
Using Programming Language Theory to Make
Automatic Differentiation Sound and Efficient

Barak A. Pearlmutter1 and Jeffrey Mark Siskind2

1 Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland,
barak@cs.nuim.ie

2 School of Electrical and Computer Engineering, Purdue University, 465 Northwestern
Avenue, West Lafayette, IN 47907-2035, USA, qobi@purdue.edu

Summary. This paper discusses a new automatic differentiation (AD) system that correctly
and automatically accepts nested and dynamic use of the AD operators, without any manual
intervention. The system is based on a new formulation of AD as highly generalized first-
class citizens in a λ -calculus, which is briefly described. Because the λ -calculus is the basis
for modern programming-language implementation techniques, integration of AD into the
λ -calculus allows AD to be integrated into an aggressive compiler. We exhibit a research
compiler which does this integration. Using novel analysis techniques, it accepts source code
involving free use of a first-class forward AD operator and generates object code which at-
tains numerical performance comparable to, or better than, the most aggressive existing AD
systems.

Keywords: Nesting, lambda calculus, multiple transformation, forward mode, optimization

1 Introduction

Over sixty years ago, Church [1] described a model of computation which included
higher-order functions as first-class entities. This λ -calculus, as originally formu-
lated, did not allow AD operators to be defined, but Church did use the deriva-
tive operator as an example of a higher-order function with which readers would
be familiar. Although the λ -calculus was originally intended as a model of com-
putation, it has found concrete application in programming languages via two re-
lated routes. The first route came from the realization that extremely sophisticated
computations could be expressed crisply and succinctly in the λ -calculus. This
led to the development of programming languages (LISP, ALGOL, ML, SCHEME,
HASKELL, etc.) that themselves embody the central aspect of the λ -calculus: the
ability to freely create and apply functions including higher-order functions. The
second route arose from the recognition that various program transformations and
programming-language theoretic constructs were naturally expressed using the λ -
calculus. This resulted in the use of the λ -calculus as the central mathematical scaf-
folding of programming-language theory (PLT): both as the formalism in which the

80 Barak A. Pearlmutter and Jeffrey Mark Siskind

semantics of programming-language constructs (conditionals, assignments, objects,
exceptions, etc.) are mathematically defined, and as the intermediate format into
which computer programs are converted for analysis and optimization.

A substantial subgroup of the PLT community is interested in advanced or func-
tional programming languages, and has spent decades inventing techniques by which
programming languages with higher-order functions can be made efficient. These
techniques are part of the body of knowledge we refer to as PLT, and are the basis of
the implementation of modern programming-language systems: JAVA, C�, the GHC
HASKELL compiler, GCC 4.x, etc. Some of these techniques are being gradually re-
discovered by the AD community. For instance, a major feature in TAPENADE [2] is
the utilization of a technique by which values to which a newly-created function refer
are separated from the code body of the function; this method is used ubiquitously
in PLT, where it is referred to as lambda lifting or closure conversion [4].

We point out that—like it or not—the AD transforms are higher-order functions:
functions that both take and return other functions. As such, attempts to build im-
plementations of AD which are efficient and correct encounter the same technical
problems which have already been faced by the PLT community. In fact, the tech-
nical problems faced in AD are a superset of these, as the machinery of PLT, as it
stands, is unable to fully express the reverse AD transformation. The present au-
thors have embarked upon a sustained project to bring the tools and techniques of
PLT—suitably augmented—to bear on AD. To this end, novel machinery has been
crafted to incorporate first-class AD operators (functions that perform forward- and
reverse-mode AD) into the λ -calculus. This solves a host of problems: (1) the AD
transforms are specified formally and generally; (2) nesting of the AD operators,
and inter-operation with other facilities like memory allocation, is assured; (3) it be-
comes straightforward to integrate these into aggressive compilers, so that AD can
operate in concert with code optimization rather than beforehand; (4) sophisticated
techniques can migrate various computations from run time to compile time; (5) a
callee-derives API is supported, allowing AD to be used in a modular fashion; and
(6) a path to a formal semantics of AD, and to formal proofs of correctness of systems
that use and implement AD, is laid out.

