
Fig. 4.34: An attenuation 
reconstruction obtained by using 
the frequency-shift method. 
(From [Kak79J.) 

grams. In addition, the design of a program to automatically diagnose breast 
tomograms based on the attenuation constant and the index of refraction near 
the lesion was described. 

The mammograms and ultrasound tomographic images in Figs. 4.35 and 
4.36, respectively, show a small spiculated cancer in the upper outer quadrant 
of a right breast. The tomographic reconstructions shown in Fig. 4.36 were 
based on the measurement of 60 parallel projections each with 200 rays. For 
each ray the time of arrival and the signal level of a ~-MHZ ultrasound signal 
were measured and stored on tape for off-line processing. The total data 
collection time was 5 minutes. 

In this study the attenuation and refractive index images were based on a 
full wave rectified and low pass filtered version of the measured ultrasonic 
pressure wave. The time delay caused by the object was measured by timing 
the instant when the filtered signal first crossed a threshold. This gives a 
direct estimate of the time delay, Td, as described in Section 4.3.2. On the 
other hand, the attenuation of the signal was measured by integrating the first 
two microseconds of the filtered signal. While this method doesn

’

t 

take into 
account the frequency dependence of the attenuation coefficient, it does have 
the overriding advantage that its hardware implementation is very simple and 
fast. 

4.4 Magnetic Resonance Imaging

’ 

No book describing tomographic imaging would be complete without a 
discussion of (nuclear) magnetic resonance imaging (MRI). While the 
principles of nuclear magnetic resonance have been well known since the 

’ We appreciate the help of Kevin King of General Electric

’

s 

Medical Systems Group and 
Greg Kirk of Resonex, Inc. in preparing this material. 
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Fig. 4.35: The x-ray 195Os, only since 1972 has it been used for imaging. In the sense that the 
mammograms of these female 
breasts show a small spiculated 

images produced represent a cross section of the object, MRI is a 
cancer in the upper outer tomographic technique. Two head images obtained using MRI are shown in 
quadrant of the right breast. Fig. 4.37. 
(Courtesy of Jim Greenleaf of the 
Mayo Clinic in Rochester, MN.) 

The fundamentals of chemistry and physics required to derive MRI are 
beyond the scope of this book. A rigorous derivation requires the use of 
quantum mechanics, but since acceptable models of the process can be built 
using classical mechanics, this will be the approach used here. For more 
information the reader is referred to excellent accounts of the theory in 
[Man82], [Mac83], [Cho82], [Hin83], [Pyk82]. 

Magnetic resonance imaging is based on the measurement of radio 
frequency electromagnetic waves as a spinning nucleus returns to its 
equilibrium state. Any nucleus with an odd number of particles (protons and 
neutrons) has a magnetic moment, and, when the atom is placed in a strong 
magnetic field, the moment of the nucleus tends to line up with the field. If 
the atom is then excited by another magnetic field it emits a radio frequency 
signal as the nucleus returns to its equilibrium position. Since the frequency 
of the signal is dependent on not only the type of atom but also the magnetic 
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Fig. 4.36: The time of flight 
(TOF) images on top and the 
combined TOF and attenuation 
(A TN) images on the bottom 
show the small cancer. (Reprinted 
with permission from [Sch84J.) 

fields present, the position and type of each nucleus can be detected by 
appropriate signal processing. 

Two of the more interesting atoms for MRI are hydrogen and phosphorus. 
The hydrogen atom is found most often bound into a water molecule while 
phosphorus is an important link in the transfer of energy in biological 
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Fig. 4.37: These two images 
demonstrate the contrast and 
resolution obtainable using MRI. 
They were obtained using a 
1.5-Tesla Signa

” 

system at 
General Electric ‘

S 

MR 
Development Center. (Courtesy 
of General Electric

’

s 

Medical 
Systems Group.) 

systems. Both of these atoms have an odd number of nucleons and thus act 
like a spinning magnetic dipole when placed into a strong field. 

