Index for Principles of Computerized Tomographic Imaging
This is an index for the book "Principles of Computerized Tomographic Imaging"
by A. C. Kak and Malcolm Slaney. Each page number in this index is linked to
the appropriate chapter. Each chapter is stored as a PDF file, ranging in
size from 2 to 10 M bytes each.
Originally published by IEEE Press. (C) 1988 Institute for Electrical
and Electronic Engineers.
Electronic copy (C) 1999 A. C. Kak and Malcolm Slaney.
You are free
to use this electronic version of Principles of Computerized Tomographic
Imaging for all uses except you may not republish this work or any
portion of it. Please reference this work as
A. C. Kak and Malcolm Slaney, Principles of Computerized
Tomographic Imaging, IEEE Press, 1988.
Each chapter of this book is available as a Adobe PDF File. Free
readers for most computer platforms are available from Adobe.
The Table of Contents for this book is available at
http://www.slaney.org/pct/index.html
A
Algebraic equations
solution by Kaczmarz method 278
Algebraic reconstruction techniques 283-284
sequential 289, 293
simultaneous 285-292
Algebraic techniques
reconstruction algorithms 275-296
Algorithms
cone beams 104
filtered backprojection 60-63, 72, 104
filtered backpropagation 234-247
Gerchberg-Papoulis 313-314
reconstruction 49-112, 252-261, 275-296, 313-320
re-sorting 92-93
SIRT 295
see also Reconstruction algorithms
Aliasing
artifacts 177-201
bibliography 200
in 2-D images 46
properties 177-186
Approximations
Born 212-214, 248-253
comparison 248-252
Rytov 214-218, 249-253
to wave equation 214-218
ART see Algebraic reconstruction techniques
Artifacts
aliasing 177-201
beam hardening 124
bibliography 200
polychromaticity 120-125
Attenuation compensation
for positron tomography 145-147
for single photon emission CT 137-142
Authors
affiliations 329
Kak AvinashC., 329
Slaney Malcolm, 329
B
Backprojection 179
filtered 60-63, 65-72, 82, 84-85, 88, 104-107
star-shaped pattern 184
weighted 92, 106
3-D 104-107
Backpropagation algorithm 242-247, 262
filtered 234-247
Bandlimited filter
DFT 74
Beam hardening 118
artifacts 120, 124
Bibliographic notes
algebraic reconstruction algorithms 292-295
algorithms for reconstructions with non-diffracting sources 107-110
aliasing artifacts and noise in CT images 200
measurement of projection data nondiffractingcase, 168-169
reflection tomography 321
tomographic imaging with diffracting sources 268-270
Bones 122
Born approximation 215-218, 249-253, 258
evaluation 24849
first 212-214
Breasts
mammograms 159
sonograms 302
B-scan imaging 297-303, 315
commercial 302
C
Cancer
in breast 159-160
Carcinoma
sonogram 302
Coincidence testing
circuits 143
of positron emission 143
Collinear detectors
equally spaced 86-92
Compton effect 114-115, 119
Computed tomography see Computerized tomography
Computerized tomography
applications 132-133
emission 134-147, 275
graduate courses ix
images 177-201
noise 177-201
scanners 130
ultrasonic 147-158
x-rays 120-124
Cone beams
algorithms 104, 108-109
projection 101
reconstruction 102, 108-109
Continuous signals
Fourier analysis 11
Convolution 8-9, 31-32, 83
aperiodic 18
calculation 15
circular 18, 66
Fourier transforms 39
CT see Computerized tomography
D
Data collection process 228-234
Data definition
negative time 25-26
positive time 26
Data sequences 26
padding 23-25
resolution 23
Data truncation
effects 27-28
Delta functions 28-30
see also Dirac delta
Detectors 75, 101, 127, 192
arrays 188
collinear 86-92
equal spacing 86-92
ray paths 190
spacing 78, 188
xenon gas 128
DFT see Fourier transforms-discrete
Diffracting sources
filtered backpropagation algorithm 234-247
interpolation 234-247
tomographic imaging 203-273
Diffraction tomography reconstructions
limitations 247-251
Dirac delta 5-7, 12, 30, 32, 222
see also Delta functions
Display resolution
in freauencv domain 22-27
Distortions
aliasing 177-201
Dogs
heart 154, 156-157
E
Education
graduate ix