Due to space limitations, the details of how the λ -calculus can be augmented
with AD operators is beyond our scope. Instead, we will describe the basic intuitions
that underly the approach, and exhibit some preliminary work on its practical bene-
fits. This starts (Sect. 2) with a discussion of modularity and higher-order functions
in a numerical context, where we show how higher-order functions can solve some
modularity issues that occur in many current AD systems. We continue (Sect. 3) by
considering the AD transforms as higher-order functions, and in this context we gen-
eralize their types. This leads us (Sect. 4) to note a relationship between the AD oper-
ators and the pushforward and pullback constructions of differential geometry, which
motivates some details of the types we describe as well as some of the terminology
we introduce. In Sect. 5 we discuss how constructs that appear to the programmer
to involve run-time transforms can, by appropriate compiler techniques, be migrated
to compile-time. Section 6 describes a system which embodies these principles. It
starts with a minimalist language (the λ -calculus augmented with a numeric basis

Sound and Efficient AD 81

and the AD operators) but uses aggressive compilation techniques to produce object
code that is competitive with the most sophisticated current FORTRAN-based AD
systems. Armed with this practical benefit, we close (Sect. 7) with a discussion of
other benefits which this new formalism for AD has now put in our reach.

2 Functional Programming and Modularity in AD

Let us consider a few higher-order functions which a numerical programmer might
wish to use. Perhaps the most familiar is numerical integration,
double nint(double f(double), double x0, double x1);

which accepts a function f : R→ R and range limits a and b and returns an approx-
imation of

∫ b
a f (x)dx. In conventional mathematical notation we would say that this

function has the type
nint : (R→ R)×R×R→ R.

There are a few points we can make about this situation.
First, note that the caller of nintmight wish to pass an argument function which

is not known, at least in its details, until run time. For example, in the straightforward
code to evaluate

n

∑
i=1

∫ 2

1
(sinx)cos(x/i) dx

the caller needs to make a function which maps x �→ (sinx)cos(x/i) for each desired
value of i. Although it is possible to code around this necessity by giving nint
a more complicated API and forcing the caller to package up this extra “environ-
ment” information, this is not only cumbersome and error prone but also tends to
degrade performance. The notation we will adopt for the construction of a func-
tion, “closed” over the values of any relevant variables in scope at the point of cre-
ation, is a “λ expression,” after which the λ -calculus is named. Here, it would be
(λx . (sinx)ˆ(cos(x/i))).

Second, note that it would be natural to define two-dimensional numerical inte-
gration in terms of nested application of nint. So for example,

double nint2(double f2(double x, double y),
double x0, double x1,
double y0, double y1)

{ return nint((λ x . nint((λ y . f(x,y)), y0, y1)),
x0, x1); }

Similar nesting would occur, without the programmer being aware of it, if a
seemingly-simple function defined in a library happened to use AD internally,
and this library function were invoked within a function to which AD was applied.

Third, it turns out that programs written in functional-programming languages
are rife with constructs of this sort (for instance, map which takes a function and a
list and returns a new list whose elements are computed by applying the given func-
tion to corresponding elements of the original list); because of this, PLT techniques
have been developed to allow compilers for functional languages to optimize across

82 Barak A. Pearlmutter and Jeffrey Mark Siskind

the involved procedure-call barriers. This sort of optimization has implications for
numerical programming, as numerical code often calls procedures like nint in
inner loops. In fact, benchmarks have shown the efficacy of these techniques on
numerical code. For instance, code involving a double integral of this sort ex-
perienced an order of magnitude improvement over versions in hand-tuned FOR-
TRAN or C, when written in SCHEME and compiled with such techniques (see
ftp://ftp.ecn.purdue.edu/qobi/integ.tgz for details.)

