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Abstract— Gestures play a fundamental role in instructional
processes between agents. However, effectively transferring
this non-verbal information becomes complex when the agents
are not physically co-located. Recently, remote collaboration
systems that transfer gestural information have been developed.
Nonetheless, these systems relegate gestures to an illustrative
role: only a representation of the gesture is transmitted. We ar-
gue that further comparisons between the gestures can provide
information of how well the tasks are being understood and
performed. While gesture comparison frameworks exist, they
only rely on gesture’s appearance, leaving semantics and prag-
matical aspects aside. This work introduces the Multi-Agent
Gestural Instructions Comparer (MAGIC), an architecture
that represents and compares gestures at the morphological,
semantical and pragmatical levels. MAGIC abstracts gestures
via a three-stage pipeline based on a taxonomy classification, a
dynamic semantics framework and a constituency parsing; and
utilizes a comparison scheme based on subtrees intersections
to describe gesture similarity. This work shows the feasibility
of the framework by assessing MAGIC’s gesture matching
accuracy against other gesture comparison frameworks during
a mentor-mentee remote collaborative physical task scenario.

[. INTRODUCTION

Gestures play a fundamental role in instructional pro-
cesses between people: whenever individuals with distinct
knowledge backgrounds (e.g. mentors and mentees) transfer
and reproduce instructions during face-to-face interactions,
a substantial portion of this exchange is done through
non-verbal means [1]. However, effectively transferring this
non-verbal information has become more complex as the
modern workforce became more and more distributed and
remote collaborative settings became more common. Remote
collaborative systems were proposed as means to make
up for such lack of physical co-presence between agents.
Consequently, new research focused on determining how to
properly represent and transfer such gestures using these
remote collaborative systems. In spite that several studies
show that gestures reveal meaningful information about
learning, memory and other cognitive processes [1]—[3], most
collaborative systems relegate gestures to an illustrational
role. This means that although gestures are transmitted
between the collaborators, insights about their impact in the
cognitive processes occurring between the parties are not
obtained. We argue that gesture performance-related metrics
(e.g. morphological and semantic similarities) provide useful
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information when evaluating physical instructional outcomes
between mentors and mentees. This information is compa-
rable to that obtained from conventional task-related metrics
(e.g. completion time, completion rate, reaction time, number
of errors, etc.). Therefore, a remote collaborative framework
is proposed to include semantic and morphological aspects
when comparing between the agents’ gesture. The proposed
solution would bridge the gap in currently available gestural
comparison frameworks that solely rely in the gesture’s
morphology, while ignoring the gesture meaning (semantics)
or the context in which it was performed (pragmatics).

This paper presents preliminary work done towards the
development of the Multi-Agent Gestural Instructions Com-
parer (MAGIC) framework; an architecture capable of repre-
senting and comparing gestures from agents at the morpho-
logical, semantical and pragmatical levels. For this work, we
focus on a remote physical collaboration scenario because:
(1) is an acceptable setup to evaluate understanding from task
performance; and (2) the gestures exchanged between men-
tors and mentees will be physically different and cannot be
correlated via morphological comparisons. MAGIC abstracts
gestures’ morphology, semantics and pragmatics via a three-
stage pipeline based on a taxonomy classification, a dynamic
semantics framework and a constituency parsing approach.
Finally, a comparison scheme based on subtree intersections
is applied to these trees to measure gesture similarity.

The contributions of this work include: (1) introducing
MAGIC, an architecture to compare the gestures of agents
with distinct knowledge bases at the morphological, seman-
tical and pragmatical levels; (2) creating a gestural taxonomy
for remote collaboration; (3) extending a dynamic semantics
framework to represent morphological gestural information;
and (4) defining a constituency parsing approach to represent
gestures as tree structures. Thereby, the MAGIC architecture
could act as a first step towards assessing task understanding
in mentor-mentee scenarios through the analysis of gestures.

The paper is organized as follows: Section II reviews
prior work related to gestural remote collaboration systems,
and morphological and semantical comparisons between
gestures. Section III describes the overall framework. Section
IV introduces the experimental setup to acquire gestures from
agents performing a physical collaborative task remotely,
as well as the metric selected to compare among the trees
representing gestures. Section V evaluates and discusses our
approach with respect to two other methods used to compare
gestures. Section VI concludes the paper and discusses
options for future improvement of our work.



