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Mars free-return trajectories that use a Venus flyby either before or after the Mars
encounter are found, and an alternative launch opportunity for the Inspiration Mars mission
is identified. Launch dates are searched from 2015 to 2060, and focus is placed on identifying
opportunities that have a short total TOF (i.e. that are “fast”), so that they may be
used for a human mission to flyby Mars (similar to that proposed for Inspiration Mars).
Constraints on Earth launch V∞ and Earth arrival V∞ are based on those used for the
nominal Inspiration Mars opportunity in 2018. A set of near-term candidate trajectories
are found using the gravity-assist path Earth-Venus-Mars-Earth. One such candidate, with
launch date on November 22, 2021, has Earth launch and arrival V∞ of 4.50 km/s and 6.53
km/s, respectively (both lower than the nominal Inspiration Mars trajectory), and with a
total flight time of 582 days. Venus free-return opportunities are also found, with promising
application for a human flyby mission to Venus.

Nomenclature

h Closest approach altitude at flyby, km
V Velocity, km/s
V∞ Hyperbolic excess velocity, km/s

C3 Square of Earth launch V∞ (twice the specific hyperbolic energy), km2/s2

∆V Impulsive change in velocity, km/s
Subscripts
Arrival Earth arrival
Entry Entry into Earth’s atmosphere (at 122 km altitude)
Launch Earth launch
M Mars
V Venus
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I. Introduction

In the last several decades, there have been many trajectory designs for human missions to Mars.2–15,24

Despite this effort to show the way to Mars, humans have yet to stand on the surface of the red planet, and
it remains a long-term goal of the US and several other nations.

Last year, Tito et al.13 proposed that a human Mars flyby mission, dubbed “Inspiration Mars,” could be
launched in 2018 with a two person (one man and one woman) crew. This proposal was based on a trajectory
reported by Patel et al.10 who investigated Mars free-return trajectories with launch dates ranging from
1995 to 2020. In their paper, several notably “fast” trajectories were highlighted that had relatively short
times of flight (TOF) of about 1.4 years. One of these fast trajectories, with a launch date on January 5,
2018, was selected by Tito et al.13 because its 501 day flight time, relatively low launch energy, and relatively
low Earth entry speed were considered feasible with present day technology.

Unfortunately, a similar trajectory to the 2018 Mars free-return does not occur for another 15 years—an
unacceptable delay for Inspiration Mars. In order to support the effort to fly the 2018 launch option, it is
prudent to have an alternative launch opportunity in the near future. This paper will show that such an
opportunity is available if Venus is employed as a gravity-assist body.

In 2002, Okutsu and Longuski11 investigated Mars free-return trajectories that incorporate an interme-
diate flyby of Venus, with launch dates ranging from 2010 to 2025. A notable trajectory from their study
was found (with launch date in 2014—clearly too soon for Inspiration Mars) that met all of the energy and
TOF constraints within NASA’s Design Reference Mission,6,7 and was proposed as a candidate for a near
term human mission to Mars.

In 2010, Foster and Daniels12 investigated round-trip trajectories to Near-Earth objects (NEOs), Venus,
and Mars (including trajectories to Mars with an intermediate Venus flyby). The trajectories found use
impulsive maneuvers at each encounter (i.e. a powered flyby) and are therefore not free returns, but they do
allow a spacecraft to return to Earth using maneuvers that are feasible with present day chemical propulsion
systems.

In 2013, Bailey et al.14 and Folta et al.15 found fast round-trip trajectories to Mars with short stay-times.
Their study includes flybys of Venus (both before and after the Mars encounter) and achieves short transfer
times with the use of powered flybys and on-orbit staging. Many solutions were found with a total mission
duration of about 1 year.

II. Methodology

A. Satellite Tour Design Program (STOUR)

The STOUR program (developed by the Jet Propulsion Laboratory16 and Purdue University17,18) was used
to compute the Mars free-return opportunities with an intermediate Venus flyby. The STOUR program uses
a patched-conic model with an analytic ephemeris to rapidly compute multiple gravity-assist trajectories. It
imposes a grid search to find trajectories by stepping through specified launch dates and launch V∞—thereby
revealing all candidate trajectories within the search parameters.

From the list of candidate trajectories found using STOUR, the most desirable trajectories are selected
based on parameters such as launch date, launch V∞, arrival V∞, and TOF. Of these “best case” opportu-
nities, free-returns that provide characteristics comparable to those for the Inspiration Mars mission can be
identified as potential candidates for a similar, IM-type, Mars flyby mission, or perhaps will provide a second
chance opportunity for the Inspiration Mars mission itself.

The nominal Inspiration Mars trajectory (with launch date in 2018) was used as a baseline in determining
the upper bounds for acceptable launch V∞, arrival V∞, and TOF values (as reported by Tito et al.13). Any
trajectories found with launch V∞, arrival V∞, and TOF values within the upper bounds were considered
as candidates, however some trajectories are selected as being more desirable than others. Table 1 shows
the constraints used for the trajectory search in STOUR. The search parameters show launch dates over a
45-year period, however it should be noted that (as stated by Okutsu et al.11) the inertial geometry of the
planets Earth, Venus, and Mars approximately repeats every 32 years.

