (n is a positive frac-
tion), and term 1" as the moment time operator. The im-
plication of this functional form was discussed in Section
1. Loosely speaking, n and o produce similar effect of ex-
aggerating/suppressing ‘faraway’ nodes. However, they do
so in very different ways, which we illustrate by plotting the
values of " [Agpre "2 ] for different values of [¢,n, o], from
the center of a disc in Figure 2. Plot 2g shows the rate of dif-
fusion values to all points from the center as a color plot (red
implies higher values) and height field from the base of the
disc. Note, the flow conservation property holds V¢ > 0. For-
mally, ¥, Aye " (u,v) = 0 Vv € V. This can be verified

A _ ef(”rd')AM). As all rows

by writing Ayze " dr as (e
of e~ ,e_(Hdt)AM sum to 1 (Property 2), flow conserva-
tion follows. It does not hold in general for a # 1. Plots 2b,

2h display the rate of diffusion at times r = [32,64] with al-
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most equal maximum values ~ [4- 10~%,10™%]. Weighting
the rate of diffusion by " produces similarly shaped scaled
plots for the same time, as ¢ is a multiplicative factor to the
term in parenthesis. It can be visually verified by comparing
Plot 2b to Plots 2c¢, 2d and Plot 2h to Plots 2i, 2j. However,
i weighting produces two orders of magnitude difference in
the maximum value ~ [4.7-10%,2.9-10'°] at the two times.
This validates the claim that parameter n penalizes the rate
of diffusion at long time scales more than short ones in the
integral, and large values of n provide global information
about the shape. The influence parameter o affects the dif-
fusion rate on the disc in two ways. Firstly, it suppresses
the diffusion to nodes further away from the center, conse-
quently suppressing the rate (notice the progressive squeez-
ing in Plots 2b to 2e to 2d and Plots 2h to 2k to 21 as o
decreases from 1 to 0.8 to 0.4). Secondly, o decreases the
magnitude of rate of diffusion, affecting the magnitude at
long time scales more than short ones. The maximum value
drops from ~ 6 - 106 (Plot 2e) to ~ 10-10 (Plot 2f) for
¢ = 32, but drops from & 5- 10~ (Plot 2k) to &~ 2-10~"°
(Plot 21) at larger time ¢ = 64. This can be understood by
considering the equivalent formulation for discrete random
walks (equation 14) and that the term in parenthesis can be
written as of [M' ! /o, — (M)'], with o appearing as a multi-
plicative factor with time ¢ as exponent. Hence, the notion of
‘faraway’ nodes for parameters n, o can be stated as:

e For the moment parameter n, ‘faraway’ is related to the
rate of diffusion before converging to the equilibrium dis-
tribution, and hence, (loosely) tied to time scales.

e For the influence parameter Q, ‘faraway’ is related to the
separation between the source and destination nodes, and
hence, (loosely) tied to distance scales.

We do not treat time and distance as independents (both pa-
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(b) Diffusion rate at time=2

(e) Diffusion at time=0.4

(f) Diffusion at time=2

(c) Matching to green sphere

(g) Matching to green sphere

Scaled RHKS

log(t)

(d) RHKS of anchor points’

Scaled HKS

log(t)

(h) HKS of anchor points

Figure 3: Comparison of Rate of Diffusion (Top) vs Diffusion (Bottom). (a)-(b),(e)-(f) show isocontours and color plots of
the magnitude of diffusion/ rate of diffusion emanating from red sphere at different time values. Magnitude decreases as color
changes from red to blue. At small times isolines are localized and at large times the color plot is intuitive for rate of diffusion
(see description in Section 3). (c¢),(g) display color plots of difference between scaled signatures for point marked by green
sphere and other points on model for same time range [t1,t; ]. Difference increases as color changes from red to blue. Signatures
derived from diffusion rate are informative. (d),(h) displays scaled HKS (diffusion) and RHKS (rate of diffusion) vs logarithmic
time scale for 5 color coded points on model in (c¢)/(g). RHKS is discriminative at all scales

rameters influence time and distance) but attach the notion
of time to n and distance to 0., as it makes intuitive sense and
for ease of comprehension. We demonstrate in Section 4 that
each reveal useful multiscale information about the triangu-
lated mesh. An equivalent operator (namely the Pochham-
mer time operator) for discrete random walks is formulated
in the appendix. To sum it up, the basic intuition in defin-
ing these operators is that the ‘rate of diffusion is informa-
tive for understanding shapes’. This point is illustrated fur-
ther in Figure 3 where we compare the diffusion kernel to
the rate of diffusion kernel for oo = 1. The key separating
feature is that the smallest eigenvalue and its correspond-
ing (uninformative) constant eigenvector does not appear in
the rate kernel. This is true as AMe_tAM dt can be written as
(e "M — e~ (DA ) and using equation 3. This is benefi-
cial as it suppresses the fastest decaying eigenvalue (A1) and
most global eigenvector (P1). Hence the rate kernel is ‘more
local’ relative to the heat kernel and does not converge to
the uniform distribution, as the constant eigenvector which
dominates at long time is removed. The isocontours of diffu-
sion rate are more intuitive, as they follow the shape locally
and the derived signatures are discriminative at all scales,
unlike the HKS. These claims are validated in Figure 3. The
Rate of Heat Kernel Signature (RHKS) is defined similar to
HKS on Ayre ™" instead of e ~**¥ _ Plots 3c, 3g indicate ro-
bust matching using RHKS to green anchor point and plots
3d, 3h indicate discriminative signatures at all scales unlike
HKS. The isolines and color plots of the rate of diffusion

