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A Human-Centered Approach to
One-Shot Gesture Learning
Maria Eugenia Cabrera and Juan Pablo Wachs*

Intelligent Systems and Assistive Technologies (ISAT) Laboratory, School of Industrial Engineering, Purdue University,
West Lafayette, IN, USA

This article discusses the problem of one-shot gesture recognition using a human-
centered approach and its potential application to fields such as human–robot interaction
where the user’s intentions are indicated through spontaneous gesturing (one shot).
Casual users have limited time to learn the gestures interface, which makes one-shot
recognition an attractive alternative to interface customization. In the aim of natural
interaction with machines, a framework must be developed to include the ability of
humans to understand gestures from a single observation. Previous approaches to one-
shot gesture recognition have relied heavily on statistical and data-mining-based solutions
and have ignored the mechanisms that are used by humans to perceive and execute
gestures and that can provide valuable context information. This omission has led to
suboptimal solutions. The focus of this study is on the process that leads to the realization
of a gesture, rather than on the gesture itself. In this case, context involves the way in
which humans produce gestures—the kinematic and anthropometric characteristics. In
the method presented here, the strategy is to generate a data set of realistic samples
based on features extracted from a single gesture sample. These features, called the “gist
of a gesture,” are considered to represent what humans remember when seeing a gesture
and, later, the cognitive process involved when trying to replicate it. By adding meaningful
variability to these features, a large training data set is created while preserving the
fundamental structure of the original gesture. The availability of a large data set of realistic
samples allows the use of training classifiers for future recognition. The performance of
the method is evaluated using different lexicons, and its efficiency is compared with that of
traditional N-shot learning approaches. The strength of the approach is further illustrated
through human and machine recognition of gestures performed by a dual-arm robotic
platform.

Keywords: gesture recognition, one-shot learning, embodiment, robotics, human–computer interaction

INTRODUCTION

Gestures are a key component of human–human interactions (Kendon, 1986). Therefore, we expect
machines and service robots to be able to understand this formof interaction as intuitively as humans
do. Having seen a gesture only once, we are then able to recognize it the next time it is presented
because of our capability to learn from just a few examples and to make associations between
concepts (Brown and Kane, 1988; Ormrod and Davis, 2004; Johnson et al., 2005). Modeling this
capability is one of themain challenges faced in the development of natural human–robot interaction
(HRI). Currently, a number of learning sessions must take place before machines can be used in a
natural and straightforward setting (Adams, 2005).
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The problem of recognizing gestures from a single observation
is called one-shot gesture recognition (Escalante et al., 2017). In
the aim of providing natural interaction with machines, a frame-
work must be developed to include the adaptability that current
approaches lack. The limited amount of information provided by a
single observation makes this an ill-posed problem if an approach
based exclusively on data mining or statistics is adopted; instead,
some form of context is required.

Previous work in this area has relied on computer vision tech-
niques, extractingmotion and orientation descriptors to train and
further classify gestures based on a single training instance (Wu
et al., 2012; Konecny and Hagara, 2014). However, gesture recog-
nition involves intrinsic difficulty discerning between motions
consistently repeated across examples of the same class, as well
as having to cope with the high variability of human actions.
When only one example is provided, this task becomes even more
challenging, increasing the risk of overfitting as well as imposing
limits on generalizability (Fe-Fei et al., 2003).

By including the human aspect within the framework, the
kinematic and psychophysical attributes of the gesture produc-
tion process can be used to support recognition. This approach
involves a strategy in which these attributes are relied upon to
generate a data set of realistic samples based on a single example
and is therefore within the scope of one-shot learning. Using a
single-labeled example, multiple instances of the same class are
generated synthetically, augmenting the data set and enabling
one-shot learning.

The recognition problem is based on using the generation
process for a gesture instance rather than the instance itself. The
proposed method is able to capture significant variability while
maintaining the fundamental structure of the gesture, thereby
accounting for the stochastic aspects of gesture production that
are associated with the inherent non-linearity of human motor
control. The extraction of the “gist of the gesture” consists in
finding salient characteristics in the given gesture example that
transcend human variability and are present in all examples of the
same gesture class.

This study is a continuation of the research published by Cabr-
era andWachs (2016). It is expanded by incrementing the number
of data sets used for training and testing; an additional classifier
is implemented and tested; new results are presented regarding
the robotic implementation; and a new metric is proposed to
compare the presented approach for one-Shot learning in terms
of efficiency against its N-shot counterpart.

Background
Gestures are an intrinsic part of human communication, either
complementing spoken language or replacing it altogether
(Hewes, 1992). A gesture can be defined as a deliberate set
of motions executed with any body part to convey a message
or evoke an action (McNeill and Levy, 1980; Kendon, 1990).
The scope of this review encompasses gestures performed with
the upper limbs; they may be static (i.e., a pose) or dynamic.
Given the relevance of gestures as means of human–human
and human–machine interaction, they have been the subject
of research in linguistics, computer science, engineering, and
cognitive sciences. Researchers have been studying how gestures

are produced, perceived, and mimicked, as well as how computer
systems can detect and recognize them. This last area is especially
relevant to human–computer interaction (Pavlovic et al., 1997;
Rautaray and Agrawal, 2015), HRI (Nickel and Stiefelhagen,
2007; Yang et al., 2007), and assistive technologies (Jacob and
Wachs, 2014; Jiang et al., 2016b), where humans rely on accurate
recognition by machines.

