
2 Signal Processing Fundamentals 

We can’t hope to cover all the important details of one- and two- 
dimensional signal processing in one chapter. For those who have already 
seen this material, we hope this chapter will serve as a refresher. For those 
readers who haven’t had prior exposure to signal and image processing, we 
hope that this chapter will provide enough of an introduction so that the rest of 
the book will make sense. 

All readers are referred to a number of excellent textbooks that cover one- 
and two-dimensional signal processing in more detail. For information on 
1-D processing the reader is referred to [McG74], [Sch75], [Opp75], [Rab75]. 
The theory and practice of image processing have been described in [Ros82], 
[Gon77], [Pra78]. The more general case of multidimensional signal 
processing has been described in [Dud84]. 

2.1 One-Dimensional Signal Processing 

2.1.1 Continuous and Discrete One-Dimensional Functions 

One-dimensional continuous functions, such as in Fig. 2.1(a), will be 
represented in this book by the notation 

x(t) (1) 

where x(t) denotes the value as a function at t. This function may be given a 
discrete representation by sampling its value over a set of points as illustrated 
in Fig. 2.1(b). Thus the discrete representation can be expressed as the list 

- * - X(-T), x(O), X(T), x(27), * * *, x(m), * - - . (2) 

As an example of this, the discrete representation of the data in Fig. 2.1(c) is 

1, 3, 4, 5, 4, 3, 1. (3) 

It is also possible to represent the samples as a single vector in a 
multidimensional space. For example, the set of seven samples could also be 
represented as a vector in a 7-dimensional space, with the first element of the 
vector equal to 1, the second equal to 3, and so on. 

There is a special function that is often useful for explaining operations on 
functions. It is called the Dirac delta or impulse function. It can’t be defined 
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directly; instead it must be expressed as the limit of a sequence of functions. 
First we define a new function called rect (short for rectangle) as follows 

Fig. 2.1: A one-dimensional 
signal is shown in (a) with its 
sampled version in (b). The 
discrete version of the signal is 
illustrated in (c). 

rect (t) = 1 
(4) 

0 elsewhere. 

This is illustrated in Fig. 2.2(a). Consider a sequence of functions of ever 
decreasing support on the t-axis as described by 

&(t)=n rect (nt) (5) 

and illustrated in Fig. 2.2(b). Each function in this sequence has the same 
area but is of ever increasing height, which tends to infinity as n + 03. The 
limit of this sequence of functions is of infinite height but zero width in such a 
manner that the area is still unity. This limit is often pictorially represented as 
shown in Fig. 2.2(c) and denoted by S(t). Our explanation leads to the 
definition of the Dirac delta function that follows 

s - 6(-t) dt=l. (6) -co 
The delta function has the following “sampling” property 

s - x(t)&t- t’) dt=x(t’) (7) 
-cc 
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Fig. 2.2: A rectangle function as where 6(t - t ‘) is an impulse shifted to the location t = t ’ . When an impulse 
shown in (a) is scaled in both 
width and height (b). In the limit 

enters into a product with an arbitrary x(t), all the values of x(t) outside the 

the result is the delta function location t = t’ are disregarded. Then by the integral property of the delta 
illustrated in (c). function we obtain (7); so we can say that 13(t - t’) samples the function x(t) 

at t’. 

2.1.2 Linear Operations 

Functions may be operated on for purposes such as filtering, smoothing, 
etc. The application of an operator 0 to a function x(t) will be denoted by 

orx(t)l. (8) 

The operator is linear provided 

otQX(f)+~~(t)l=~otx(t)l+pOtu(t)l (9) 
for any pair of constants a! and p and for any pair of functions x(t) and y(t). 