from the anchor point are more localized at small times (plot
3a vs. 3e); also the isolines follow similar pattern for time
t = 2. The color plots, plot 3b vs. 3f, are starkly different
and can be explained by considering 1/A, value which is
~ 2. 1/A\; can be interpreted as the mixing time of diffusion
(see Section 4) and plot 3b clearly indicates that the rate of
diffusion is small on the entire horse model, hence diffu-
sion has nearly converged to equilibrium. Thus, we validate
our claim that the rate of diffusion is equally informative
and more discriminative, compared to the diffusion kernel.
Having defined the operator, we establish desired symmet-
ric and positive-definite kernels, and hence, develop the dis-
tance metric and the corresponding embedding.

3.1. Kernel Computation

We compute the multiscale operator using the eigen spec-
trum of the transition matrix and show that the result is inti-
mately connected to the discrete Green’s function, and hence
the commute time and biharmonic kernel. Further, we use
the kernel distance to evaluate pairwise distances and char-
acterize the associated embedding.

Moment Time Operator : The term in the parenthesis in
equation 1 can be written as [e /4% — ¢~ (Fd)Aw] Hence,
the null space drops out for o = 1 by substituting the spectral
representation of e ™™ (Recall in equation 3, eigenvalue 0

and the corresponding eigenvector appear as T,). Using the
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orthogonality of eigenvectors and evaluating the integral, T
simplifies to,

n ! dy

i>2

or " =T(n+1)D~'?®A~"&T D'/? for o = 1 where T"is
the gamma function and A and & indicate the removal of
the 0 eigenvalue and the corresponding eigenvector. For 0 <
a < 1, Agys (equivalently I — aM) becomes invertible (no 0
eigenvalue). To see this, write I — oM as o(BI + An) where
B= ITTO‘. Using the relation that eigenvalues of (Bl + Ay,)
are (B+A) and @ ® = I, the representation is

1 dy
7 i) ®i(v)y/
u

uy — 5
T ot = (ﬁ‘i’)\'l) Q)

on r(n+1) Z

or ™ =T(n+ o "D~ 2®(B+A)"®" D'/? for 0 <
o, < 1. Note the starting index i is different for the two equa-
tions above, based on the value of a. Henceforth, general
results are derived for o and one appropriately changes the
limits in the summand when o = 1. Recall that the eigenvec-
tors are in decreasing smoothness order for the Laplacian
operator as we arrange the eigenvalues in increasing order,
and hence, the order n scales the smoothness while filter-
ing out smaller ‘frequencies’. Thus, " interprets the scale
on the mesh surface with larger n revealing larger scales on
the mesh surface. Following the same reasoning, the smaller
the a value, the larger the value of B and hence a performs
a ‘spectra or scale shift > while killing the null space of the
transition matrix [ZBS11]. From these equations, it is easy to
verify that the symmetric matrix D'/2¢%p=1/2 i positive-
definite and so is the matrix T (diag(m)) ~! obtained by pre
and post multiplying by (diag(ﬂ:))_l/z, where diag(m) is a
diagonal matrix of stationary probabilities. We use this ker-
nel to define kernel distances, as other mesh based distance
metrics naturally arise from it.

Fundamental Matrix and Green’s Function : We define
the derived kernels in terms of standard operators and show
the generic nature of our method in reference to other pop-
ular kernels. In the Markov chain theory, the fundamental
matrix Z° for continuous time random walk is defined as

o0

Zb(l)v = /(hilv 775V)dt (6)
0

where /4, is an element of the heat kernel. This matrix is
very useful for a wide array of calculations like expected
number of visits to a state, expected return and access times
[Kei79]. The Green’s function introduced in 1828 by George
Green and its discrete counterpart associated with the Lapla-
cian, introduced in a 2000 paper [CYO00], have received
much attention. Formally, it is the pseudo-inverse of the de-
fined Laplace operator and can be more explicitly stated as
dy

GuvAM(w) = Suv - m (7)

(© 2013 The Author(s)
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Vdud,
guvﬁuv = 8uv - .

®)

where G and G are the left inverse operators of Ay and £
respectively. It can be verified that 2 and G reduce to the
same spectral form as ! (see [CYO0O0] and page 107 [Kei79]).
Hence the relationship between the defined kernel, funda-

mental matrix and Green’s function using G" = G",/ % can
be verified to be: ' = ['(n+ 1)(£°)" = T'(n+ 1)G". From
here on, in order to maintain consistency, we use the Green’s
function for representation.

3.2. Distance Computation

We use the kernel distance to evaluate pairwise distances be-
tween points on a mesh. The kernel distance is defined for
positive definite matrices as (D¥')? = (Kuu — 2Kuv + Ky ),
where  is a positive definite kernel. Hence, the general ex-
pressions using the discrete Green’s function for distance be-
tween two vertices u and v for the generated kernels are

(DOLI’L)Z _ VOln L(tx; + ﬁ/n _2 %}l’l (9)
" du  dy Vdudy

G(ln GO’Jl GO(n GUJ!

