

U.S. Department of Transportation

Federal Highway Administration

Safety EDC1

Your Angle for Reducing Roadway Departure Andrew Mergenmeier, P.E.

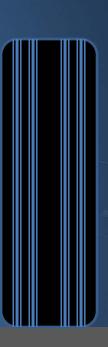
Senior Pavement and Materials Engineer FHWA Resource Center Pavement and Materials Technical Service Team

What Is the Safety Edge?

When used on asphalt navement the

Key Message

- Saves Lives
 - Allows vehicles to safely return to the travel lane
- Improves Durability
 - Reduces edge raveling
- Low Cost
 - Minor change to paving operations


Basic Principle

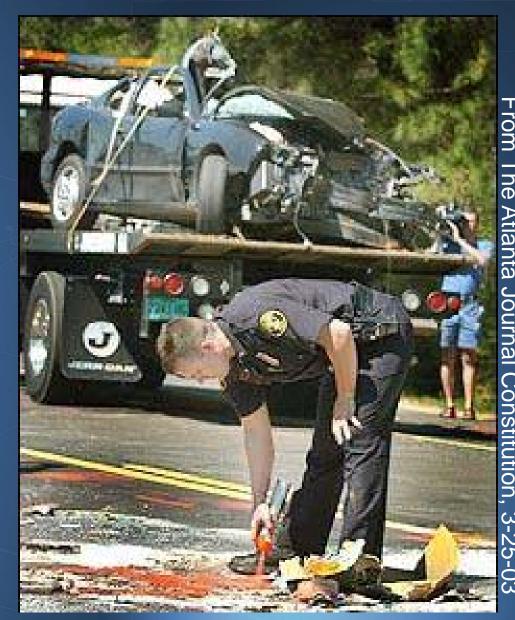
Without a Safety Edge

Basic Principle

With Safety Edge

Locations at High-Risk for Drop-Offs

- Horizontal Curves
- Near Roadside Mailboxes
- Turnarounds/Unpaved Pull-Outs
- Shaded Areas
- Eroded Areas
- Edge ruts
- Asphalt Pavement Overlays


Are Drop-Offs a Problem?

Edge Drop-Off Crash Types

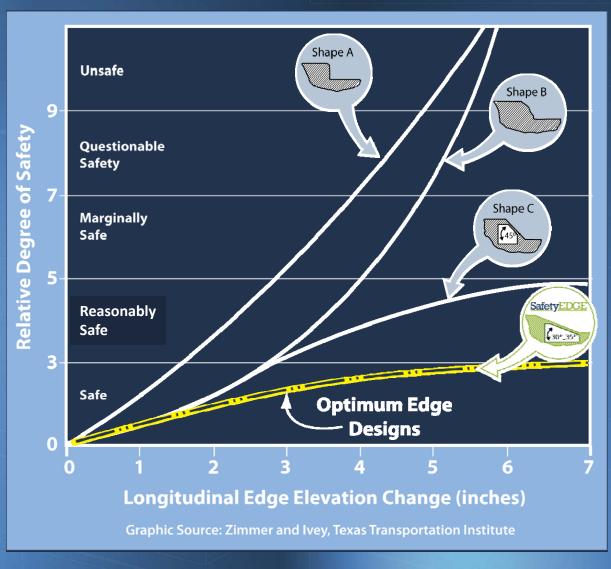
- Roll Over
- Head-on
- Opposing Sideswipe
- RoadsideObject