The scope of the gesture recognition problem ranges from N-
shot learning, in which several observations have been presented
to the machine at earlier points in time, through to zero-shot
learning (Palatucci et al., 2009; Socher et al., 2013), in which no
observations have yet been made. Within this range lies the case
of single-instance recognition (one-shot learning), in which only
a single sample has been observed previously, and it is on this
problemof one-shot learning as applied to gesture recognition that
this paper focuses.

Gesture Communication
The phenomenon of gesturing is found across cultures, ages, and
tasks (Goldin-Meadow, 1999). There are many ways in which
gestures can be interpreted and classified, according to how they
are used for communication. For example, in language, gestures
are considered a natural way to communicate. Such gestures can
be used to accompany speech or substitute for it entirely. The use
of head, body, and hand gestures, including gaze, in a conversation
conveys information about an individual’s internal mental state,
intention, and emotion (Kendon, 1980). This is also true when
verbal expression is not part of the communication, for example,
sign language for people with hearing disabilities (Bellugi, 1979).
Furthermore, some gestures are not used as part of explicit com-
munication, but rather arise as artifacts reflecting an individual’s
internal state of mind or a physical state (Kendon, 1994).

In one of the most widely used classifications of gestures,
McNeill (1992) has identified four major types of gestures used by
speakers: iconic, metaphoric, deictic, and beat gestures. Although
iconic gestures capture semantic aspects of speech content,
metaphoric gestures can provide a pictorial or abstract represen-
tation of speech. Deictic or pointing gestures can refer to both
space and time, and beat gestures are usually cyclic to represent
a rhythmic pulsation, similar to musical patterns.

There are, however, other gestures that are performed sponta-
neously during speech and that do not fit within this classification.
These gestures are involved in aiding the thought process of
the speaker (Krauss et al., 1991), rather than helping a listener
understand an idea (Kendon, 1994).

N-Shot Learning
This is the most common method used for learning and pattern
recognition. The key idea is that classifiers are trained using
multiple observations. Although the number of observations may
be of the order of 10 (Yamato et al., 1992; Hertz et al., 2006;
Wasikowski and Chen, 2010), it is more common for hundreds
of observations to be made (Rigoll et al., 1997; Liang and Ouhy-
oung, 1998; Wei et al., 2011; Jost et al., 2015; Mapari and Kharat,
2015) and sometimes even thousands (Babu, 2016; Sun et al.,
2015; Zheng et al., 2015; Zhou et al., 2015). The number depends
strongly on the application, which may vary from object or face
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recognition in images or clips (Serre et al., 2005; Huang et al.,
2007; Toshev et al., 2009) to gestures or patterns coming from
complexmultimodal inputs (Jaimes and Sebe, 2007; Escalera et al.,
2016). Some of the major challenges regarding recognition lie
in representation, learning, and detection (Lee et al., 2016). The
models used to describe gestures involve empirical and tunable
parameters and a variety of descriptors to encompass the complex-
ity and diversity among gestures. At the same time, models need
to be flexible enough to handle high variability within the same
class of gestures, while discriminating between classes (Caulfield
and Heidary, 2005; Marron et al., 2007; Parikh and Grauman,
2011). Usually, variability is introduced into the model by using
several training examples along with techniques based on prior
information (Zaffalon and Hutter, 2002; Wang et al., 2015; Sarup
et al., 2016).

Gesture recognition algorithms differ in many aspects. An ini-
tial classificationmay be done with respect to the overall structure
of the adopted framework, i.e., the way in which the recognition
problem is modeled. In particular, some approaches are based on
machine learning techniques, where each action is described as a
complex structure (Ikizler andDuygulu, 2009;Merler et al., 2012),
whereas others involve simpler representations where a hand pose
is represented as signatures and moments of inertia (Albrecht
et al., 2003; Bhuyan et al., 2011).

One-Shot Learning
The one-shot learning paradigm relies on the use of a single
training instance to classify future examples of the same image,
gesture, or class. Most of the work reported in the literature on
this type of learning paradigm, particularly in the context of
gesture recognition, is based on appearance models and feature
extraction techniques. There are techniques that are on the bound-
ary between one-shot and N-shot (usually with N < 5 samples),
and although these are not referred to directly as one shot, their
capability for generalization makes them especially attractive in
the field of one-shot learning (Rekabdar et al., 2015).

Some of the seminal work on one-shot learning has been based
on a Bayesian framework that considers both the shape and
appearance of objects to be classified in different images (Fe-Fei
et al., 2003); by using a probabilistic framework, the density of
feature locations provides scale and translational invariance. Once
several categories have been learnt using this framework, a new
category can be learnt using a single image as training (Fei-Fei
et al., 2006); the reported accuracy was 82% in that case.