,D(xn 2 _ ln Yy wo_ Yuw Y 10

(D)™ =vol \ = "+ =4 ~ 1o
where vol" = [(n+ 1)o"vol, G*" = ®(B+A)"®T or
G" = ®A"®T as required, based on the parameters n and
o. We use the relation G*" = G*, / Z—Z to derive the second
relation from the first. In terms of spectral representation this
can be written as

1 Di(u)  Pi(v) (11
i>1 (B + A )n \/CTM \/jv
Note that the sum starts from i = 2 for D), and i = 1 for
DY, Thus to calculate the exact pairwise distances, we
need to find the full set of eigenvectors and correspond-
ing eigenvalues for the normalized Laplacian. Using the de-
creasing smoothness property of the eigenvectors, multiscale
distances can be approximated using only the first K eigen-
vectors and provide a trade-off between accuracy and com-
putational time. We shall return to computational complexity
in the next section.

3.3. Kernel Embedding

Having derived the kernel distances, we see that the embed-
ding that preserves the n'" distance moment with parameter
o is given by:

0¥ = Vol (B+A) @ p~1/? (12)

Note that the D~ '/2 scaling appears due the scaling of
the conformal Laplacian by area terms. To drive home this
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point, if the kernels were derived starting from the confor-
mal Laplacian instead of the normalized Laplacian, the em-
bedding would be: @ = /vol" (B+A)~"/>®", where A
and ® are the eigenvalues and eigenvectors of L. and B is
the corresponding influence parameter. A similar embedding
has recently been proposed in [ZBS11] for understanding
manifolds, though with a very different approach. The dif-
ference in the embedding is due to the scaling of the oper-
ator. This can be understood by noting the relation between
the Green’s function of the induced subgraphs of L, L and
Ay is G=GD ' = D Y2GD~'/2 where G is the Green’s
function of the conformal Laplacian [CY00]. As the Green’s
function of the induced subgraphs differ only by a scaling
matrix, it is not that surprising that the two embeddings are
equivalent upto a scaling matrix. In the next section we state
properties of the kernels, distances, embeddings and show
related applications.

4. Properties and Applications

In this section, we describe how random walks and specif-
ically the derived kernels present a unified view of embed-
dings and distance evaluation on discrete meshes. We dis-
cuss possible applications of the kernel, embedding and dis-
tance metric. We first state the theoretical properties.

4.1. Theoretical Properties

The formulated kernels are isometry, scale and tessellation
invariant, can be made shape aware, insensitive to partial
objects and noise based on the moment function and an ad-
ditional influence parameter. Additionally, the correspond-
ing kernel distances and embeddings have all the important
properties, i.e., are metrics, convergent and fast to compute.
We give a brief summary of the properties.

Multiscale: The central theme of the last section was the
dual formulation of the multiscale operator using parameter
o and moment function #”. An intuitive interpretation of the
o value is that the remainder (1 — )M probability translates
to a random surfer model, where with probability (1 — a),
a random walker leaves the current node and teleports to
another node, without regard to mesh connectivity. Hence,
random contributions due to the teleportation cancel out in
the kernel evaluation, resulting in increasingly local affinities
with decrease in . It is interesting to note that the o value
is a fundamental component in the celebrated PageRank al-
gorithm and precisely performs the same function, albeit for
ranking search queries [BP98]. On the other hand, ¢"* penal-
izes pairwise nodes which have a slow rate of convergence to
the equilibrium distribution, i.e., nodes separated by longer
path lengths as a function of time. Thus the kernels are dual
multiscale, (loosely) over distance as well as over time scales
with different multiscale behaviour, and is a key differenti-
ation from other multiscale kernels which define multiscale
behaviour over either time (heat kernel) or distance scales

Multiscale kernels for moment parameter n

Figure 4: Comparison of four multiscale kernels- moment,
influence, heat and biharmonic kernels with local (left) to
global (right) support for point at center of palm

(multiscale biharmonic kernel). Figure 4 shows the multi-
scale behavior over moment n, influence o, the heat kernel
over time and multiscale biharmonic kernel over the lasso
constraint. We observe that the multiscale behavior over o
is similar to the multiscale biharmonic kernel and the be-
havior over moment n is similar to the behavior over ¢ in
heat kernel. Multiscale over n has an interesting behavior.
For large moments, the maximum affinity from the center of
hand becomes skewed towards the thumb, which has an in-
tuitive explanation. The operator weighs the change in tran-
sition probability and visual inspection of affinity gradient
indicates that the diffusion from center of palm towards the
thumb occurs over short time interval, whereas a random

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Partial Object

Tessellation

Isometry

i

Figure 5: Insensitivity of Multiscale Kernels to partial ob-
Jects, tessellation, noise ,scaling and deformation for differ-
ent mesh models from fixed anchor point

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

walker in the central regions and other four fingers tend to
get ‘lost’, and hence diffusion occurs over a large time inter-
val. It also indicates there are shorter pathways connecting
the palm point to the thumb and relatively longer pathways
connecting to the rest of the hand. The flip in the least affin-
ity (blue color) from the middle finger to ring finger can also
be explained similarly.