Other numeric routines are also naturally viewed as higher-order functions.
Numerical optimization routines, for instance, are naturally formulated as pro-
cedures which take the function to be optimized as one argument. Many other
concepts in mathematics, engineering, and physics are formulated as higher-order
functions: convolution, filters, edge detectors, Fourier transforms, differential equa-
tions, Hamiltonians, etc. Even more sophisticated sorts of numerical computations
that are difficult to express without the machinery of functional-programming lan-
guages, such as pumping methods for increasing rates of convergence, are persua-
sively discussed elsewhere [3] but stray beyond our present topic. If we are to raise
the level of expressiveness of scientific programming we might wish to consider
using similar conventions when coding such concepts. As we see below, with appro-
priate compilation technology, this can result in an increase in performance.

3 The AD Transforms Are Higher-Order Functions

The first argument f to the nint procedure of the previous section obeys a partic-
ular API: nint can call f, but (at least in any mainstream language) there are no
other operations (with the possible exception of a conservative test for equality) that
can be performed on a function passed as an argument. We might imagine improv-
ing nint’s accuracy and efficiency by having it use derivative information, so that
it could more accurately and efficiently adapt its points of evaluation to the local
curvature of f. Of course, we would want an AD transform of f rather than some
poor numerical approximation to the desired derivative. Upon deciding to do this, we
would have two alternatives. One would be to change the signature of nint so that
it takes an additional argument df that calculates the derivative of f at a point. This
alternative requires rewriting every call to nint to pass this extra argument. Some
call sites would be passing a function argument to nint that is itself a parameter
to the calling routine, resulting in a ripple effect of augmentation of various APIs.
This can be seen above, where nint2 would need to accept an extra parameter—or
perhaps two extra parameters. This alternative, which we might call caller-derives,
requires potentially global changes in order to change a local decision about how a
particular numerical integration routine operates, and is therefore a severe violation
of the principles of modularity.

The other alternative would be for nint to be able to internally find the deriva-
tive of f, in a callee-derives discipline. In order to do this, it would need to be able
to invoke AD upon that function argument. To be concrete, we posit two derivative-
taking operators which perform the forward- and reverse-mode AD transforms on

Sound and Efficient AD 83

the functions they are passed.1 These have a somewhat complex API, so as to
avoid repeated calculation of the primal function during derivative calculation. For
forward-mode AD, we introduce

−→
J which we for now give a simplified signa-

ture
−→
J : (Rn → R

m)→ ((Rn×R
n)→ (Rm×R

m)). This takes a numeric function
R

n→ R
m and returns an augmented function which takes what the original function

took along with a perturbation direction in its input space, and returns what the orig-
inal function returned along with a perturbation direction in its output space. This
mapping from an input perturbation to an output perturbation is equivalent to multi-
plication by the Jacobian. Its reverse-mode AD sibling has a slightly more complex
API, which we can caricature as

←−
J : (Rn → R

m)→ (Rn → (Rm× (Rm → R
n))).

This takes a numeric function R
n → R

m and returns an augmented function which
takes what the original function took and returns what the original function returned
paired with a “reverse phase” function that maps a sensitivity in the output space
back to a sensitivity in the input space. This mapping of an output sensitivity to an
input sensitivity is equivalent to multiplication by the transpose of the Jacobian.

These AD operators are (however implemented, and whether confined to a pre-
processor or supported as dynamic run-time constructs) higher-order functions, but
they cannot be written in the conventional λ -calculus. The machinery to allow them
to be expressed is somewhat involved [6, 7, 8].

Part of the reason for this complexity can be seen in nint2 above, which illus-
trates the need to handle not only anonymous functions but also higher-order func-
tions, nesting, and interactions between variables of various scopes that correspond
to the distinct nested invocations of the AD operators. If nint is modified to take the
derivative of its function argument, then the outer call to nint inside nint2 will
take the derivative of an unnamed function which internally invokes nint. Since
this inner nint also invokes the derivative operator, the

−→
J and

←−
J operators must

both be able to be applied to functions that internally invoke
−→
J and

←−
J . We also do

not wish to introduce a new special “tape” data type onto which computation flow
graphs are recorded, as this would both increase the number of data types present in
the system, and render the system less amenable to standard optimizations.