II. BACKGROUND

The importance of gestures in remote collaborative tasks
is well-known and has been studied extensively: gestures
facilitate knowledge acquisition, offer content redundancy
and complement abstract concept representations in dialogue
[4], [5]. Additionally, gestures facilitate the creation of
mutual knowledge, beliefs and assumptions, which leads to
better conversational grounding [6], [7]. This conversational
grounding involves sharing mental models among the parties
[81, [9], as well as the physical means in which the mod-
els become tangible actions (e.g. the gestures) [10], [11].
Some of the approaches that have been explored to promote
physical communication between parties include: shared vi-
sual spaces between agents via head-mounted cameras [12],
[13]; communication of pointing gestures via a laser pointer
attached to a robotic platform [14], [15]; and projected
representation of gestures onto the agents’ workspaces, either
in 2D [16], [17] or 3D [18], [19]. Nonetheless, most of such
systems assess task performance through metrics such as
completion time, reaction time upon receiving an instruction,
perceived workload, and task completion percentage. In this
work we argue that gesture-related metrics such as morpho-
logical and semantical similarities should be considered in
addition to the aforementioned ones when assessing how
knowledge is imparted in a remote collaborative setting. This
idea is consistent with findings presented in the literature
exploring the role gestures play in knowledge exchange
between agents [12], [16], [20].

Gesture representation and comparison methodologies fol-
low two main trends: morphology-based and semantic-based
representations. The morphology-based view is intrinsically
linked to the gesture appearance, and thus metrics such as
statistical modeling techniques [21], neural networks em-
beddings [22] or distance metrics [23], among others, are
constructed with respect of how the gestural data structure
was constructed [24]. On the other hand, the semantic-based
view constructs logical abstractions of gestures based on
linguistics frameworks [25]-[27]. Nonetheless, comparisons
between the gestures are not explored in these frameworks.

Fundamental morphology-based representations are based
on raw data, directly dependent on the gesture capturing
device. Non-optical sensors capture and represent gestures
as an arrangement of joint positions and angles over time
[28], [29]. Conversely, vision-based models tend to ex-
plore distinct representations such as succession of motion
signatures [30], filter-extracted features [31], [32], neural
network-generated embeddings [22], [33], among others.
More recently, richer gestural representations can be obtained
via word embeddings [34], and morpho-semantic descriptors
[35]. Our work implements morpho-semantic descriptors to
represent the gesture’s shape and movement. The problem
with the aforementioned appearance-based approaches is
that the bodily actions performed by non-co-located agents
may differ significantly without necessarily implying lack
of conversational grounding, as often shown in the remote
collaborative systems literature.

Semantic-based representations are the second view for
gesture comparisons. Gianluca Giorgolo introduced the con-
cept of iconic semantics, a framework to extract the gestures’
semantics from iconic gestures based on the meaning they
co-express when aligned with speech [36], [37]. Additionally,
co-speech gesture projection has gained attention lately,
which analyzes gesture meaning in terms of whether the
gesture accompanies or supplements the spoken information
[38], [39]. Finally, Lascarides and Stone expanded their
dynamic semantics framework [25] to describe how gestures
modify or extend the discourse’s context, effectively provid-
ing a description of the gesture’s semantics and pragmatics
[40]. Our architecture builds on top of Lascarides and Stone
work, but extends it to provide a quantitative metric to
measure semantical similarity.

III. METHODOLOGY

A. Multi-Agent Gestural Instruction Comparer Architecture

Consider a scenario where two agents collaborate remotely
to repair a robotic arm. In this scenario, one agent does
not have the knowledge to perform the repairs alone but is
physically present in the plant, whereas the other agent has
the knowledge but is remotely located. Conventionally, the
agents would exchange instructions through a remote collab-
oration system and receive feedback of their performance in
the form of task-related metrics (e.g. task completion rate,
completion time). MAGIC introduces the concept of gesture-
based evaluation, which provides a measurement of task
understanding by analyzing the gestures performed by both
parties. With MAGIC, the gestures performed by the agents
can be represented and compared at the morphological (e.g.
trajectories, shapes), semantical (e.g. meaning, timing) and
pragmatical (e.g. context, environmental elements) levels.