Scale, Isometry and Tessellation Invariant: For scale in-
variance, the kernel weighting function on the eigenvectors
must satisfy K (y/®%) = o>~ >PK(y) [BB11]. It can be veri-
fied that the weighting function K(B+1) = (B+A) /7 sat-
isfies this property and hence the kernels are scale invariant.
In Figure 5 the teddy model is scaled 100 times, however the
coloring on the mesh is unaffected, validating this property.
As the transition/rate matrices are derived from the discrete
Laplace-Beltrami operator, calculated using the isometry in-
variant curvature normals, the derived kernels are also isom-
etry invariant. Isometric deformation of the Victoria model
in Figure 5 does not change the isocontours confirming this
theoretical property. The defined transition (M) and rate ma-
trices (Ays) implicitly account for area terms and hence tes-
sellation invariant. The bunny model in Figure 5 shows the
invariance of the isolines of the kernel as the model is simpli-
fied from 35000 to 1500 vertices. Additionally, invariance to
noise is indicated in the dolphin model by adding gaussian
noise (200%) proportional to the average edge length. The
partial and full centaur models in Figure 5 display similar
isocontours from fixed anchor point on the top of the human
head. The partial centaur model was created by spectral bi-
partition into 2 segments, which is more natural than passing
a cutting plane through the object.

Convergence: The convergence of the multiscale kernels
over finite graphs for " where n is any positive real num-
ber can be verified using the property that the integral
e ¢ 't*~'dr (Gamma function) is absolutely convergent
for all z with Re(z) > O after doing a variable change ¢’ =
t/\; (Note A; > 0). As each term in the spectral representa-
tion converges and the representation is finite, it follows that
the kernel converges. However for continuous state space,
the Green’s function of a 2D surface would have logarithmic
singularity along the diagonal and not defined [LRF10].

Metric: The kernel 7" (diag(m)) ™! is positive definite as
D'/2¢%p=1/2 s positive-definite and we pre and post mul-
tiply with a diagonal matrix (diag(r))~'/? which is a pos-
itive diagonal matrix. Because the multiscale distances are
derived using a strictly positive definite kernel, it satisfies
all the necessary conditions for it to be a valid metric, i.e.,
it is non-negative and the diagonal values vanish. The fact
that it is symmetric follows from the observation that inter-
changing u and v does not change the distance calculation.
Also DX = 0 iff u = v because if this were not true then
D;(u) = D;(v) Vi, as the eigenvectors form an orthonormal
basis, all functions f over the surface would take the same
value, reaching a contradiction.
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Complexity: The multiscale kernels (Green’s function) and
hence distances can be computed either using the complete
eigen spectrum O(|V|?) or using the first K eigenvectors
(’)(|V|3/ 2)). An alternative approach is proposed in [LRF10]
for calculating on a set of vertices by solving a set of linear
equations(O(S|V|) where S is the size of the subset of ver-
tices). The subset calculation is exact and the complexity can
be reduced to almost linear time for a small subset (O(|V])
when S << V). However, such an approach suffers from the
disadvantage that we require independent computations to
find multiscale kernels with a different set of parameters.
The eigenvectors and eigenvalues of the Laplace operator
offer a common orthonormal basis and all multiscale kernels
can be computed by changing the weightage (exponent and
parameter ) of eigenvalues. We use the spectral approach
and use the first 300 eigenvectors to approximate the kernel
matrix. Hence the computation time is the same as for the
approximate heat kernel evaluation.

4.2. General Discussion with Applications

The multiscale kernels consolidate popular metrics under a
single framework and we discuss possible applications.

Multiscale Kernel: In Section 3, we stressed that the intu-
ition driving the formulation was that of using the rate of
change instead of the probability values, and hence, is fun-
damentally different from the heat kernel. However, the re-
sulting kernel is functionally equivalent to heat kernel, i.e.,
exponential with parameter n (instead of t) with logarithmic
weighting of eigenvalues (A ™" = ¢~"™™* with A > 0). Our
first observation is that as we average over entire time, the
resulting kernel possesses robust multiscale characteristics.
Second, the logarithmic weighting of eigenvalues (instead of
linear in heat kernel) makes the multiscale kernel discrimi-
native at all scales, unlike the heat kernel which converges to
a uniform distribution. To see this, logarithm of eigenvalues
in the interval (0, 1) are negative, hence contribute exponen-
tially to the Green’s function and for very large scales, i.e,
as n — oo, the sum will be dominated by the normalized
Fielder vector and second eigenvalue. Specifically, the mul-

tiscale kernel embedding will tend to v/vol™A, n/ ZIDg p~/?
in the limit . Inspired by the remarkable informative property
of the heat kernel and these observations, we define the ndual
Green’s Mean Signature (GMS) of vertex u to be |():?5"3‘. )|

and |(Z?g““ )|, and name them GMSn and GMSa, to indicate
the multiscale nature over moment and influence parameter
respectively. The o parameter used in our multiscale kernels
has a direct semblance with the parameter ¢ used to derive
multiscale biharmonic kernels. Note the parameter o (hence
) performs a frequency shift of the eigenvalues, and hence,
indirectly enforces partial support of the eigenfunctions. In-
terestingly, the wave kernel signature (WKS) [ASC11] can
be linked to random walks, specifically maximal entropy

Color plot of difference of GMSn (left) and GMSa
(right) to point on finger (red sphere)

Signatures of 6 anchor points in David model

GMSn
GMsa

N~

moment (n) influence (beta)

(a) Green’s over n (GMSn) (b) Green’s over B (GMSa)

HKS
WKS

—

log (1) 0 £ [ & (3 100

(c) Heat Kernel (HKS) (d) Wave Kernel (WKS)