It should also be noted that the Space Launch System (SLS), which is expected to launch its first human
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Table 1. Trajectory Search Parameters

Parameter Value

Max V∞,Launch (km/s) 6.5

Max V∞,Arrival (km/s) 9.0

Max TOF (days) 600

Min Launch Date (mm/dd/yyyy) 12/01/2014

Max Launch Date (mm/dd/yyyy) 01/31/2060

crew in 2021, is estimated to be capable of launching a payload mass of over 20 metric tons with a V∞ of 6.5
km/s.19 Such a launch capability depends on the choice of upper stage, but more importantly is sufficient
for the expected payload mass of the Inspiration Mars mission.

B. Tisserand Graph

For the Mars free-return gravity-assist combinations (or paths) considered in this study [Earth-Venus-Mars-
Earth (EVME), Earth-Mars-Venus-Earth (EMVE), and Earth-Venus-Mars-Venus-Earth (EVMVE)] the fea-
sibility of each path can first be investigated with the use of a Tisserand Graph. The Tisserand graph is a
plot of orbital specific energy (or orbital period) versus radius of periapsis (assuming all planets have circular
and coplanar orbits), and provides a graphical means of identifying (from an energy perspective) the feasi-
bility of a gravity-assist path. A flyby of a gravitational body (e.g. Mars) is represented on the Tisserand
graph, by plotting a curve for a chosen value of V∞ for all possible gravity-assist turn angles. Thus, for a
set of bodies (e.g. Earth, Mars, and Venus), the Tisserand graph provides a plot of curves of constant V∞
for each body. A curve of constant V∞ is also of constant Tisserand parameter—hence the name Tisserand
graph.

To illustrate the use of the Tisserand graph, an example is shown in figure 1 for the path EVME. Each
curve in the plot represents constant V∞ for odd integer values (in units of km/s) from right to left on the
plot (i.e. 1 km/s, 3 km/s, 5 km/s, etc.). The bold line traced out on the plot shows that for an Earth launch
V∞ of 5 km/s, it is possible (energetically) to reach Venus, then flyby Mars, and finally return to Earth with
an arrival V∞ of 5 km/s (coincidentally the same as the V∞ at Earth launch). Note that the intersection
of two curves means that a trajectory exists that connects the two planets with the indicated V∞ values at
each encounter. Also note that following along a curve represents the energy change during the flyby. The
dots shown on each curve represent the maximum amount of energy change possible for a minimum flyby
altitude of 200 km. The derivation of the Tisserand graph and how it is used for investigating candidate
gravity-assist paths is given by Strange and Longuski20 and Labunsky et al.21

C. Pareto Set

For the case of near-term trajectories, no single trajectory has a minimum of all three parameters: TOF,
V∞,Launch, and V∞,Arrival. Therefore, the Pareto optimal set (or Pareto set) of trajectories are identified as
the “best” candidates for backup to the Inspiration Mars (or similar IM-type) mission.

For a given trajectory, the design “objectives” (for this study) are TOF, V∞,Launch, and V∞,Arrival. When
comparing two trajectories (e.g. Trajectory A and Trajectory B) from the set of all near-term candidates,
Trajectory A is said to dominate Trajectory B if all objectives in Trajectory A are less than or equal to
(with at least one objective strictly less than) the objectives of Trajectory B. Otherwise, the two trajectories
are nondominated. For example, trajectories A and B are nondominated (with respect to each other) if
Trajectory A has a lower TOF than Trajectory B, but Trajectory B has a lower V∞,Launch than Trajectory
A.

By comparing all near-term trajectories found in STOUR, the remaining nondominated trajectories (i.e.
the trajectories that are not dominated by any other trajectory in the near-term STOUR results) make up
the Pareto optimal set—any of which could be argued as the best case. A complete discussion of Pareto
optimal sets is given by Arora.22
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Figure 1. This Tisserand graph example shows that a free-return trajectory is possible with the gravity-assist
path EVME. To follow the path on the graph, Earth launch with V∞ of 5 km/s occurs along the third (from
the right) blue curve. The intersection of the bold black curve indicates that a trajectory exists from Earth
to Venus with an arrival V∞ at Venus of 7 km/s. Following along the bold black curve represents the energy
increase gained through the Venus gravity assist. The intersection of the bold black and red curves indicates
the existence of a trajectory between Venus and Mars, with arrival V∞ at Mars of 5 km/s. The gravity assist
at Mars (following the bold red curve) shows that a return trajectory to Earth is possible (since the red curve
intersects Earth’s blue curve) with an Earth arrival V∞ of 5 km/s.

III. Results

Using the STOUR program, Mars free-return trajectories for the gravity-assist paths Earth-Venus-Mars-
Earth (EVME), Earth-Mars-Venus-Earth (EMVE), and Earth-Venus-Mars-Venus-Earth (EVMVE) were in-
vestigated. The results for the path EVME are shown in figure 2. The search included Earth launch V∞ from
2.5 km/s to 6.5 km/s (in steps of 0.25 km/s), with a minimum allowed altitude of 200 km at both Venus and
Mars. Note that results are shown for TOF as large as 700 days for purposes of observing the broader design
space, however, only opportunities with TOF of 600 days or less are considered for an IM-type mission.