Lake et al. (2011) used a probabilistic approach with Markov
ChainMonte Carlo andMetropolis–Hastings algorithms to detect
the order of strokes in characters, comparing between different
models and humans. The classification accuracy reported was
62%. Maas and Kemp (2009) used Bayes Nets on a public data set
from Ellis Island to solve the “Randeria problem,” which attempts
to match the attributes of immigrants to their country of origin.
To adjust to a one-shot learning framework, they removed all but
one set of training examples each of which was based on a single
category and then used the remaining example as testing data; the
average accuracy reported among attributes was 70%.

An important landmark in one-shot learning applied to ges-
tures was the ChaLearn Looking at People Challenge initiated

by Microsoft in 2011 (ChaLearn Looking at People, 2014). This
challenge involves a competition to design a one-shot gesture
recognition method using Microsoft’s Kinect technology (Zhang,
2012). Kinect was used because of its ability to gather color and
depth information from video streams. For 2 years, a vast data set
(CGD11), of both development and validation batches, was used
worldwide as training and testing data in the competition; the
results for both years were reported by Guyon et al. (2012, 2013)
with partial success being achieved. Among the results reported,
the Levenshtein distance (LD) (Levenshtein, 1966) was between
0.15 and 0.3 (the ideal distance is represented by 0 and theworst by
1). A common theme of the proposed methods was an emphasis
on gesture representation as strictly machine learning and clas-
sification of observations regardless of the process involved in
their generation. Most selected features were selected to portray
appearance and motion using color or depth frames in the video
input. There was nomention of the relevance of the shape or other
characteristics of the human body performing the gestures.

Wan et al. (2013) extended the scale-invariant feature transform
to spatio-temporal feature descriptors, known as a “bag of visual
words” to build a codebook. Testing videos were then processed,
and the codebook was applied to further classify using a K-
nearest-neighbors algorithm. Their LD reached 0.18. Fanello et al.
(2013) applied adaptive sparse coding to capture high-level feature
patterns based on a three-dimensional histogram of flow and a
global histogram of oriented gradient, classified by a linear sup-
port vector machine (SVM) using a sliding window and reported
an LD of 0.25. Wu et al. (2012) utilized both RGB color and
depth information from Kinect and adopted an extended motion
history image representation as the motion descriptor and a max-
imum correlation coefficient as the discriminatory method. They
found an LD of 0.26. Konecny and Hagara (2014) took a different
approach, using histogram of oriented gradients to describe the
visual appearance of gestures, with dynamic time warping (DTW)
as the classification method. Their LD was 0.17.

More recently, Escalante et al. (2017) have described a method
in which a two-dimensional map of motion energy is obtained
for each pair of consecutive frames in a video and then used for
recognition after applying principal component analysis. One-
shot learning has also been applied in scene location (Kwitt et al.,
2016), grasping of novel objects (Kopicki et al., 2016), and facial
expression recognition (Jiang et al., 2016a).

MATERIALS AND METHODS

This section presents details of the implementation of a method
to achieve one-shot gesture recognition through the “gist of the
gesture.” An overview of the implemented system is shown in
Figure 1. Initially, the system requires a labeled example from
a user. This is achieved in the following way. First, a gesture is
performed by a user and is detected and recorded using a Kinect
sensor. Using the skeleton data provided by the sensor, salient
characteristics are extracted, which we refer to as the gist of the
gesture, and are used to recreate new realistic observations, which
resemble that provided by the user (Cabrera and Wachs, 2016).
This process is repeated until a large data set of observations is
generated. This data set constitutes the training set of an arbitrary
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FIGURE 1 | System overview.

classifier. Metrics include independence from classification strat-
egy and efficiency compared with N-shot learning. To further
demonstrate the strength of the approach, gestures performed
using a dual-arm robotic platform are detected and recognized
using the previously trained classifiers.

The motivation behind the gist of the gesture is to under-
stand how humans gesture and what determines the forms of the
gestures produced. Furthermore, cognitive signatures related to
observed gestures may be used to “compress” a gesture inmemory
while retaining its intrinsic characteristics. When a gesture is
recalled, these key points associated with the cognitive signatures
are used to “decompress” the gesture into a physical expression.
In addition, multiple instances of the same gesture will share
key common motion components among all instances, regardless
of the variability associated with human performance. The fact
that positive correlations have been observed between abrupt
changes in motion and spikes in electroencephalographic signals
associated with the motor cortex supports the hypothesis of a link
between inflection points (IPs) inmotion and cognitive processes.

In a preliminary experiment, it was found a relationship
between the timing of mu oscillations and kinematic IPs, such
that IPs were followed by interruptions inmu suppression approx-
imately 300ms later. This lag is consistent with the notion that
IPs may be utilized as place holders involved in conscious gesture
categorization. This is the first evidence (from cognitive, objective,
and empirical studies) that these specific landmarks represent
stronger footprints in people’smemory than other points (Cabrera
et al., 2017a).

Problem Definition
Let L describe a set or “lexicon” formed by N gesture classes Gi,
L = {G1, G2, . . . Gi, . . . , GN}. Each gesture class is expressed

through its realization by a set of gesture instances gi
k. In a way,

the gesture class is a prototype group, and the members of that
group are the instances gi

k ∈ Gi, where k= 1, . . ., M is the
number of instances of gesture class i. Each gesture instance is
a concatenation of trajectory points in three dimensions, gi

k =
{(x1, y1, z1), . . . , (xh, yh, zh)}, where h is the total number of
points within that gesture instance.