Figure 6: Green’s Mean Signature difference (GMSn and
GMSa) between finger and other points on David model
(top) based on entire range of parameters. In color plot red
indicates similar and cyan indicates dissimilar, o = 1 for
GMSn and n =2 for GMSa. (a)-(d) represent the 4 signa-
tures for 6 anchor points. Signatures for 2 fingers and 2 feet
are indistinguishable because of symmetry for all signatures.
Note GMSn and GMSa. are discriminative at all scales (un-
like HKS) and multiscale (unlike WKS)

random walks (MERW) [SGGnL*11]. The transition matrix
(My) for MERW is given by

M(u,y)Po,

Moo,

where M = DM = D — L, and A, ® are associated eigen-
values and eigenvectors respectively. The unique stationary
distribution is (d_DO[)z and can be interpreted as the proba-
bility of finding a particle in the ground state of the oper-
ator (—M) with wave function ®¢; [Dud12]. The particular
choice of log-normal energy distribution in WKS is derived
from a perturbation-theoretical analysis. GMSn emphasizes
on global features and has higher ‘specificity (detect false
negative errors)” while GMSo suppresses large-scale fea-
tures and has higher ‘sensitivity (detect false positive er-
rors)’, similar to HKS and WKS respectively, as argued in
[Brol1]. Having shown the interrelationship to HKS, WKS

My (u,v) =

(© 2013 The Author(s)
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(e) HKS for [#min, tmax]

(f) WKS

Figure 7: Signature similarity to point marked on front feet
with blue sphere in (a) with difference increasing as color
ranges from red to cyan to blue. (a)-(b) GMSn signature for
two values of p. (c)-(d) GMSa. signature for two values of 0.
Increasing p produces global signature while increasing &
produces local signature. (e) HKS and (c); (f) WKS and (a)
have similar color plots

and multiscale biharmonic kernels, we now discuss compu-
tation and compare our signatures. As mentioned earlier, we
find the 300 smallest eigenvalues and associated eigenvec-
tors of £, or alternatively solve for the generalized eigen-
value problem L.® = DA®. Using the formulae in the pre-
vious sections, we calculate the GMSn or GMSo. as required
by fixing the range of n to [0, plog(1/A;)] and range of f§ to
[0,9A300] where p, ¥ are scale tuning parameters with 100
linear increments over the range. 1/); is the mixing time
of a random walk and as GMSn kernels are logarithmically
weighted over eigenvalues, hence transforming the logarith-
mic time scaling in heat kernel to linear scaling over n, we
empirically take the logarithm of the mixing time. Figure
6 shows the comparison between GMSn, GMSo., HKS,WKS
for David model and we confirm the theoretical claim that
the set of GMS signatures are discriminative at all scales un-
like the HK'S, which decay to equilibrium distribution. Also,
the p, ¥ parameters provide a multiscale setting which is not
possible with WKS. Figure 6 shows matching between the
node on finger marked by red sphere and the rest of the
shape, by calculating the L,-norm of the difference between
point signatures. It is represented using color plot, with sim-
ilarity decreasing as color changes from red to cyan and
p = 1,9 = 1. We observe that the GMSn provides a global
understanding of the shape while the GMSa provides a local
understanding hence matching the fingers. These character-

(© 2013 The Author(s)
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istics are further exemplified using dragon model in Figure 7
where we show multiscale matching by varying the parame-
ters p and . The specificity of GMSn in matching the legs
and local sensitivity of GM S in identifying protrusions, can
be coherently combined in a learning framework to construct
optimal signatures, using the approach in [Brol1], which we
leave to future work.

Multiscale Distance: The 0/ moment operator is [ — m1”
and corresponding distance is vol (% + %) This can be un-

derstood as % is the distance from any node on the graph
to vertex u, because the expected value for a random walker
would depend only on the degree (scaled area) of the desti-
nation vertex and by symmetry. We only recover local con-
nectivity, thus naturally at the lowest scale in our set of
multiscale kernels. The commute time distance is the ex-
pected time for a random walker to travel from one ver-
tex to another and back, i.e., it is the first moment. The
commute distance derived in [QHO7] is precisely the mul-
tiscale distance for n = 1 and o = 1. Considering n = 2
and o = 1, the distance metric is equivalent to biharmonic
distance [LRF10] upto a constant scaling factor. The bihar-
monic distance is thus the second moment of the rate of
heat diffusion which we discern to be more intuitive, i.e.,
it weights diffusion rate between 2 nodes by 1% and hence is
a more global metric relative to the commute time distance.
The diffusion distance between 2 nodes separated by time ¢

o s . j 3
is defined as (DL//)2 = ¥ ¢=h (d>i(u) - d:'i(v)) . These
i1

multiscale distances can be viewed as performing a Mellin
transform on e~ (A is a constant for given mesh). It re-
places the exponential over t weighting scheme by zeta func-
tion (§(n) = Y, 4A; ") which is exponential over moment
n and infers scale akin to time. Such an approach has been
applied to the trace of the heat kernel to successfully extract
graph characteristics [XHWO09]. Briefly, we mention that the
geodesic distance for a graph is the shortest distance between
2 points and translates into finding the smallest ¢ for which
ply is non-zero. Hence it is connected to the floor function
of the multiscale kernel distances. Thus, these kernels can
be viewed as generalization of existing distance metrics and
with additional parameter B, opens up a host of possibilities.
We introduce scale sensitive variant of Shepard interpolation
[She68] demonstrated in [LRF10]. The Shepard interpolant
with zeroth order precision for point # on the mesh is de-
fined as f(u) = % where we choose w;(u) to be scale
sensitive weights proportional to 1/Dg;. Figure 8 shows the
interpolant on the mesh along with value (¢) at fixed anchor
point (red sphere) for different B values at 11 anchor points
and 2 multiscale kernels (n = 2,4). The B values for bot-
tom, middle and top anchor points (blue sphere) indicated
by triple in parentheses [bottom, middle, top] are constants
multiplied with A, and fix the scale sensitive weights w;. The
values f; at anchor points are set at -1,0,1 for bottom, middle
and top anchor points respectively. We see that changing the
weighting scheme, allows the anchor points to increase or
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(a) B = [070’0])“2
n=2,g=—0.051