Although the STOUR program is stepping through launch dates with 1-day increments (a relatively
small step size for trajectory design), the results of figure 2 show trajectories clustered around specific
launch dates. This clustering implies that, in order to meet the constraints imposed for this trajectory
search, the design space is sensitive to launch date. The clusters of trajectories appear as seven distinct
vertical stripes, occurring (from left to right in the figure) in 2017, 2021, 2034, 2036, 2047, 2049, and 2053.
Of these opportunities, none in 2017 nor 2049 have any solutions with TOF below 600 days, and are therefore
not candidates for an IM-type mission.

With several EVME candidate trajectories available, the results of figure 2 are investigated further with
regard to Earth arrival V∞ (since this is a key parameter not explicitly shown in figure 2). Figure 3 shows
Earth arrival V∞ on the horizontal axis, with TOF and Earth launch V∞ on the vertical axis and color bar,
respectively. Because the figure no longer shows launch date, the launch year for notable trajectories (with
emphasis on reduced Earth arrival V∞) is indicated in the figure for 2021, 2034, 2036, 2047, and 2053. The
notable trajectories in 2021, 2034, and 2053 appear to be to have similar characteristics, and for the 2021
and 2053 trajectories, the 32-year time difference in launch date is consistent with the time for the inertial
geometry of Earth, Mars, and Venus, to repeat (as discussed by Okutsu et al.11). Thus, the trajectories in
2053 are essentially a recurrence of the opportunities in 2021. (A detailed discussion on these reoccurring
trajectories is given in section C.)

The opportunities in 2021 from figures 2 and 3 are the only realistic EVME candidates for a second
chance to the Inspiration Mars mission since they are the only opportunities that occur in the near term
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Figure 2. Mars free-return trajectories with intermediate Venus flyby before the Mars encounter (gravity
assist path Earth-Venus-Mars-Earth). The time of flight from Earth launch to Earth arrival is shown on the
vertical axis, the Earth launch date is shown on the horizontal axis, and the colorbar to the right of the plot
indicates the launch V∞. All results shown have an Earth arrival V∞ less than or equal to 9 km/s.

(and after the nominal 2018 Inspiration Mars opportunity). Furthermore, the 2021 EVME trajectories are
likely the only practical candidates for some other IM-type mission, as the purpose of such a mission is to
pave the way for humans to explore Mars, and therefore is more significant if undergone in the near term.

It should also be noted that, as indicated in figure 3, the opportunities in 2036 and 2047 are near the
maximum allowed Earth arrival V∞ of 9 km/s, and may therefore be less desirable when compared to other
notable candidates in 2021, 2034, and 2053. The key characteristics of the trajectories identified in figure 3
are given in table 2. Note that VEntry refers to the inertial Earth entry speed at arrival, computed at 122
km altitude.

Table 2. Notable EVME Trajectories from Broad 45-Year Search

Launch Date V∞,Launch C3 TOF V∞,Arrival VEntry

(mm/dd/yyyy) (km/s) (km2/s2) (days) (km/s) (km/s)

11/22/2021 4.50 20.25 582 6.53 12.85

12/08/2021 5.50 30.25 566 6.55 12.87

08/28/2034 4.75 22.56 558 6.52 12.85

06/24/2036 5.50 30.25 499 8.79 14.14

07/02/2047 5.75 33.06 565 8.84 14.17

11/28/2053 5.00 25.00 580 6.34 12.76

The free-return search results for the gravity-assist path Earth-Mars-Venus-Earth (EMVE) are very sparse
in comparison to EVME. Because of the extremely low number of trajectories found, the search parameters
were expanded slightly to accommodate a launch V∞ of up to 7.0 km/s. All other parameters in the search
were kept the same as those used to obtain the EVME results. Despite the increase in allowable launch V∞
values, only 2 trajectories were found—both of which exhibited a TOF greater than 600 days. Thus, no
trajectories from the EMVE search satisfied the constraints; thereby leaving EMVE an unlikely gravity-assist
path for an IM-type mission.
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Figure 3. Mars free-return trajectories with gravity assist path Earth-Venus-Mars-Earth. Trajectories shown
in this plot are the same as those shown in figure 2, with Earth launch date exchanged for Earth arrival V∞
on the horizontal axis. Notable trajectories (with emphasis on low arrival V∞) are highlighted for each cluster
of launch opportunities in 2021, 2034, 2036, 2047, and 2053.

For the gravity-assist path Earth-Venus-Mars-Venus-Earth (EVMVE), only near-term solutions were
investigated, with launch dates ranging from 1/1/2018 to 1/1/2030. The constraints on launch and arrival
V∞ imposed on the search were the same as those listed in table 1. The search results produced many
solutions in 2021 and 2028, however, all of these solutions had TOF greater than 600 days, and therefore are
not suitable candidates for an IM-type mission.

A. Feasibility of Gravity-Assist Paths

One means to evaluate the feasibility of the path EVME versus EMVE is with the use of the Tisserand graph.
As shown in the example use of the Tisserand graph in figure 1, the path EVME can provide trajectories
with Earth launch V∞ of 5 km/s and return to Earth with arrival V∞ as low as 5 km/s, which is not unlike
the trajectories found in STOUR, as shown in figures 2 and 3 and in table 2. Therefore, it is clear from
the Tisserand graph (and from the STOUR results) that path EVME is a promising candidate for providing
solutions within the problem constraints.