Using one instance per class gi
1, a set of place holders or IPs

xi
q, where q= 1,. . .,l and l< h, are computed. We refer to the set

of values G̃i as the “gist of a gesture” of gesture class i in lexicon L:

G̃i =
{
xi
q = (xq, yq, zq) : xi

q ∈ gi
k, q = 1, . . . , l, l < h

}
.

G̃i ∈ G̃L, i = 1, . . . ,N. (1)

This set of values is obtained using a function M (2) that maps
from the gesture dimension h to a reduced dimension l:

G̃i = M
(
gi
k

)
, k = 1, i = 1, . . . ,N; gi

k ∈ Rh; G̃i ∈ Rl; l < h.

(2)
This compact representation is then used to generate artificial

gesture examples ĝi
k for each Gi. This is done through a function

A (3) that maps from dimension h to gesture dimension l using
the forward approach explained in Section “Artificial Observation
Generation”:

ĝi
k = A

(
G̃i

)
, k = 1, . . . ,M; i = 1, . . . ,N. (3)

A function Ψ (4) maps gesture instances to each gesture class
using the artificial examples:

Ψ : ĝi
k → Gi. (4)
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Then, for future instances gu of an unknown class, the problem
of one-shot gesture recognition is defined as follows:

Max Z = W {Ψ(gu), Gi}

s.t.i = 1, 2, . . . ,N, i ∈ Z+, Gi = Ψ
(
gi
1

)
, Ψ (gu) ∈ L, (5)

where W is a metric function (e.g., accuracy).

Artificial Observation Generation
To generate artificial observations Ĝi using the forward method,
the stored location for each IP xi

q, where q= 1,. . .,l, is used as the
mean value μ for a mixture of Gaussians (6), while the quadrant
information relative to the user’s shoulder of all x ∈ gi

1 of the
hand’s trajectory is used to estimate the variance.

Considering a vector of dimension d (in this case 3), this
Gaussian mixture model (GMM) is fitted as follows:

(x̂;μμμk, σσσk, πk) =
m∑

k=1

πkpk(x), πk ≥ 0,
m∑

k=1

πk = 1,

pk(x) =
1

(2π)d/2σk1/2
exp

{
−1

2
(x − μμμk)

Tσσσk
−1(x − μμμk)

}
(6)

where m represents the mixtures in the model, pk is the normal
distribution density with mean μk taken as the location of each IP
and a covariance matrix σk that is positive semidefinite, and πk
is the weight of the kth mixture, with all the weights summing to
unity.

To estimate the variance, each point x in the sample trajectory
is assigned to a quadrant with respect to the user’s shoulder,
xj = q(x)c, where c= 1, 2, 3, 4, using the reference frame shown
in Figure 2. The next step uses the points xj from each quadrant
as samples to estimate the variance of each quadrant as

σc =
1

nc − 1

nc∑
j=1

(xj − μμμc)
2, xj = q(x)c ∈ R3, c = 1, 2, 3, 4, (7)

which in turn adjusts the parameters for the generated GMM for
each IP.

With different sets of IPs, generated using the GMM, and the
curvature information related to the original gesture trajectory,
artificial trajectories are generated. The points pi and pi+1 are used
along with the curvature ci to generate smooth segments for all i
in the set of IPs. The basic algorithm is outlined in Algorithm 1,
taking as input a single labeled example from class s, gs

1, (8)
consisting of A points, acquired using the skeleton information
from a Kinect:

gs
1 = {(x1, y1,z1), (x2, y2, z2), . . . , (xk, yk, zk), . . . , (xA, yA, zA)} .

(8)

Performance Metrics
Once the gist of a gesture G̃i has been extracted from a single
example gi

1 of each gesture class Gi within a lexicon L with i= 1,
. . ., N, and an artificially enlarged data set has been created from
it as G = {Ĝ1, . . . , Ĝi, . . . , ĜN}, the goal is to evaluate the perfor-
mance of themethod in terms of generalization and recognition of
future instances. The proposed method must work with different
gestures and lexicons, as well as being independent from a chosen
classification strategy. The accuracy metric A% is defined (9)
as the ratio of the number of true hits to the total number of
samples:

A% =
totaltrue−hits
totalsamples

. (9)

The proposed method has to be generalizable to allow com-
parison with N-shot learning approaches and thereby empirically
determine the number of samples required for each classifier
to reach the same recognition accuracy obtained when training
them with artificially generated samples. Therefore, the following
metric of efficiency η(·) is proposed (10) to express the extent
to which the presented approach is more efficient than the stan-
dard N-shot learning approach, given the number of samples

FIGURE 2 | Visual representation of how features corresponding to the “Gist of the Gesture” are used to create new observations.
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ALGORITHM 1 | Generating artificial observations from a single sample.