n=2,g=—0.005

(©) B=1[0,0.5,1]A
n=2,¢=0.108

(d) B =10,0.5, 1]A>
n=4,¢=0319

() B=1,0.5,0]A,
n=2,¢=—0.184

n=4,g=—0.439

Figure 8: Scale Sensitive Function Interpolation: Function values G for point marked with red sphere with 4 bottom, 3 middle
and 4 top row anchor (blue) points set at -1, 0, +1 respectively for varying n and B (hence o) weighting. G can vary from

negative to positive value based on [} weighting and magnitude can be tuned using n

decrease dominance over the function values at other points
on the mesh surface. A large value of § will only allow lo-
cal influence as shown in Plot 8b, while reversing the set of
weights as shown in Plots 8c,8e have very different effects
on the value at the red anchor point. Changing n from 2 to 4
in Plots 8d,8f, affects the magnitude at the red anchor point.

Multiscale Embedding: The first moment embedding is
equivalent to the GPS embedding upto scaling Y [Rus07].
We discuss some insights of these embeddings useful for
shape segmentation. Figure 9 shows the segmentation of the
ant model using naive kmeans for different moments. The
0" moment embedding or the eigenvectors without eigen-
value scaling correctly segments the head, torso and ab-
domen of the ant model. However, increasing the moment
results in skewed segmentations. As kmeans minimizes dis-
tortion, central regions which have highest affinity to other
regions tend to be clustered together (the " embedding pre-
serves the n'"" distance moment). Indeed, larger values of k
are required as input to kmeans at higher scales, to identify
salient segments and the torso region suffers from overseg-
mentation. Consequently, the o' embedding of the kernel
is best suited for segmentation, but it provides little infor-
mation as a distance metric. As a second example, we illus-
trate the advantage of using scaled G2-distributions for cal-
culating the shape similarity and subsequent MDS projection
by varying B in equation 12 as introduced in [Rus07]. Fig-
ure 10 displays the MDS projection for 11 different shapes
which include 11 isometric models of Victoria and Michael
for two values of ; B; = 0 which corresponds to using G2-
distributions (n = 1) and G2o-distributions for B, = 100A,.
We see that B, is able to better discriminate between the
models: dog, wolf, Michael and Victoria, and is also able to
separate the 11 isometric models of Victoria (blue spheres)
and Michael (red spheres) into two tight clusters, unlike the
MDS projection using the original G2 distribution (f). This
is because P acts as a ‘scale-shift’ parameter and the embed-
ding with B, is more localized, and hence, neglects contri-
bution from distant (possibly noisy) nodes. We can create a

eoctopus
bird ant airplane
michael °plier
M dog
‘e
s o
victoria * wolf )
ehand armadillo
@B=0n=1
arplane
ant
® wolf
. dog
michael victoria
s’ . =
et ® octopus
bird
@ plier
© hand
armadillo

(b) B = 100Az,n = 1

Figure 10: Scale sensitive G2-distributions: Classical MDS
projection for shape similarity by summing L2 distances be-
tween 36 G2o-distribution histograms with 50 dimensions
for 11 shape models (see [Rus07] for details) (b) B = 1001,
is more discriminative between shapes relative to (a) By =0

family of distributions similar to G2 by varying n in equation
12 and these distributions can have interesting yet intuitive
implications based on the application.

(© 2013 The Author(s)
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(@) K =3,
n=0,=0

K =11,
n=0,=0

(c) K =3,
n=1B=0

B 0 A N W ey

@K =12,
n=1,=0

@K =3,
n=4pB=0

(H) K =14,
n=43=0

Figure 9: Sensitivity of multiscale embeddings to shape segmentation: Increasing moment from n =0 (a)-(b) to n = 1 (c¢)-(d)
to n =4 (e)-(f), leads to oversegmentation of torso region into 1,2 and 4 segments for n = 0, 1,4 respectively, while ensuring all
6 legs and 2 antennas are segmented. K is input to kmeans and p = 0

5. Conclusions and Future Work

This work presents a general framework to construct mul-
tiscale kernels on discrete meshes using random walks and
in doing so presents a consolidated view of current state of
the art shape signatures, distance metrics and embeddings.
It also offers an intuitive explanation not offered by current
frameworks. These kernels possess all necessary character-
istics, hence immediately applicable for shape analysis in-
cluding and not limited to shape retrieval, robust segmenta-
tion, correspondence propagation and symmetry detection.
The notion of dual multiscale kernels is to our knowledge the
first and the experiments show promising potential for GMS.
One current limitation is regular triangulation of the mesh
as defined in [WMKGO7], so as to ensure positive weights
(Property 1). For future work, we wish to investigate con-
tinuous state space random walks, i.e., Brownian motion on
Riemannian manifolds and recover the same set of intuitive
interpretations. We will also focus on combining the GMSn
and GMSo signatures in a coherent way so as to construct
optimal descriptors. Another line of research is to investi-
gate different functional forms of ¢ instead of ¢ suited for
different applications. Our work serves as a gateway from
Markovian processes to discrete geometry and it is our be-
lief that it only constitutes the tip of the proverbial iceberg in
realizing the full scope of such an integrated approach.