The concerning issue is that the path EMVE can also be viewed in figure 1 by simply following the bold
lines in reverse. Thus, the Tisserand graph shows that the path EMVE is also feasible with an Earth launch
V∞ of 5 km/s and Earth arrival V∞ of 5 km/s. The STOUR results however clearly show that EVME is the
more feasible path with regards to satisfying the constraints set for this study. One key constraint however
that the Tisserand graph does not show is TOF. To investigate this further, a new STOUR trajectory search
was conducted for EMVE trajectories with TOF of up to 5 years (about 1826 days)—well beyond the set
constraint of 600 days. The results in figure 4 show that by only extending TOF (and holding the launch and
arrival V∞ constraints the same) many trajectories appear with comparable launch and arrival V∞ values
to those found in the EVME search. All of the EMVE results however, have TOF longer than about 800
days—leaving no suitable EMVE candidates for an IM-type mission.

Since time is not represented on the Tisserand graph, Earth launch dates and stay times at Mars are also
not visible from the Tisserand graph. The issue of Earth launch date not being shown can be disregarded
since the STOUR simulations search over a span of launch dates beyond the 32 years estimated for the
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Figure 4. Mars free-return trajectories with intermediate Venus flyby after the Mars encounter (gravity assist
path Earth-Mars-Venus-Earth, or EMVE). TOF is shown for up to 5 years to show that opportunities do
exist with similar energy requirements (at Earth launch and Earth arrival) compared to the EVME results
(as indicated by the Tisserand graph).The EMVE opportunities shown in the figure however all exhibit TOF
longer than about 800 days—unsuitable for an IM-type mission.

geometry of Earth, Mars, and Venus to repeat in inertial space. With regards to stay times at Mars, several
studies that incorporate a stay time at Mars (such as Walberg,5 Casalino et al.,8 Bailey et al.,14 and Folta
et al.15) have found solutions with the path EMVE, however such opportunities use a maneuver to capture
into orbit at Mars, and are not suitable for an IM-type mission.

B. Near-Term Opportunities

Of the opportunities found (shown in figures 2 and 3), all launch dates near or beyond 2034 are too distant
for a mission like Inspiration Mars, since the primary purpose of such a mission is to send humans to Mars
in the near future. Thus, the remaining near-term opportunities all have launch dates in 2021, which all
occur within about a one-month time span (from November 18, 2021 to December 21, 2021).

Figures 5 and 6 show the near-term opportunities, with relatively small search step sizes (one day for
launch date and 0.1 km/s for launch V∞) to show more precisely the available opportunities in the near
term. Since all launch dates in these figures occur around the same day, figure 6 shows arrival V∞ on the
horizontal axis in place of launch date.

In figures 5 and 6, no single opportunity exists in the data set that minimizes TOF, Earth launch V∞, and
Earth arrival V∞ simultaneously. Therefore, the Pareto set (as discussed in Sec. C) is found to characterize
the set of “best” cases. The trajectories that make up the Pareto set are circled in figure 6, and since
none are dominated by any other trajectories shown in the near-term results, are all arguably the “best”
near-term opportunities. The near-term Pareto-set trajectories are listed in table 3. Note that for the circled
opportunity with an index of 20 (found near the lower left corner of figure 6), the TOF (when rounded to
the nearest day), was found to be equal to the TOF of the 12/17/2021 opportunity. Thus, by treating these
two TOF as equal, the circled trajectory with index of 20 is dominated by the 12/17/2021 opportunity in
both launch V∞ and arrival V∞, and is therefore not listed in table 3.

Of the best opportunities listed in table 3, some stand out as potentially more desirable. For example, the
opportunity on 11/22/2021 has the lowest launch V∞ and nearly the lowest arrival V∞, but has the longest
TOF. Conversely, the opportunity on 12/19/2021 has the shortest TOF, but has the largest launch V∞ and
nearly the largest arrival V∞. The opportunity with the smallest arrival V∞ (occurring on 12/04/2021) has
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Figure 5. Near-term EVME Mars free-return trajectories with launch dates spanning from November 18 to
December 21 of 2021. The time of flight from Earth launch to Earth arrival is shown on the vertical axis,
the Earth launch date is shown on the horizontal axis, and the colorbar to the right of the plot indicates the
launch V∞. All results shown have an Earth arrival V∞ less than or equal to 9 km/s.

Figure 6. Near-term EVME Mars free-return trajectories with launch dates spanning from November 18 to
December 21 of 2021. Trajectories shown in this plot are the same as those shown in figure 5, with Earth
launch date exchanged for Earth arrival V∞ on the horizontal axis. Circled trajectories are considered to be
the best near-term candidates (as defined by a Pareto optimal set), and are listed explicitly in table 3.

8 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
M

ar
ch

 5
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
41

09
 



Table 3. Best Near-Term Opportunities

Launch Date V∞,Launch C3 TOF V∞,Arrival VEntry

(mm/dd/yyyy) (km/s) (km2/s2) (days) (km/s) (km/s)

11/22/2021 4.50 20.25 582 6.53 12.85

12/03/2021 5.10 26.01 579 6.95 13.07

12/04/2021 5.20 27.04 569 6.46 12.82

12/08/2021 5.50 30.25 566 6.55 12.87

12/14/2021 6.00 36.00 564 6.81 13.00

12/15/2021 6.10 37.21 563 6.78 12.99

12/16/2021 6.20 38.44 561 6.77 12.98

12/17/2021 6.30 39.69 560 6.78 12.99

12/19/2021 6.50 42.25 559 6.84 13.02

launch V∞ and TOF values that lie near the middle of the spread of launch V∞ and TOF values listed in the
Pareto set. The truly most desirable near-term opportunity will ultimately depend on how the importance
of minimizing each parameter is weighted in the final mission design.

