
6 Tomographic Imaging with 
Diffracting Sources 

Diffraction tomography is an important alternative to straight ray tomog- 
raphy. For some applications, the harm caused by the use of x-rays, an 
ionizing radiation, could outweigh any benefits that might be gained from the 
tomogram. This is one reason for the interest in imaging with acoustic or 
electromagnetic radiation, which are considered safe at low levels. In 
addition, these modalities measure the acoustic and electromagnetic refrac- 
tive index and thus make available information that isn’t obtainable from x- 
ray tomography. 

As mentioned in Chapter 4, the accuracy of tomography using acoustic or 
electromagnetic energy and straight ray assumptions suffers from the effects 
of refraction and/or diffraction. These cause each projection to not represent 
integrals along straight lines but, in some cases where geometrical laws of 
propagation apply, paths determined by the refractive index of the object. 
When the geometrical laws of propagation don’t apply, one can’t even use the 
concept of line integrals-as will be clear from the discussions in this chapter. 

There are two approaches to correcting these errors. One approach is to 
use an initial estimate of the refractive index to estimate the path each ray 
follows. This approach is known as algebraic reconstruction and, for weakly 
refracting objects, will converge to the correct refractive index distribution 
after a few iterations. We will discuss algebraic techniques in Chapter 7. 

When the sizes of inhomogeneities in the object become comparable to or 
smaller than a wavelength, it is not possible to use ray theory (geometric 
propagation) based concepts; instead one must resort directly to wave 
propagation and diffraction based phenomena. In this chapter, we will show 
that if the interaction of an object and a field is modeled with the wave 
equation, then a tomographic reconstruction approach based on the Fourier 
Diffraction Theorem is possible for weakly diffracting objects. The Fourier 
Diffraction Theorem is very similar to the Fourier Slice Theorem of 
conventional tomography: In conventional (or straight ray) tomography, the 
Fourier Slice Theorem says that the Fourier transform of a projection gives 
the values of the Fourier transform of the object along a straight line. When 
diffraction effects are included, the Fourier Diffraction Theorem says that a 
“projection” yields the Fourier transform of the object over a semicircular 
arc. This result is fundamental to diffraction tomography. 

In this chapter the basics of diffraction tomography are presented for 
application with acoustic, microwave, and optical energy. For each case we 
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will start with the wave equation and use either the Born or the Rytov 
approximation to derive a simple expression that relates the scattered field to 
the object. This relationship will then be inverted for several measurement 
geometries to give an estimate of the object as a function of the scattered 
field. Finally, we will show simulations and experimental results that show 
the limitations of the method. 

6.1 Diffracted Projections 

Tomography with diffracting energy requires an entirely different ap- 
proach to the manner in which projections are mathematically modeled. 
Acoustic and electromagnetic waves don’t travel along straight rays and the 
projections aren’t line integrals, so we will describe the flow of energy with a 
wave equation. 

We will first consider the propagation of waves in homogeneous media, 
although our ultimate interest lies in imaging the inhomogeneities within an 
object. The propagation of waves in a homogeneous object is described by a 
wave equation, which is a second-order linear differential equation. Given 
such an equation and the “source” fields in an aperture, we can determine the 
fields everywhere else in the homogeneous medium. 

There are no direct methods for solving the problem of wave propagation 
in an inhomogeneous medium; in practice, approximate formalisms are used 
that allow the theory of homogeneous medium wave propagation to be used 
for generating solutions in the presence of weak inhomogeneities. The better 
known among these approximate methods go under the names of Born and 
Rytov approximations. 

Although in most cases we are interested in reconstructing three- 
dimensional objects, the diffraction tomography theory presented in this 
chapter will deal mostly with the two-dimensional case. Note that when a 
three-dimensional object can be assumed to vary only slowly along one of the 
dimensions, a two-dimensional theory can be readily applied to such an 
object. This assumption, for example, is often made in conventional 
computerized tomography where images are made of single slices of the 
object. In any case, we have two reasons for limiting our presentation to the 
two-dimensional case: First and most importantly, the ideas behind the theory 
are often easier to visualize (and certainly to draw) in two dimensions. 
Second, the technology has not yet made it practical to implement large three- 
dimensional transforms that are required for direct three-dimensional 
reconstructions of objects; furthermore, direct display of three-dimensional 
entities isn’t easy. 

6.1.1 Homogeneous Wave Equation 

An acoustic pressure field or an electromagnetic field must satisfy the 
following differential equation [Go0681 : 
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V2u(Z t)-; $ u(7, t)=O (1) 
where u represents the magnitude of the field as a function of position 7 and 
time t and c is the velocity of the field as a function of position. 

This form of the wave equation is more complicated than needed; most 
derivations of diffraction tomography are done by considering only one 
temporal frequency at a time. This decomposition can be accomplished by 
finding the Fourier transform of the field with respect to time at each position 
i? Note that the above differential equation is linear so that the solutions for 
different frequencies can be added to find additional solutions. 

A field u(i, t) with a temporal frequency of w radians per second (rps) 
satisfies the equation 

[V2+ k2(7)]u(F, t) = 0 (2) 

where k(J) is the wavenumber of the field and is equal to 

(3) 

where A is the field’s wavelength. At this point the field is at a single 
frequency and we will write it as 

Real Part { u(J)e-jut}. (4) 

In this form it is easy to see that the time dependence of the field can be 
suppressed and the wave equation rewritten as 

(V2+k2(Q4(i)=O. (5) 

For acoustic (or ultrasonic) tomography, u(J) can be the pressure field at 
position ? For the electromagnetic case, assuming the applicability of a scalar 
propagation equation, u(i) may be set equal to the complex amplitude of the 
electric field along its polarization. In both cases, u(r> represents the 
complex amplitude of the field. 

For homogeneous media the wavenumber is constant and we can further 
simplify the wave equation. Setting the wavenumber equal to 

k(7) = krJ (6) 

the wave equation becomes 

(V2+k$(7)=0. (7) 

The vector gradient operator, V, can be expanded into its two-dimensional 
representation and the wave equation becomes 

a?u(F) + a2zq) -+k$4(7)=0. ax2 ay2 (8) 
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As a trial solution we let 

where the vector k’ = (k,, k,,) is the two-dimensional propagation vector and 
u(i) represents a two-dimensional plane wave of spatial frequency (k’( . This 
form of u(7) represents the basis function for the two-dimensional Fourier 
transform; using it, we can represent any two-dimensional function as a 
weighted sum of plane waves. Calculating the derivatives as indicated in (8), 
we find that only plane waves that satisfy the condition 

satisfy the wave equation. This condition is consistent with our intuitive 
picture of a wave and our earlier description of the wave equation, since for 
any frequency wave only a single wavelength can exist no matter in which 
direction the wave propagates. 

The homogeneous wave equation is a linear differential equation so we can 
write the general solution as a weighted sum of each possible plane wave 
solution. In two dimensions, at a temporal frequency of w, the field u(i) is 
given by 

m=$ J=-, a(ky)ej(kr’+kYy) dk,+l 2?r J y, P(ky)ej(-kxx+kuy) dk, (1 I) 

where by (10) 

k,=w. (12) 

The form of this equation might be surprising to the reader for two reasons. 
First we have split the integral into two parts. We have chosen to represent 
the coefficients of waves traveling to the right by a(ky) and those of waves 
traveling to the left by p(k,). In addition, we have set the limits of the 
integrals to go from - 00 to 03. For kz greater than k$ the radical in (12) 
becomes imaginary and the plane wave becomes an evanescent wave. These 
are valid solutions to the wave equation, but because ky is imaginary, the 
exponential has a real or attenuating component. This real component causes 
the amplitude of the wave to either grow or decay exponentially. In practice, 
these evanescent waves only occur to satisfy boundary conditions, always 
decaying rapidly far from the boundary, and can often be ignored at a 
distance greater than 10X from an inhomogeneity. 

We will now show by using the plane wave representation that it is possible 
to express the field anywhere in terms of the fields along a line. The three- 
dimensional version of this idea gives us the field in three-space if we know 
the field at all points on a plane. 

Consider a source of plane waves to the left of a vertical line as shown in 
Fig. 6.1. If we take the one-dimensional Fourier transform of the field along 
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Fig. 6.1: A plum wuve 
propagating between two planes 
undergoes a phase shift 
dependent on the distance 
between the planes and the 
direction of the plane wave. 

the vertical line, we can decompose the field into a number of one- 
dimensional components. Each of these one-dimensional components can 
then be attributed to one of the valid plane wave solutions to the homogeneous 
wave equation, because for any one spatial frequency component, k,,, there 
can exist only two plane waves that satisfy the wave equation. Since we have 
already constrained the incident field to propagate to the right (all sources are 
to the left of the measurement line), a one-dimensional Fourier component at 
a frequency of ky can be attributed to a two-dimensional wave with a 
propagation vector of (m, ky). 

We can put this on a more mathematical basis if we compare the one- 
dimensional Fourier transform of the field to the general form of the wave 
equation. If we ignore waves that are traveling to the left, then the general 
solution to the wave equation becomes 

m=; J;, a(ky)ej(kxx+kyy) dk,. 

If we also move the coordinate system so that the measurement line is at x = 
0, the expression for the field becomes equal to the one-dimensional Fourier 
transform of the amplitude distribution function a(k,). 

~(0, Y)=& JI, a(ky)ejkyy dk,. 

If we invert the transform relationship, this equation tells us that the 
amplitude distribution function can be obtained from the fields on the line x 
= Oby 