Typical Drop-Off Crash with Tire Scrubbing

Video

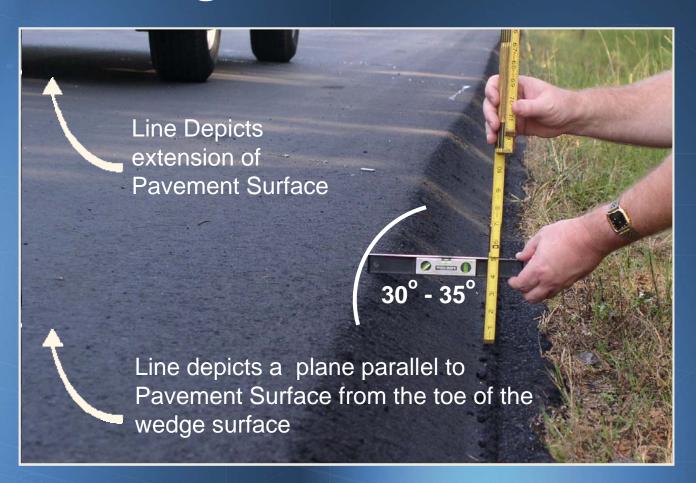
Horizontal Curves

Drop-Off with the Safety Edge



Risk Factors

What are the factors associated with pavement edge drop-off crashes?


- -Speed
- Driver Experience
- –Vehicle/Tires
- –Drop-off Height
- -Shape Of Pavement Edge

Angle Definition

Approach to Reducing Roadway Departure Crashes

- Low-Cost Solutions
- Highly-Effective
 Countermeasures
- Systematic Application

Safety Edge Installation: Georgia

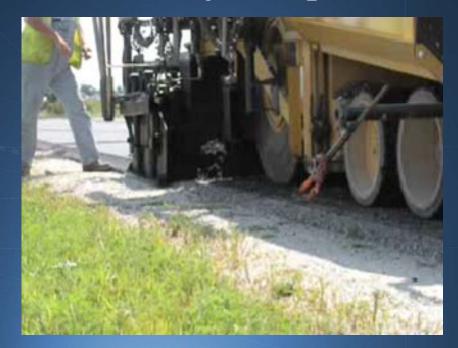
Construction

Similar to Conventional Paving

(No Effect on Production)

- Clip Shoulders
- Construct Overlay
- Pull Shoulders Flush

Colorado installation 2011


Conventional Edge

Video |

Safety Edge

Video |

Increased Edge Durability?

Without Safety Edge

With Safety Edge

Edge Durability

Condition After 6 of Service

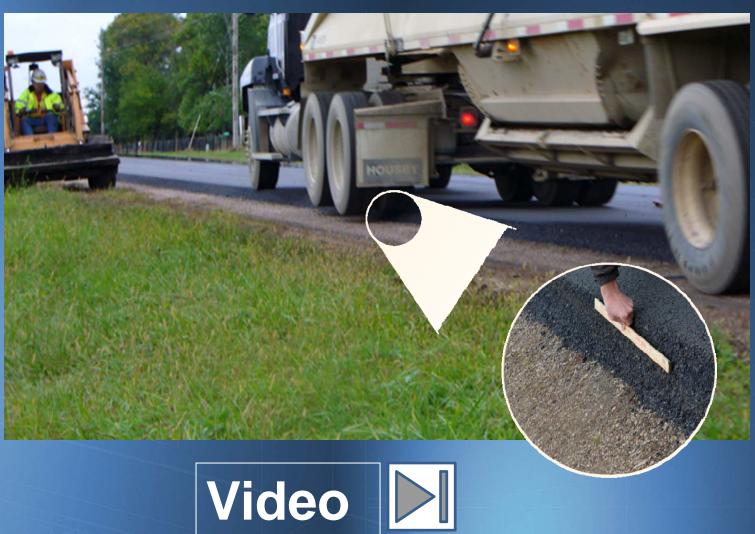
Without Safety Edge

With Safety Edge

Safety Edge Installation: Georgia

Which side of the road will you be on in 8 years?

With Safety Edge


Original Georgia Project Constructed 7/2003

Photos taken 6 /2011
Without Safety Edge

Durability

Is the SE going to hold up? Burke County, NC – SR 1611

Safety Edge Section

After 24 months – 3.0" Drop off

Burke County, NC – SR 1611

No Safety Edge

After 24 months – 3.5"

Safety Edge Implementation Α ☆ Α A ★ **★** Notable Local Efforts **Alternate Detail** Policy/Standard **Project Pending/State Evaluating State DOT Projects Built No State DOT Projects Expected** Jan 2012