An interesting class of linear operations is defined by the following integral 
form 

z(t)= j”“, x(t’)h(t, t’) dt’ (10) 

where h is called the impulse response. It is easily shown that h is the system 
response of the operator applied to a delta function. Assume that the input 
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Fig. 2.3: The impulse response 
of a shift invariant filter is shown 
convolved with three impulses. 

function is an impulse at t = to or 

x(t)=tqt-to). (11) 
Substituting into (lo), we obtain 

z(t) = jy , 6(t’ - to)h(t, t’) dt’ (12) 

= h(t, to). (13) 

Therefore h(t, t ‘) can be called the impulse response for the impulse applied 
at t’. 

A linear operation is called shift invariant when 

u(t) = 0 tx(ol (14) 

implies 

y(t--7)=O[x(t-7)] (1% 

or equivalently 

h(t, t’)=h(t-t’). (16) 

This implies that when the impulse is shifted by t ’ , so is the response, as is 
further illustrated in Fig. 2.3. In other words, the response produced by the 
linear operation does not vary with the location of the impulse; it is merely 
shifted by the same amount. 

For shift invariant operations, the integral form in (10) becomes 

This 

The 

z(t)= Co s x(t’)h(t- t’) dt’. (17) -m 

is now called a convolution and is represented by 

z(t) =x(t)*h(t). W-4) 

process of convolution can be viewed as flipping one of the two 
functions, shifting one with respect to the other, multiplying the two and 
integrating the product for every shift as illustrated by Fig. 2.4. 
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Fig. 2.4: The results of 
convolving an impulse response 
with an impulse (top) and a 
square pulse (bottom) are shown 

Convolution can also be defined for discrete sequences. If 

xj=x(i7) 

and 

Yi=Y(id 

then the convolution of x; with yi can be written as 

(19) 

(20) 

(21) 

This is a discrete approximation to the integral of (17). 

2.1.3 Fourier Representation 

For many purposes it is useful to represent functions in the frequency 
domain. Certainly the most common reason is because it gives a new 
perspective to an otherwise difficult problem. This is certainly true with the 
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convolution integral; in the time domain convolution is an integral while in 
the frequency domain it is expressed as a simple multiplication. 

In the sections to follow we will describe four different varieties of the 
Fourier transform. The continuous Fourier transform is mostly used in 
theoretical analysis. Given that with real world signals it is necessary to 
periodically sample the data, we are led to three other Fourier transforms that 
approximate either the time or frequency data as samples of the continuous 
functions. The four types of Fourier transforms are summarized in Table 2.1. 

Assume that we have a continuous function x(t) defined for Tl I t 15 Tz. 
This function can be expressed in the following form: 

x(t)= 2 zkejkuot 
k=-m 

(22) 

where j = a and w. = 2rfo = 27r/T, T = T2 - T, and zk are complex 
coefficients to be discussed shortly. What is being said here is that x(t) is the 
sum of a number of functions of the form 

#qt. (23) 

This function represents 

dkoot = cos kwo t +j sin kwo t. (24) 

The two functions on the right-hand side, commonly referred to as sinusoids, 
are oscillatory with kfo cycles per unit of t as illustrated by Fig. 2.5. kfo is 

Table 2.1: Four different Fourier transforms can be defined by sampling the time and frequency 
domains. * 

Continuous Time Discrete Time 

Name: Fourier Transform Name: Discrete Fourier Transform 

Continuous Forward: X(w) = I:, x(t)e-jwf dt Forward: X(w) = C;= _ m x(nr)e-ion7 

Frequency Inverse: x(f) = 1/2?r {:, X(w)ejot du Inverse: x(nr) = 7/27r S_*‘,:, X(4ejwnr dw 

Periodicity: None Periodic@: X(w) = X(w + i(27r/r)) 

Name: Fourier Series Name: Finite Fourier Transform 

Discrete Forward: X,, = l/T j~x(f)e-jn(2r’*)f Forward: Xk = l/N ~~zO x,e -j(2*‘N)kn 

Frequency Inverse: x(t) = C;= _ m Xnejn(z~/r)r Inverse: xk= zf==, x&i(2*‘N)kn 

Periodicity: x(t) = x(t + iT) Periodic@: xk = xk+ iN and Xk = Xk+ iN 

* In the above table time domain functions are indicated by x and frequency domain functions are X. 
The time domain sampling interval is indicated by 7. 
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cos(2nkll sin(2rkl) 

Fig. 2.5: The first three 
components of a  Fourier series 
are shown. The cosine waves 
represent the real part of the 
signal while the sine waves 
represent the imaginary. 

called the frequency of the sinusoids. Note that the sinusoids in (24) are at 
multiples of the frequency fo, which is called the fundamental frequency. 