c~(k,) = Fourier transform of { ~(0, y)] . (1% 

This amplitude distribution function can then be substituted into the equation 
for ~(7) to obtain the fields everywhere right of the line x = 0. 
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We will now show how it is possible to relate fields on two parallel lines. 
Again consider the situation diagrammed in Fig. 6.1. If we know a priori that 
all the sources for the field are positioned, for example, to the left of the line 
at x = lo, then we can decompose the field u(x = lo, y) into its plane wave 
components. Given a plane wave z+,lane wave (x = lo, y) = (yej(kxb+kyY) the 
field undergoes a phase shift as it propagates to the line x = II, and we can 
write 

~~~~~~~~~~~~~~~~ y)=~ei(kx’O+kyy)e~kx(II-lO)=~p,anewave(~=Io, y)ejWi-‘0) 

(16) 

Thus the complex amplitude of the plane wave at x = 1, is related to its 
complex amplitude at x = 1, by a factor of ejkA’i-‘O). 

The complete process of finding the field at a line x = Ii follows in three 
steps : 

1) Take the Fourier transform of u(x = lo, u) to find the Fourier 
decomposition of u as a function of /ry . 

2) Propagate each plane wave to the line x = Ii by multiplying its complex 
amplitude by the phase factor ejkArl-IO) where, as before, k, = 
@TyI 

3) Find the mverse Fourier transform of the plane wave decomposition to 
find the field at u(x = I,, u). 

These steps can be reversed if, for some reason, one wished to implement on 
a computer the notion of backward propagation; more on that subject later. 

6.1.2 Inhomogeneous Wave Equation 

For imaging purposes, our main interest lies in inhomogeneous media. 
We, therefore, write a more general form of the wave equation as 

[V2+k(F)2]u(J)=O. (17) 

For the electromagnetic case, if we ignore the effects of polarization we can 
consider k(7) to be a scalar function representing the refractive index of the 
medium. We now write 

k(7) = kon(q= kO[l + n*(Q (18) 

where k. represents the average wavenumber of the medium and ~(9 
represents the refractive index deviations. In general, we will assume that the 
object has a finite size and therefore n@) is zero outside the object. 
Rewriting the wave equation we find 

(V+ k@(F) = - k$(7)2- l](flu(fl (1% 

where n(Q is the electromagnetic refractive index of the media and is given 
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(20) 

Here we have used p and E to represent the magnetic permeability and 
dielectric constant and the subscript zero to indicate their average values. 
This new term, on the right-hand side of (19)) is known as a forcing function 
for the differential equation (V2 + ki)u(n. 

Note that (19) is a scalar wave propagation equation. Its use implies that 
there is no depolarization as the electromagnetic wave propagates through the 
medium. It is known [Ish78] that the depolarization effects can be ignored 
only if the wavelength is much smaller than the correlation size of the 
inhomogeneities in the object. If this condition isn’t satisfied, then strictly 
speaking we must use the following vector wave propagation equation: 

V2,?(rv)+k$n2E(q-2V 
Vn [ 1 -.E co 
n 

where E is the electric field vector. A vector theory for diffraction 
tomography based on this equation has yet to be developed. 

For the acoustic case, first-order approximations give us the following 
wave equation [Kak85], [Mor68]: 

(V2+k$u(7)= -kt[n2(7)- l]u(fl (22) 

where n is the complex refractive index at position 7, and is equal to 

CO n(F)=- 
C(Q 

where co is the propagation velocity in the medium in which the object is 
immersed and c(i) is the propagation velocity at location iin the object. For 
the acoustic case where only compressional waves in a viscous compressible 
fluid are involved, we have 

c(i) = 1 
mmi (24) 

where p and K are the local density and the complex compressibility at 
location Z 

The forcing function in (22) is only valid provided we can ignore the first 
and higher order derivatives of the medium parameters. If these higher order 
derivatives can’t be ignored, the exact form for the wave equation must be 
used: 

(V2+k;)u(7)=k;y,u-V * (y,Vu) (25) 
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where 

K - Ko 
YK=- (26) 

P-P0 
yp=-. 

P 
(27) 

~~ and p. are either the compressibility and the density of the medium in 
which the object is immersed, or the average compressibility and the density 
of the object, depending upon how the process of imaging is modeled. On the 
other hand, if the object is a solid and can be modeled as a linear isotropic 
viscoelastic medium, the forcing function possesses another more compli- 
cated form. Since this form involves tensor notation, it will not be presented 
here and the interested reader is referred to [Iwa75]. 

Due to the similarities of the electromagnetic and acoustic wave equations, 
a general form of the wave equation for the small perturbation case can be 
written as 

(V2+ k;)u(F) = - o(i)u(F) (28) 

where 

o(i) = ki[n2(F) - 11. (2% 

This allows us to describe the math involved in diffraction tomography 
independent of the form of energy used to illuminate the object. 

We will consider the field, u(F), to be the sum of two components, uo(i) 
and u,(J). The component uo(F), known as the incident field, is the field 
present without any inhomogeneities, or, equivalently, a solution to the 
equation 

(V2 + k;)u,(F) = 0. (30) 

The component u,(F), known as the scattered field, will be that part of the 
total field that can be attributed solely to the inhomogeneities. What we are 
saying is that with uo(F) as the solution to the above equation, we want the 
field u(7) to be given by u(i) = uo(F’) + u,(fl. Substituting the wave 
equation for u. and the sum representation for u into (28), we get the 
following wave equation for just the scattered component: 

(V2+ k@,(i) = - u(F)o(F). (31) 

The scalar Helmholtz equation (31) can’t be solved for u,(i?) directly, but a 
solution can be written in terms of the Green’s function [Mor53]. The 
Green’s function, which is a solution of the differential equation 

(V2+k;)g(717’)= -&(7-F’), (32) 
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is written in three-space as 

g(?,P’)=g (33) 

with 

R= (i-i’/. (34) 

In two dimensions the solution of (32) is written in terms of a zero-order 
Hankel function of the first kind, and can be expressed as 

In both cases, the Green’s function, g(?13’), is only a function of the 
difference 7 - P so we will often represent the function as simply g(7 - P). 
Because the object function in (32) represents a point inhomogeneity, the 
Green’s function can be considered to represent the field resulting from a 
single point scatterer. 

It is possible to represent the forcing function of the wave equation as an 
array of impulses or 

o(i)@)= j o(i’)u(f’)6(7-7’) d7’. (36) 

In this equation we have represented the forcing function of the inhomoge- 
neous wave equation as a summation of impulses weighted by 0(7)u(F) and 
shifted by Z The Green’s function represents the solution of the wave 
equation for a single delta function; because the left-hand side of the wave 
equation is linear, we can write a solution by summing up the scattered field 
due to each individual point scatterer. 

Using this idea, the total field due to the impulse 0(7’)u(i’)6(7 - 7’) is 
written as a summation of scaled and shifted versions of the impulse 
response, g(F). This is a simple convolution and the total radiation from all 
sources on the right-hand side of (31) must be given by the following 
superposition: 

u,(i)= j g(7-?‘)o(F’)u(F’) di’. (37) 

At first glance it might appear that this is the solution we need for the 
scattered field, but it is not that simple. We have written an integral equation 
for the scattered field, u,, in terms of the total field, u = u. + u,. We still 
need to solve this equation for the scattered field and we will now discuss two 
approximations that allow this to be done. 

6.2 Approximations to the Wave Equation 

In the last section we derived an inhomogeneous integral equation to 
represent the scattered field, u,(fl, as a function of the object, o(i). This 
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equation can’t be solved directly, but a solution can be written using either of 
the two approximations to be described here. These approximations, the Born 
and the Rytov, are valid under different conditions but the form of the 
resulting solutions is quite similar. These approximations are the basis of the 
Fourier Diffraction Theorem. 

Mathematically speaking, (37) is a Fredholm equation of the second kind. 
A number of mathematicians have presented works describing the solution of 
scattering integrals [Hoc73], [Co1831 which should be consulted for the 
theory behind the approximations we will present. 

6.2.1 The First Born Approximation 

The first Born approximation is the simpler of the two approaches. Recall 
that the total field, ~(9, is expressed as the sum of the incident field, uo(iz), 
and a small perturbation, u,(fi, or 

u(i)=uo(i)+u,(i). (38) 

The integral of (37) is now written as 

u,(3)= j g(i-i’)o(i’)uo(i’) di' + j g(i-i’)o(i’)y(i’) d7' 

but if the scattered field, u,(3), is small compared to uo(J) the effects of the 
second integral can be ignored to arrive at the approximation 

u,(i)=uB(i)= 1 g(i-i')o(i')uo(i') di'. (40) 

An even better estimate can be found by substituting uo(i) + ue(fl for u@) 
in (40) to find 

z@(i)= 1 g(i-i’)o(i’)[uo(i’)+us(i’)] di'. (41) 

In general, the i&order Born field can be written 

u;+‘)(i)= 1 g(i-i’)o(i’)[uo(i’)+u$)(i’)] di’. 

(42) 

An alternate representation is possible if we write 

u(i)=uo(i)+uu1(i)+u2(i)+~*~ (43) 

where 

u(~+~)(Q= ui(i')o(i')g(i-7') dJ'. s (44) 

By expanding (42) it is possible to see that an approximate expression for the 
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scattered field, ~$1, is 

(45) 
j=O 

and in the limit 

u(~?‘uo(7)+u~(F)+u~(F)+u3(i)+~*~ . (46) 

This representation (46) has a more intuitive interpretation. The Green’s 
function gives the scattered field due to a point scatterer and thus the integral 
of (42) can be interpreted as calculating the first-order scattered field due to 
the field Ui. For this reason the first-order Born approximation represents the 
first-order scattered field and Ui represents the &order scattered field. 

The result can also be interpreted in terms of the Huygens principle; each 
point in the object produces a scattered field proportional to the scattering 
potential at the site of the scatterer. Each of these partial scattered fields 
interacts with the other scattering centers in the object and if the Born series 
converges the total field is the sum of the partial scattered fields. 

While the higher order Born series does provide a good model of the 
scattering process, reconstruction algorithms based on this series have yet to 
be developed. These algorithms are currently being researched; in the 
meantime, we will study reconstruction algorithms based on first-order 
approximations [Bar78], [Sla85]. 

The first Born approximation is valid only when the scattered field, 

u,(J) = m - u,(7), (47) 

is smaller than the incident field, u,-,. If the object is a homogeneous cylinder 
it is possible to express this condition as a function of the size of the object 
and the refractive index. Let the incident wave, uo(fi, be an electromagnetic 
plane wave propagating in the direction of the unit vector, s’. For a large 
object, the field inside the object will not be well approximated by the 
incident field 

U(i) = U&je&(F) #:AejkO”’ (48) 

but instead will be a function of the change in refractive index, ns. Along a 
line through the center of the cylinder and parallel to the direction of 
propagation of the incident plane wave, the field inside the object becomes a 
slow (or fast) version of the incident wave, that is, 

Since the wave is propagating through the object, the phase difference 
between the incident field and the field inside the object is approximately 
equal to the integral through the object of the change in refractive index. For a 
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homogeneous cylinder of radius a, the total phase shift through the object 
becomes 

Phase Change = 4ms i (50) 

where X is the wavelength of the incident wave. For the Born approximation 
to be valid, a necessary condition is that the change in phase between the 
incident field and the wave propagating through the object be less than ?r. 
This condition can be expressed mathematically as 

x 
ang<i * (51) 

6.2.2 The First Rytov Approximation 

Another approximation to the scattered field is the Rytov approximation 
which is valid under slightly different restrictions. It is derived by considering 
the total field to be represented as a complex phase or [Ish78] 

u(7> = e+(7) (52) 

and rewriting the wave equation (17) 

(V2+kz)u=0 (17) 

as 

V2e” + k2e” = 0 (53) 

(54) 

V2$e+ + (V+)2e” + k2e@ = 0 (55) 

and finally 

(W2+V24+k;= -o(i). (56) 

(Although all the fields, 4, are a function of c to simplify the notation the 
argument of these functions will be dropped.) Expressing the total complex 
phase, +, as the sum of the incident phase function 4. and the scattered 
complex phase 4S or 

where 

uo(i) = e+o(n , (58) 
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we find that 

(V+o)2+2V~o. V~~+(V~,)2+V2~0+V2~~+k;+~(i)=0. (59) 

As in the Born approximation, it is possible to set the zero perturbation 
equation equal to zero. Doing this, we find that 

k;+(V$0)2+V240=0. (60) 

Substituting this into (59) we get 

2v40 * vq5s+v2q5s= -(V&)2-o(i). (61) 

This equation is still inhomogeneous but can be linearized by considering 
the relation 

V2(uo4J = V(Vuo * 4s+ uoV4s) (62) 

or by expanding the first derivative on the right-hand side of this equation 

V2(u,,4s)=V2uo * 4s+2Vuo * V4s+uoV24s. (63) 

Using a plane wave for the incident field, 

u. = A## 5 (64) 

we find 
V2uo= - k;uo (65) 

so that (63) may be rewritten as 

2~~~4~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ (66) 

This result can be substituted into (61) to find 

(V2+k;)uo4,= -~oNV4s)~+o(iN. (67) 

The solution to this differential equation can again be expressed as an integral 
equation. This becomes 

n 
uo4s = J g(i-7') uo[(V4s)2+o(i’)] di'. VW 

V 

Using the Rytov approximation we assume that the term in brackets in the 
above equation can be approximated by 

(V4J2+o(i)=o(i). (69) 

When this is done, the first-order Rytov approximation to the function uo4s 
becomes 

uo4s = s g(i-i')uo(i')o(i') di' . (70) 
V 
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Thus 4,, the complex phase of the scattered field, is given by 

g(i- i’)uo(i’)o(i’) di’. 

Substituting the expression for us given in (40), we find that 

4s(q=s; . 
0 

(71) 

(72) 

The Rytov approximation is valid under a less restrictive set of conditions 
than the Born approximation [Che60], [Kel69]. In deriving the Rytov 
approximation we made the assumption that 

(V4s)2+o(i)=o(F). (73) 

Clearly this is true only when 

m s= (V4d2. (74) 

If o(F) is written in terms of the change in refractive index 

o(i) = ki[n2(i) - 1] = kt[(l + ns(i))2- 1] (2% 

and the square of the refractive index is expanded to find 

o(F)=ki[(l +2ns(i)+n,Z(i))- 1] (75) 

o(q = ki[2n6(i) + n,2(7)]. (76) 

To a first approximation, the object function is linearly related to the 
refractive index or 

o(i)=2k#$(i). (77) 

The condition needed for the Rytov approximation (see (74)) can be rewritten 
as 

n 
6 

~ (V4d2 
7’ (78) 

This can be justified by observing that to a first approximation the scattered 
phase, d,, is linearly dependent on the refractive index change, ns, and 