When a spinning magnetic moment is placed in a strong magnetic field and 
perturbed it precesses much like a spinning top or gyroscope. The frequency 
of precession is determined by the magnitude of the external field and the type 
and chemical binding of the atom. The precession frequency is known as the 
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Larmor frequency and is given by 

w=yH (59) 

where H is the magnitude of the local magnetic field and y is known as the 
gyromagnetic constant. The gyromagnetic constant, although primarily a 
function of the type of nucleus, also changes slightly due to the chemical 
elements surrounding the nucleus. These small changes in the gyromagnetic 
constant are known as chemical shifts and are used in NMR spectroscopy to 
identify the compounds in a sample. In MRI, on the other hand, a spatially 
varying field is used to code each position with a unique resonating 
frequency. Image reconstruction is done using this information. 

Recalling that a magnetic field has both a magnitude and direction at a point 
in three space, (x, y, z), the field is described by the vector quantity H(x, y, 
z). When necessary we will use the orthogonal unit vectors 2, 9, and 2 to 
represent the three axes. Conventionally, the z-axis is aligned along the axis 
of the static magnetic field used to align the magnetic moments. The static 
magnetic field is then described by H0 = Ho& 

A radio frequency magnetic wave in the (x, y)-plane and at the Larmor 
frequency, w. = yH0, is used to perturb the magnetic moments from their 
equilibrium position. The degree of tipping or precession that occurs is 
dependent on the strength of the field and the length of the pulse. Using the 
classical mechanics model a sinusoidal field of magnitude H, that lasts tp 
seconds will cause the magnetic moment to precess through an angle given by 

O=yH,t,. 

The actual transmitted field, Hi(x, y, z), is given by 

(60) 

gt(x, y, z) = 2Hi cos wet 22. (61) 

Generally, HI and tp are varied so that the moment will be flipped either 90 or 
180”. By flipping the moments 90” the maximum signal is obtained as the 
system returns to equilibrium while 180” flips are often used to change the 
sign of the phase (with respect to the Hi-axis) of the moment. 

It is important to note that only those nuclei where the magnitude of the 
local field is Ho will flip according to (60). Those nuclei with a local magnetic 
field near Ho will flip to a small degree while those nuclei with a local field 
far from Ho will not be flipped at all. This property of spinning nuclei in a 
magnetic field is used in MRI to restrict the active nuclei to restricted sections 
of the body [Man82]. Typical slice thicknesses in 1986 machines are from 3 
to 10 mm. 

After the radio frequency (RF) pulse is applied there are two effects that 
can be measured as the magnetic moment returns to its equilibrium position. 
They are known as the longitudinal and transverse relaxation times. The 
longitudinal or spin-lattice relaxation time, T,, is the simpler of the two and 
represents the time it takes for the energy to dissipate and the moment to 
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Fig. 4.38: As an excited 
magnetic moment relaxes toward 
its equilibrium position it emits a 
free induction decay (FID) signal 
which can be thought of as the 
transverse component of the 
precessing moment. In addition, 
as the moment returns to its 
equilibrium state the longitudinal 
component of the magnetic field 
returns to the value of MO. 

return to its equilibrium position along the Z-axis. In addition, after the RF 
pulse is applied, the spinning magnetic moments gradually become out of 
phase due to the effects of nearby nuclei. The time for this to occur is known 
as the transverse or spin-spin relaxation time, T2. In practice, there is a third 
parameter called T,*that also takes into account the local inhomogeneities of 
the magnetic field. Because of physical constraints the following relationship 
always holds: 

T,*s T,I T,. (62) 

Note that T; includes the effect of T2. 
The process of tipping (or even flipping) a moment and its eventual return 

to the equilibrium state are diagrammed in Fig. 4.38. Conventionally the 
magnetic moments are shown in a coordinate system that rotates at the 
Larmor frequency. The direction of the magnetic moment before and 
immediately after a 45” pulse is shown in Figs. 4.38(a) and (b). Fig. 4.38(c) 
diagrams the moments as they start to return to the equilibrium position and 
some of the moments become out of phase. The time T2 is shorter than T, so 
the moments are totally out of phase before they return to the equilibrium 
position. This is shown in Fig. 4.38(d). Finally, after several T, intervals the 
moments return to their equilibrium position as shown in Fig. 4.38(e). 