The trajectory with launch date on 11/22/2021 is shown in figure 7, and due to the relatively similar
launch and encounter dates, is representative of all trajectories in the near-term Pareto set. All trajectories
in the Pareto set exist primarily in the ecliptic plane, where the only arc with notable inclination (in each
trajectory) occurs on the Earth-Venus legs with a value of approximately 5.4o.

Mars Flyby
10/11/2022

Launch
11/22/2021

Arrival
6/27/2023

Venus Flyby
4/4/2022

Figure 7. EVME opportunity generated by STOUR, with launch date on 11/22/2021 (from the near-term
trajectory Pareto set). The launch, encounter, and arrival dates are annotated on the figure. Although the
majority of the trajectory is approximately in the ecliptic plane, the Earth-Venus leg has an inclination of 5.4o

(into the page in the view above).

To demonstrate that the EVME trajectories generated by STOUR (using patched conics with an analytic
ephemeris) are valid in a high-fidelity model (such as considering the gravity force due to multiple bodies
simultaneously), the STOUR trajectory with launch date on 11/22/2021 was reproduced using AGI’s Systems
Tool Kit (STK) with the propagator Astrogator. The high-fidelity STK propagation accounts for the gravity
of the Earth, Moon, Sun, Mars, and Venus throughout the trajectory (with the exeption that the gravity of
Mars and Venus are neglected near Earth launch and Earth arrival).The resulting STK trajectory is shown
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in figure 8 and clearly resembles the STOUR trajectory in figure 7.

Mars Flyby
10/12/2022

Launch
11/22/2021

Venus Flyby
4/4/2022

Arrival
6/27/2023

Figure 8. STK plot of EVME opportunity (propagated using STK’s Astrogator), with launch date on
11/22/2021. The launch, encounter, and arrival dates are annotated on the figure. By comparison with
the STOUR-generated trajectory in figure 7, the STK trajectory is clearly similar. The annotations show
that the launch, encounter, and arrival dates are the same as those found in the STOUR trajectory with the
exception of the one-day difference in Mars encounter date.

Parameters from the STK trajectory are shown in table 4 along with those from the STOUR solution
for comparison. The similarity of the STK and STOUR solution values indicates that (for the gravity-assist
trajectories found in this study) the patched-conic method with analytic ephemeris (as used in STOUR)
provides solutions that closely approximate the true dynamic motion. The similarity of the results in table 4
also validates the use of STOUR-generated trajectories as initial guesses for targeting high-fidelity solutions
in tools such as STK.

Table 4. High-Fidelity Comparison of 11/22/2021 EVME Opportunity

Propagator Launch Date V∞,Launch C3 hV hM TOF V∞,Arrival VEntry

(mm/dd/yyyy) (km/s) (km2/s2) (km) (km) (days) (km/s) (km/s)

Astrogator 11/22/2021 4.511 20.353 11097 363 582.5 6.459 12.87

STOUR 11/22/2021 4.500 20.250 10868 346 582.2 6.526 12.85

C. Physical Behavior and Uniqueness of Candidate Trajectories

For each leg (i.e. each trajectory arc between bodies) of the near-term Pareto set trajectories in table 3, the
transfer angle is nearly 180o—a characteristic resemblant of a Hohmann transfer—and is visible in figure 7
(with a slightly larger than 180o transfer shown on the Mars-Earth leg). Such Hohmann-like behavior may
be the characteristic which explains why the opportunities found have relatively low V∞ at Earth launch and
arrival, however, it may also be a contributing factor to the relatively short span of available launch dates
for near-term opportunities.

Since the orbits of Venus and Mars are slightly inclined with respect to the ecliptic (and are therefore
not in the same plane as Earth’s orbit about the Sun), a transfer angle of 180o between any of these bodies
will (in general) result in a transfer arc that is inclined by nearly 90o with respect to the ecliptic. This
out-of-plane effect on the transfer arc is due to the position vectors for the departure and target bodies
(which are used to compute the connecting Lambert arc) lying in a plane that is approximately normal to
the ecliptic—a direct consequence of the relative inclination of the planetary orbits. Such an out-of-plane
transfer requires large V∞ at Earth launch (or arrival), and (if a plane change back to the ecliptic is required
after a flyby) will require a gravity-assist turning angle too large for Venus or Mars to provide. Of course,

10 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
M

ar
ch

 5
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
41

09
 



in the planar case, a 180o transfer is desirable since that is the condition for the (impulsive) ∆V -optimal
Hohmann transfer.

For the near-term EVME results listed in table 3, (as well as for the candidate opportunities in 2034
and 2053) it appears that transfer angels near 180o are needed to provide the low Earth launch and arrival
V∞ values. (Note that this also gives reason as to why the low launch and arrival V∞ candidates all have
similar TOF—around 570 days.) Such a requirement on transfer angle will result in a sensitivity to launch,
encounter, and arrival dates, since getting too close to (or deviating too far from) the 180o transfer angle
geometry, is expected to increase launch and arrival V∞, or perhaps, not exist at all due to insufficient
bending capability at either Venus or Mars (for large plane changes between arcs).