therefore the first term in (73) can be safely ignored for small ns. 

Unlike the Born approximation, the size of the object is not a factor in the 
Rytov approximation. The term V4, is the change in the complex scattered 
phase per unit distance and by dividing by the wavenumber 

ko=!f (79) 
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we find a necessary condition for the validity of the Rytov approximation is 

(80) 

Unlike the Born approximation, it is the change in scattered phase, &, over 
one wavelength that is important and not the total phase. Thus, because of the 
V operator, the Rytov approximation is valid when the phase change over a 
single wavelength is small. 

Since the imaging process is carried out in terms of the field, UB , defined in 
the previous subsection, we need to show a Rytov approximation expression 
for uB. Estimating u,(7) for the Rytov case is slightly more difficult. In an 
experiment the total field, u(J>, is measured. An expression for ~(3 is 
found by recalling the expression for the Rytov solution to the total wave 

u(i)=uo+u,(i)=e~o++~ (81) 

and then rearranging the exponentials to find 

u,=e40+4-e+0 (82) 

u,=e@(eQs- 1) (83) 

24, = uo(e+s - 1). (84) 

Inverting this to find an estimate for the scattered phase, 4,, we obtain 

r#&)=ln 4fs+l . [ 1 uo 635) 

Expanding 4, in terms of (72) we obtain the following estimate for the Rytov 
estimate of ue(i): 

ue(i) = uo(i) In [ 1 4fs+l . 
uo 

Since the natural logarithm is a multiple-valued function, one must be careful 
at each position to choose the correct value. For continuous functions this 
isn’t difficult because only one value will satisfy the continuity requirement. 
On the other hand, for discrete (or sampled) signals the choice isn’t nearly as 
simple and one must resort to a phase unwrapping algorithm to choose the 
proper phase. (Phase unwrapping has been described in a number of works 
[Tri77], [OCo78], [Kav84], [McG82].) Due to the “ + 1” factor inside the 
logarithmic term, this is only a problem if u, is on the order of or larger than 
ug. Thus both the Born and the Rytov techniques can be used to estimate 
usm. 

While the Rytov approximation is valid over a larger class of objects, it is 
possible to show that the Born and the Rytov approximations produce the 
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same result for objects that are small and deviate only slightly from the 
average refractive index of the medium. Consider first the Rytov approxima- 
tion to the scattered wave. This is given by 

u(i) = e40+% (87) 

Substituting an expression for the scattered phase, (72), and the incident field, 
(64), we find 

u(Q = ejkoS’?+e+exp (-jkoSti)u.d?) @8) 

or 

u(q = Uo(fleexp(-jkor”%e(r3e (8% 

For small uB, the first exponential can be expanded in terms of its power 
series. Throwing out all but the first two terms we find that 

u(i)=z.40(i)[l+e-~ko~r uem1 (90) 
01 

u(i) = uo(i) + tie(i). (91) 

Thus for very small objects and perturbations the Rytov solution is 
approximately equal to the Born solution given in (40). 

The similarity between the expressions for the first-order Born and Rytov 
solutions will form the basis of our reconstructions. In the Born approxima- 
tion we measure the complex amplitude of the scattered field and use this as 
an estimate of the function uB, while in the Rytov case we estimate uB from 
the phase of the scattered field. Since the Rytov approximation is considered 
more accurate than the Born approximation it should provide a better estimate 
of ue. In Section 6.5, after we have derived reconstruction algorithms based 
on the Fourier Diffraction Theorem, we will discuss simulations comparing 
the Born and the Rytov approximations. 

6.3 The Fourier Diffraction Theorem 

Fundamental to diffraction tomography is the Fourier Diffraction 
Theorem, which relates the Fourier transform of the measured forward 
scattered data with the Fourier transform of the object. The theorem is valid 
when the inhomogeneities in the object are only weakly scattering. The 
statement of the theorem is as follows: 

When an object, 0(x, y), is illuminated with a plane wave as shown in Fig. 
6.2, the Fourier transform of the forward scattered field measured on line 
TT' gives the values of the 2-D transform, O(wl, 02), of the object along a 
semicircular arc in the frequency domain, as shown in the right half of the 
figure. 
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space domain frequency domain 

Fig. 6.2: The Fourier 
Diffraction Theorem relates the 
Fourier transform of a diffracted 
projection to the Fourier 
transform of the object along a 
semicircular arc. (From [SIa83].) 

The importance of the theorem is made obvious by noting that if an object is 
illuminated by plane waves from many directions over 360”) the resulting 
circular arcs in the (pi, w2)-plane will fill up the frequency domain. The 
function 0(x, u) may then be recovered by Fourier inversion. 

Before giving a short proof of the theorem, we would like to say a few 
words about the dimensionality of the object vis-a-vis that of the wave fields. 
Although the theorem talks about a two-dimensional object, what is actually 
meant is an object that doesn’t vary in the z direction. In other words, the 
theorem is about any cylindrical object whose cross-sectional distribution is 
given by the function 0(x, y). The forward scattered fields are measured on a? 
line of detectors along TT' in Fig. 6.2. If a truly three-dimensional object 
were illuminated by the plane wave, the forward scattered fields would now 
have to be measured by a planar array of detectors. The Fourier transform of 
the fields measured by such an array would give the values of the 3-D 
transform of the object over a spherical surface. This was first shown by Wolf 
[Wo169]. More recent expositions are given in [Nah82] and [Dev84], where 
the authors have also presented a new synthetic aperture procedure for a full 
three-dimensional reconstruction using only two rotational positions of the 
object. In this chapter, however, we will continue to work with two- 
dimensional objects in the sense described here. A recent work describing 
some of the errors in this approach is [LuZ84]. 
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Earlier in this chapter, we expressed the scattered field due to a weakly 
scattering object as the convolution 

uB(i) = s o(i’)u,#‘)g(i- i’) d7’ (92) 

where us(i) represents the complex amplitude of the field as in the Born 
approximation, or the incident field, ua(Q, times the complex scattered 
phase, +,(q, as in the Rytov approximation. Starting from this integral there 
are two approaches to the derivation of the Fourier Diffraction Theorem. 
Many researchers [Mue79], [Gre78], [Dev82] have expanded the Green’s 
function into its plane wave decomposition and then noted the similarity of the 
resulting expression and the Fourier transform of the object. The alternative 
approach consists of taking the Fourier transform of both sides of (92). In this 
work we will present both approaches to the derivation of the Fourier 
Diffraction Theorem; the first because the math is more straightforward, the 
second because it provides a greater insight into the difference between 
transmission and reflection tomography. 

6.3.1 Decomposing the Green’s Function 

We will first consider the decomposition of the Green’s function into its 
plane wave components. 

The integral equation for the scattered field (92) can be considered as a 
convolution of the Green’s function, g(7 - ?), and the product of the object 
function, o(T), and the incident field, ~~(7). Consider the effect of a single 
plane wave illuminating an object. The forward scattered field will be 
measured at the receiver line as is shown in Fig. 6.3. 

A single plane wave in two dimensions can be represented as 

~~(7) = eif*’ (93) 

where B = (k,, k,J satisfies the relationship 

k;=k;+k;. (94) 

From earlier in this chapter, the two-dimensional Green’s function is given 
by 

and HO is the zero-order Hankel function of the first kind. The function H,J 
has the plane wave decomposition [Mor53] 
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Fig. 6.3: A typical diffraction 
tomography experiment is shown. 
Here a single plane wave is used 
to illuminate the object and the 
scattered field is measured on the 
far side of the object. This is 
transmission tomography. (From 
[Pan83].) 

Incident plane wave 

where 7 = (x, y), 7” = (x’, y’) and 

p4q-2. (97) 

Basically, (96) expresses a cylindrical wave, Ha, as a superposition of plane 
waves. At all points, the wave centered at 7’ is traveling outward; for points 
such that y > y ’ the plane waves propagate upward while for y c y ’ the plane 
waves propagate downward. In addition, for IQ] I kO, the plane waves are of 
the ordinary type, propagating along the direction given by tan- l (p/o). 
However, for ICY( > ko, P becomes imaginary, the waves decay exponen- 
tially and they are called evanescent waves. Evanescent waves are usually of 
no significance beyond about 10 wavelengths from the source. 

Substituting this expression, (96), into the expression for the scattered 
field, (92), the scattered field can now be written 

u,c+& i @ ‘)u@ ‘) I”“, $ ,+-h-X’)+@ lU-U’ll da di’. (98) 

In order to show the first steps in the proof of this theorem, we will now 
assume for notational convenience that the direction of the incident plane 
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wave is along the positive y-axis. Thus the incident field will be given by 

uo(Q = ej%‘i (99) 

where Z,, = (0, ko). Since in transmission imaging the scattered fields are 
measured by a linear array located at y = la, where lo is greater than any y- 
coordinate within the object (see Fig. 6.3), the term Iy - y ’ 1 in the above 
expression may simply be replaced by la - y’ and the resulting form may be 
rewritten 

uE(x, y=jo)=k jy, da j $? ej[~(x-x’)+b(r,-r’)leikov’ dJ’. (100) 

Recognizing part of the inner integral as the two-dimensional Fourier 
transform of the object function evaluated at a frequency of (CY, /3 - ko) we 
find 

4(x, Y = lo) = & s 
o, A ej(ux+flto)O(a, p- ko) da 

P 
(101) -m 

where 0 has been used to designate the two-dimensional Fourier transform of 
the object function. 

Let Us(w, /a) denote the Fourier transform of the one-dimensional 
scattered field, uB(x, @, with respect to x, that is, 

UE(w, lo) = ST, uE(x, lo)e-jux dx. (102) 

As mentioned before, the physics of wave propagation dictate that the highest 
angular spatial frequency in the measured scattered field on the line y = 4-, is 
unlikely to exceed ko. Therefore, in almost all practical situations, U,(w, 4~) 
= 0 for ( w ( > ko. This is consistent with neglecting the evanescent modes as 
described earlier. 

If we take the Fourier transform of the scattered field by substituting (101) 
into (102) and using the following property of Fourier integrals 

s 
m 

ej(O-u)x dx= 27r6(w - CY) (103) --o 

where 6( *) is the Dirac delta function we discussed in Chapter 2, we find 

UE(% lo)= J 
2&57 

&GloO(a, w - ko) for I~Y[ <ko. 

(104) 

This expression relates the two-dimensional Fourier transform of the object to 
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the one-dimensional Fourier transform of the field at the receiver line. The 
factor 

is a simple constant for a fixed receiver line. As CY varies from - k0 to kO, the 
coordinates (CX, &? - kc,) in the Fourier transform of the object 
function trace out a semicircular arc in the (u, u)-plane as shown in Fig. 6.2. 
This proves the theorem. 

To summarize, if we take the Fourier transform of the forward scattered 
data when the incident illumination is propagating along the positive y-axis, 
the resulting transform will be zero for angular spatial frequencies 1 CY 1 > /co. 
For 1 (Y 1 < ks, the transform of the data gives values of the Fourier transform 
of the object on the semicircular arc shown in Fig. 6.2 in the (u, u)-plane. 
The endpoints of the semicircular arc are at a distance of fikO from the origin 
in the frequency domain. 

6.3.2 Fourier Transform Approach 

Another approach to the derivation of the Fourier Diffraction Theorem is 
possible if the scattered field 

uB(i)= j o(7’)uo(i’)g(i-7’) dt’ (106) 

is considered entirely in the Fourier domain. The plots of Fig. 6.4 will be 
used to illustrate the various transformations that take place. Again, consider 
the effect of a single plane wave illuminating an object. The forward scattered 
field will be measured at the receiver line as is shown in Fig. 6.3. 

The integral equation for the scattered field, (106), can be considered as a 
convolution of the Green’s function, g(i - 7’), and the product of the object 
function, o(i’), and the incident field, ~~(7). First define the following 
Fourier transform pairs: 

om 4-b ma 

g(i-7’) ++ G(R) (107) 

u(i) 4-b U(B). 

The integral solution to the wave equation, (40), can now be written in 
terms of these Fourier transforms, that is, 

U,(x) = G(f)(O(7i) * Uo(7i)} (108) 

where * has been used to represent convolution and x = (CY, y). In (93) an 
expression for ~0 was presented. Its Fourier transform is given by 

u,(A)=27r~(iL-R) (109) 
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Fig. 6.4: Two-dimensional 
Fourier representation of the 
Hebnholtz equation. (a) is the 
Fourier transform of the object, 
in this case a cylinder, (b) is the 
Fourier transform of the incident 
field, (c) is the Fourier transform 
of the Green

’

s 

function in (95), 
(d) shows the frequency domain 
convolution of (a) and (b), and 
finally (e) is the product in the 
frequency domain of (c) and (d). 
(From [Sla83].) 

and thus the convolution of (108) becomes a shift in the frequency domain or 

O(X) * u,(x)=2~o(x-~). (110) 

This convolution is illustrated in Figs. 6:4(a)-(c) for a plane wave 
propagating with direction vector, J? = (0, ko). Fig. 6.4(a) shows the Fourier 
transform of a single cylinder of radius 1X and Fig. 6.4(b) shows the Fourier 
transform of the incident field. The resulting multiplication in the space 
domain or convolution in the frequency domain is shown in Fig. 6.4(c). 

To find the Fourier transform of the Green

’

s 

function the Fourier 
transform of (32) is calculated to find 

(-A2+/$G(f17

’

)= 

-e-jxei

’

e 

(111) 
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Rearranging terms we see that 

G(7i I”)=& 
0 

(112) 

which has a singularity for all x such that 

(A(2=cY2+y2=k;. 

An approximation to G(x) is shown in Fig. 6.4(d). 

(113) 

The Fourier transform representation in (112) can be misleading because it 
represents a point scatterer as both a sink and a source of waves. A single 
plane wave propagating from left to right can be considered in two different 
ways depending on your point of view. From the left side of the scatterer, the 
point scatterer represents a sink to the wave, while to the right of the scatterer 
the wave is spreading from a source point. Clearly, it’s not possible for a 
scatterer to be both a point source and a sink. Later, when our expression for 
the scattered field is inverted, it will be necessary to choose a solution that 
leads to outgoing waves only. 

The effect of the convolution shown in (106) is a multiplication in the 
frequency domain of the shifted object function, (llO), and the Green’s 
function, (112), evaluated at i’ = 0. The scattered field is written as 

U,(X)=2n 
0(X 4) 

AZ-k2 ’ (114) 

This result is shown in Fig. 6.4(e) for a plane wave propagating along the y- 
axis. Since the largest frequency domain components of the Green’s function 