Of course, nesting of AD operators is only one sort of interaction between con-
structs, in this case between two AD constructs. We wish to make all interaction
between all available constructs both correct and robust. Our means to that end are
uniformity and generality, and we therefore generalize the AD operators

−→
J and

←−
J

to apply not only to numeric functions R
n→ R

m but to any function α → β , where
α and β are arbitrary types. Note that α and β might in fact be function types, so we
will be assigning a meaning to “the forward derivative of the higher-order function
map,” or to the derivative of nint. This generalization will allow us to mechani-
cally transform the code bodies of functions without regard to the types of the func-
tions called within those code bodies. But in order to understand this generalization,
we briefly digress into a mathematical domain that can be used to define and link
forward- and reverse-mode AD.

1 One can imagine hybrid operators; we leave that for the future.

84 Barak A. Pearlmutter and Jeffrey Mark Siskind

4 AD and Differential Geometry

We now use some concepts from differential geometry to motivate and roughly ex-
plain the types and relationships in our AD-augmented λ -calculus. It is important to
note that this is a cartoon sketch, with many details suppressed or even altered for
brevity, clarity, and intuition.

In differential geometry, a differentiable manifold N has some structure asso-
ciated with it. Each point x ∈N has an associated vector space called its tangent
space, whose members can be thought of as directions in which x can be locally
perturbed in N . We call this a tangent vector of x and write it

−⇁
x . An element x

paired with an element
−⇁
x of the tangent space of x is called a tangent bundle, writ-

ten −⇀x = (x,
−⇁
x). A function between two differentiable manifolds, f : N →M ,

which is differentiable at x, mapping it to y = f (x), can be lifted to map tangent
bundles. In differential geometry this is called the pushforward of f . We will write
−⇀y = (y,

−⇁
y) =

−⇀
f (−⇀x) =

−⇀
f (x,
−⇁
x). (This notation differs from the usual notation of

TMx for the tangent space of x ∈M .)
We import this machinery of the pushforward, but reinterpret it quite concretely.

When f is a function represented in a concrete expression in our augmented λ -
calculus, we mechanically transform it into

−⇀
f =
−→
J (f). Moreover when x is a par-

ticular value, with a particular shape, we define the shape of
−⇁
x , an element of the

tangent space of x, in terms of the shape of x. If x : α , meaning that x has type (or
shape) α , we say that

−⇁
x :
−⇁
α and −⇀x : −⇀α . These proceed by cases, and (with some

simplification here for expository purposes) we can say that a perturbation of a real
is real,

−⇁
R = R; the perturbation of a pair is a pair of perturbations,

−−−⇁
α×β =

−⇁
α ×−⇁β ,

and the perturbation of a discrete value contains no information, so
−⇁
α = void when

α is a discrete type like bool or int. This leaves the most interesting:
−−−−⇁
α → β , the

perturbation of a function. This is well defined in differential geometry, which would
give
−−−−⇁
α → β =

−⇁
α →−⇁β , but we have an extra complication. We must regard a map-

ping f : α → β as depending not only on the input value, but also on the value of
any free variables that occur in the definition of f . Roughly speaking then, if γ is
the type of the combination of all the free variables of the mapping under consid-

eration, which we write as f : α γ→ β , then
−−−−⇁
α γ→ β=

−⇁
α
−⇁
γ→−⇁β . However we never

map such raw tangent values, but always tangent bundles. These have similar signa-
tures, but with tangents always associated with the value whose tangent space they
are elements of.

The powerful intuition we now bring from differential geometry is that just as the
above allows us to extend the notion of the forward-mode AD transform to arbitrary
objects by regarding it as a pushforward of a function defined using the λ -calculus,
we can use the notion of a pullback to see how analogous notions can be defined
for reverse-mode AD. In essence, we use the definition of a cotangent space to re-
late the signatures of “sensitivities” (our term for what are called adjoint values in
physics or elements of a cotangent space in differential geometry) to the signatures

Sound and Efficient AD 85

of perturbations. Similarly, the reverse transform of a function is defined using the
definition of the pullback from differential geometry.