Following Charles Morris’ Theory of Signs (ToS) [41],
MAGIC defines the most basic elements in a collaborative
task scenario: Actions and Agents. Let an ¢ Agent be a per-
son/robot/avatar involved in the collaborative task process.
In this work, we define @y, as the Worker - the agent that
directly manipulates the environment, and ® gy as the Helper
- the agent who guides the Worker throughout the task.
MAGIC’s & Agents are inspired by ToS Interpreters, as both
create interpretations from information. Furthermore, let an
Action A be the verbal and physical processes by which the
agents communicate between each other. This work treats the
Helper-authored actions as A g Instructions (e.g. instructing
to grab a piece of the robotic arm), and the Worker-authored
actions as Ay, Executions (e.g. actually grabbing the piece).

Each A Action is a three-element tuple. Let the first
element of an A Action tuple be a m Utterance, either
verbal (e.g. ”Grab the piece by its corner”) or gestural (e.g.
gesturing the shape of the piece). Utterances are defined as
the smallest unit of speech or gesture that communicates
a complete idea. MAGIC’s 7 Utterances are inspired by
ToS Sign Vehicles, as both are the mediums to exchange
information. In addition, let the D Discourse be a set
containing all the utterances, such that Vmr, 7w € D.



Let the second element of an A Action tuple be an ¥
Interpretation, the expected reaction to a certain 7 Utterance.
W Interpretations are related to ToS Interpretants, as both
represent the agents’ disposition to react in a certain way
after receiving a stimulus. MAGIC abstracts and represents
these expected reactions as a tree data structure (hereafter,
W Interpretation Trees). Examples of these trees will by
provided in the following sections. Finally, let the third
element of an A Action tuple be a €2 Context, the con-
ditions that motivated an ® Agent to generate a certain W
Interpretation Tree: the context contains all the elements that
could influence an agent into creating an interpretation from
a certain utterance. MAGIC’s €2 Context can be viewed as
a subset of the more general ToS Context: both encom-
pass information generated by elements in the surroundings.
However, MAGIC’s context only encompasses elements ref-
erenced in previous Utterances (¢—1, T¢—2y -« «s Tt |D]|)-
For example, if a utterance introduced “gripper” as one of
the components of the robotic arm, this concept will become
part of the available context of future utterances.

The MAGIC architecture allows to compare gestures by
generating and matching the ¥ Interpretation Trees. MAGIC
models this transition from a gesture to an interpretation with
the R() Reaction Function, an approximation of how a 7
Utterance produces an W Interpretation Tree under a given
Q Context. The elements of the R() Reaction Function will
be further explained in the next subsection. Note that while
MAGIC'’s focus is to compare gestures, verbal utterances are
considered since they belong to the gestures’ context. Fig. 1
presents a schematic of MAGIC’s approach and definitions.

B. The Reaction Function

The R() Reaction Function is represented with a three-
stage pipeline that receives a 7 Utterance and a €2 Context
as inputs and outputs an W Interpretation Tree. Comparing
between the generated interpretations provides a measure of
similarity between the gestures.

1) Gestural Taxonomy Classification: The first stage of
the R() Reaction Function involves the use a gestural
taxonomy to obtain a 1) Classification label for each 7 Ut-
terance. By combining elements from taxonomies presented
by McNeil, Goodwin and Poggi [2], [42], [43], MAGIC’s

q)H d’W

Fig. 1. Multi-Agent Gestural Instructions Comparer scheme. Two agents
(Helper and Worker) collaborate to assemble a robotic arm. The elements
of an A Action performed by an ¢ Agent are linked via the R() Reaction
Function, a relation describing how a specific 7t Utterance and a given €2
Context produce a specific ¥ Interpretation Tree.

gestural taxonomy leverages a tree configuration to assign
a n Classification to each gesture. Labels close to the tax-
onomy tree’s root contain coarse information regarding the
gesture’s symbolical expressiveness, whereas labels close to
the taxonomy tree’s leaves represent fine-grained information
such as iconicity. This 1 Classification can be used to assign
a weighted importance to specific sections of the final ¥
Interpretation Tree to be created. Currently, the classification
labels are assigned by a member of the research team via
video recordings of each gesture. The future work section
will discuss efforts to automate the process by obtaining
these classification labels from a larger pool of subjects.

Fig. 2 presents MAGIC’s gestural taxonomy. A proper
description of each node label can be found in the referenced
literature [2], [42], [43]. MAGIC’s framework emphasizes
the role of communicative gestures (used when transmitting
a message) and manipulative gestures (performed while
physically interacting with the environment). Most of the
Helper gestures will fall into one of the communicative
categories, whereas most of the gestures performed by the
Worker fall into the manipulative category.