satisfy (113), the Fourier transform of the scattered fie!d is dominated by a 
shifted and sampled version of the object’s Fourier transform. 

We will now derive an expression for the field at the receiver line. For 
simplicity we will continue;0 assume that the incident field is propagating 
along the positive y-axis or K = (0, ko). The scattered field along the receiver 
line (x, y = lo) is simply the inverse Fourier transform of the field in (114). 
This is written as 

(115) 
which, using (114), can be expressed as 

cm ‘(% y-ko) “(x9 ‘=/,,‘$ s:, j-, a2+y2-k2 e i(-+rlo) da &. (116) 
0 

We will first find the integral with respect to y. For a given (Y, the integral 
has a singularity for 

y1,2= +dzp. (117) 
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Using contour integration we can evaluate the integral with respect to y along 
the path shown in Fig. 6.5. By adding 1/2r of the residue at each pole we find 

u,(x, y) =& 1 rl(cr; y)ejax da+& i r2(a; y)eJux da 

where 

r, = 
jO(w v--k4 eje,o 

24cp 

r 
2 

= -jO(w w--M e-jG,o 
2&5-z 

(118) 

(119) 

w-a 

Examining the above pair of equations we see that rr represents the solution 
in terms of plane waves traveling along the positive y-axis, while r2 
represents plane waves traveling in the -y direction. 

As was discussed earlier, the Fourier transform of the Green’s function 
(112) represents the field due to both a point source and a point sink, but the 
two solutions are distinct for receiver lines that are outside the extent of the 
object. First consider the scattered field along the line y = IO where lo is 
greater than the y-coordinate of all points in the object. Since all scattered 
fields originate in the object, plane waves propagating along the positive y- 
axis represent outgoing waves while waves propagating along the negative y- 
axis represent waves due to a point sink. Thus for y > object (i.e., the 
receiver line is above the object) the outgoing scattered waves are represented 
by I’, or 

u,(x, y) = & l rl(a; y)ej”lw da, y > object. (121) 

Fig. 6.5: Integration path in the Conversely, for a receiver along a line y = lo where lo is less than the y- 
complex plane for inverting the coordinate of any point in the object, the scattered field is represented by r2 
two-dimensional Fourier or 
transform of the scattered field. 
The correct Dole must be chosen 1 n 
to lead to okgoing fields. (From 
[Sla84/.) 

u,(x, y) =k 1 r2(a; y)ejax da, y c object. ww 
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In general, the scattered field will be written as 

(123) 

and it will be understood that values that lead only to outgoing waves should 
be chosen for the square root in the expression for r. 

Taking the Fourier transform of both sides of (123) we find that 

s U(X, y= lo)e-jax dx= I’(a, 10). (124) 

But since by (119) and (120)) I’(a, lo) is equal to a phase shifted version of the 
object function, the Fourier transform of the scattered field along the line y = 
lo is related to the Fourier transform of the object along a circular arc. The use 
of the contour integration is further justified by noting that only those waves 
that satisfy the relationship 

cr2+y2=k; (125) 

will be propagated and thus it is safe to ignore all waves not on the ko-circle. 
This result is diagrammed in Fig. 6.6. The circular arc represents the locus 

of all points (CY, y) such that y = m The solid line shows the 
outgoing waves for a receiver line at y = lo above the object. This can be 
considered transmission tomography. Conversely, the broken line indicates 
the locus of solutions for the reflection tomography case, or y = lo is below 
the object. 

6.3.3 Short Wavelength Limit of the Fourier Diffraction Theorem 

Fig. 6.6: Estimates of the 
two-dimensional Fourier 

While at first the derivations of the Fourier Slice Theorem and the Fourier 
transform of the object are Diffraction Theorem seem quite different, it is interesting to note that in the 
available along the solid arc for limit of very high energy waves or, equivalently, very short wavelengths the 
transmission tomography and the 
broken arc for reflection 

Fourier Diffraction Theorem approaches the Fourier Slice Theorem. Recall 
tomography. (Adapted from that the Fourier transform of a diffracted projection corresponds to samples of 
[Sla84/.) the two-dimensional Fourier transform of an object along a semicircular arc. 

0 
Objects 

0 

/’ 
k, 
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The radius of the arc shown in Fig. 6.2 is equal to k. which is given by 

and X is the wavelength of the energy. As the wavelength is decreased, the 
wavenumber, ko, and the radius of the arc in the object’s Fourier domain 
grow. This process is illustrated in Fig. 6.7 where we have shown the 
semicircular arcs resulting from diffraction experiments at seven different 
frequencies. 

An example might make this idea clearer. An ultrasonic tomography 
experiment might be carried out at a frequency of 5 MHz which corresponds 
to a wavelength in water of 0.3 mm. This corresponds to a k. of 333 radians/ 
meter. On the other hand, a hypothetical coherent x-ray source with a lOO- 
keV beam has a wavelength of 0.012 PM. The result is that a diffraction 
experiment with x-rays can give samples along an arc of radius 5 x lo8 
radians/meter. Certainly for all physiological features (i.e., resolutions of < 
1000 radians/meter) the arc could be considered to be a straight line and the 
Fourier Slice Theorem an excellent model for relating the transforms of the 
projections with the transform of the object. 

6.3.4 The Data Collection Process 

The best that can be hoped for in any tomographic experiment is to estimate 
the Fourier transform of the object for all frequencies within a disk centered 

Fig. 6.1: As the frequency of 
at the origin. For objects whose spectra have no frequency content outside the 

the experiment goes up disk, the reconstruction procedure is perfect. 
(wavelength goes down) the There are several different procedures that can be used to estimate the 
radius of the arc increases until 
the scattered field is closely 

object function from the scattered field. A single plane wave provides exact 
approximated by the Fourier Slice information (up to a frequency of ako) about the Fourier transform of the 
Theorem discussed in Chapter 3. object along a semicircular arc. Two of the simplest procedures involve 

A Objects 

% 

k =Bk, 

k= 17k, 
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changing the orientation and frequency of the incident plane waves to move 
the frequency domain arcs to a new position. By appropriately choosing an 
orientation and a frequency it is possible to estimate the Fourier transform of 
the object at any given frequency. In addition, it is possible to change the 
radius of the semicircular arc by varying the frequency of the incident field 
and thus generating an estimate of the entire Fourier transform of the object. 

The most straightforward data collection procedure was discussed by 
Mueller et al. [Mue80] and consists of rotating the object and measuring the 
scattered field for different orientations. Each orientation will produce an 
estimate of the object’s Fourier transform along a circular arc and these arcs 
will rotate as the object is rotated. When the object has rotated through a full 
360” an estimate of the object will be available for the entire Fourier disk. 

The coverage for this method is shown in Fig. 6.8 for a simple experiment 
with eight projections of nine samples each. Notice that there are two arcs 
that pass through each point of Fourier space. Generally, it will be necessary 
to choose one estimate as better. 

On the other hand, if the reflected data are collected by measuring the field 
on the same side of the object as the source, then estimates of the object are 

Fig. 6.8: With plane wave available for frequencies greater than akO. This follows from Fig. 6.6. 
illumination, estimates of the 
object’s two-dimensional Fourier 

Nahamoo and Kak [Nah82], [Nah84] and Devaney [Dev84] have proposed 
transform are available along the a method that requires only two rotational views of an object. Consider an 
circular arcs. arbitrary source of waves in the transmitter plane as shown in Fig. 6.9. The 
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Fig. 6.9: A typical synthetic 
aperture tomography experiment 
is shown. A transmitter is 
scanned past the object. For each 
transmitter position the scattered 
field is measured. Later, 
appropriate phases are added to 
the projections to synthesize any 
incident plane wave. (From 
[Sla83/.) 

transmitted field, ur, can be represented as a weighted set of plane waves by 
taking the Fourier transform of the transmitter aperture function [Goo68]. 
Doing this we find 

u,(x) =-$ jy, At(kx)ejkxx dk,. (127) 

Moving the source to a new position, 7, the plane wave decomposition of the 
transmitted field becomes 

G iven the plane wave decomposition, the incident field in the plane follows 
simply as 

ui(v; x, y)= so)_ (--$ ,4,(kx)ejkxq) ej(kxx+kyy) dk,. (129) 

In (124) we presented an equation for the scattered field from a single plane 
wave. Because of the linearity of the Fourier transform the effect of each 
plane wave, ej(+++‘), can be weighted by the expression in brackets above 
and superimposed to find the Fourier transform of the total scattered field due 
to the incident field u,(x; q) as [Nah82] 
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Taking the Fourier transform of both sides with respect to the transmitter 
position, 7, we find that 

Us(kx; a) =4(k) 
O(a-kx, r-k,) 

j27 ’ 

By collecting the scattered field along the receiver line as a function of 
transmitter position, 7, we have an expression for the scattered field. Like the 
simpler case with plane wave incidence, the scattered field is related to the 
Fourier transform of the object along an arc. Unlike the previous case, 
though, the coverage due to a single view of the object is a pair of circular 
disks as shown in Fig. 6.10. Here a single view consists of transmitting from 
all positions in a line and measuring the scattered field at all positions along 
the receiver line. By rotating the object by 90” it is possible to generate the 
complementary disk and to fill the Fourier domain. 

The coverage shown in Fig. 6.10 is constructed by calculating (g - x) for 
all vectors (a and (x) that satisfy the experimental constraints. Not only 
must each vector satisfy the wave equation but it is also necessary that only 
forward traveling plane waves be used. The broken line in Fig. 6.10 shows 

Fig. 6.10: Estimates of the the valid propagation vectors (- & for the transmitted waves. To each 
Fourier transform of an object in 
the synthetic aperture experiment 

possible vector ( - x) a semicircular set of vectors representing each possible 
are available in the shaded received wave can be added. The locus of received plane waves is shown as a 
region. solid semicircle centered at each of the transmitted waves indicated by an x . 

t ky 
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The entire coverage for the synthetic aperture approach is shown as the 
shaded areas. 

In geophysical imaging it is not possible to generate or receive waves from 
all positions around the object. If it is possible to drill a borehole, then it is 
possible to perform vertical seismic profiling (VSP) [Dev83] and obtain 
information about most of the object. A typical experiment is shown in Fig. 
6.11. So as to not damage the borehole, acoustic waves are generated at the 
surface using acoustic detonators or other methods and the scattered field is 
measured in the borehole. 

Fig. 6.11: A typical vertical 
seismic profiling (HP) 
experiment. 

The coverage in the frequency domain is similar to the synthetic aperture 
approach in [Nah84]. Plane waves at an arbitrary downward direction are 
synthesized by appropriately phasing the transmitting transducers. The 
receivers will receive any waves traveling to the right. The resulting coverage 
for this method is shown in Fig. 6.12(a). If we further assume that the object 
function is real valued, we can use the symmetry of the Fourier transform for 
real-valued functions to obtain the coverage in Fig. 6.12(b). 

It is also possible to perform such experiments with broadband illumination 
[Ken82]. So far we have only considered narrow band illumination wherein 
the field at each point can be completely described by its complex amplitude. 

Now consider a transducer that illuminates an object with a plane wave of 
the form A,(t). It can still be called a plane wave because the amplitude of the 

Borehole 
\ 

Scattered WCWCZ 

232 COMPUTERIZED TOMOGRAPHIC IMAGING 



Fig. 6.12: Available estimate of 
the Fourier transform of an 
object for a VSP experiment (a). 
If the object function is real 
valued, then the symmetry of the 
Fourier transform can be used to 
estimate the object in the region 
shown in (b). 

(4 

(b) 

field along planes perpendicular to the direction of travel is constant. Taking 
the Fourier transform in the time domain we can decompose this field into a 
number of experiments, each at a different temporal frequency, w. We let 

At@-, Y, w) = j;- A,(x, y, t)e+jwt dt (132) 

where the sign on the exponential is positive because of the convention 
defined in Section 6.1.1. 

G iven the amplitude of the field at each temporal frequency, it is 
straightforward to decompose the field into plane wave components by 
finding its Fourier transform along the transmitter plane. Each plane wave 
component is then described as a function of spatial frequency, k, = 
A(-), and temporal frequency, o. The temporal frequency w is related 
to k, by 

km=: 
w (133) 
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where c is the speed of propagation in the media and the wave vector (k,, ky) 
satisfies the wave equation 

k;+k;=k;. (134) 

If a unit amplitude plane wave illumination of spatial frequency k, and a 
temporal frequency w leads to a scattered plane wave with amplitude u,(k,, 
w), then the total scattered field is given by a weighted superposition of the 
scattered fields or 

us(x Y; t) =& s;, do sTk dkA(k,, tile- jutus(kx, W; y)&(W+$Y). 
0 

(135) 

For plane wave incidence the coverage for this method is shown in Fig. 
6.13(a). Fig. 6.13(b) shows that by doing four experiments at 0,90, 180, and 
270” it is possible to gather information about the entire object. 

6.4 Interpolation and a Filtered Backpropagation Algorithm for Diffracting 
Sources 

In our proof of the Fourier Diffraction Theorem, we showed that when an 
object is illuminated with a plane wave traveling in the positive y direction, 
the Fourier transform of the forward scattered fields gives values of the arc 
shown in Fig. 6.2. Therefore, if an object is illuminated from many different 
directions, we can, in principle, fill up a disk of diameter &2k in the 
frequency domain with samples of 0( ulr Q), which is the Fourier transform 
of the object, and then reconstruct the object by direct Fourier inversion. 
Therefore, we can say that diffraction tomography determines the object up to 
a maximum angular spatial frequency of &2k. To this extent, the recon- 
structed object is a low pass version of the original. In practice, the loss of 
resolution caused by this bandlimiting is negligible, being more influenced by 
considerations such as the aperture sizes of the transmitting and receiving 
elements, etc. 

The fact that the frequency domain samples are available over circular 
arcs, whereas for convenient display it is desirable to have samples over a 
rectangular lattice, is a source of computational difficulty in reconstruction 