Emission computer tomography 134-147
Equiangular rays 77-86
Equispaced detectors
collinear 86-92
reconstruction algorithms 87
Evanescent waves 261
ignoring 266
F
Fan beam reconstruction
from limited number of views 93-99
Fan beams 78, 85
projections 97
reconstruction 93-99
re-sorting 92
rotation 126
scanners 188
tilted 105
Fan projections
reconstruction 75-93
FFT (Fast Fourier Transforms)
inverse 42, 240
l-D 45
2-D 45-47
FFT output
interpretation 20-22
Filters and filtering 7
backprojection 60-63, 65, 68, 72, 82, 84-85, 88, 104-107
backpropagation 234-247
bandlimited 74
ideal 72
low pass 40-41, 266
shift invariant 8
Wiener 306
Finite receiver length
effects 263-266
experiments 266
reconstruction 266
Forward projection process
modeling 286-288
Fourier analysis
of function 9-13, 33-35
Fourier diffraction theorem 218-234, 253-254, 259
short wavelength limit 227-228
Fourier series -13
triangle wave 12
Fourier slice theorem 228, 260, 307
tomographic imaging 49, 56-61
Fourier transforms
diffraction 219, 223-227
discrete 10, 13-15
fast 16, 18, 20-26
finite 10, 16-18, 42-45
generalized 13
inverse 13, 17, 34-35, 42, 226
line integrals 318
Parseval's theorem 39, 44
properties 35-41
seismic profiling 233
1-D 44-45, 56
2-D 34-35, 42-45, 222, 226-227, 229, 308
Frequency-shift method 156-158
Functions
continuous 5-7
discrete 5-7
Fourier representation 9-13
Green's 220-223
Hankel 220
linear operations 7-9
point spread 29, 32
1-D 5-7
G
Gibbs phenomenon 178
Green's function
decomposition 220-223
Grids
representation 277
square 276
superimposition 276
H
Haunsfield G.N., -2, 107
Head phantom
of Shepp and Logan 51-53, 69, 103, 198, 255, 259, 285
Helmholtz equation 224
Hilbert transforms 68
Homogeneous wave equation 204-208
acoustic pressure field 204
electromagnetic field 204
Human body
x-ray propagation 116, 195
Hyperplanes 279
I
Ideal filter 72
DFT 74
Image processing 28-47
Fourier analysis 33-35
graduate courses ix
Images and imaging 276-283
B-scan 297-303, 315
CT 177-201
magnetic resonance 158-168
noise 177-201
radar 298-299
reconstructed 190-194, 281
sagittal 137
SPECT 136
Impulse response
convolution 9
of ideal filter 73
of shift invariant filter 8-9
Inhomogeneous wave equation 208-211
acoustics 209
electromagnetic case 208
Interpolation
diffracting sources 234-247
frequency domain 236-242
K
Kaczmarz method
for solving algebraic equations 278
Kak AvinashC.(Author)
affiliations 329
L
Limitations
diffraction tomography reconstruction 247-252
experimental 261-268
mathematical 247-248
receivers 268-270
reflection tomography 309-313
Line integrals 49-56
Fourier transforms 3, 18
M
Magnetic moments 163
Magnetic resonance imaging 158-168
Mammograms
of female breasts 159
Medical industry
use of x-ray tomography 132, 168
Modeling
forward projection process 286-288
Moire effect 46, 178
MRI see Magnetic resonance imaging
N
Negative time
of data 25-26
Noise
in CT images 177-201
in reconstructed images 190-199
Nondestructive testing
use of CT 133
Nondiffracting sources
measurement of projection data 113-174
reconstruction 49-112
Nyquist rate 19-20, 180
O
Objects
blurring 192
broadband illumination 235
Fourier transforms 166, 235, 239
illumination 300, 304
projections 50, 59, 165, 182, 239
reflectivity 300
Operators and operations
linear 7-9, 30-32
shift invariant 8, 30-32
P
Parallel projections
reconstruction algorithms 60-75
Parseval's theorem
Fourier transforms 39, 44
Pencil beam
of energy 299
Phantoms 122
reconstruction 198, 262
x-rays 127
Photoelectric effect 114, 119
Photons
emission 146
emission tomography 135-137
gamma-rays 135, 138
Plane waves
propagation 207
Point sources 28-30
Polychromaticity artifacts
in x-ray CT 120-125
Polychromatic sources
for measuring projection data 117-120
Positron emission tomography 142-145
Positron tomography
attenuation compensation 145-147
Projection data
measurement 113-174
sound waves 113
ultrasound 113
x-rays 113
Projections 49-56
backpropagation 245
cone beam 101