2) Extended Segmented Discourse Representation Struc-
ture: Segmented Discourse Representation Structure (SDRS)
is a formal dynamic semantics framework introduced by
Asher and Lascarides that represents semantic and prag-
matic information from utterances [25]. SRDS represents
the meaning of utterances via SDRS-formulae, logical forms
that describe how each utterance updates the discourse’s
context. Lascarides and Stone extended the SDRS framework
to represent gestural utterances via a list of attribute-value
pairs that characterize the gesture’s physical performance
[40]. Unfortunately, this feature structure is represented as
a separate table, divided from the rest of the SDRS lan-
guage. We propose an extension to the SDRS framework
(Extended SDRS, henceforth ESDRS) that: (1) represents
morphological aspects of gestures as part of ¢ ESDRS-
formulae; and (2) defines a standard set of components to
describe gestures’ morphology. Therefore, this stage of the
R() Reaction Function pipeline takes a 7 Utterance, a €2
Context, and the n Classification from the previous stage as
inputs, and outputs ¢ ESDRS-formulae.

ESDRS represents the meaning of an utterance by how its
¢ ESDRS-formula transforms an €2; input Context into €2,
output Context, under a specific M model. This M model
contains the distinct elements by which ESDRS expresses an
utterance’s content, namely Discourse Referents, Spatiotem-
poral Localities and Virtual Mappings. Discourse referents
come in two types: individual variables and eventuality
variables. An ¢ individual variable represents elements of the
discourse (e.g. a gripper, peace). An e eventuality variable
is a temporal event in the discourse (e.g. connecting pieces,
tightening screws). A p spatiotemporal locality represents
the position in time of a specific individual variable. Each
spatiotemporal locality is a 4-dimensional vector (x,y, 2, t),
where «, y and z represents the position in space of the
individual variable and ¢ represents a moment in time.
Finally, a v virtual mapping represents a transformation over
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a spatiotemporal location mapping a point from world space
into a point in gesture space. For example, virtual mappings
are required when the absolute position of an element in
world space (e.g. position of the robotic arm) is represented
by a relative position gesture space (e.g position of the hand).

Additionally, ¢ ESDRS-formulae are built via predicates,
tests over the M model elements. These tests provide propo-
sitional information of how the elements interact between
each other. These elements will move from €2; into €2, by
satisfying these predicative tests, effectively updating the dis-
course’s context. This process is known as Context Change
Potential, and characterizes the meaning of the utterances
[25]. For example, the predicate Connect(i1,i2) represents
that the individual variables ¢; and i are connected. All the
predicates included in SDRS (e.g. Loc(), Exemplifies(),
Component()) are also included in ESDRS.

Consider the following verbal and gestural utterances:

m1: “Grab the piece by its corner”
mo: The speaker puts both hands in front of her. The left
hand makes a fist shape. The right hand faces the left hand
with the index finger extended, pointing at the left hand.
Other fingers are not extended. Both hands stay in place.

The verbal utterance ¢¢ ESDRS-formula is given by:

Piece(iy) A Corner(iz) A Grab(ey, iz)A

1t iy, 0o Component(ia,i1) A Loc(eq, iz, ve(pe))

where p and c are individual variables (introduced into the
discourse via the 3 operator), e; is an eventuality variable,
and v, is a virtual mapping over the spatiotemporal location
pe- This ¢ ESDRS-formula includes the predicates Piece(),
Corner(), Component(), Grab() and Loc(), which are
conditioning the M model elements and therefore updating
the discourse context. For a more detailed explanation of
SDRS, refer to Asher and Lascarides work [25].

To generate gestural ¢ ESDRS-formulae, additional ele-
ments introduced in ESDRS must be defined. ESDRS in-
troduces the T'axzClass() predicative group, which contains

MAGIC'’s gestural taxonomy. Classification labels closer to the root provide information about the gestures’ symbolical expressiveness, while
labels closer to the leaves present fine-grained information such as iconicity.