The coefficients zk in (22) are called the complex amplitude of the kth 
component, and can be obtained by using the following formula 

1 
I 

T2 
Zk=- 

T TI 
x(t)e-ikmoT. (25) 

The representation in (22) is called the Fourier Series. To illustrate pictorially 
the representation in (22), we have shown in Fig. 2.6, a triangular function 
and some of the components from the expansion. 

A continuous signal x(t) defined for t between - 01 and 00 also possesses 
another Fourier representation called the continuous Fourier transform and 
defined by 

X(w) = j;, x(t)e-j*’ dt. (26) 

One can show that this relationship may be inverted to yield 

X(t) = & jy, X(o)ejwl do. (27) 

Comparing (22) and (27), we see that in both representations, x(t) has been 
expressed as a sum of sinusoids, e jwr; the difference being that in the former, 
the frequencies of the sinusoids are at multiples of wg, whereas in the latter we 
have all frequencies between - 03 to m. The two representations are not 
independent of each other. In fact, the series representation is contained in the 
continuous transform representation since zk’s in (25) are similar to x(w) in 
(26) for o = kwo = k(27r/T), especially if we assume that x(t) is zero 
outside [T,, Tz], in which case the range of integration in (27) can be cut 
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Fig. 2.6: This illustrates the 
Fourier series for a simple 
waveform. A triangle wave is 
shown in (a) with the magnitude 
(b) and phase (c) of the first few 
terms of the Fourier series. 

-..*-l-ljl~,-*-.-IS/b) -6 -6 -4 -2 0 2 4 6 6 Cycles per 
Sl?ClUeWX 

-6 -6 -4 -2 2 4 6 6 Cycles per 
Sequence 
Length 

down to [T,, 7”]. For the case when x(t) is zero outside [T,, TJ, the reader 
might ask that since one can recover x(t) from zk using (22), why use (27) 
since we require X(w) at frequencies in addition to kws’s. The information in 
X(w) for w # kws is necessary to constrain the values of x(t) outside the 
interval [T,, T2]. 

If we compute zk’s using (25), and then reconstruct x(t) from zk’s using 
(22), we will of course obtain the correct values of x(t) within [T,, Tz]; 
however, if we insist on carrying out this reconstruction outside [ T,, T,], we 
will obtain periodic replications of the original x(t) (see Fig. 2.7). On the 
other hand, if X(w) is used for reconstructing the signal, we will obtain x(t) 
within [T,, T2] and zero everywhere outside. 

The continuous Fourier transform defined in (26) may not exist unless x(t) 
satisfies certain conditions, of which the following are typical [Goo68]: 

1) j”“oD Ix(t)1 dt c 00. 
2) g(t) must have only a finite number of discontinuities and a finite 

number of maxima and minima in any finite interval. 
3) g(t) must have no infinite discontinuities. 

Some useful mathematical functions, like the Dirac 6 function, do not obey 
the preceding conditions. But if it is possible to represent these functions as 
limits of a sequence of well-behaved functions that do obey these conditions 
then the Fourier transforms of the members of this sequence will also form a 
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Fig. 2.7: The signal represented 
by a Fourier series is actually a 
periodic version of the original 
signal defined between T, and T2. 
Here the original function is 
shown in (a) and the replications 
caused by the Fourier series 
representation are shown in (b). 