As mentioned previously, the 32-year time difference between the 2021 and 2053 opportunities agrees
with the estimate of Okutsu et al.11 as the approximate time for the orientations of Earth, Venus, and Mars
to repeat in inertial space. Thus, it is expected that the same physical factors are in play for both the 2021
and 2053 opportunities, and by the same logic, that opportunities similar to those in 2034 will reoccur 32
years later, in 2066. This repetition cycle suggests that the opportunities found in 2021, 2034, and 2053,
are dependent on some inertially fixed characteristics (such as eccentricity, inclination, and ascending and
descending node locations) of the Earth, Venus, and Mars orbits, and that these inertial characteristics are
also playing a significant role in reducing the V∞ at Earth launch and arrival.

One means to observe what role (if any) eccentricity plays on a gravity-assist trajectory, is in a radial
distance plot. Figures 9 and 10 show radial distance plots for the 11/22/2021 and 8/28/2034 opportunities,
respectively. The figures show the radial distance (with respect to the Sun) of each planet (Earth, Venus, and
Mars), as well as for the spacecraft’s trajectory, plotted against time. Each leg of the spacecraft trajectory
is shown in alternating colors to indicate where in the arc the gravity assist occurs. To investigate the node
crossings of Venus and Mars, the ascending and descending nodes for each planet’s orbit are indicated by the
dots shown along the curves for Venus and Mars. Additionally, the inclination of each leg of the spacecraft’s
trajectory is annotated next to the corresponding curve on the plot.

Time=[years]
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2019 2020 2021 2022 2023 2024 2025 2026
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i===1.3o

i===0.2o

Figure 9. Radial distance plot of EVME opportunity with launch date on 11/22/2021. The plot shows the
eccentric orbits of Venus, Earth, and Mars along with the spacecraft trajectory. The dots on the Venus
and Mars curves indicate a node crossing, and a color change on the spacecraft trajectory curve indicates a
transition onto a new transfer arc (which occurs at the Venus and Mars encounters). The plot shows departure
near Earth’s perihelion and arrival near Earth’s aphelion. The Venus and Mars encounters also occur near an
apse of the spacecrafts transfer arcs, as well as near a node crossing.

When looking at each radial distance plot, it is important to note two key characteristics that are known
to reduce the energy required for a transfer between two bodies. The first involves a concept discussed by
Lawden23 for transferring between two elliptical orbits (assuming collinear lines of apsides). In his discussion,
Lawden shows that for an (impulsive) ∆V -optimal transfer from one ellipse to another, the spacecraft must
enter (and depart) the transfer arc tangentially, and at an apse (of the departure ellipse, the transfer ellipse,
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Figure 10. Radial distance plot of EVME opportunity with launch date on 8/28/2034. The plot shows that
at the Venus encounter, the arrival and departure transfer arcs are near perihelion, as well as Venus itself. At
the Mars encounter, the arrival transfer arc is near aphelion, and Mars is at perihelion. Additionally, both
the Venus and Mars encounters occur near their node crossings.

and arrival ellipse).
The second characteristic relates back to the issue of large transfer arc inclinations for transfer angles

near 180o. Recall that this issue only occurs when the departure and arrival bodies’ orbits are in different
planes. Such a problem does not exist however if encounters occur at points where these orbital planes
intersect. For the case of Earth, Venus, and Mars, this occurs where Venus and Mars cross the ecliptic—at
their ascending and descending nodes. Therefore, the desired characteristics to observe in figures 9 and 10,
are that transfer arcs start and end at an apse (either of the planet’s orbit, the spacecraft’s orbit, or ideally
at both), and that the Venus and Mars encounters occur at a node crossing to allow for transfer arcs near
180o.

Figure 9 shows (from left to right on the plot) that the spacecraft departs Earth near Earth’s perihelion,
encounters Venus near the spacecraft’s perihelion, encounters Mars near the spacecraft’s aphelia (both on
the arrival and departure transfer arcs), and finally encounters Earth at Earth’s aphelion. Additionally,
the figure shows that the Venus and Mars encounters both occur near their respective node crossings, which
explains why the transfer arcs with nearly 180o transfer angles can exist with relatively small inclination. We
also see from the figure that the Venus and Mars encounters do not occur very near to either the perihelion
or aphelion of Venus’ or Mars’ orbits, nor do we depart Earth or arrive at Earth near either apse of the
spacecraft’s transfer arcs. Nevertheless, several transfers do begin and end near an apse, and both encounters
occur near Venus’ and Mars’ node crossings.

Figure 10 shows no apse at Earth departure (neither from Earth’s nor the spacecraft’s orbits), but at the
Venus encounter, all three orbits (the spacecraft’s arrival and departure arcs, and that of Venus) are at their
respective perihelia. At the following Mars encounter, Mars is at perihelion and the spacecrafts arrival arc
is near aphelion. The final arrival at Earth however does not occur near an apse. The figure also shows that
the Venus and Mars encounters occur very near the node crossings, which explains (as with the 2021 case)
why such low transfer arc inclinations can exist with near 180o transfer angles. To better illustrate that the
2034 trajectory has near 180o transfer arcs (with a slightly larger transfer angle for the Mars-Earth leg), its
trajectory is shown in figure 11.