As the spinning moments return to their equilibrium position they generate 
an electromagnetic wave at the Larmor frequency. This wave is known as the 
free induction decay (FID) signal and can be detected using coils around the 
object. When the magnetic moments are in phase, as they are immediately 
following an RF excitation, the FID signal is proportional to both the density 
and the transverse component of the magnetic moments. Near time t = 0, 

(‘1 TRANSVERSE 
“, 

’ 
MAGNETIC 
FIELD 

LONGITUDINAL 
MAGNETIC 
FIELD 
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immediately following the end of the RF pulse, the received signal is given by 

S(t) = p sin (0) cos (wet) (63) 

where again 8 is the flip angle and p is the density of the magnetic moments. 
From this signal it is easy to verify that the largest FID signal is generated by 
a 90” pulse. 

Both the spin-spin and the spin-lattice relaxation processes contribute to 
the decay of the FID signal. The FID signal after a 90” pulse can be written as 

S(t) = p cos (coot) exp [ - t/T,*] exp [ - t/T,] (64) 

where the exponent& with respect to Tr and T; represent the attenuation of 
the FID signal due to the return to equilibrium ( Tl) and the dephasing (Tz). 

In tissue the typical times for Tl and T2 are 0.5 s and 50 ms, respectively. 
Thus the decay of the FID signal is dominated by the spin-spin relaxation 
time (T2 and TF) and the effects of the spin-lattice time (e-‘jrl in the 
equation above) are hidden. A typical FID signal is shown in Fig. 4.38(f). 

A clinician is interested in three parameters of the object: spin density, T, 
and Tz. The spin density is easiest to measure; it can be estimated from the 
magnitude of the FID immediately following the RF pulse. On the other 
hand, the T, and the T2 parameters are more difficult. 

To give our readers just a flavor of the algorithms used in MRI we will only 
discuss imaging of the spin density. More complicated pulse sequences, such 
as those described in [Cho82], are used to weight the image by the object’s T, 
or T2 parameters. In addition, much work is being done to discover 
combinations of the above parameters that make tissue characterization 
easier. 

There are many ways to spatially encode the FID signal so that 
tomographic images can be formed. We will only discuss two of them here. 
The first measures line integrals of the object and then uses the Fourier Slice 
Theorem to reconstruct the object. The second approach measures the two- 
dimensional Fourier transform of the object directly so that a simple inverse 
Fourier transform can be used to estimate the object. 

To restrict the imaging to a single plane a magnetic gradient 

AH, = Gzz (65) 

is superimposed on the background field Ho as is shown in Fig. 4.39. If a 
narrow band excitation at the Larmor frequency 00 = “/HO is then applied to 
the object only those nuclei near the plane z = 0 will be excited. For 
maximum response the excitation should be long enough to cause each 
nucleus to precess through 90”. 

A projection of the object in the plane z = 0 is measured by applying a 
readout gradient of the form 

AH, = G,x + Gyy (66) 
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Fig. 4.39: To measure 
projections of a three-dimensional 
object a field of strength AHP = 
Gzz used to restrict the initial flip 
to a single plane. Then a readout 
gradient AH, = GA + G,y is 
used to measure projections of 
the object. In the case shown here 
the integrals are along lines 
perpendicular to the page. 

\ A”, 
(while measuring 

FID) 

as the nuclei return to the equilibrium state. This second gradient serves to 
split each line integral into a separate frequency. 

