ME 556: Lubrication, Friction and Wear
SPRING 2017

Lecture: MWF 9:30 - 10:20 a.m. Room: WNG 2579
Professor: F. Sadeghi
Office hours: MWF 10:30 - 11:30 a.m.
Room ME 3003C
Telephone: (765) 494-5719
E-mail: sadeghi@ecn.purdue.edu

Text Required for the Course:
Fundamentals of Fluid Film Lubrication – 2nd edition
Hamrock, Schmid and Jacobson
Marcel Dekker

Additional References:
Engineering Tribology
G. W. Stachowiak and A. W. Batchelor
Elsevier

Principles of Tribology
J. Halling
Macmillan

Grading Policy:
Exams 25%
Exam 1 in class on 3/22
Homework 25%
Projects 50%
Grade breakdown:
(A+ – 95 to 100), (A – 90 to 94.9),
(B+ – 85 to 89.9), (B – 80 to 84.9),
(C+ – 75 to 79.9), (C – 70 to 74.9),
(D+ – 65 to 69.9), (D – 60 to 64.9)

Project: The project is an assigned individual work relevant to the course objective. You may need to conduct a literature search in the library on the subject matter. You will need to develop computer models to complete the project assignment. Background in numerical methods (finite difference) is needed for successful completion of the project and the course. You are required to provide a typed, well written document of your findings.

Late Policy: The project and homework handed in after the specified deadlines will receive no credit.

Web Site: Please note various announcements, homework assignments, etc. will be posted on blackboard. Please make sure that you regularly visit blackboard on regular basis for pertinent information. https://mycourses.purdue.edu/
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
</table>
| 1/9 | Introduction - History of Lubrication, Friction and Wear
Definition of conformal and non-Conformal Contacts, Regimes of Lubrication |
| 1/16 | **1/16 is Martin Luther King Day, no classes** - Surface Parameters of Interest
Surface Measurement Techniques (Contacting & non-Contacting) |
| 1/23 | Lubricants, Newtonian, non-Newtonian, Units, Grades, Pressure and Temperature Dependence
Bearing Materials |
| 1/30 | Viscous Flow, Petrov’s law, Navier Stokes Equation
Continuity Equation, Viscometry |
| 2/6 | Types of Bearings, Journal, Thrust, Rolling Element, etc., Bearing Materials
Fundamentals of Lubrication (Reynolds Equation) |
| 2/13 | Physical Significance of Terms in Reynolds Equation
Hydrodynamic Thrust Bearing (Analytical Solution) |
| 2/20 | Hydrodynamic Thrust Bearing (Analytical Solution)
Hydrodynamic Thrust Bearing (Numerical Solution)
Journal Bearing Analytical Solution |
| 2/27 | Short and Long Width Journal Bearing Theory
Dynamically Loaded Journal Bearing
Summerfeld Solution |
| 3/6 | Hydrodynamic Squeeze Film Bearing
Hydrodynamic Squeeze Film Bearing |
| 3/13 | **SPRING BREAK** |
| 3/20 | Lubrication of Non-Conformal Contacts (Hydrodynamic) |
| 3/22 | Midterm exam |
| 3/27 | Hertz Stress Theory & Deformation in Dry Contacts
Non-Dimensionalization
Lubrication of Non-Conformal Contacts (Elasto-Hydrodynamic - Line Contacts) |
| 4/3 | Lubrication of Non-Conformal Contacts (Elasto-Hydrodynamic - Point Contacts)
Lubrication of Non-Conformal Contacts (Elasto-Hydrodynamic - Point Contacts) |
| 4/10 | Lubrication of Non-Conformal Contacts (Elasto-Hydrodynamic - Point Contacts)
Friction Measurement and Models for Lubricated and Unlubricated contacts
Wear Measurement Techniques and Equations
Internal Stresses and Fatigue Damage |
| 4/17 | **Project delivery, presentation and discussions** |