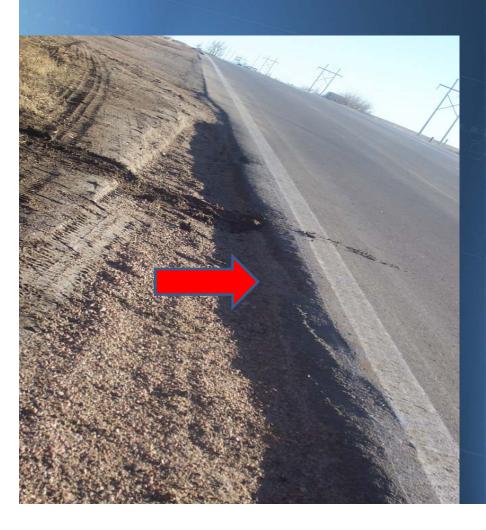
July 2010

(2.0-inch HMA overlay, 12.5 mm mix, TransTech Shoulder Wedge Maker)

- > Rolling did not steepen the slope.
- > Safety edge and control (no safety edge) section densities were similar.
- > Average slope was 34°.

February 2011

- ➤ Seven months after construction 2" plus drop off throughout (tire tracks)
- ➤ Safety edge intact


February 2011

- ➤ Driveway no Safety Edge
- ► Large drop off

February 2011

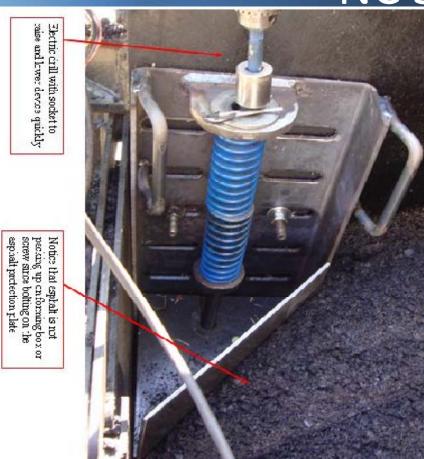
- ➤ Arrow is location Safety Edge is employed
- ➤ Pavement edge deterioration without Safety Edge
- ➤ Pavement edge intact with Safety Edge
- ➤ Drop off depth reduces with Safety Edge

North Carolina Brogden Road

April 2011

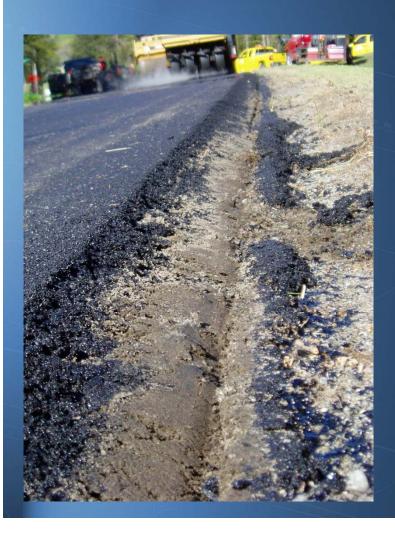
(1.5-inch WMA overlay, 9.5 mm mix, Troxler SafeT*Slope* Edge Smoother, NC DOT Safety Edge device

North Carolina Brogden Road


- NC DOT SE average slope 26°
- Safety edge density was 1.7%
 higher than the control (no safety edge) section.

➤ Photo of NC DOT design – note plate to keep asphalt from entering spring area

North Carolina Brogden Road NC SE Device

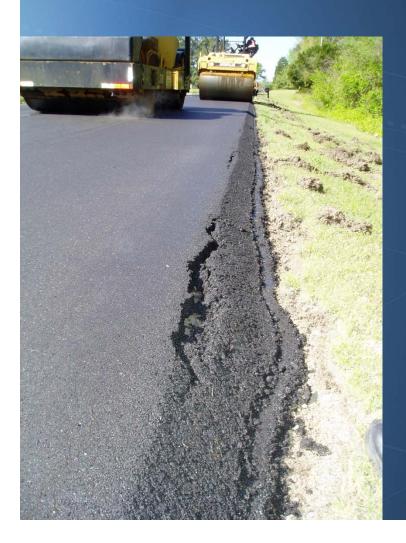


Leading edge shaped to ride smoothly on surface

North Carolina Brogden Road

Troxler device plowing soil into asphalt (soil was soft/uncompacted in this location)

North Carolina Brogden Road Shoulder Clipping


Minor Amount of Soil Disturbance

Soil/Vegetation high next to road

- Isolated longitudinal cracking after breakdown rolling
- ➤ Is this Safety Edge related?