6. Acknowledgements

We would like to thank Project TOSCA and Princeton
Benchmark for sharing the 3D models. We thank the anony-
mous reviewers who helped improve the article with con-
structive suggestions.

References

[ASC11] AUBRY M., SCHLICKEWEI U., CREMERS D.: The
wave kernel signature: A quantum mechanical approach to shape
analysis. In ICCV Workshops (2011), IEEE, pp. 1626-1633. 2,
3,10

[BB11] BRONSTEIN M. M., BRONSTEIN A. M.: Shape recog-
nition with spectral distances. [EEE Trans. Pattern Anal. Mach.
Intell. 33,5 (2011), 1065-1071. 9

[BBGO11] BRONSTEIN A. M., BRONSTEIN M. M., GUIBAS
L. J., OVSJANIKOV M.: Shape google: Geometric words and

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

expressions for invariant shape retrieval. ACM Trans. Graph. 30,
1 (Feb. 2011), 1:1-1:20. 1

[BP98] BRIN S., PAGE L.: The anatomy of a large-scale hyper-
textual web search engine. Computer Networks 30, 1-7 (1998),
107-117. 8

[Brol1] BRONSTEIN A. M.: Spectral descriptors for deformable
shapes. CoRR abs/1110.5015 (2011). 10, 11

[BWHO05] BaAI1 X., WILSON R., HANcock E.: Manifold em-
bedding of graphs using the heat kernel. In IMA (Loughborough,
UK, 2005), vol. 3604, Springer, pp. 34-49. 3

[Chu97] CHUNG F. R. K.: Spectral Graph Theory. American
Mathematical Society, 1997. 4

[CY00] CHUNGF. R. K., YAU S.-T.: Discrete green’s functions.
J. Comb. Theory, Ser. A 91, 1-2 (2000), 191-214. 7, 8

[Dud12] DUDA J.: From maximal entropy random walk to quan-
tum thermodynamics. Journal of Physics: Conference Series
361, 1(2012), 012039. 10

[FPmRS06] Fouss F., PIROTTE A., MICHEL RENDERS J.,
SAERENS M.: Random-walk computation of similarities be-
tween nodes of a graph, with application to collaborative rec-
ommendation. [EEE Transactions on Knowledge and Data En-
gineering 19 (2006), 2007. 2

[Kei79] KEILSON J.: Markov chain models-Rarity and Exponen-
tiality. No. 28 in Applied mathematical sciences. Springer, New
York, USA, 1979. 7

[KL0O2] KONDOR R. I., LAFFERTY J. D.: Diffusion kernels on
graphs and other discrete input spaces. In /CML (Sydney, Aus-
tralia, 2002), Morgan Kaufmann, pp. 315-322. 2, 5, 14

[Law06] LAWLER G.: Introduction to Stochastic Processes.
Chapman and Hall/CRC Probability Series. Chapman &
Hall/CRC, 2006. 3, 4

[Lév06] LEVY B.: Laplace-beltrami eigenfunctions towards an
algorithm that "understands" geometry. In SMI (College Station,
USA, 2006), IEEE, p. 13. 2

[LHMRO8] LA1Y.-K., HU S.-M., MARTIN R. R., ROSINP. L.:
Fast mesh segmentation using random walks. In SPM (New York,
USA, 2008), ACM, pp. 183-191. 2

[Lov93] LovAsz L.: Random walks on graphs: A survey. Com-
binatorics, Paul Erdos is Eighty 2, 1 (1993), 1-46. 1

[LRF10] LIPMAN Y., RUSTAMOV R., FUNKHOUSER T.: Bi-
harmonic distance. ACM Transactions on Graphics 29, 3 (June
2010). 2,9, 10, 11

[MDSB02] MEYER M., DESBRUN M., SCHRODER P., BARR
A. H.: Discrete differential-geometry operators for triangulated
2-manifolds. In Proc. VisMath (2002), pp. 35-57. 3



A. Sinha & K. Ramani / Multiscale Kernels using Random Walks

[Newl0] NEWMAN M.: Networks: An Introduction. Oxford Uni-
versity Press, Inc., New York, USA, 2010. 3, 14

[NLCKO5] NADLER B., LAFON S., CoIFMAN R. R,
KEVREKIDIS I. G.: Diffusion maps, spectral clustering
and eigenfunctions of fokker-planck operators. In NIPS
(Vancouver, Canada, 2005), MIT Press, pp. 955-962. 2

[OMMGI10] OVSJANIKOV M., MERIGOT Q., MEMoLI F.,
GUIBAS L. J.: One point isometric matching with the heat ker-
nel. Comput. Graph. Forum 29, 5 (2010), 1555-1564. 1

[PP93] PINKALL U., POLTHIER K.: Computing discrete mini-
mal surfaces and their conjugates. Experimental Mathematics 2
(1993), 15-36. 4

[QHO7] Qiu H., HANcoOcCK E. R.: Clustering and embedding
using commute times. /EEE Trans. Pattern Anal. Mach. Intell.
29, 11 (2007), 1873-1890. 2, 11

[Rus07] RuUSTAMOV R. M.: Laplace-beltrami eigenfunctions
for deformation invariant shape representation. In SGP
(Barcelona,Spain, 2007), Eurographics, pp. 225-233. 2, 12