If
−⇀
f : (x,

−⇁
x) �→ (y,

−⇁
y) is a pushforward of f : x �→ y, then the pullback is

↼−
f :

↽−
y �→↽−

x , which must obey the relation
↽−

y •−⇁y =
↽−

x •−⇁x , where • is a gen-
eralized dot-product. If

−→
J : f �→ −⇀f , then

←−
J : f �→ (λx . (f (x),

↼−
f)), and some

type simplifications occur. The most important of these is that we can generalize
−→
J

and
←−
J to apply not just to functions that map between objects of any type, but to

apply to any object of any type, with functions being a special case:
−→
J : α →−⇁α

and
←−
J : α →↽−

α . A detailed exposition of this augmented λ -calculus is beyond
our scope here. Its definition is a delicate dance, as the new mechanisms must be
sufficiently powerful to implement the AD operators, but not so powerful as to pre-
clude their own transformation by AD or by standard λ -calculus reductions. We can
however give a bit of a flavor: constructs like

−→
J (
←−
J) and its cousins, which arise

naturally whenever there is nested application of the AD machinery, require novel
operators like

←−
J −1.

5 Migration to Compile Time

In the above exposition, the AD transforms are presented as first-class functions that
operate on an even footing with other first-class functions in the system, like +. How-
ever, compilers are able to migrate many operations that appear to be done at run time
to compile time. For instance, the code fragment (2+3)might seem to require a run-
time addition, but a sufficiently powerful compiler is able to migrate this addition to
compile time. A compiler has been constructed, based on the above constructs and
ideas, which is able to migrate almost all scaffolding supporting the raw numerical
computation to compile time. In essence, a language called VLAD consisting of the
above AD mechanisms in addition to a suite of numeric primitives is defined. A com-
piler for VLAD called STALINGRAD has been constructed which uses polyvariant
union-free flow analysis [10]. This analysis, for many example programs we have
written, allows all scaffolding and function manipulation to be migrated to compile
time, leaving for run time a mix of machine instructions whose floating-point density
compares favorably to that of code emitted by highly tuned AD systems based on pre-
processors and FORTRAN. Although this aggressive compiler currently handles only
the forward-mode AD transform, an associated VLAD interpreter handles both the
forward- and reverse-mode AD constructs with full general nesting. The compiler is
being extended to similarly optimize reverse-mode AD, and no significant barriers
in this endeavor are anticipated.

Although it is not a production-quality compiler (it is slow, cannot handle large
examples, does not support arrays or other update-in-place data structures, and
is in general unsuitable for end users) remedying its deficiencies and building a
production-quality compiler would be straightforward, involving only known meth-
ods [5, 11]. The compiler’s limitation to union-free analyses and finite unrolling
of recursive data structures could also be relaxed using standard implementation
techniques.

86 Barak A. Pearlmutter and Jeffrey Mark Siskind

6 Some Preliminary Performance Results

We illustrate the power of our techniques with two examples. These were chosen to
illustrate a hierarchy of mathematical abstractions built on a higher-order gradient
operator [8]. They were not chosen to give an advantage to the present system or to
compromise performance of other systems. They do however show how awkward it
can be to express these concepts in other systems, even overloading-based systems.

Figure 1 gives the essence of the two examples. It starts with code shared be-
tween these examples: multivariate-argmin implements a multivariate op-
timizer using adaptive naı̈ve gradient descent. This iterates xi+1 = xi − η∇ f (xi)
until either ‖∇ f (x)‖ or ‖xi+1− xi‖ is small, increasing η when progress is made
and decreasing η when no progress is made. The VLAD primitives bundle and
tangent construct and access tangent bundles, j* is

−→
J , and real shields a

value from the optimizer. Omitted are definitions for standard SCHEME primitives
and the functions sqr that squares its argument, map-n that maps a function over
the list (0 . . .n−1), reduce that folds a binary function with a specified identity
over a list, v+ and v- that perform vector addition and subtraction, k*v that mul-
tiplies a vector by a scalar, magnitude that computes the magnitude of a vector,
distance that computes the l2 norm of the difference of two vectors, and e that
returns the i-th basis vector of dimension n.