curved lines 95
diffracted 204-211
fan beams 75-93, 97, 192
forward 286-288
of cylinders 2
of ellipse 54, 62
of objects 50, 59, 165, 182, 239
parallel 51, 60-75, 77, 100, 185
representation 276-283
uniform sampling 238
x-ray 114-116
3-D 100-104, 165
R
Radar
imaging 298-299
Radioactive isotopes
use in emission CT 134-135
Radon transforms 50, 52, 93-97
Received waves
sampling 261-262
Receivers
effect of finite length 263-266
limited views 268-270
Reconstructed images
continuous case 190-194
discrete case 194-199
noise 190-199
Reconstruction
algebraic 280, 283-292
algorithms 49-112
bones 122
circular 287
cone beams 102
cylinders 256, 310
diffraction tomography 247
dog's heart 154, 156-157
errors 177-201
fan beams 93-99
from fan projections 75-93
iterative 284, 289-290
large-sized 282
limitations 261-268
of ellipse 178, 181
of images 83, 122, 198, 281
of Shepp and Logan phantom 70
phantom 198
plane wave reflection 310
refractive index 154
simultaneous 284-292
tumors 290, 294
with nondiffracting sources 49-112
2-D 100
3-D 99-107
Reconstruction algorithms 13-20
algebraic 275-296
cone beams 103, 108-109
evaluation 252-261
for equispaced detectors 87
for parallel projections 60-75
implementation 288-292
Rectangle function
limit 29
2-D Fourier transform 34
Reflection tomography 297-322
experimental results 320-321
limits 309-313
of needles 320
transducers 307
vs. diffraction tomography 307-309
with basic aim 297
with point transmitter/receivers 313-321
Refractive index tomography
ultrasonic 151-153
Re-sorting
algorithm 92-93
of fan beams 92
Rocket motors
nondestructive testing 133-134
Rytov approximation 249-253, 258
evaluation 249
first 214-218
S
Sampling
in real system 186-189
of data 19-20
of projection 238
received waves 261-262
SART see Simultaneous algebraic reconstruction technique
Scanning and scanners
B-scan imaging 297-303
CT 130
different methods 126-132
fan beams 188
fourth generation 129
Scattering
x-rays 125-126
Seismic profiling
experiment 232
Fourier transforms 233
Shift invariant operations linear 30-32
Short wavelength limit of Fourier diffraction theorem 227-228
Signal processing
fundamentals 5
graduate courses ix
one-dimensional 5
Simultaneous algebraic reconstruction technique 285-292
implementation 288
Simultaneous iterative reconstructive technique 284
algorithm 295
Single photon emission tomography 135-137
attenuation compensation 137-142
Sinograms 94
SIRT see Simultaneous iterative reconstructive technique
Skull
simulated 121
Slaney Malcolm(Author)
affiliations 329
Sonograms
of breast 302
of carcinoma 302
Sound waves
projection data 113
SPECT images 136
Synthetic aperture
tomography 230-231
T
Tomography
applications 1
definition 1
diffraction 203, 221, 247, 307-309
emission computed 134-147, 275
Fourier slice theorem 49, 56-61
imaging with diffracting sources 203-273
positron 145-147
positron emission 142-145
reflection 297-322
simulations 55
synthetic aperture 230-231
ultrasonic 147-158, 205
x-ray -3, 114-133
x-ray scanner 1, 107
3-D simulations 102
see also Computerized tomography, Reflection tomography, Single photon emission tomography, Ultrasonic computed tomography
Transducers
plane wave 303-307
pulse illumination 312
reflection 303-307
rotation 316
ultrasonic 149
Transforms see Fourier transforms, Hilbert transforms, Radon transforms
Transmitter/receivers
point 313-321
reflection tomography 313-321
Tumors
reconstruction 290-294
U
Ultrasonic beams
propagation 149, 153
Ultrasonic computed tomography 147-158
applications 157-158
attenuation 153-157
fundamentals 148-151
refractive index 151-153
Ultrasonic signals 152-153
W
Wave equation
approximations 211-218
homogeneous 204-208
inhomogeneous 208-211
Weighting functions 99
backprojection 92
Windows
Hamming 291, 293-294
smooth 98
X
X-rays
CT 120-125
in human body 195
monochromatic 114-116
parallel beams 116
phantoms 127
photons 128
projection data 113
scatter 125-126
sources 129
tomography 114-133
tubes 115