predicates related to the gestures’ taxonomy classification.
The 1 Classification (and the parent nodes) will be trans-
lated into ESDRS-formulae predicates. Additionally, ESDRS
translates the feature table from [40] into two predicative
groups: Shape() and Movement(). The Shape() group
introduces individual variables describing the fine-grained
components of a gesture’s morphology (i.e. arms, hands,
fingers), as well as predicates referring to their relative pose,
orientation and separation. The Movement() group treats
each zero-velocity point in a motion trajectory (points in
3D space where % = % = % = 0) as spatiotemporal
locations, and each trajectory (hand motions between two
zero-velocity points) as individual variables. In addition, the
Movement() group introduces predicates to describe the
gesture’s main plane of motion and the motion trajectories’
direction. The predicates in both these groups are inspired
from the morpho-semantic descriptors in [35]. Finally, ED-
SRS introduces the Synchro() predicate, describing whether
the gesture was performed in synchrony with a specific event
in the discourse (i.e. an eventuality variable). For example,
if e represents the event of grabbing a piece, Synchro(e;)
represents that the gesture was performed during e;.
Consequently, the gestural utterance ¢ ESDRS-formula
(with mop, Mg and ma s as elements of 72) is given by:

Gesture(iz) A TaxClass(iz)A
Shape(iz) N Movement(iz)A
Synchro(er) N Exemplifies(iz, 1)

mo ¢ [G]Tis, 14,15

mor ¢ [G] [Communicative(is) A Deictic(is)]

[Trajectory(ing,, vr(p1), v (P2))A
Trajectory(ia,,vr(ps), v (Py))A
MainPlaneCoronal (ipg, )N
DirectionStatic(iyg )N
MainPlaneCoronal (ipg, )N\
DirectionStatic(ipg, )N
Component(iyg, ,iz)A
Component(ip,,is)

mon (G iny s in,
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3) ESDRS Constituency Parsing: ¢ ESDRS-formulae are
not designed for comparisons: an additional data structure
to abstract them needs to be generated to assess gesture
similarity. MAGIC leverages tree structures to do this as
they can capture both the value of the ¢¢ ESDRS-formulae
elements and the relationship between them. Therefore, the
third stage of the R() Reaction Function pipeline applies a
constituency parsing to the ¢¢ ESDRS-formulae to generate
W Interpretation Trees. Fig. 3 presents an ¥ Interpretation
Tree, with its root colored in red. The leaves of the tree
(green-colored) depict the values of the ESDRS elements.
The nested constituents of the ESDRS-formulae are repre-
sented in blue. MAGIC’s parsing introduces different nested
constituents to represent the ESDRS-formulae’s structure.
Following the tree’s hierarchy, each root node can include
five main constituents (the black-circled nodes in Fig. 3):

1) Variable Group (VG): contains discourse referents.

2) Spatiotemporal Group (SG): contains spatiotemporal
localities.

3) Mapping Group (MG): contains virtual mappings.

4) Context Group (CG): contains the discourse referents
and predicates (introduced in the previous utterances)
that are referred to in the current utterance.

5) Large Predicate Group (LPG): contains the predicates.

Moreover, the LPG is divided into seven constituents
(denoted with the colored bounding areas in Fig. 3), each
of them having their respective nested constituents:

1) Shape Group (ShG): contains the discourse referents

and predicates related to the gesture’s shape.

2) Loc Group (LoG): contains all the Loc() predicates,
used whenever individual variables are spatially con-
tained in a spatiotemporal locality at each moment in
time spanned by an eventuality variable.

3) Exemplifies Group (ExG): contains all the
Exemplifies() predicates, representing whenever a
gesture is used to depict a specific individual variable.

4) TaxClass Group (TaG): contains the predicates related
to the gesture’s taxonomy classification.

5) Synchro Group (SyG): contains the Synchro predicate.

Arm(isl) N Arm(ig2) A\ Hand(iss) A Hand(ig4)/\
ThumbFinger(is,) A RingFinger(is,) A MiddleFinger(ig,)A
IndexFinger(ig,) A LittleFinger(is,) A ThumbFinger(is,,)A

RingFinger(is,,) A MiddleFinger(ig,,) A IndexFinger(is,;)A
LittleFinger(is,,) N PoseSemiExtended(is,) A OrientationLe ft(ig, )\
PoseNotExtended(is,) N OrientationForward(is,) A PoseNotExtended(is, )
PoseNotExtended(is,) N PoseNotExtended(is,) A PoseNotExtended(is, )\
PoseNotExtended(is,) N PoseSemiExtended(ig,) A OrientationLe ft(ig,)A
PoseNotExtended(ig,) N OrientationForward(ig,) A PoseNotExtended(is, )\
PoseExtended(is,,) A PoseNotExtended(is,,) N PoseNotExtended(ig, ;)\
PoseNotExtended(is,,) A OrientationForward(is,,) A\ Separated(is,,,is,, )\
Separated(is, ,,is,,) A Component(is, ,i3) A Component(ig,,is)A

Component(is,,is,) N Component(ig,,ig,
Component(is,,is,) N Component(ig,,is,
Component(ig,,is,) N Component(is,,,is,) N Component(is,,,is,)\
Component(is,,,is,) N Component(is,,,is,) N Component(is,,,is,)

A Component(is,,is, )\
A Component(is,,iss)A

)
)

6) Extra Predicates: contains every predicate that is not
contained in any of the other groups.