The first example, saddle, computes a saddle point: min(x1,y1) max(x2,y2) f (x,y)
where we use the trivial function f (x,y) = (x2

1 + y2
1)− (x2

2 + y2
2). The second

example, particle, models a charged particle traveling non-relativistically in a
plane with position x(t) and velocity ẋ(t) and accelerated by an electric field formed
by a pair of repulsive bodies, p(x;w) = ‖x− (10,10− w)‖−1 + ‖x− (10,0)‖−1,
where w is a modifiable control parameter of the system, and hits the x-axis at posi-
tion x(t f). We optimize w so as to minimize E(w) = x0(t f)2, with the goal of finding
a value for w that causes the particle’s path to intersect the origin.

Naı̈ve Euler ODE integration (ẍ(t) =− ∇x p(x)|x=x(t); ẋ(t +∆ t) = ẋ(t)+∆ t ẍ(t);
x(t +∆ t) = x(t)+∆ t ẋ(t)) is used to compute the particle’s path, with a linear inter-
polation to find the x-axis intersect (when x1(t +∆ t)≤ 0 we let ∆ t f =−x1(t)/ẋ1(t);
t f = t +∆ t f ; x(t f) = x(t)+∆ t f ẋ(t) and calculate the final error as E(w) = x0(t f)2.)
The final error is minimized with respect to w by multivariate-argmin.

Each task models a class of real-world problems (rational agent-agent interac-
tion and agent-world interaction) that appear in game theory, economics, machine
learning, automatic control theory, theoretical neurobiology, and design optimiza-
tion. Each also requires nesting: a single invocation of even higher-order AD is
insufficient. Furthermore, they use standard vector arithmetic which, without our
techniques, would require allocation and reclamation of new vector objects whose
size might be unknown at compile time, and access to the components of such vectors
would require indirection. They also use higher-order functions: ones like map-n
and reduce, that are familiar to the functional-programming community, and ones
like gradient and multivariate-argmin, that are familiar to numerical pro-
grammers. Without our techniques, these would require closures and indirect func-
tion calls to unspecified targets.

Sound and Efficient AD 87

(define ((gradient f) x)
(let ((n (length x))) ((map-n (lambda (i) (tangent ((j* f)
(bundle x (e i n)))))) n)))

(define (multivariate-argmin f x)
(let ((g (gradient f)))
(letrec ((loop (lambda (x fx gx eta i)

(cond ((<= (magnitude gx) (real 1e-5)) x)
((= i (real 10)) (loop x fx gx (* (real 2) eta)
(real 0)))

(else (let ((x-prime (v- x (k*v eta gx))))
(if (<= (distance x x-prime) (real 1e-5))

x
(let ((fx-prime (f x-prime)))
(if (< fx-prime fx)

(loop x-prime fx-prime (g x-prime)
eta (+ i 1))

(loop x fx gx (/ eta (real 2))
(real 0)))))))))))

(loop x (f x) (g x) (real 1e-5) (real 0)))))

(define (multivariate-argmax f x) (multivariate-argmin (lambda (x)
(- (real 0) (f x))) x))

(define (multivariate-max f x) (f (multivariate-argmax f x)))

(define (saddle)
(let* ((start (list (real 1) (real 1)))

(f (lambda (x1 y1 x2 y2) (- (+ (sqr x1) (sqr y1))
(+ (sqr x2) (sqr y2)))))

((list x1* y1*) (multivariate-argmin
(lambda ((list x1 y1)) (multivariate-max

(lambda ((list x2 y2))
(f x1 y1 x2 y2)) start)) start))

((list x2* y2*) (multivariate-argmax (lambda ((list x2 y2))
(f x1* y1* x2 y2)) start)))

(list (list (write x1*) (write y1*)) (list (write x2*) (write y2*)))))

(define (naive-euler w)
(let* ((charges (list (list (real 10) (- (real 10) w))
(list (real 10) (real 0))))

(x-initial (list (real 0) (real 8)))
(xdot-initial (list (real 0.75) (real 0)))
(delta-t (real 1e-1))
(p (lambda (x) ((reduce + (real 0)) ((map (lambda (c) (/ (real 1)