Input:
gs
1 three-dimensional hand trajectory of a gesture instance of class s
xs = (xs, ys, zs) three-dimensional position of the shoulder
M number of artificial trajectories to generate

// Inflection points (IPs)

1 xIP ← xi ∈ gs1,
dx2

d2 t

∣∣∣
x=xi

= 0, i = 1

// Interval between IPs
2 Ij = {x | x ∈ (xi, xi+1)}, j= 1,. . ., l−1
3 for l−1 iterations do

// Convexity for interval Ij
4 Cj = sign

(
dx2

d2 t

)
, x ∈ Ij

5 end for
// Determine quadrant location based on xs

6 if yi > ys, zi > zs
7 q(xi)= 1
8 elseif yi <ys, zi> zs
9 q(xi)= 2
10 elseif yi < ys, zi < zs
11 q(xi)= 3
12 else // yi > ys, zi < zs
13 q(xi)= 4
14 end if

// Variance estimation

15 σc = 1
nc−1

nc∑
i=1

(pi − μμμc)
2, pi = |q(xc)|c ∈ R3

16 // Generate GMM
Γi =

∑
∼N(xi, σσσc), i= 1,. . ., m,c= 1,. . .,4

17 for M iterations do
// Sample Γi to obtain new IP x∗

i

18 x∗
IP ← x∗

i ∈ Γi, i = 1, . . . ,m
19 for l− 1 iterations do

// Smoothly connect new IP
20 al ← ∪ arc

(
x∗
i , x∗

i+1,Ci
)

21 end for
22 end for

Output:
Ĝ
s
=

{
ĝs1, ĝs2, . . . , ĝsK

}
set of artificial trajectories for gesture class s

(samplescutoff) required to reach the same baseline for accurate
recognition:

η =
samplescutoff − 1

samplescutoff
. (10)

With a set of artificially generated observations for each gesture
in a lexicon with its corresponding gesture class as label, each
classification algorithm is trained and tested. Initially, testing data
correspond to different samples from the acquired data set in the
form of video inputs. Further details about data are provided in
Section “Results.”

Receiver operating characteristic (ROC) curves were created to
indicate performance. Each ROC curve was drawn using different
thresholds to assign the predicted class label. Different values
across the ROC curve show the trade-off between recognition
of true positives (hit rate) and false positives (false-alarm rate).
The optimal recognition system would have a 100% recognition
accuracy and no false positives. This maps to the point on the
curve with the least distance to the top left intersection (1, 0),
which is used to determine the best operating point for each

classifier. The overall accuracy was determined by calculating the
area under the curve.

Confusion matrices were obtained to further analyze the corre-
lation between the actual and predicted labels of the testing data
for each gesture class.

Implementation Details
Three lexicons were used to create artificial data sets from N
gesture classes G = {Ĝ1, . . . , Ĝi, . . . , ĜN} from one example gi

1
of each gesture class Gi. One of the lexicons was customized to be
used as an imagemanipulation (IMD) data set to interact with dis-
played images in a touchless manner. The two other lexicons are
publicly available data sets, one of them related to the gesture chal-
lenge competition ChaLearn 2013 (GCD13) (ChaLearn Looking
at People, 2014), with up to 20 different gestures related to Italian
culture. The third data set wasMSCR-12 fromMicrosoft Research
(Fothergill et al., 2012), which included iconic and metaphoric
gestures related to gaming and music player interaction.

The approach proposed in this article is independent of the
specific form of classification. Furthermore, it is not conceived
with any specific classification approach inmind. The expectation
is that state-of-the-art classifiers will be selected to be trained with
the artificial data sets created. This idiosyncratic approach was
tested by training four different classification methods, currently
used in state-of-the-art N-shot gesture recognition approaches,
and adapting them to be used in one-shot gesture recognition.

Classification Algorithms
Four different classification algorithms were considered, and
their performances were compared using the artificially generated
data sets. The selected classification algorithms, namely, hidden
Markovmodels (HMM), SVMs, conditional random fields (CRF),
and DTW, are commonly used in state-of-the-art gesture recog-
nition approaches. In the case of HMM and SVM, a one-versus-
all scheme was used, while CRF and DTW provided a metric of
likelihood for the predicted result after training was completed.

Each HMM comprised five states in a left-to-right configura-
tion and was trained using the Baum–Welch algorithm, which has
been shown to generate promising results in hand gesture recogni-
tion (Jacob andWachs, 2014). An observation was classified based
on the specific HMM chain that best explained that observation,
that is, by determining which of the trainedHMMoutputs had the
highest probability for a state sequence z⃗ given a new observation
gu and its intrinsic parameters (the initial state distribution vector
π, the transition matrix A, and the observation probability within
each state B), and thereby assigning the corresponding label to the
new sample. This procedure can be expressed as follows:

arg max
i

{log(Pi (⃗z |gu;Ai ,Bi, πi)}, i = 1, . . . ,N. (11)

For the SVM, each classifier in the one-versus-all scheme was
trained using the radial basis function kernel. The library available
in MATLAB® was used to implement SVM. In the case of CRF,
the training examples were encoded using the BIO scheme to
determine the beginning (B), inside (I), and outside (O) of a
gesture. The CRF++ toolkit was used to train and test this classi-
fication algorithm (CRF++: Yet Another CRF Toolkit, 2016). The
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DTWclassification algorithmwas implemented using theGesture
Recognition Toolkit (2016), which is a C++ machine learning
library specifically designed for real-time gesture recognition.