7) Movement Group (MvG): contains the discourse refer-
ents and predicates related to the gesture’s movement.

This parsing approach encapsulates all the information
represented by the ¢ ESDRS-formulae into a tree structure
that takes morphological, semantical and pragmatical infor-
mation into account. Measuring the similarity between the
generated W Interpretation Trees will describe how similar
are the gestures from the agents collaborating. The next sec-
tion explains how MAGIC’s trees can be compared between
them and against other baseline gesture data structures.

IV. EXPERIMENTAL APPARATUS
A. Data Collection

Two participants were recruited to collaboratively com-
plete a block assembly task (comparable to the tasks pre-
sented in previous works [16], [20]). Participants were
randomly assigned to a role (e.g. Worker or Helper) and
were situated in different rooms. The Worker was provided
with blocks to assemble a model, whereas the Helper was
provided with instructions detailing how to assemble it.
Participants were able to see and communicate with each
other via a Skype call. No restrictions were imposed on
the type of information participants were able to exchange
(verbal commands, gestures, facial expressions, etc.). Partic-
ipants were recorded with a Microsoft Kinect and a RGB
camera. A total of 102 gestures were manually segmented
from these recordings, 13 performed by the Helper and 89
performed by the Worker. Worker gestures were divided
into 3 groups: responses to verbal utterances, responses to
gestural utterances, and those not performed as a response.
Because the aim of this work, only the group consisting
of responses to gestural utterances was consider for the
analysis. This reduced the dataset to 13 Helper gestures and
36 Worker gestures, over a span of 14 minutes of video (a
ratio of approximately 3 Worker gestures for each Helper
gesture). The obtained gestures were compared using the
approaches described in the next subsection.



Fig. 3.

Representation of one gesture using MAGIC’s Interpretation Tree structure. The black-circled nodes indicate the five main constituents of an

Interpretation Tree. The numbered regions indicate the main nested constituents of the tree: Shape Group (ShG, 1), Loc Group (LoG, 2), Exemplifies
Group (ExG, 3), TaxClass Group (TaG, 4), Synchro Group (SyG, 5), Extra Predicates (6), and Movement Group (MvG, 7).

B. Gesture Comparison

The intersection between subtrees is used to compare
between W Interpretation Trees. An important advantage of
W Interpretation Trees is that they store context (in the form
of the CG Context Group). Our similarity approach consists
in obtaining the Worker’s context subtree and comparing
it against other subtrees in the ¥y Helper Interpretation
Trees. The intuition behind this approach is that the context
of each Wy, Worker Interpretation Tree can be tracked
back to elements in a matching ¥y Helper Interpretation
Tree. Therefore, let X be a nested constituent from an ¥
Interpretation Tree (e.g. CG, LPG, SyG). Then, U is the
subtree of W that has X as its root (e.g. WEC represents a
context subtree). These subtrees can also be combined, in the
form W*1 U W*2, By following this comparison approach,
the ¥y, Worker Interpretation Tree that matches the ¥ g,
Helper Interpretation Tree will satisfy:

1<i<I

X ca
max (num,nodes Wi, Ny ) H<j<p

where [ is the total number of Helper gestures and J is
the total number of Worker gestures. Fig. 4 presents a
visual example of the intersection between two sets of ¥
Interpretation Trees leaves.

MAGIC’s gesture matching performance was evaluated
against two baseline metrics: morpho-semantic descriptors
(MSD) vectors [35], and a temporal synchronization (TS)
approach. The MSD vectors were compared between each
other via Hamming distance and cosine similarity. MSD

vectors were included as a gesture comparison baseline
based on physical similarity. To prevent bias, these vectors
were manually annotated by a member extraneous to the
research team. The TS approach represented each gesture as
a normalized timestamp in seconds (0 and 1 being the start
and end of the video, respectively). The approach compared
gestures based on their temporal occurrence. A Worker
gesture performed right after a Helper gesture is likely to
be associated with the same concept, and thus representing
“similar” meaning. In other words, their A Actions are
synchronized (as one tends to be the reaction to the other
one). For each Helper gesture, a time window before and
after its execution was created. Every Worker gesture inside
this time window was associated to the given Helper gesture.