Consider the line 

G,x + GYy = AH, = constant. (67) 

Along this line the FID signal will be at a unique frequency given by 

w = - y(H+ AHr). (68) 

To measure a projection in the plane it is necessary to apply the readout 
gradient and then find the Fourier transform of the received signal. Each 
temporal frequency component of the FID signal will then correspond to a 
single line integral of the object. This is illustrated in Fig. 4.39. 

A two-dimensional reconstruction of an object can be easily found by 
rotating the readout gradient and then using the reconstruction algorithms 
discussed in Chapter 3. A full three-dimensional reconstruction is easily 
formed by stacking the two-dimensional images. 

A more common approach to magnetic resonance imaging is to use a phase 
encoding gradient. The gradient, applied between the excitation pulse and the 
readout of the FID, spatially encodes each position in the object with a phase. 
This leads to a very natural reconstruction scheme because data can be 
collected over a rectangular grid in the Fourier domain. Thus reconstructions 
using this method can be performed using a two-dimensional FFT instead of 
the Fourier backprojection usually found in computerized tomography. 

One possible sequence of events is presented next. Like the projection 
approach described above, a magnetic gradient is applied to the object as the 
nuclei are excited. This restricts the imaging to a single plane where the local 
magnetic field and the frequency of the excitation satisfy the Larmor 
equation. This is shown in Fig. 4.40. 

Two perpendicular gradients are used to encode each point in the plane. 
First a gradient, for example in they direction or AH, = G,,y, is applied for 
T seconds. Because the frequency of precession is related to the local 
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Fig. 4.40: Three different 
gradients are used to measure the 
Fourier transform of an object 
using MRI. First a gradient in the 
z direction is used to restrict the 
frip to a single plane of the 
object. Then a second gradient, 
this time in y, is used to encode 
each line of constant y with a 
different phase. Finally, a third 
gradient, in x, is used while the 
FID signal is read to split each 
line of constant x into a different 
line integral. 

magnetic field, nuclei at different points in the object start spinning at 
different rates. After T seconds, when the phase encoding gradient is turned 
off, each line of constant y will have accumulated a phase given by 

4=wt=(Ho+AHp)yT (69) 

= w. T+ G,, yy T. (70) 

Like the projection case the FID is measured while applying a readout 
gradient, this time along the x-axis or 

AH, = G,x. (71) 

As before, the number of spinning nuclei along each line of constant x is now 
encoded by the frequency of the received signal. Unlike the previous case 
each position along the line is also encoded with a unique phase (see (69)). 
The following phase encoded line integral is measured: 

P, (0 = 11 P(X, Y) exp Liml exp Lix4,l exp Lb04 dx & (72) 
where q,, = GyrT and qx = G,yt. Note that except for the ej%’ term this 
equation is similar to the inverse Fourier transform of the data p(x, y). To 
recover the phase encoded line integrals it is necessary to find the inverse 
Fourier transform of the data with respect to time or 

P(W, qy) =& l P,W exp L-.&w1 dqx. (73) 

Finally, to recover the phase shifted projections it is necessary to shift the 
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frequency of p(w, q,J by the Larmor frequency, wo, or 

P(X, qy) =P(w- 009 qy). (74) 

A complete reconstruction is formed by stepping the phase encoding 
gradient, G,,, through N steps between GMAX and - GMUIAX and measuring the 
phase encoded line integrals p,(t). To prevent aliasing it is important that 

(75) 

where the minimum feature size in the object is described by A. Note that in 
general the FID signal, p,(t), will be sampled in both qy and t and thus the 
integral equations presented here will be approximated with discrete 
summations. 

Since each line integral containing the point x, y is encoded with a different 
phase the spin density at any point can be recovered by inverting the integral 
equations. This is easily done by finding the Fourier transform of the 
collection of line integrals or 

P(X, Y)=& j P(X, qy) exp I--&YI dq,. (76) 

While a reconstruction can be done with either approach most images today 
are produced by direct Fourier inversion as opposed to the convolution 
backprojection algorithms described in Chapter 3. Two errors found in MRI 
machines are nonlinear gradients and a nonuniform static magnetic field. 
These errors affect the final reconstruction in different ways depending on the 
reconstruction technique. 