Data Set 1: Image Manipulation (IMD)
This data set was custom designed to be used with a user interface
that helps users manipulate displayed images using gestures. This
lexicon comprised 11 gestures. The functions related to the ges-
tures were zoom in/out, rotate clock/counterclockwise, pick/drop,
previous/next, cut/paste, and erase. Some of the gestures with the
associated hand trajectory and the extracted descriptors are shown
in Figure 3.

This customized lexicon was developed for use in the medical
telementoring application STAR, in which the mentor or expert
is provided with multimodal interactions, including touch-based
annotations, air gestures, and tool manipulation to guide a novice
surgeon or trainee through a procedure (Andersen et al., 2016).

This data set was the smallest in terms of number of samples,
but was the largest lexicon in terms of number of gesture classes
within it. Six subjects performed each gesture class 5 times, for
a total of 30 samples per gesture, using IRB-approved protocol
#1609018129. Only depth and skeleton information was stored,
thus keeping the recordings of each participant anonymous. The
data set included 330 gesture clips. Eleven additional gesture clips
were created, 1 for each gesture class, which were used to extract
the IPs and create 200 artificial examples for each class. Thosewere
used as the training set for the classifiers.

Data Set 2: ChaLearn Gesture Data Set 2013 (CDG13)
The second data set used in these preliminary results was a pub-
licly available data set from the ChaLearn Gesture Competition
2013. The development data from this data set contained 7,754
gesture instances from a vocabulary of 20 gesture categories of
Italian signs. These signs were cultural/anthropological gestures
performed by different subjects. Examples of this lexicon with its
extracted gist are shown in Figure 4.

From this data set, subsets of both gesture instances and classes
were selected. The number of gesture classes in the lexicon was
reduced to 10. This reduction was mainly due to the fact that
this approach to gesture representation still does not include
information about hand configuration. Without this, some of the
gesture classes in the lexicon could be heavily confounded.

An additional issue related to the selection of CGD13 over
CGD11 (the one-shot learning data set from 2011) is the avail-
able input information for each data set. While CGD11 provides
gesture instances in color and depth format suited for one-shot
gesture recognition, CGD13 offers additional input information,
namely, audio and skeletal information from the subject. Given
the nature of the proposed approach, based on anthropometric
features such as the locations of the shoulder and hands, the use
of skeletal information provides an advantageous starting point.

The reduced data set used for these preliminary results com-
prised 100 gesture instances of each gesture class for a total of 1,000
gesture instances, obtained from the development data of CGD13.
Ten separate gesture instances, one from each gesture class, were

FIGURE 3 | Examples of gestures from data set 1 (IMD).
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FIGURE 4 | Examples of gestures from data set 2 (CGD13).

used to extract the gist of the gesture. The gist was used to create
200 artificial examples for each class and assemble the training
data set for the classifiers.

Data Set 3: Microsoft Research Cambridge-12
(MSRC-12)
This data set consisted of sequences of human movements, rep-
resenting 12 different iconic and metaphoric gestures related to
gaming commands and interaction with a media player. The data
set included 6,244 gesture instances collected from 30 people. The
files contained tracks of 20 joints estimated using the Kinect pose
estimation pipeline.

A subset of this data set was selected. The number of gesture
classes in the lexicon was reduced to 8. This reduction was related
to the fact that some of the gesture classes performed whole-
body motions such as kicking or taking a bow, whereas the
proposed method focuses on gestures performed with the upper
limbs.

From this data set, 100 gesture instances from each class were
used as the testing set, for a total of 800 gesture motions. Eight
additional instances, one for each gesture class, were used to
extract the gist representation and from it create 200 artificial
observations per class. This artificial data set was used as training

data. Examples of the gestures in this lexicon are depicted in
Figure 5.

Robotic Implementation
The use of a dual-arm robotic platform, the Baxter robot, to
execute a testing set comprising artificially generated gestures
provided a repeatable and accurate framework to test the motions
of the generated examples. The variability among the examples
did not come from the robotic performance, but the method used
to generate the gesture instances. In a broader research perspec-
tive, the use of a robotic platform to recognize the artificially
generated gestures opens the possibility to study the coherency
in recognition between humans and machines, alternating the
roles of executing and recognizing the gestures (Cabrera et al.,
2017b).

To execute the gestures using the Baxter robot, a registration
and mapping process were conducted. It involved finding the
transformation between the space where the trajectories were
generated and the robot’s operational space. This task was accom-
plished through singular value decomposition. The homogeneous
transformation matrix was found through least squares solution
given 12 different points collected in both spaces.
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FIGURE 5 | Examples of gestures from data set 3 (MSRC-12).

FIGURE 6 | Receiver operating characteristic curve for IMD data set.
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FIGURE 7 | Receiver operating characteristic curve for CGD13 data set.