algorithms for diffracting tomography. To help the reader visualize the 
distribution of the available frequency domain information, we have shown in 
Fig. 6.8 the sampling points on a circular arc grid, each arc in this grid 
corresponding to the transform of one projection. It should also be clear from 
this figure that by illuminating the object over 360” a double coverage of the 
frequency domain is generated; note, however, that this double coverage is 
uniform. We may get a complete coverage of the frequency domain with 
illumination restricted to a portion of 360”; however, in that case there would 
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kY 

k=co 
* 

Objects 
kx 

k=Bk, 

Fig. 6.13: (a) Estimates of the be patches in the (wi, &-plane where we would have a double coverage. In 
Fourier transform of an object 
for broadband illumination. With 

reconstructing from circular arc grids to rectangular grids, it is often easier to 
four views the coverage shown in contend with a uniform double coverage, as opposed to a coverage that is 
(b) is possible. single in most areas and double in patches. 

However, for some applications that do not lend themselves to data 
collection from all possible directions, it is useful to bear in mind that it is not 
necessary to go completely around an object to get complete coverage of the 
frequency domain. In principle, it should be possible to get an equal quality 
reconstruction when illumination angles are restricted to a 180

” 

plus an 
interval, the angles in excess of 180

” 

being required to complete the coverage 
of the frequency domain. 

There are two computational strategies for reconstructing the object from 
the measurements of the scattered field. As pointed out in [Sou84a], the two 
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algorithms can be considered as interpolation in the frequency domain and 
interpolation in the space domain; and are analogous to the direct Fourier 
inversion and backprojection algorithms of conventional tomography. Unlike 
conventional tomography, where backprojection is the preferred approach, 
the computational expense of space domain interpolation of diffracted 
projections makes frequency domain interpolation the preferred approach for 
diffraction tomography reconstructions. 

The remainder of this section will consist of derivations of the frequency 
domain and space domain interpolation algorithms. In both cases we will 
assume plane wave illumination; the reader is referred to [Dev82], [Pan831 
for reconstruction algorithms for the synthetic aperture approach and to 
[Sou84b] for the general case. 

6.4.1 Frequency Domain Interpolation 

There are two schemes for frequency domain interpolation. The more 
conventional approach is polynomial based and assumes that the data near 
each grid point can be approximated by polynomials. This is the classical 
numerical analysis approach to the problem. A second approach is known as 
the unified frequency domain reconstruction (UFR) and interpolates data in 
the frequency domain by assuming that the space domain reconstruction 
should be spatially limited. We will first describe polynomial interpolation. 

In order to discuss the frequency domain interpolation between a circular 
arc grid on which the data are generated by diffraction tomography and a 
rectangular grid suitable for image reconstruction, we must first select 
parameters for representing each grid and then write down the relationship 
between the two sets of parameters. 

In (104), UB(W, 10) was used to denote the Fourier transform of the 
transmitted data when an object is illuminated with a plane wave traveling 
along the positive y direction. We now use UB,~(W) to denote this Fourier 
transform, where the subscript 4 indicates the angle of illumination. This 
angle is measured as shown in Fig. 6.14. Similarly, Q(w, 4) will be used to 
indicate the values of O(w,, w2) along a semicircular arc oriented at an angle 
C#I as shown in Fig. 6.15 or 

Q(o, x@-i? - k,,), Iwl <ko- (136) 

Therefore, when an illuminating plane wave is incident at angle 4, the 
equality in (104) can be rewritten as 

.i u&e(~) = - 2 d---& exp W~lQ(w 4) for (wick. (137) 

In most cases the transmitted data will be uniformly sampled in space, and 
a discrete Fourier transform of these data will generate uniformly spaced 
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Fig. 6.14: The angle $I is used to 
identify each diffraction 
projection. (From [Pan83j,) 

Fig. 6.15: Each projection is 
measured using the 6 - w 
coordinate system shown here. 
(From [Kak;85].) 
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frequency domain 
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Fig. 6.16: Uniformly sampling 
the projection in the space 
domain leads to uneven spacing 
of the samples of the Fourier 
transform of the object along the 
semicircular arc. (Adapted from 
(Pan83J.) 

samples of U&o) in the o domain. Since Q(w) is the Fourier transform of 
the object along the circular arc AOB in Fig. 6.15 and since K is the 
projection of a point on the circular arc on the tangent line CD, the uniform 
samples of Q  in K translate into nonuniform samples along the arc AOB as 
shown in Fig. 6.16. We will therefore designate each point on the arc AOB 
by its (0, 4) parameters. [Note that (0, 4) are not the polar coordinates of a 
point on arc AOB in Fig. 6.15. Therefore, w is not the radial distance in the 
(wi , wz)-plane. For point E shown, the parameter w is obtained by projecting 
E onto line CD.] We continue to denote the rectangular coordinates in the 
frequency domain by (wi, wz). 

Before we present relationships between (w, 4) and (wr, 4, it must be 
mentioned that we must consider separately the points generated by the A0 
and OB portions of the arc AOB as r$ is varied from 0 to 27r. We do this 
because, as mentioned before, the arc AOB generates a double coverage of 
the frequency domain, as 4 is varied from 0 to 2n, which is undesirable for 
discussing a one-to-one transformation between the (w, 4) parameters and the 
(wi, w2) coordinates. 

We now reserve (w, 4) parameters to denote the arc grid generated by the 
portion OB as shown in Fig. 6.15. It is important to note that for this arc grid, 
w varies from 0 to k and 4 from 0 to 27r. 

We now present the transformation equations between (w, 4) and (wi, WZ). 
We accomplish this in a slightly roundabout manner by first defining polar 

sampling along the are 
is non-uniform 

frequency domain 
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coordinates (Q, 0) in the (q, w2)-plane as shown in Fig. 6.17. In order to go 
from (CO,, w2) to (w , 4) , we will first transform from the former coordinates to 
(Q, 13) and then from (Q, 0) to (w, 4). The rectangular coordinates (CO,, wZ) are 
related to the polar coordinates (Q, 19) by (Fig. 6.17) 

e=m-l 2 . 
0 *I (139) 

In order to relate (Q, 8) to (w, q5), we now introduce a new angle /3, which is 
the angular position of a point (q, 02) on arc OB in Fig. 6.17. Note from the 
figure that the point characterized by angle /3 is also characterized by 
parameter w. The relationship between w and P is given by 

w=k sin fl. (140) 

The following relationship exists between the polar coordinates (0, 8) on the 
one hand and the parameters j3 and q5 on the other: 

Fig. 6.17: A second change of 
variables is used to relate the 
projection data to the object’s 
Fourier transform. (From 
[Kak85] as modified from 
[Pan83].) 

p=2 n sin-’ - 
2k (141) 

(142) 

frequency domain 

TOMOGRAPHIC IMAGING WITH DIFFRACTING SOURCES 239 



By substituting (141) in (140) and then using (138), we can express w in terms 
of wI and w2. The result is shown below. 

w=ksin psin-i (T)] . (143) 

Similarly, by substituting (139) and (141) in (142), we obtain 

4=tan-’ (z)+sin-i (F)+i. (144) 

These are our transformation equations for interpolating from the (w, 4) 
parameters used for data representation to the (wl, w2) parameters needed for 
inverse transformation. To convert a particular rectangular point into (w, 4) 
domain, we substitute its wl and w2 values in (143) and (144). The resulting 
values for w and 9 may not correspond to any’ for which Q(w, 6) is known. 
By virtue of (137), Q(w, 6) will only be known over a uniformly sampled set 
of values for w and 6. In order to determine Q at the calculated w and 4, we 
use the following procedure. Given N, x N+ uniformly located samples, 
Q(wi, dj), we calculate a bilinearly interpolated value of this function at the 
desired w and q5 by using 

(145) 
i=l j=* 

where I-!4 
hi(W) = Aw 

IwIsAw 
(146) 

0 otherwise 

I4l~WJ 
otherwise; 

(147) 

A6 and Aw are the sampling intervals for 4 and w, respectively. When 
expressed in the manner shown above, bilinear interpolation may be 
interpreted as the output of a filter whose impulse response is hlh2. 

The results obtained with bilinear interpolation can be considerably 
improved if we first increase the sampling density in the (w, +)-plane by using 
the computationally efficient method of zero-extending the two-dimensional 
inverse fast Fourier transform (FFT) of the Q(wi, 4j) matrix. The technique 
consists of first taking a two-dimensional inverse FFT of the N, x N4 matrix 
consisting of the Q(wi, 4j) values, zero-extending the resulting N, x N+ 
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array of numbers to, let’s say, mN, x nM,, and then taking the FFT of this 
new array. The result is an mn-fold increase in the density of samples in the 
(w, +)-plane. After computing Q(w, 4) at each point of a rectangular grid by 
the procedure outlined above, the objectf(x, y) is obtained by a simple 2-D 
inverse FFT . 

A different approach to frequency domain interpolation, called the unified 
frequency domain (UFR) interpolation, was proposed by Kaveh et al. 
[Kav84]. In this approach an interpolating function is derived by taking into 
account the object’s spatial support. Consider an object’s Fourier transform 
as might be measured in a diffraction tomography experiment. If the Fourier 
domain data are denoted by F(u, v), then a reconstruction can be written 

J-(x, u) = i(x, Y) IFT {W, u>> 

where the indicator function is given by 

(148) 

where the object is known to have support 
elsewhere. (149) 

If the Fourier transform of i(x, u) is I(u, u), then the spatially limited 
reconstruction can be rewritten 

f(x, y)=IFT (4~ u) * F(u, u>) (150) 

by noting that multiplication in the space domain is equivalent to convolution 
in the frequency domain. To perform the inverse Fourier transform fast it is 
necessary to have the Fourier domain data on a rectangular grid. First 
consider the frequency domain convolution; once the data are available on a 
rectangular grid the inverse Fourier transform can easily be calculated as it is 
for polynomial interpolation. 

The frequency domain data for the UFR reconstruction can be written as 

F(u, u)= j j Z(u-u’, U-u’)F(u’, u’) du’ du’. (151) 

Now recall that the experimental data, F(u ’ , u’), are only available on the 
circular arcs in the 4 - w space shown in Fig. 6.15. By using the change of 
variables 

and the Jacobian of the transformation given by 

d(u’, u’) 
J(4, W)’ a(4, w) I I (153) 
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the convolution can be rewritten 

F(u, VI= j j J(4, wV(u - TIC& wh 

u- T2(4, w))F(TI(~, WI, T2(4, w)) d4 dw. (154) 

This convolution integral gives us a means to get the frequency domain data 
on a rectangular grid and forms the heart of the UFR interpolation algorithm. 

This integral can be easily discretized by replacing each integral with a 
summation over the projection angle, 4, and the spatial frequency of the 
received field, w. The frequency domain data can now be written as 

F(u, u) = A,A,EEJ(+, w) 

Z(u- Tl(4, w), u- T2(49 w)) 

F(TI(~, w), T2(6 w)) (155) 

where Ad and Aw represent the sampling intervals in the C$ - w space. 
If the indicator function, i(x, u), is taken to be 1 only within a circle of 

radius R, then its Fourier transform is written 

Z(u, u)= 
J,(Rdu2 + u2) 

Rm ’ 
(156) 

A further simplification of this algorithm can be realized by noting that only 
the main lobe of the Bessel function will contribute much to the summation in 
(155). Thus a practical implementation can ignore all but the main lobe. This 
drastically reduces the computational complexity of the algorithm and leads 
to a reconstruction scheme that is only slightly more complicated than bilinear 
interpolation. 

6.4.2 Backpropagation Algorithms 

It has recently been shown by Devaney [Dev82] and Kaveh et al. [Kav82] 
that there is an alternative method for reconstructing images from the 
diffracted projection data. This procedure, called the filtered backpropaga- 
tion method, is similar in spirit to the filtered backprojection technique of x- 
ray tomography. Unfortunately, whereas the filtered backprojection al- 
gorithms possess efficient implementations, the same can’t be said for the 
filtered backpropagation algorithms. The latter class of algorithms is 
computationally intensive, much more so than the interpolation procedure 
discussed above. With regard to accuracy, they don’t seem to possess any 
particular advantage especially if the interpolation is carried out after 
increasing the sampling density by the use of appropriate zero-padding as 
discussed above. 

We will follow the derivation of the backpropagation algorithm as first 
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presented by Devaney [Dev82]. First consider the inverse Fourier transform 
of the object function, 

1 - - 
o(i)=- s s (27r)2 -m 

O(R)ejper di?. 
--m (157) 

This integral most commonly represents the object function in terms of its 
Fourier transform in a rectangular coordinate system representing the 
frequency domain. As we have already discussed, a diffraction tomography 
experiment measures the Fourier transform of the object along circular arcs; 
thus it will be easier to perform the integration if we modify it slightly to use 
the projection data more naturally. We will use two coordinate transforma- 
tions to do this: the first one will exchange the rectangular grid for a set of 
semicircular arcs and the second will map the arcs into their plane wave 
decomposition. 

We first exchange the rectangular grid for semicircular arcs. To do this we 
represent B = (k,, k,) in (157) by the vector sum 

if= ko(s’-S,) (158) 

where f = (cos $o, sin +o) and s’ = (cos x, sin x) are unit vectors 

Fig. 6.18: - ) The kOrO and kOs used 
representing the direction of the wave vector for the transmitted and the 

in the backpropagation algorithm received plane waves,, respectively. This coordinate transformation is 
are shown here. (From [Pan83/.) illustrated in Fig. 6.18. 

frequency domain 

TOMOGRAPHIC IMAGING WITH DIFFRACTING SOURCES 243 



To find the Jacobian of this transformation write 

k, = k. (cos x - cos 90) 

ky = ko (sin x - sin 90) 

and 

dk,dk, = Ikt sin (X - &)I dx d& 

= koh - cos2 (x-do) dx ddo 

= koJ1 - (3. G)2 dx d& 

and then (157) becomes 

(159) 

(160) 

(161) 

(162) 

(163) 

1 1 
o(F)=-- - 

0 (27r)2 2 ki 

2* 2* 
. SS” 1 -(S . Fo)2 O[k,(?-G)] ejk@WPdX dtio. (164) 0 0 

The factor of l/2 is necessary because as discussed in Section 6.4.1 the (x, 
40) coordinate system gives a double coverage of the (k,, ky) space. 

This integral gives an expression for the scattered field as a function of the 
(x, +o) coordinate system. The data that are collected will actually be a 
function of +o, the projection angle, and K, the one-dimensional frequency of 
the scattered field along the receiver line. To make the final coordinate 