First consider nonlinear gradients. In the direct Fourier approach only the 
magnitude of the gradients changes and not their direction. Thus any 
nonlinearities show up as a warping of the image space. As long as the 
gradient is monotonic the image will look sharp, although a bit distorted. On 
the other hand, in the projection approach the direction of the gradients is 
constantly changing so that each projection is warped differently. This leads 
to a blurring of the final reconstruction [ODo85]. 

The effect is similar with a nonhomogeneous static field, HO. Since the 
gradient fields are simply added to the static field to determine the Larmor 
frequency a nonhomogeneous field can be thought of as a warping of the 
projection data. Since the Fourier approach doesn’t change the angle of the 
projections, using phase changes to distinguish the different parts of the line 
integral, the direct Fourier approach yields sharper images. 

In the simple analysis above we have ignored two important limitations on 
MRI. The first is the frequency spreading due to the T2 relaxation time. In the 
analysis above we assumed a short enough measurement interval so that the 
relaxation could be considered negligible. Since the resolution in the 
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frequency domain is linearly dependent on the measurement time the 
maximum possible measurement time should be used. Unfortunately the 
exponential attenuation of the FID signal broadens the frequency spectrum 
thereby determining the ultimate resolution of the magnetic resonance image. 

A much more difficult problem is the data collection time. In the procedure 
described above each measurement is made assuming all the magnetic 
moments are at rest. Since the spin-lattice relaxation time is on the order of a 
second this implies that only a single FID can be measured per second. Since 
a three-dimensional image requires at least a million data points this is a 
severe restriction. 

In practice, pulse sequences have been designed that allow more than one 
FID to be measured during the Tl relaxation time. This can be done using a 
combination of gradients and selective gradients to only excite a single piane 
within the object and also using selective spin-echo pulses to measure more 
than one projection (or Fourier transform) within a single plane. 

4.5 Bibliographic Notes 

Because of the absence of any refraction or diffraction, with x-rays the 
problem of tomographic imaging reduces to reconstructing an image from its 
line integrals. A mathematical solution to the problem of reconstructing a 
function from its projections was given by Radon [Radl7] in 1917. More 
recently, some of the first investigators to examine this problem either 
theoretically or experimentally (and often independently) include (in a 
roughly chronological order): Bracewell [Bra56], Oldendorf [Old6 11, Cor- 
mack [Cor63], [Cor64], Kuhl and Edwards [Kuh63], DeRosier and Klug 
[DeR68], Tretiak et al. [Tre69], Rowley [Row69], Berry and Gibbs [Ber70], 
Ramachandran and Lakshminarayanan [Ram71], Bender et al. [Ben70], and 
Bates and Peters [Bat7 11. A detailed survey of the work done in computed 
tomographic imaging till 1979 appears in [Kak79]. 

Detailed information about a number of the applications described in this 
book is also covered in books by Macovski [Mac831 and Herman [HergO]. 
For information about alternate approaches to single photon emission 
tomography the reader is referred to [Kno83]. A more detailed presentation 
of ultrasound tomography can be found in [Cra82], [Car78b]. Additional 
information about the physical basis of nuclear magnetic resonance can be 
found in a number of chemistry and physics texts including [Sha76], [Far7 11, 
[Man82], [Pyk82]. The algorithms used to reconstruct images using NMR 
information are described in [Cho82], [Hin831, [Man82], [Pyk821. 

The reader is also referred to [Kak79], [Kak81] for a survey of medical 
tomographic imaging. For applications in radio astronomy, where the aim is 
to reconstruct the “brightness” distribution of a celestial source of radio 
waves from its strip integral measurements taken with special antenna beams, 
the reader is referred to [Bra56], [Bra67]. For electron microscopy 
applications, where one attempts to reconstruct the molecular structure of 
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