[Ruslla] RUSTAMOV R. M.: Average interpolating wavelets on
point clouds and graphs. CoRR abs/1110.2227 (2011). 2

[Rusllb] RUSTAMOV R. M.: Multiscale biharmonic kernels.
Comput. Graph. Forum 30, 5 (2011), 1521-1531. 1

[SGGnL*11] SINATRA R., GOMEZ-GARDENES J., LAMBIOTTE
R., NICOSIA V., LATORA V.: Maximal-entropy random walks
in complex networks with limited information. Phys. Rev. E 83
(Mar 2011), 030103. 10

[She68] SHEPARD D.: A two-dimensional interpolation function
for irregularly-spaced data. In Proceedings of the 23'® ACM na-
tional conference (New York, USA, 1968), ACM, pp. 517-524.
11

[SOCG10] SKRABA P., OVSJANIKOV M., CHAZAL F., GUIBAS
L.: Persistence-based segmentation of deformable shapes. In
CVPR Workshop on Non-Rigid Shape Analysis and Deformable
Image Alignment (June 2010). 1

[SOG09] SuN J., OVSJANIKOV M., GUIBAS L. J.: A concise
and provably informative multi-scale signature based on heat dif-
fusion. Comput. Graph. Forum 28, 5 (2009), 1383-1392. 1, 3

[SRMLO7] SuN X., ROSIN P. L., MARTIN R. R., LANGBEIN
F. C.: Random walks for mesh denoising. In SPM (Beijing,
China, 2007), ACM, pp. 11-22. 2

[WMKGO7] WARDETZKY M., MATHUR S., KALBERER F.,
GRINSPUN E.: Discrete laplace operators: no free lunch. In SGP
(Barcelona, Spain, 2007), Eurographics, pp. 33-37. 13

[XHWO09] Xiao B., HANcocK E. R., WILSON R. C.: Graph
characteristics from the heat kernel trace. Pattern Recognition
42,11 (2009), 2589-2606. 11

[ZBS11] ZHOU X., BELKIN M., SREBRO N.: An iterated graph
laplacian approach for ranking on manifolds. In KDD (San
Diego, USA, 2011), ACM, pp. 877-885. 2,7, 8

[ZZC11] ZHANG J., ZHENG J., CAl1 J.: Interactive mesh cutting
using constrained random walks. IEEE Transactions on Visual-
ization and Computer Graphics 17, 3 (May 2011), 357-367. 2

APPENDIX

Pochhammer Time Operator: The rule of walk on the dis-
crete mesh can be expressed as Py =M Tp,, hence iterat-
ing, P = (MT)'Py where P, is the probability distribution
starting from the initial distribution Py. The spectral decom-
position of the transition matrix is M = D™ '/2®A'®7 p'/?

and hence, M' = D~ 1/2®A" T D/2 It can be written as

’ d
Piv =T+ Y A @i(1)®i(v)y/
i>2 u

(13)

where p,,, is the probability of starting at « and reaching v in
t steps and is the ! entry of the matrix M. pl,, tends to T,
in the long time limit as A’ < 1. The formulation equivalent
to equation 1 for discrete walks is:
o0
=) (nl(en)' ™" — ()’ (14)
=1

where 4" denotes the operator defined over the function
(x)n, also called the Pochhammer symbol or rising facto-
rial and represented as (x), = x(x+1)(x+2)...(x+n—1).
As M' denotes the transition matrix after time #, M'~! — M’
denotes the change in transition probability after one time
step and equivalent to rate of diffusion in the continuous
time limit. More rigorously, the term in parenthesis in equa-
tion 14 can be written as [¢ ™A — ¢~ (Fd)Aw] yhere we
have used the fact that (0M)" or (I — Agy)’ converges to
e~ for continuous time walks (see [KLO02] for deriva-
tion). Taylor series expansion of the derived [/ — ¢ Bandt
term in e~ "2 (] — ¢~ Aam d ) results in the rate of diffusion.
An alternative interpretation of the wv'”* term in M'~! — M’
is that it denotes the probability that a random walker is
at node v in the 7" time-step starting from node u at time
t = 0 (see page 159 [New10] for case (x);). Parameters n in
(x)n and o play a similar role of exaggerating/suppressing
pathways (or ‘faraway’ nodes), as in the continuous time
case. Recall in equation 13, eigenvalue 1 and the correspond-
ing eigenvector appear as T, in both M’ as well as M’ -1
Substituting the spectral representation of M in the equa-
tion 14 for oo = 1, removes the eigenvalue 1 (of M) and
the corresponding eigenvector from the summand, enabling
us to use / — M in an invertible setting (removal of eigen-
value 1 from M implies removal of eigenvalue O from I — M,
hence killing its null space). Using the sum of infinite se-

ries ¥ k(k+1)e(k+n— 1) =2 = n1/(1—x)" and
k=1

spectral decomposition of (I —M) ™" or A;,", the operator is
represented as

A 1 dy
Ty =nt Y o @i Pi(v)y/ = (15)
i>2 M

Following a similar derivation as in the continuous time case,
the representation for 0 < o < 1 is

A0 n! 1 dy
Tuy = E 7¢l u)®;(v — 16
ot 5 (B"‘;\q)n ( ) l( ) du ( )

Thus, the use of Pochhammer symbol in lieu of " results in
the same resultant kernel as in the continuous case.
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