transformation we take the angle x to be relative to the (K, y) coordinate 
system. This is a more natural representation since the data available in a 
diffraction tomography experiment lie on a semicircle and therefore the data 
are available only for 0 5 x I ?r. We can rewrite the x integral in (164) by 
noting 

cos x = /r/k0 (165) 

and therefore 

sin x=y/ko (166) 

dx=G dtc. 
0 

(167) 

The x integral becomes 

' j" dK IKIO[ko(~-%)]ejk(s'-~)'PdK, 

ko -koY 
(168) 
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Fig. 6.19: In backpropagation 
the projection is backprojected 
with a depth-dependent filter 
function. At each depth, 7, the 
filter corresponds to propagating 
the field a distance of Aq. (From 
[Sla83].) 

Using the Fourier Diffraction Theorem as represented by (104) we can 
approximate the Fourier transform of the object function, 0, by a simple 
function of the first-order Born field, ug, at the receiver line. Thus the object 
function in (168) can be written 

O [ko(s’-?,,)I = - 27jUB(K, y - ko)e-jY’0. (169) 

In addition, if a rotated coordinate system is used for 7 = (E, 11) where 

[=x sin 4-r cos C#J (170) 

and 

7~=xcos 4+sin 4, (171) 

then the dot product ko(s’ - &) can be written 

KC; + (Y - koh. (172) 

The coordinates (4,~) are illustrated in Fig. 6.19. Using the results above we 
can now write the x integral of (164) as 

2j ko 
k s_, dKj/cj ue(K, y-ko)e-jyroeKE+(r-k)~ 

0 0 (173) 

TOMOGRAPHIC IMAGING WITH DIFFRACTING SOURCES 245 



and the equation for the object function in (164) becomes 

~KIKI uB(K, y- ko)e-‘y’oe’KE+‘(y-kO)‘l. (174) 

To bring out the filtered backpropagation implementation, we write here 
separately the inner integration: 

b(Et V)=& jy r,(w)N(w)-G,(w) exp (j&) dw (175) m 

where 

H(w)= IWI, IWI Sk09 (176) 

=o, 101 >ko (177) 

and 

G,(w)=exp [j(v-ko)rl], lwl Sk,, (178) 

=o, lwl>k (179) 

r&w) = UB(K, y - ko)e-W ww 

Without the extra filter function G,(w), the rest of (175) would correspond to 
the filtering operation of the projection data in x-ray tomography. The 
filtering as called for by the transfer function G,(w) is depth dependent due to 
the parameter q, which is equal to x cos $ + y sin d. 

In terms of the filtered projections I&,([, r]) in (175), the reconstruction 
integral of (174) may be expressed as 

fk Y)=& d4Wx sin 4 -y cos 4, xcos 4+ysin 9). (181) 

The computational procedure for reconstructing an image on the basis of 
(175) and (181) may be presented in the form of the following steps: 

Step 1: In accordance with (173, filter each projection with a separate filter 
for each depth in the image frame. For example, if we chose only 
nine depths as shown in Fig. 6.19, we would need to apply nine 
different filters to the diffracted projection shown there. (In most 
cases for a 128 x 128 reconstruction grid, the number of discrete 
depths chosen for filtering the projection will also be around 128. If 
there are much less than 128, spatial resolution will suffer.) 

Step 2: To each pixel (x, y) in the image frame, in accordance with (181), 
allocate a value of the filtered projection that corresponds to the , 
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nearest depth line. Since it is unlikely that a discrete implementation 
of (175) will lead to data at the precise location of each pixel, some 
form of polynomial interpolation (i.e., bilinear) will lead to better 
reconstructions. 

Step 3: Repeat the preceding two steps for all projections. As a new 
projection is taken up, add its contribution to the current sum at pixel 
(x9 Yh 

The depth-dependent filtering in Step 1 makes this algorithm computa- 
tionally very demanding. For example, if we choose Nq depth values, the 
processing of each projection will take (N,, + 1) fast Fourier transforms 
(FFTs). If the total number of projections is N+, this translates into 
(N,, + l)N, FFTs. For most N x N reconstructions, both NV and N+ will be 
approximately equal to N. Therefore, Devaney’s filtered backpropagation 
algorithm will require approximately N2 FFTs compared to 4N FFTs for 
frequency domain interpolation. (For precise comparisons, we must mention 
that the FFTs for the case of frequency domain interpolation are longer due to 
zero-padding.) 

Devaney [Dev82] has also proposed a modified filtered backpropagation 
algorithm, in which G,(w) is simply replaced by a single G,,(o) where no = 
x0 cos C#J + y. sin 4, (x0, yo) being the coordinates of the point where local 
accuracy in reconstruction is desired. (Elimination of depth-dependent 
filtering reduces the number of FFTs to 2N6.) 

6.5 Limitations 

There are several factors that limit the accuracy of diffraction tomography 
reconstructions. These limitations are caused both by the approximations that 
must be made in the derivation of the reconstruction process and the 
experimental factors. 

The mathematical and experimental effects limit the reconstruction in 
different ways. The most severe mathematical limitations are imposed by the 
Born and the Rytov approximations. These approximations are fundamental 
to the reconstruction process and limit the range of objects that can be 
examined. On the other hand, it is only possible to collect a finite amount of 
data and this gives rise to errors in the reconstruction which can be attributed 
to experimental limitations. Up to the limit in resolution caused by evanescent 
waves, and given a perfect reconstruction algorithm, it is possible to improve 
a reconstruction by collecting more data. It is important to understand the 
experimental limitations so that the experimental data can be used efficiently. 

6.5.1 Mathematical Limitations 

Computer simulations were performed to study several questions posed by 
diffraction tomography. In diffraction tomography there are different 
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approximations involved in the forward and inverse directions. In the forward 
process it is necessary to assume that the object is weakly scattering so that 
either the Born or the Rytov approximation can be used. Once an expression 
for the scattered field is derived it is necessary not only to measure the 
scattered fields but then numerically implement the inversion process. 

By carefully designing the simulations it is possible to separate the effects 
of the approximations. To study the effects of the Born and the Rytov 
approximations it is necessary to calculate (or even measure) the exact fields 
and then use the best possible (most exact) reconstruction formulas available. 
The difference between the reconstruction and the actual object is a measure 
of the quality of the approximations. 

6.5.2 Evaluation of the Born Approximation 

The exact field for the scattered field from a cylinder, as shown by Weeks 
[Wee641 and by Morse and Ingard [Mor68], was calculated for cylinders of 
various sizes and refractive indexes. In the simulations that follow a single 
plane wave of unit wavelength was incident on the cylinder and the scattered 
field was measured along a line at a distance of 100 wavelengths from the 
origin. In addition, all refractive index changes were modeled as monopole 
scatterers. By doing this the directional dependence of dipole scatterers didn’t 
have to be taken into account. 

At the receiver line the received wave was measured at 512 points spaced at 
l/2 wavelength intervals. In all cases the rotational symmetry of a single 
cylinder at the origin was used to reduce the computation time of the 
simulations. 

The results shown in Fig. 6.20 are for cylinders of four different refractive 
indexes. In addition, Fig. 6.21 shows plots of the reconstructions along a line 
through the center of each cylinder. Notice that the y-coordinate of the center 
line is plotted in terms of change from unity. 

The simulations were performed for refractive indexes that ranged from a 
0.1% change (refractive index of 1 .OOl) to a 20% change (refractive index of 
1.2). For each refractive index, cylinders of size 1, 2,4, and 10 wavelengths 
were reconstructed. This gives a range of phase changes across the cylinder 
(see (50)) from 0.004~ to 167r. 

Clearly, all the cylinders of refractive index 1.001 in Fig. 6.20 were 
perfectly reconstructed. As (50) predicts, the results get worse as the product 
of refractive index and radius gets larger. The largest refractive index that 
was successfully reconstructed was for the cylinder in Fig. 6.20 of radius 1 
wavelength and a refractive index that differed by 20 % from the surrounding 
medium. 

While it is hard to evaluate quantitatively the two-dimensional reconstruc- 
tions, it is certainly reasonable to conclude that only cylinders where the 
phase change across the object was less than or equal to 0.87r were adequately 
reconstructed. In general, the reconstruction for each cylinder where the 
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phase change across the cylinder was greater than T shows severe artifacts 
near the center. This limitation in the phase change across the cylinder is 
consistent with the condition expressed in (51). 

Finally, it is important to note that the reconstructions in Fig. 6.20 don’t 
show the most severe limitation of the Born approximation, which is that the 
real and imaginary parts of a reconstruction can get mixed up. For objects 
that don’t satisfy the 0.8r phase change limitation the Born approximation 
causes some of the real energy in the reconstruction to be rotated into the 
imaginary plane. This further limits the use of the Born approximation when 
it is necessary to separately image the real and imaginary components of the 
refractive index. 

6.5.3 Evaluation of the Rytov Approximation 

Fig. 6.22 shows the simulated results for 16 reconstructions using the 
Rytov approximation. To emphasize the insensitivity of the Rytov approxi- 
mation to large objects the largest object simulated had a diameter of lOOh. 
Note that these reconstructions are an improvement over those published in 
[Sla84] due to decreased errors in the phase unwrapping algorithm used. ’ 
This was accomplished by using an adaptive phase unwrapping algorithm as 
described in [Tri77] and by reducing the sampling interval on the receiver 
line to 0.125X. 

It should be pointed out that the rounded edges of the 1X reconstructions 
aren’t due to any limitation of the Rytov approximation but instead are the 
result of a two-dimensional low pass filtering of the reconstructions. Recall 
that for a transmission experiment an estimate of the object’s Fourier 
transform is only available up to frequencies less than &ko. Thus the 
reconstructions shown in Fig. 6.22 show the limitations of both the Rytov 
approximation and the Fourier Diffraction Theorem. 

6.5.4 Comparison of the Born and Rytov Approximations 

Reconstructions using exact scattered data show the similarity of the Born 
and the Rytov approximations. Within the limits of the Fourier Diffraction 
Theorem the reconstructions in Figs. 6.20 and 6.22 of a 1X object with a 
small refractive index are similar. In both cases the reconstructed change in 
refractive index is close to that of the simulated object. 

The two approximations differ for objects that have a large refractive index 
change or have a large radius. The Born reconstructions are good at a large 
refractive index as long as the phase shift of the incident field as predicted by 
(50) is less than ?r. 

On the other hand, the Rytov approximation is very sensitive to the 
refractive index but produces excellent reconstructions for objects as large as 

’ Many thanks to M. Kaveh of the University of Minnesota for pointing this out to the authors. 
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Fig. 6.20: Reconstructions of 16 lOOh. Unfortunately, for objects with a refractive index larger than a few 
different cylinders are shown 
indicating the effect of cylinder 

percent the Rytov approximation quickly deteriorates. 
radius and refractive index on the In addition to the qualitative studies a quantitative study of the error in the 
Born approximation. (From Born and Rytov reconstructions was also performed. As a measure of error 
[SIa84/.) we used the relative mean squared error in the reconstruction of the object 

function integrated over the entire plane. If the actual object function is o(i) 
and the reconstructed object function is o ’ (i) , then the relative mean squared 
error (MSE) is 

IS 
[0(3--o

’

(i)]~ 

di 
k-m

l2 

* (182) 
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Fig. 6.20: Continued. For this study 120 reconstructions were done of cylinders using the exact 
scattered data. In each case a 512-point receiver line was at a distance of 10X 
from the center of the cylinder. Both the receiver line and the object 
reconstruction were sampled at 1/4X intervals. 

The plots of Fig. 6.23 present a summary of the mean squared error for 
cylinders of 1, 2, and 3X in radius and for 20 refractive indexes between 1 .Ol 
and 1.20. In each case the error for the Born approximation is shown as a 
solid line while the Rytov reconstruction is shown as a broken line. 

Many researchers [Kav82], [Ke169], [Sou83] have postulated that the 
Rytov approximation is superior to the Born but as the actual reconstructions 
in Fig. 6.23(a) show for a 1X cylinder this is not necessarily true. While for 
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Fig. 6.21: Cross sections of the 
cylinders shown in Fig. 6.20 are 
shown here. 

the cylinder of radius 2X there is a  region where the Rytov approximation 
shows less error than the Born reconstruction, this doesn’t occur until the 
relative error is above 20%. What is clear is that both the Born and the Rytov 
approximations are only valid for small objects and that they both produce 
similar errors. 

6.6 Evaluation of Reconstruction Algorithms 

TO study the approximations involved in the reconstruction process it is 
necessary to calculate scattered data assuming the forward approximations 
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Fig. 6.21: Continued. are valid. This can be done in one of two different ways. We have already 
discussed that the Born and Rytov approximations are valid for small objects 
and small changes in refractive index. Thus, if we calculate the exact 
scattered field for a small and weakly scattering object we can assume that 
either the Born or the Rytov approximation is exact. 

A better approach is to recall the Fourier Diffraction Theorem, which says 
that the Fourier transform of the scattered field is proportional to the Fourier 
transform of the object along a semicircular arc. Since this theorem is the 
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Fig. 6.21: Continued. basis for our inversion algorithm, if we assume it is correct we can study the 
approximations involved in the reconstruction process. 

If we assume that the Fourier Diffraction Theorem holds, the exact 
scattered field can be calculated exactly for objects that can be modeled as 
ellipses. The analytic expression for the Fourier transform of the object along 
an arc is proportional to the scattered fields. This procedure is fast and allows 
us to calculate scattered fields for testing reconstruction algorithms and 
experimental parameters. 

To illustrate the accuracy of the interpolation-based algorithms, we will 
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Fig. 6.21: Continued. 
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use the image in Fig. 6.24 as a test “object” for showing some computer 
simulation results. Fig. 6.24 is a modification of the Shepp and Logan 
“phantom” described in Chapter 3 to the case of diffraction imaging. The 