It should be noted that the issue of 180o transfer angels producing highly inclined trajectories can be
resolved with the use of a broken-plane maneuver. Such a maneuver is typically small (particularly if applied
to this problem since the inclinations of Venus’ and Mars’ orbits are small), however, the use of a broken-
plane maneuver prevents the resulting EVME trajectory from being a true free return, and is therefore less
desirable for an IM-type mission.
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Mars Flyby
8/15/2035

Launch
8/28/2034

Venus Flyby
12/23/2034Arrival

3/7/2036

Figure 11. Trajectory plot of an EVME opportunity with launch date on 8/28/2034. The plot shows that all
transfer arcs have transfer angles that are near 180o (although slightly larger on the Mars-Earth leg). Such
a trajectory is possible (ballistically) with small inclination transfers due to the Venus and Mars encounters
occurring near a node crossing. This same effect is also in play for the opportunities in 2021, of which a
representative case is shown in figure 7.

Nevertheless, a broken-plane maneuver could potentially allow for transfers closer to a true Hohmann
transfer, and thereby (potentially) provide lower Earth launch and arrival V∞ values than those found in
table 3. Such trajectories are not investigated in this paper, as the primary goal of this study is to find
trajectories for an IM-type mission that are purely ballistic—allowing those aboard the spacecraft to return
to Earth without the need of deterministic maneuvers. Therefore, it is not expected that a broken-plane
maneuver be used for an IM-type mission, and the purpose of investigating such trajectories would be purely
to obtain more insight into the behavior of the available design space.

D. The Case for Venus

Free-return trajectories to Venus have also been investigated. In 1969 Hollister,24 and in 1970 Hollister
and Menning,25 found free-return trajectories that repeatedly encounter Earth and Venus (also known as
Earth-Venus cycler trajectories). In 2000, Bonfiglio et al.26 investigated Venus free returns using aerogravity
assists. In general however, far less attention has been paid on human missions to Venus as it has been
for Mars. Nevertheless, the case for Venus (a play on the book title The Case for Mars by Zubrin and
Wagner27) has been proposed (or at least addressed) by some.28–32

For Inspiration Mars, it is clear from this study that (apart from the nominal Inspiration Mars trajec-
tory in early 2018) the only viable IM-type mission candidates that exist in the near term are the EVME
trajectories in 2021. However, as the 2018 nominal launch date nears, it may turn out that the 2021 EVME
opportunity becomes the new “nominal” case, and if so, there would be no near-term backup for such a
mission. Since a primary goal of Inspiration Mars is to push human spaceflight into deep space, many of
the mission objectives could still be met with a human flyby of Venus alone—albeit an Inspiration Venus
mission.

To investigate such an option, the Venus free-return gravity-assist path Earth-Venus-Earth (EVE) was
searched using STOUR, and many near-term opportunities were found. Because this is proposed as an
alternate for Inspiration Mars (or some other IM-type mission), the same constraints were imposed on this
STOUR search with regard to Earth launch and arrival V∞ and TOF. Therefore, any vehicle designed for
the EVME 2021 trajectory, should be capable of flying a candidate EVE trajectory.

Figure 12 shows the search results over launch dates spanning from 1/1/2019 through 1/1/2027 with
steps of one day, and all with Earth arrival V∞ at or below 9 km/s. These dates were chosen as the most
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relevant near-term launch dates for backup to the nominal Inspiration Mars trajectory, as well as to the 2021
EVME opportunities. An eight-year span of launch dates was chosen as it is the approximate time for the
Earth-Venus geometry to repeat in inertial space (approximately 8 Earth and 13 Venus revolutions about the
Sun). The figure shows five columns of opportunities whose launch dates each span about six months. The
distance between columns is consistent with the Earth-Venus synodic period (assuming circular-coplanar
orbits) of about 1.6 years, which repeats approximately five times in the eight years shown. From the results
in the figure, it is clear that many EVE candidates are available for an IM-type mission.

Figure 12. Venus free-return trajectories (gravity assist path Earth-Venus-Earth) with launch dates spanning
eight years, from January 1, 2019 to January 1, 2027. The time of flight from Earth launch to Earth arrival
is shown on the vertical axis, the Earth launch date is shown on the horizontal axis, and the colorbar to the
right of the plot indicates the launch V∞. All results shown have an Earth arrival V∞ less than or equal to 9
km/s.

To identify the most desirable EVE near-term candidates, figure 13 shows the same candidate trajectories
as shown in figure 12, but with Earth launch date exchanged for Earth arrival V∞ on the horizontal axis.
The trajectories that make up the Pareto set have been circled, and are mostly made up of opportunities in
2026, although those that exhibit lower arrival V∞ have launch dates in 2019 and 2021 (as annotated on the
figure).

A representative subset of the Pareto-set EVE trajectories is given in table 5. The cases listed include
a case with the overall lowest Earth launch V∞, Earth arrival V∞, and TOF, respectively. Since the Pareto
set does not include many of the candidates from other launch years, the case from 2019 is included in the
list. Additionally, candidates that more closely follow the 2021 EVME launch dates (such as in 2023) are
not included in the Pareto set, but due to more convenient launch dates, may be of interest for backup to
the EVME candidates in 2021. Therefore, one such EVE case with launch date in 2023 is also included in
table 5.