- Lane edge was paved on soil/vegetation
- > Holding vegetation root

Keep lane edge on sound material as rest of lane

- ➤ Loaded asphalt trucks running on SE no damage
- Contractor stated will use SE wherever allowed since no damage

Where not to use the SE?

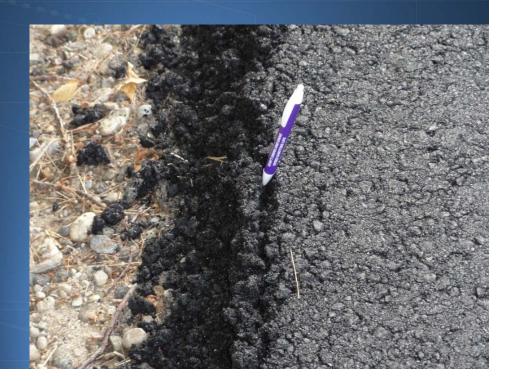
- Mill and Fill operations (shoulder not milled)
- Curb and Gutter
- Drop off angle
 greater than 30⁰

Test Result Summary

State	Device / Section	Slope	Density, pcf (Near Edge)	Density, pcf (3 ft from Edge)	% Air Voids (Near Edge)	% Air Voids (3 ft from Edge)
DE	Advant-Edger	48°	145.1	147.5	9.0	7.4
DE	TransTech	37°	140.2	145.6	11.8	8.4
DE	Control Section	NA	137.9	141.2	13.5	8.9
IA	TransTech	38°	133.2	145.8	13.6	5.4
IA	Control Section	NA	140.2	147.2	9.1	4.6
MS	TransTech	37°	131.4	137.3	10.6	6.6
MS	Control Section	NA	129.0	137.5	12.3	6.5
NC-B	Troxler	28°	134.9	139.9	10.5	7.2
NC-B	NCDOT	26°	134.8	140.5	10.6	6.8
NC-B	Control Section	NA	132.2	138.8	12.3	7.9

Test Result Summary

State	Device / Section	Slope	Density, pcf (Near Edge)	Density, pcf (3 ft from Edge)	% Air Voids (Near Edge)	% Air Voids (3 ft from Edge)
NC-D	Carlson	29°	135.6	135.4	11.3	11.5
NC-D	Control Section	NA	135.9	139.7	11.2	8.7
NE	TransTech	34°	133.5	140.3	11.8	7.3
NE	Control Section	NA	135.4	138.6	10.5	8.5
PA	Advant-Edger	48°	137.1	140.2	13.6	11.7
PA	Control Section	NA	131.9	140.6	16.9	11.4
WI	TransTech	35°	136.7	145.4	11.2	5.5
WI	Carlson #2	33°	135.4	144.9	12.0	5.8
WI	Carlson #3	36°	132.9	143.6	13.6	6.7
WI	Control Section	NA	137.1	145.2	10.9	5.6


Summary

- The HMA densities measured adjacent to the unconfined edge were similar with or without using the Safety Edge.
- The average slope of the Safety Edge can be constructed between values of 30 to 40 degrees using standard rolling patterns.

Summary

- Safety Edge equipment/processes enhancements will come with more experiences
- Picture vs data

Benefits of the Safety Edge

- Temporary safety benefit during construction
- Increase production—shoulder work after overlay complete
- Aid vehicle re-entry
- Increased Pavement Edge Durability
- Reduced Crashes Over Life of the Pavement

What can the FHWA offer?

Training Toolkit:

- Promotional Material
- Specifications
- Design/Const Guide
- Tech Drawings

Demo projects:

- Free loaner equipment
- Technical assistance
- Project documentation

Evaluation

Every Day Counts

Innovation Initiative

Contact Information

To learn more about the Safety Edge, visit:

http://www.fhwa.dot.gov/everydaycounts