(distance x c)))) charges)))))
(letrec ((loop (lambda (x xdot)

(let* ((xddot (k*v (real -1) ((gradient p) x)))
(x-new (v+ x (k*v delta-t xdot))))
(if (positive? (list-ref x-new 1))

(loop x-new (v+ xdot (k*v delta-t xddot)))
(let* ((delta-t-f (/ (- (real 0) (list-ref x 1))

(list-ref xdot 1)))
(x-t-f (v+ x (k*v delta-t-f xdot))))

(sqr (list-ref x-t-f 0))))))))
(loop x-initial xdot-initial))))

(define (particle)
(let* ((w0 (real 0)) ((list w*) (multivariate-argmin (lambda ((list w))
(naive-euler w)) (list w0))))
(write w*)))

Fig. 1. The essence of the saddle and particle examples.

88 Barak A. Pearlmutter and Jeffrey Mark Siskind

Table 1. Run times of our examples normalized relative to a unit run time for STALINGRAD.

Language/Implementation

Example STALINGRAD ADIFOR TAPENADE FADBAD++

saddle 1.00 0.49 0.72 5.93
particle 1.00 0.85 1.76 32.09

STALINGRAD performed a polyvariant union-free flow analysis on both of these
examples, and generated Fortran-like code. Variants of these examples were also
coded in SCHEME, ML, HASKELL, C++, and FORTRAN, and run with a variety of
compilers and AD implementations. Here we discuss only the C++ and FORTRAN
versions. For C++, the FADBAD++ implementation of forward AD was used, com-
piled with G++. For FORTRAN, the ADIFOR and TAPENADE implementations of
forward AD were used, compiled with G77. In all variants attempts were made to
be faithful to both the generality of the mathematical concepts represented in the
examples and to the standard coding style of each language. This means in particu-
lar that “tangent-vector” mode was used where available, which put STALINGRAD
at a disadvantage of about a factor of two. (Although STALINGRAD does not im-
plement a tangent-vector mode it would be straightforward to add such a facility by
generalizing bundle and tangent to accept and return lists of tangent values,
respectively.)

Although the most prominent high-performance AD systems (ADIFOR, TAPE-
NADE, and ADIC) claim to support nested use of AD operators, it is “well known”
within the AD community they do not (Jean Utke, personal communication), as
the present authors discovered when attempting to assess the performance of other
AD systems on the above tasks. Implementing these examples in those systems
required enormous effort, to diagnose the various warning and silently incorrect
results and to craft intricate work-arounds where possible. These included both
rewriting input source code to meet a variety of unspecified, undocumented, and
unchecked restrictions, and modifying the output code produced by some of the
tools [9]. Table 1 summarizes the run times, normalized relative to a unit run time
for STALINGRAD. Source code for all variants of our examples, the scripts used
to produce Table 1, and the log produced by running those scripts are available
at http://www.bcl.hamilton.ie/˜qobi/ad2008/. This research proto-
type exhibits an increase in performance of one to three orders of magnitude when
compared with the overloading-based forward AD implementations for both func-
tional and imperative languages (of which only the fastest is shown) and roughly
matches the performance of the transformation-based forward AD implementations
for imperative languages.

Sound and Efficient AD 89

7 Discussion and Conclusion

The TAPENADE 2.1 User’s Guide [2, pp 72] states:

10. KNOWN PROBLEMS AND DEVELOPMENTS TO COME
We conclude this user’s guide of TAPENADE by a quick description of
known problems, and how we plan to address them in the next releases.
[. . .] we focus on missing functionalities. [. . .]
10.4 Pointers and dynamic allocation
Full AD on FORTRAN95 supposes pointer analysis, and an extension of the
AD models on programs that use dynamic allocation. This is not done yet.
Whereas the tangent mode does not pose major problems for programs with
pointers and allocation, there are problems in the reverse mode. For exam-
ple, how should we handle a memory deallocation in the reverse mode?
During the reverse sweep, the memory must be reallocated somehow, and
the pointers must point back into this reallocated memory. Finding the more
efficient way to handle this is still an open problem.