During the data collection phase, a team member paired
each Worker gesture with its corresponding Helper gesture.
These matches provided a ground truth of correspondences
for each gesture. Afterwards, the three gesture comparison
approaches were evaluated in terms of their matching accu-
racy. That is, for each data structure representing a Worker
gesture, find the Helper gesture with the highest similarity
score. The matching accuracy is given by the ratio between
the amount positive gesture matchings (with respect to the
ground truth) and the total number of gesture comparisons.

V. RESULTS AND DISCUSSION

Fig. 5 summarizes the approaches’ matching accuracies.
The results demonstrate that MAGIC’s W Interpretation
Trees can match gestures from different agents with a
higher accuracy than other gesture representation approaches.
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Subtree intersection similarity applied on two different sets of Interpretation Trees. A Helper performs a gesture and an ¥ Interpretation Tree

is generated from it. Similarly, the ¥ Interpretation Tree of each Worker-authored gesture are generated. A notion of the similarity between the gestures
can be obtained by intersecting the subtress of these W Interpretation Trees. Subtrees that are similar will have a higher number of common nodes.

Selecting which subtree to compare against is key to obtain
proper matching accuracies, as information unrelated to the
given comparison can be introduced when the wrong subtree
is selected (e.g. comparing shape against meaning). Based
on our experiments, the subtree that presented the highest
matching accuracy is the union between the ExG, LoG
and SyG subtrees. This is because these three subgroups
contain most of the semantical information of the Wg
Helper Interpretation Trees. In other words, because the
Worker gesture was generated in response to a Helper
gesture, the information encompassed in the \Ilgvc Worker
context subtree had similar information to the one in its
corresponding Helper meaning subtree (PE*G U wLeG y
lIl‘z,yG). Comparisons against the TG and WEFE Worker
subtrees and against the entire Wy Worker Interpretation
Tree were also included to demonstrate how the selection of
a wrong subtree can lead to poor matching accuracies. The
information contained in the Shape and Movement Groups
was considered not as relevant for the comparison shown in
this work, which was mostly based on the relation between
meaning and context. Nonetheless, these subgroups are still
relevant for the structure, as most of the current gesture
recognition algorithms perform their classification based on
the physical aspects represented in these subtrees.

MAGIC’s high matching accuracy results can be traced
back to SDRS, as the framework was designed to represent
meaning and context with relative ease. Nonetheless, both
MAGIC and SDRS point at an important fact: properly
obtaining the meaning and context of a gesture is key to
matching success. For this work, the meaning and context el-
ements were manually annotated by members of the research
team. How to automatically segment and assign meaning and
context of a gesture is an open research problem that will be
explored in future versions of the MAGIC’s architecture.

Matching Accuracy for Gesture Representation Structures [%]

100

91.66

7

Fig. 5. Matching accuracies for different gesture representation structures.
Results can be interpreted as how well were the ground truth matches
replicated by the gesture matching approaches. Most of MAGIC’s subtree
intersection similarities provided better-than-baseline matching accuracies.
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VI. CONCLUSIONS

This work introduced the MAGIC framework, an architec-
ture to represent and compare gestures at the morphological,
semantical and pragmatical levels. By leveraging a gestu-
ral taxonomy, a dynamic semantics framework and a con-
stituency parsing, MAGIC creates a generalizable abstraction
of gestures through a tree data structure. The gestures of two
agents performing a collaborative task were captured and rep-
resented with two gesture representation baselines and with
MAGIC’s gesture representation structure. After obtaining a
human-annotated ground truth describing how the gestures
of these agents were matched, matching accuracies for the
different gesture representation structures were calculated.



MAGIC’s gesture matching accuracies were higher than
those obtained with the baseline structures. A limitation of
the presented experiment has to do with the manual annota-
tion of semantical and pragmatical information. Future work
will investigate how MAGIC’s gesture matching capabilities
can be used to assess task understanding and performance in
mentor-mentee scenarios through the analysis of gestures.
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