gray levels shown in Fig. 6.24 represent the refractive index values. This test 
image is a superposition of ellipses, with each ellipse being assigned a 
refractive index value as shown in Table 6.1. 

A major advantage of using an image like that in Fig. 6.24 for computer 
simulation is that one can write analytical expressions for the transforms of 
the diffracted projections. The Fourier transform of an ellipse of semi-major 
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Fig. 6.22: Reconstructions of 16 different cylinders are shown indicating the effect of cylinder radius and refractive index on 
the Rytov approximation. These reconstructions were calculated by sampling the scattered fields at 16,384 points along a line 
IOOA from the edge of the object. A sampling interval of 6(R + 100)/16,384 where R is the radius of the cylinder, was used 
to make it easier to unwrap the phase of the scattered fields. (Adapted from /Sla84].) 
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Fig. 6.22: Continued. 
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Fig. 6.23: The relative mean and semi-minor axes of lengths A and B, respectively, is given by 
squared errors for reconstructions 
with the Born (solid) and the 
Rytov (broken) approximations 
are shown here. Each plot is a 
function of the refractive index of 
the cylinder. The mean squared 
error is plotted for cylinders of where u  and u  are spatial angular frequencies in the x and y directions, 
radius IA, 2A, and 3h. (From respectively, and 5, is a  Bessel function of the first kind and order 1. When  
[SIa84].) the center of this ellipse is shifted to the point (xl, yt), and the angle of the 

ma jor axis tilted by CY, as shown in F ig. 6.25(b), its Fourier transform 
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Fig. 6.24: For diffraction 
tomographic simulations a 
slightly modified version of the 
Shepp and Logan head phantom 
is used. (From [Pan83].) 

becomes 

. 27rAJ,{B[((u cos a+u sin CY)A/B)~+(-u sin a+u cos c~y)~]“~} 

[((u cos CY + u sin CX)A/B)~ + (- u sin CY + u cos CX)~] u2 * 

(184) 

Now consider the situation in which the ellipse is illuminated by a plane 
wave. By the Fourier Diffraction Theorem discussed previously, the Fourier 
transform of the transmitted wave fields measured on a line like TT' shown 
in Fig. 6.2(left), will be given by the values of the above function on a 
semicircular arc as shown in Fig. 6.2(right). If we assume weak scattering 
and therefore no interactions among the ellipses, the Fourier transform of the 

Table 6.1: Summary of parameters for diffraction tomography simulations. 

Center Major 
Coordinate Axis 

Minor 
Axis 

Rotation 
Angle 

Refractive 
Index 

(0, 0) 0.92 0.69 90 1.0 
(0, -0.0184) 0.874 0.6624 90 -0.5 

(0.22, 0) 0.31 0.11 72 -0.2 
(-0.22, 0) 0.41 0.16 108 -0.2 

(0, 0.35) 0.25 0.21 90 0.1 
a 0.1) 0.046 0.046 0 0.15 

(0, -0.1) 0.046 0.046 0 0.15 
(-0.08, -0.605) 0.046 0.023 0 0.15 

(0, -0.605) 0.023 0.023 0 0.15 
(0.06, -0.605) 0.046 0.023 90 0.15 
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Fig. 6.25: Assuming the Fourier 
Slice Theorem, the field scattered 
by an ellipse can be easily 
calculated. (From [KakBs/.) 

total forward scattered field measured on the line TT’ will be a sum of the 
values of functions like (184) over the semicircular arc. This procedure was 
used to generate the diffracted projection data for the test image. 

We must mention that by generating the diffractedprojection data for 
computer simulation by this procedure, we are only testing the accuracy 
of the reconstruction algorithm, without checking whether or not the 
“test object” satisfies the underlying assumption of weak scattering. In 
order to test this crucial assumption, we must generate exactly on a computer 
the forward scattered data of the object. For multicomponent objects, such as 
the one shown in Fig. 6.24, it is very difficult to do so due to the interactions 
between the components. 

Pan and Kak [Pan831 presented the simulations shown in Fig. 6.26. Using 
a combination of increasing the sampling density by zero-padding the signal 
and bilinear interpolation, results were obtained in 2 minutes of CPU time on 
a VAX 1 l/780 minicomputer with a floating point accelerator (FPA). The 
reconstruction was done over a 128 X 128 grid using 64 views and 128 
receiver positions. The number of operations required to carry out the 
interpolation and invert the object function is on the order of NZ log N. The 
resulting reconstruction is shown in Fig. 6.26(a). 

Fig. 6.26(b) represents the result of backpropagating the data to 128 depths 
for each view, while Fig. 6.26(c) is the result of backpropagation to only a 
single depth centered near the three small ellipses at the bottom of the picture. 
The results were simulated on a VAX 1 l/780 minicomputer and the resulting 
reconstructions were done over a 128 x 128 grid. Like the previous image 
the input data consisted of 64 projections of 128 points each. 

There was a significant difference in not only the reconstruction time but 
also the resulting quality. While the modified backpropagation only took 1.25 
minutes, the resulting reconstruction is much poorer than that from the full 
backpropagation which took 30 minutes of CPU time. A comparison of the 
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various algorithms is shown in Table 6.2. Note that the table doesn’t 
explicitly show the extra CPU time required if zero-padding is used in the 
frequency domain to make space domain interpolation easier. To a very 
rough approximation space domain interpolation and modified backpropaga- 
tion algorithms take N* log N steps while the full backpropagation algorithm 
takes N3 log N steps. 

6.7 Experimental Limitations 

In addition to the limits on the reconstructions imposed by the Born and the 
Rytov approximations, there are also the following experimental limitations 
to consider: 

l Limitations caused by ignoring evanescent waves 
l Sampling the data along the receiver line 
l Finite receiver length 
l Limited views of the object. 

Each of the first three factors can be modeled as a simple constant low pass 
filtering of the scattered field. Because the reconstruction process is linear the 
net effect can be modeled by a single low pass filter with a cutoff at the lowest 
of the three cutoff frequencies. The experiment can be optimized by adjusting 
the parameters so that each low pass filter cuts off at the same frequency. 

The effect of a limited number of views also can be modeled as a low pass 
filter. In this case, though, the cutoff frequency varies with the radial 
direction. 

6.7.1 Evanescent Waves 

Since evanescent waves have a complex wavenumber they are severely 
attenuated over a distance of only a few wavelengths. This limits the highest 
received wavenumber to 

k,,=;. (185) 

This is a fundamental limit of the propagation process and can only be 
improved by moving the experiment to a higher frequency (or shorter 
wavelength). 

6.7.2 Sampling the Received Wave 

After the wave has been scattered by the object and propagated to the 
receiver line, it must be measured. This is usually done with a point receiver. 
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Fig. 6.26: The images show the 
results of using the (a) 
interpolation, (b) 
backpropagation, and (c) 
modified backpropagation 
algorithms on reconstruction 
quality. The solid lines of the 
graphs represent the reconstructed 
value along a line through the 
three ellipses at the bottom of the 
phantom. (From [Pan83].) 

Unfortunately, it is not possible to sample at every point, so a nonzero 
sampling interval must be chosen. This introduces a measurement error into 
the process. By the Nyquist theorem this can be modeled as a low pass 
filtering operation, where the highest measured frequency is given by 

k a meas = - T w36) 

where T is the sampling interval. 
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Fig. 6.26: Continued. 6.7.3 The Effects of a Finite Receiver Length 

1 

Not only are there physical limitations on the finest sampling interval but 
usually there is a limitation on the amount of data that can be collected. This 
generally means that samples of the received waveform will be collected at 
only a finite number of points along the receiver line. This is usually justified 
by taking data along a line long enough so that the unmeasured data can be 
safely ignored. Because of the wave propagation process this also introduces 
a low pass filtering of the received data. 

Consider for a moment a single scatterer at some distance, &, from the 
receiver line. The wave propagating from this single scatterer is a cylindrical 
wave in two dimensions or a spherical wave in three dimensions. This effect 
is diagrammed in Fig. 6.27. It is easy to see that the spatial frequencies vary 
with the position along the receiver line. This effect can be analyzed using 
two different approaches. 

It is easier to analyze the effect by considering the expanding wave to be 

Table 6.2: Comparison of algorithms. 

Algorithm Complexity 
CPU Time 
(minutes) 

Frequency Domain 
Interpolation 
Backpropagation 
Modified Backpropagation 

fl log N 2 
N,,N+N log N 30 

N,N log N 1.25 
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Incident 
Field 

Fig. 6.21: An object scatters a 
field which is measured with a 
finite receiver line. (From 
[Sla83].) 

locally planar at any point distant from the scatterer. At the point on the 
receiver line closest to the scatterer there is no spatial variation [Goo68]. This 
corresponds to receiving a plane wave or a received spatial frequency of zero. 

Higher spatial frequencies are received at points along the receiver line that 
are farther from the origin. The received frequency is a function of the sine of 
the angle between the direction of propagation and a perpendicular to the 
receiver line. This function is given by 

k(y) = kmax sin 8 (187) 

where 19 is the angle and k,,,,, is the wavenumber of the incident wave. Thus at 
the origin, the angle, 8, is zero and the received frequency is zero. Only at 
infinity does the angle become equal to 90” and the received spatial frequency 
approach the theoretical maximum. 

This reasoning can be justified on a more theoretical basis by considering 
the phase function of the propagating wave. The received wave at a point (x 
= 10, v) due to a scatterer at the origin is given by 

&ko w u(x=Io, y)= og (188) 

The instantaneous spatial frequency along the receiver line (JJ varies) of this 
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wave can be found by taking the partial derivative of the phase with respect to Y KWW. 
phase = kom (189) 

key -- 
krecv - &q-T 

(190) 

where k,,, is the spatial frequency received at the point (x = lo, y). From 
Fig. 6.27 it is easy to see that 

sin t9=J-.&+ (191) 

and therefore (187) and (190) are equivalent. 
This relation, (190), can be inverted to give the length of the receiver line 

for a given maximum received frequency, k,,,,. This becomes 

(192) 

Since the highest received frequency is a monotonically increasing function 
of the length of the receiver line, it is easy to see that by limiting the sampling 
of the received wave to a finite portion of the entire line a low passed version 
of the entire scattered wave will be measured. The highest measured 
frequency is a simple function of the distance of the receiver line from the 
scatterer and the length of measured data. This limitation can be better 
understood if the maximum received frequency is written as a function of the 
angle of view of the receiver line. Thus substituting 

tan l3=Y- 
X 

(193) 

we find 

k _ ko(y/x) 
recv - 

J(y/x)2+ 12 

and 

k. tan 8 
krecv=Jtan28+1 * 

(194) 

(195) 

Thus kc, is a monotonically increasing function of the angle of view, 8. It is 
easy to see that the maximum received spatial frequency can be increased 

TOMOGRAPHIC IMAGING WITH DIFFRACTING SOURCES 265 



Fig. 6.28: These four 
reconstructions show the effect of 
a finite receiver line. 
Reconstructions of an object 
using 64 detectors spaced at (a) 
0.5X, (b) 1.0X, (c) ISA, and(d) 
2.0h are shown here. (From 
[Sla83/.) 

either by moving the receiver line closer to the object or by increasing the 
length of the receiver line. 

6.7.4 Evaluation of the Experimental Effects 

The effect of a finite receiver length was simulated and results are shown in 
Fig. 6.28. The spatial frequency content of a wave, found by taking the FFT 
of the sampled points along the receiver line, was compared to the theoretical 
result as predicted by the Fourier transform of the object. The theory predicts 
that more of the high frequency components will be present as the length of 
the receiver line increases and this is confirmed by simulation. 

While the above derivation only considered a single scatterer it is also 
approximately true for many scatterers collected at the origin. This is so 
because the inverse reconstruction process is linear and each point in the 
object scatters an independent cylindrical wave. 

6.7.5 Optimization 

Since each of the above three factors is independent of the other two, their 
effect in the frequency domain can be found by simply multiplying their 
frequency responses together. As has been described above, each of these 
effects can be modeled as a simple low pass filter so the combined effect is 
also a low pass filter but at the lowest frequency of the cutoff of the three 
effects. 

First consider the effect of ignoring the evanescent waves. Since the 
maximum frequency of the received wave is limited by the propagation filter 
to 

it is easy to combine this expression with the expression for the Nyquist 
frequency into a single expression for the smallest “

interesting

” 

sampling 
interval. This is given by 

km, = km,, (197) 

or 

2lr lr -=-. 
X T (198) 

Therefore, 

T=;. (199) 
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If the received waveform is sampled with a sampling interval of more than 
l/2 wavelength, the measured data might not be a good estimate of the 
received waveform because of aliasing. On the other hand, it is not necessary 
to sample the received waveform any finer than l/2 wavelength since this 
provides no additional information. Therefore, we conclude that the sampling 
interval should be close to l/2 wavelength. 

In general, the experiment will also be constrained by the number of data 
points (M) that can be measured along the receiver line. The distance from 
the object to the receiver line will be considered a constant in the derivation 
that follows. If the received waveform is sampled uniformly, the range of the 
receiver line is given uniquely by 

MT 
Ymax = +-. 

2 

This is also shown in Fig. 6.27. 
For a receiver line at a fixed distance from the object and a fixed number of 

receiver points, the choice of T is determined by the following two competing 
considerations: As the sampling interval is increased the length of the 
receiver line increases and more of the received wave’s high frequencies are 
measured. On the other hand, increasing the sampling interval lowers the 
maximum frequency that can be measured before aliasing occurs. 

The optimum value of T can be found by setting the cutoff frequencies for 
the Nyquist frequency equal to the highest received frequency due to the finite 
receiver length and then solving for the sampling interval. If this constraint 
isn’t met, then some of the information that is passed by one process will be 
attenuated by the others. This results in 

7r key -=- 
TdpT2 

evaluated at 

and 

y=MTT. 

Solving for T2 we find that the optimum value for T is given by 