The Future Plans section on the OPENAD web site
http://www-unix.mcs.anl.gov/˜utke/OpenAD/ states:

4. Language-coverage and library handling in adjoint code
2. language concepts (e.g., array arithmetic, pointers and dynamic
memory allocation, polymorphism):
Many language concepts, in particular those found in object-oriented lan-
guages, have never been considered in the context of automatic adjoint code
generation. We are aware of several hard theoretical and technical problems
that need to be considered in this context. Without an answer to these open
questions the correctness of the adjoint code cannot be guaranteed.

In PLT, semantics are defined by reductions which transform a program from
the source language into the λ -calculus, or an equivalent formalism like SSA. Since
we have defined the AD operators in a λ -calculus setting in an extremely general
fashion, these operators inter-operate correctly with all other constructs in the lan-
guage. This addresses, in particular, all the above issues, and in fact all such issues:
by operating in this framework, the AD constructs can be made available in a dy-
namic fashion, with extreme generality and uniformity. This framework has another
benefit: compiler optimizations and other compiler and implementation techniques
are already formulated in the same framework, which allows the AD constructs to
be integrated into compilers and combined with aggressive optimization. This gives
the numerical programmer the best of both worlds: the ability to write confidently
in an expressive higher-order modular dynamic style while obtaining competitive
numerical performance.

The λ -calculus approach also opens some exciting theoretical questions. The
current system is based on the untyped λ -calculus. Can the

−→
J and

←−
J operators be

incorporated into a typed λ -calculus? Many models of real computation have been
developed; can this system be formalized in that sense? Can the AD operators as

90 Barak A. Pearlmutter and Jeffrey Mark Siskind

defined be proved correct, in the sense of matching a formal specification written
in terms of limits or non-intuitive differential geometric constructions? Is there a
relationship between this augmented λ -calculus and synthetic differential geometry?
Could entire AD systems be built and formally proven correct?

Acknowledgement. This work was supported, in part, by NSF grant CCF-0438806, Science
Foundation Ireland grant 00/PI.1/C067, and a grant from the Higher Education Authority of
Ireland. Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the funding agencies.

References

1. Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Princeton,
NJ (1941)

2. Hascoët, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport technique 300, INRIA,
Sophia Antipolis (2004). URL http://www.inria.fr/rrrt/rt-0300.html

3. Hughes, J.: Why functional programming matters. The Computer Journal 32(2), 98–107
(1989). URL http://www.md.chalmers.se/˜rjmh/Papers/whyfp.html

4. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In: Func-
tional Programming Languages and Computer Architecture. Springer-Verlag, Nancy,
France (1985)

5. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag,
New York (1999)

6. Pearlmutter, B.A., Siskind, J.M.: Reverse-mode AD in a functional framework: Lambda
the ultimate backpropagator. ACM Trans. on Programming Languages and Systems
(2008). In press

7. Siskind, J.M., Pearlmutter, B.A.: First-class nonstandard interpretations by opening clo-
sures. In: Proceedings of the 2007 Symposium on Principles of Programming Languages,
pp. 71–6. Nice, France (2007)

8. Siskind, J.M., Pearlmutter, B.A.: Nesting forward-mode AD in a functional framework.
Higher-Order and Symbolic Computation (2008). To appear

9. Siskind, J.M., Pearlmutter, B.A.: Putting the automatic back into AD: Part I, What’s
wrong. Tech. Rep. TR-ECE-08-02, School of Electrical and Computer Engineering, Pur-
due University, West Lafayette, IN, USA (2008). URL ftp://ftp.ecn.purdue.
edu/qobi/TR-ECE-08-02.pdf

10. Siskind, J.M., Pearlmutter, B.A.: Using polyvariant union-free flow analysis to compile
a higher-order functional-programming language with a first-class derivative operator to
efficient Fortran-like code. Tech. Rep. TR-ECE-08-01, School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN, USA (2008). URL http://docs.
lib.purdue.edu/ecetr/367/

11. Wadler, P.L.: Comprehending monads. In: Proceedings of the 1990 ACM Conference on
LISP and Functional Programming, pp. 61–78. Nice, France (1990)