One immediate observation of the results in table 5 is that the EVE trajectories are capable of providing
much lower launch and arrival V∞ and TOF values than the EVME cases. The difference is even more
extreme when compared to the nominal 2018 Inspiration Mars trajectory. In fact, the EVE trajectories
appear so attractive that a Venus only flyby mission may be more desirable than the EVME opprtunity as
a backup, or in the extreme case, a replacement for the nominal Inspiration Mars trajectory in early 2018.

With 2018 launch dates in mind, recall that the inertial repeat time for the EVE opportunities approx-
imately occurs every eight years. Since the Pareto set opportunities of figure 13 were mostly populated by
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Figure 13. Venus free-return trajectories (the same as those shown in figure 2) with Earth launch date
exchanged for Earth arrival V∞ on the horizontal axis. Candidates in the Pareto set are indicated with a
circle, and their respective launch year is indicated by the annotations shown. Most Pareto-set candidates are
shown to occur in the year 2026.

Table 5. Subset of Best Near-Term EVE Opportunities

Launch Date V∞,Launch C3 TOF V∞,Arrival VEntry

(mm/dd/yyyy) (km/s) (km2/s2) (days) (km/s) (km/s)

07/31/2026 2.75 7.56 366 7.09 13.15

05/07/2021 6.50 42.25 400 4.34 11.90

09/18/2026 6.25 39.06 327 7.25 13.24

11/18/2019 6.00 36.00 417 6.39 12.79
∗07/02/2023 5.75 33.06 347 7.83 13.56

∗Not in Pareto optimal set of trajectories from figure 13.
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2026 launch dates, this implies that in 2018 (eight years prior to 2026) similarly attractive opportunities
should be expected. To investigate this further, the STOUR results for EVE candidate trajectories in 2018
are shown in figure 14. The search was over launch dates from 1/1/2018 to 1/1/2019, and trajectories that
make up the Pareto set of 2018’s best EVE cases are indicated with a circle. Representative cases of the
2018 EVE Pareto set are listed in table 6. The cases given represent the lowest Earth launch V∞, arrival
V∞, and TOF, respectively. Note that the cases on 8/3/2018 and 9/17/2018 appear to have approximately
the same values as those on 7/31/2026 and 9/18/2026 (in table 5), respectively, and are likely repetitions of
the same opportunities.

Figure 14. Venus free-return trajectories in 2018 (with launch dates spanning from January 1, 2018 to January
1, 2019). Candidates in the 2018 Pareto set are indicated with a circle, and appear to have similar charac-
teristics to those observed in 2026 (as is expected due to the eight-year cycle for Earth-Venus geometry to
approximately repeat in inertial space).

Table 6. Subset of Best 2018 EVE Opportunities

Launch Date V∞,Launch C3 TOF V∞,Arrival VEntry

(mm/dd/yyyy) (km/s) (km2/s2) (days) (km/s) (km/s)

08/03/2018 2.75 7.56 371 7.13 13.17

02/23/2018 6.50 42.25 454 6.35 12.77

09/17/2018 5.75 33.06 324 7.18 13.20

IV. Conclusion

This study has found key opportunities, such as the EVME Mars free-return on November 22, 2021,
for application to Inspiration Mars (or similar IM-type) mission. These trajectories were found to possess
significantly lower V∞ values at Earth launch and arrival (with a moderate increase in TOF) compared to
those exhibited by the nominal Inspiration Mars trajectory (with launch date in late 2017 – early 2018).

All trajectories of the gravity-assist path EMVE were found to provide similar launch and arrival V∞
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values, but all with TOF greater than about 800 days—much too long for an IM-type mission. Similarly,
the path EVMVE produced solutions with acceptable launch and arrival V∞, but all with TOF longer than
the 600-day constraint.

The existence of the low launch and arrival V∞ values found from the EVME search results can be
attributed to the Hohmann-like transfer arcs between bodies. The Earth-Venus-Mars geometry that allows
for such opportunities occurs in 2021 and 2034, whereupon each set of solutions approximately reoccurs
every 32 years thereafter.

An EVME opportunity could also serve as a replacement for the nominal Inspiration Mars trajectory in
2018. In fact, the November 22, 2021 opportunity was recently proposed to the US House of Representatives
Committee on Science, Space, and Technology, on February 27, 2014. The proposal was for an IM-type
mission (using the November 2021 opportunity) to be the first human-crew, deep-space mission for the
Orion and Space Launch System.

Venus free-return opportunities (using the gravity-assist path Earth-Venus-Earth) were also found with
the same search constraints on Earth launch and arrival V∞, and TOF as those for the Mars free-return
cases. Many candidate EVE opportunities were found with either lower launch V∞, arrival V∞, or TOF
than any found for the EVME Mars flyby opportunities. Although Mars is the ultimate goal, the EVE
opportunities may prove to be essential for an IM-type mission, with Venus as the primary flyby target,
if a mission to flyby Mars becomes unobtainable by the desired launch dates. Although forgoing Mars is
not ideal, a Venus free-return would allow for a human deep-space mission, and thereby meet many of the
primary mission objectives of Inspiration Mars.

With regards to the Inspiration Mars mission itself, there is need for a second-chance opportunity to
the nominal trajectory in 2018. Several near-term EVME opportunities found in this study are suitable
candidates to (and with regards to launch and arrival V∞, more desirable than) the nominal trajectory. If
the launch date in early 2018 cannot be met, the EVME gravity-assist path provides this opportunity in
2021—essential for keeping the Inspiration Mars mission alive.
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