FIGURE 8 | Receiver operating characteristic curve for Microsoft Research Cambridge-12 data set.
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A different approach to recognize Baxter’s motions involves
looking at the kinematics and reported end-effector’s trajectories
from the robot’s robotic operating system (ROS.org | Powering the
World’s Robots, 2016) nodes. However, we preferred an approach
that is agnostic with regard to the type of robot used to execute the
gestures.

A simple computer vision method was developed to recognize
the extremities of the performer and, through tracking, to estimate
the trajectories constituting the gestures. Baxter’s gestures were

TABLE 1 |Overall accuracies for different classifiers with different data sets.

Hidden
Markov
models

Support
vector

machines

Conditional
random
fields

Dynamic
time

warping

IMD 92.7% 92.3% 89.4% 93.6%
CGD13 91% 92.6% 86.4% 89.5%
Microsoft Research
Cambridge-12

90.6% 93.3% 91.4% 91.1%

Underlined results show the maximum recognition found for each data set.

detected using the following procedure: (i) add a marker to the
robot end effectors; (ii) segment the color using thresholding on
the RGB channels of the view; (iii) apply morphological opera-
tors to obtain the candidate hand regions represented by blobs;
and (iv) determine the center of mass for each blob (xi, yi) and
then complement the three-dimensional representation using the
depth value at that same center of mass in pixel values. These
coordinates represent the position of a hand at time i.

RESULTS

Once the lexicon had been selected, the gist of the gesture
extracted, and the data set expanded with artificial observations,
four different classifiers were trained with these data sets to
achieve one-shot gesture recognition. The performance of these
classifiers is demonstrated in the following subsections in terms of
accuracy and efficiency when compared with traditional N-shot
learning approaches. Recognition accuracy across classifiers was
also investigated, using the gestures generated with a dual-arm
robotic platform.

FIGURE 9 | Confusion matrices for the IMD data set. From upper left to lower right: hidden Markov models (HMM) (92.45%), support vector machines (SVM)
(91.91%), conditional random fields (CRF) (89%), and dynamic time warping (DTW) (91.36%).
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Accuracy
For each implemented classification algorithm, recognition accu-
racy as ametricwas determined throughROCcurves, one per data
set, presenting all classifiers on the same graph. These are shown
in Figures 6–8.

To obtain the ROC curves for each classifier, a free parameter
was selected in each and varied to obtain different values for hit
rate and false alarm. This free parameter was the likelihood of the
predicted class for each classifier. The same parameter value was
used four times for each point on the curve, dividing each data
set and reshuffling, and keeping an even distribution of gesture
examples between groups. The extreme points (0, 0) and (1, 1)
were added to complete the curve range. Overall accuracies were
obtained for all classifiers and are shown in Table 1 for each
data set.

Confusion matrices were used to determine the classifiers’ per-
formance. Within each matrix, the values reflect the proportion in

which the predicted label assigned to a gesture instance matched
its ground truth label.Figures 9–11 show the results obtainedwith
each data set.

The results obtained for the IMD data set were similar for all
the classifiers when compared with the respective overall accuracy
found through the ROC curves; specifically, HMM 92.45%, SVM
91.91%, CRF 89%, and DTW 91.36%. The gestures that were
confounded the most included “Erase” and “Drop.”

The results obtained for CGD13were lower for all the classifiers
when compared with their overall accuracy. This is related to
the fact that all the classifiers had higher recognition rates at the
expense of higher false-detection rates. By selecting the “best”
classifier as the one closest to the goal (1, 0) on the ROC curve,
lower recognition rates were found for each classifier. The recog-
nition resultswereHMM85.9%, SVM85.2%,CRF81%, andDTW
88.4%. The most confounded gestures across classifiers included
G8 and G10.

FIGURE 10 | Confusion matrices for the CGD13 data set. From upper left to lower right: hidden Markov models (HMM) (85.9%), support vector machines (SVM)
(85.2%), conditional random fields (CRF) (81%), and dynamic time warping (DTW) (88.4%).
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FIGURE 11 | Confusion matrices for the Microsoft Research Cambridge-12 data set. From upper left to lower right: hidden Markov models (HMM) (90.88%),
support vector machines (SVM) (91.88%), conditional random fields (CRF) (89.13%), and dynamic time warping (DTW) (91.38%).

The results obtained for MSRC-12 were similar to those for
GDC13 when compared against the overall accuracy for each
classifier. The results with each classifier wereHMM90.88%, SVM
91.88%, CRF 89.13%, and DTW 91.38%. However, the recogni-
tion accuracy among classifiers was closer for this data set than
for the other two.

Recognition Accuracy of Artificially Generated
Gestures Performed by Baxter
A single data set was used to test this condition; MSCR-12 was
selected. Twenty gesture instances per gesture class were executed
by Baxter, detected, and transformed as new inputs for the classi-
fiers. Confusion matrices were obtained for each classifier and are
shown in Figure 12.

Recognition accuracy among all the classifiers was slightly
lower than was found when testing the given data from the set;
specifically, HMM 89.38%, SVM 90.63%, CRF 86.88%, and DTW
90%. However, the difference in number of samples also makes an
impact. In addition, a noisy trajectory was more likely given that

the detection approach was based solely on vision and did not use
joint information directly available from Baxter.