~~~(x/X)~+M~+M 
8M * 

(201) 

(203) 

(204) 

TOMOGRAPHIC IMAGING WITH DIFFRACTING SOURCES 267 



If we make the substitution 

a=X 
AM (205) 

we find that the optimum sampling interval is given by 

T 2 M+l 0 h= 8 * (206) 

This formula is to be used with the constraint that the smallest positive 
value for the sampling interval is l/2 wavelength. 

The optimum sampling interval is confirmed by simulations. Again using 
the method described above for calculating the exact scattered fields, four 
simulations were made of an object of radius 10 wavelengths using a receiver 
line that was 100 wavelengths from the object. In each case the number of 
receiver positions was fixed at 64. The resulting reconstructions for sampling 
intervals of 0.05, 1, 1.5, and 2 wavelengths are shown in Fig. 6.28. Equation 
(206) predicts an optimum sampling interval of 1.3 wavelengths and this is 
confirmed by the simulations. The best reconstruction occurs with a sampling 
interval between 1 and 1.5 wavelengths. 

6.7.6 Limited Views 

In many applications it is not possible to generate or receive plane waves 
from all directions. The effect of this is to leave holes where there is no 
estimate of the Fourier transform of the object. 

Since the ideal reconstruction algorithm produces an estimate of the 
Fourier transform of the object for all frequencies within a disk, a limited 
number of views introduces a selective filter for areas where there are no 
data. As shown by Devaney [Dev84] for the VSP case, a limited number of 
views degrades the reconstruction by low pass filtering the image in certain 
directions. Devaney’s results are reproduced in Figs. 6.29 and 6.30. 

6.8 Bibliographic Notes 

The paper by Mueller et al. [Mue79] was responsible for focusing the 
interest of many researchers on the area of diffraction tomography, although 
from a purely scientific standpoint the technique can be traced back to the 
now classic paper by Wolf [Wo169] and a subsequent article by Iwata and 
Nagata [Iwa75]. 

The small perturbation approximations that are used for developing the 
diffraction tomography algorithms have been discussed by Ishimaru [Ish78] 
and Morse and Ingard [Mor68]. A discussion of the theory of the Born and 
the Rytov approximations was presented by Chernov in [Che60]. A 
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Fig. 6.29: These figures show 
the coverage in the frequency 
domain for six different angular 
receiver limitations. (From 
fDev84J.) 

comparison of Born and Rytov approximations is presented in [Ke169], 
[Sla84], [Sou83]. The effect of multiple scattering on first-order diffraction 
tomography is described in [Azi83], [Azi85]. Another review of diffraction 
tomography is presented in [Kav86]. 

Diffraction tomography falls under the general subject of inverse scatter- 
ing. The issues relating to the uniqueness and stability of inverse scattering 
solutions are addressed in [Bal78], [Dev78], [Nasgl], [Sargl]. The mathe- 
matics of solving integral equations for inverse scattering problems is 
described in [Co183]. 

The filtered backpropagation algorithm for diffraction tomography was 
first advanced by Devaney [Dev82]. More recently, Pan and Kak [Pan831 
showed that by using frequency domain interpolation followed by direct 
Fourier inversion, reconstructions of quality comparable to that produced by 
the filtered backpropagation algorithm can be obtained. Interpolation-based 
algorithms were first studied by Carter [Car701 and Mueller et al. [MuegO], 
[Sou84b]. An interpolation technique based on the known support of the 
object in the space domain is known as the unified frequency domain 
reconstruction (UFR) and is described in [Kav84]. Since the problems are 
related, the reader is referred to an excellent paper by Stark et al. [Stag11 that 
describes optimum interpolation techniques as applied to direct Fourier 
inversion of straight ray projections. The reader is also referred to [Fer79] to 
learn how in some cases it may be possible to avoid the interpolation, and still 
be able to reconstruct an object with direct 2-D Fourier inversion. 

A diffraction tomography approach that requires only two rotational 
positions of the object has been advanced by Nahamoo et al. [Nah84] and 
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Fig. 6.30: Images due to the Devaney [Dev83], and its computer implementation has been studied by Pan 
limited field of views as shown in 
Fig. 6.29. (From [Dev84J.) 

and Kak [Pan83]. Diffraction tomography based on the reflected data has 
been studied in great detail by Norton and Linzer [Norgl]. 

The first experimental diffraction tomography work was done by Carter 
and Ho using optical energy and is described in [Car70], [Car74], [HoP76]. 
More recently, Kaveh and Soumekh have reported experimental results in 
[Kav80], [Kav8 11, [Kav82], [Sou83]. 

Finally, more accurate techniques for imaging objects that don

’

t 

fall within 
the domain of the Born and Rytov approximations have been reported in 
[Joh83], [Tra83], [Sla85], [Bey84], [Bey85a], [Bey85b]. 
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