Efficiency
The efficiency of the approach was compared with that obtained
withN-shot learning. This comparison used the recognition accu-
racy obtained in Section “Accuracy” as a baseline to determine the
number of samples required to achieve similar recognition results
in a traditional N-shot learning approach.

Since the accuracy results obtained in Section “Accuracy” form
the baseline for this new metric, new considerations are needed
regarding the use of each data set. As a general criterion, data were
divided, with 70% of each set being used for training and 30% kept
for testing. The division was done after randomization, keeping
the distribution between instances of each class equal.

Results for each combination (data set–classifier) are shown
in Figure 13. For each graph, the green solid line represents the
baseline accuracy obtained previously; the red dashed line repre-
sents the naïve accuracy, referring to the assignation of a random
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FIGURE 12 | Confusion matrices for the Microsoft Research Cambridge-12 data set performed by robotic platform Baxter. From upper left to lower right:
hidden Markov models (HMM) (89.38%), support vector machines (SVM) (90.63%), conditional random fields (CRF) (86.88%), and dynamic time warping (DTW)
(90%).

gesture class, with all the classes having equal prior probability.
Finally, the blue line with dots represents the obtained recognition
accuracy for a given percentage of training samples used.

The most obvious difference in performance between data sets
occurs with IMD. This data set has fewer (30) samples per class
compared with the others. Therefore, the efficiency is not as high.
That is, using one observation instead of 100 gives a greater saving
than using one observation instead of 30. No classifier was able to
reach the accuracy baseline set by one-shot gesture recognition
using the method proposed.

For CGD13, all classifiers neededmore than 70%of the training
data to reach the baseline recognition accuracy. In the case of the
MSRC-12 data set, baseline accuracies were reached with 50% of
the training data for SVM, while about 90% was required for CRF
and DTW.

The cutoff values for the number of samples where the recog-
nition accuracy for each classifier reached the baseline were used
to determine the efficiency metric η. Results were only calculated
for CGD13 and MSCR-12. Since the recognition accuracy never

reached the baseline value for IMD, η tended to 1. These results
are shown in Table 2.

DISCUSSION AND CONCLUSION

The obtained results show the performance of the method devel-
oped for one-shot gesture recognition through the gist of the
gesture. They demonstrate the independence of the method with
respect to the selected classification strategy. In addition, different
gesture vocabularies were used: one customized lexicon for IMD
interfaces and two different public data sets.

Previous results with the same ChaLearn data set were
described by Escalera et al. (2013), where the winning teams
using the test data achieved scores of 87.24, 84.61, and 83.19%,
whereas the results reported in this article show classification
accuracies from 86.4 to 92.6% using four different state-of-the-art
classification algorithms. It is important to note that even when
the CGD13 data set was used, the challenge itself was not part of
the experiment. Each gesture used for testing had a label assigning
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FIGURE 13 | Accuracy versus percentage of training samples for all combinations (data set–classifier).

TABLE 2 | Efficiency metric for two of the data sets.

ηηη Hidden
Markov
models

Support
vector

machines

Conditional
random
fields

Dynamic
time

warping

IMD lim ηηη → 1 lim ηηη → 1 lim ηηη → 1 lim ηηη → 1
CGD13 0.982 0.979 0.981 0.983
Microsoft Research
Cambridge-12

0.979 0.976 0.985 0.985

it to one of the 10 gesture classes selected for this particular
experiment. No spotting technique was applied.

Regarding the MSCR-12 data set, previous results reported
by Ellis et al. (2013) reached 88.7% accuracy, whereas Ramírez-
Corona et al. (2013) achieved 91.82%. The proposed method
achieved accuracies between 90.6% and 93.3%. Our experiment
used only a subset of the data set and a subset of the gesture
vocabulary. Regardless, the proposed one-shot learning approach
used to train different classification algorithms gives results com-
parable to those of state-of-the art approaches that use multiple
examples as training data.

Another interesting perspective related to our experiments is
the validation of the approach when the gesture instances were
performed by a dual-arm robotic platform. While the results were
not as good as those obtained using skeleton information on
human subjects, varying between 86.88% and 90% depending on
the classification algorithm, this robotic implementation opens a
different route toward coherency in human–machine interaction.
This concept of coherency can be related to agreement metrics in
gesture classification when the roles of performing and recogniz-
ing a gesture are interchanged between humans and machines.

As an efficiency metric, the recognition accuracy obtained pre-
viously was used as a baseline to determine the number of samples
required to achieve similar recognition results to those from a
traditional N-shot learning approach. This metric is related to the
ability to save data acquisition time. This means reducing the time
needed to acquire and process numerous training samples. This
perspective on classification performance is an advance on cur-
rent views of the one-shot learning problem. The generalizability
obtained with the gist of a gesture approach is assumed to be simi-
lar to that obtained by increasing the number of samples required
to match the recognition accuracy metric for each classifier.

In its application to one-shot learning, the proposed method
highlights the use of context for gesture recognition from the way
humans use their bodies. Future work will incorporate interjoint
constraints in the kinematic chain of the human arms as a new
method to use the gist of the gesture and thereby expand the
number of samples from a gesture class to use as training data for
classification algorithms.
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