Tl T2 T,+T T2+2T 

sequence. Now if this sequence of Fourier transforms possesses a limit, then 
this limit is called the “generalized Fourier transform” of the original 
function. Generalized transforms can be manipulated in the same manner as 
the conventional transforms, and the distinction between the two is generally 
ignored; it being understood that when a function fails to satisfy the existence 
conditions and yet is said to have a transform, then the generalized transform 
is actually meant [Goo68], [Lig60]. 

Various transforms described in this section obey many useful properties; 
these will be shown for the two-dimensional case in Section 2.2.4. Given a 
relationship for a function of two variables, it is rather easy to suppress one 
and visualize the one-dimensional case; the opposite is usually not the case. 

2.1.4 Discrete Fourier Transform (DFT) 

As in the continuous case, a discrete function may also be given a 
frequency domain representation: 

X(W)= i x(n7)e-jwnr 
n= -m 

(28) 

where X(W) are the samples of some continuous function x(t), and X(w) the 
frequency domain representation for the sampled data. (In this book we will 
generally use lowercase letters to represent functions of time or space and 
the uppercase letters for functions in the frequency domain.) 

Note that our strategy for introducing the frequency domain representation 
is opposite of that in the preceding subsection. In describing Fourier series we 
defined the inverse transform (22), and then described how to compute its 
coefficients. Now for the DFT we have first described the transform from 
time into the frequency domain. Later in this section we will describe the 
inverse transform. 
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As will be evident shortly, X(o) represents the complex amplitude of the 
sinusoidal component e jorn of the discrete signal. Therefore, with one 
important difference, X(w) plays the same role here as zk in the preceding 
subsection; the difference being that in the preceding subsection the 
frequency domain representation was discrete (since it only existed at 
multiples of the fundamental frequency), while the representation here is 
continuous as X(w) is defined for all w. 

For example, assume that 

n=O 
n=l 
elsewhere. 

For this signal 

X(W) = 1 - e-jW7. 

Note that X(W) obeys the following periodicity 

2?r 
X(w)=X w+- ( > 7 

(29) 

(30) 

(31) 

which follows from (28) by simple substitution. In Fig. 2.8 we have shown 
several periods of this X(w). 

X(w) is called the discrete Fourier transform of the function x(m). From 
the DFT, the function x(nr) can be recovered by using 

Fig. 2.8: The discrete Fourier 
transform (OFT) of a two 
element sequence is shown here. 

T/T 
x(m) =y s X(w)ejwnT da (32) 

27r -x/r 

J, 
0 211 4?r 671 8a w - - - 
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which points to the discrete function x(m) being a sum (an integral sum, to be 
more specific) of sinusoidal components like ejwnr. 

An important property of the DFT is that it provides an alternate method 
for calculating the convolution in (21). Given a pair of sequences Xi = x(i7) 
and hi = h(k), their convolution as defined by 

Yi= 2 xjhi-j, (33) 
j=-m 

can be calculated from 

Y(o) =X(w)H(w). (34) 

This can be derived by noting that the DFT of the convolution is written as 

Y(u)= c i;“, [ ,$., xkhi-k] e-jwir. (35) 

Rewriting the exponential we find 

Y&J)= c r_“. [ k-$a Xkhimk] e-jo(i-k+k)r. (36) 

The second summation now can be written as 

Y(W)= i Xke-hk7 i h,,,e-j”mT. 
i= -m nl= --oD 

(37) 

Note that the limits of the summation remain from - 00 to 00. At this point it 
is easy to see that 

Y(w) = X(w)H(o). (38) 

A dual to the above relationship can be stated as follows. Let’s multiply 
two discrete functions, x, and yn , each obtained by sampling the correspond- 
ing continuous function with a sampling interval of r and call the resulting 
sequence .zn 

Zn =x”Yw (39) 

Then the DFT of the new sequence is given by the following convolution in 
the frequency domain 

Z(w) =& y;,, X(a) Y(o -a) da. (40) 
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2.1.5 Finite Fourier Transform 

Consider a discrete function 

x(O), x(7), x(27), * - *, x((N- 117) (41) 

that is N elements long. Let’s represent this sequence with the following 
subscripted notation 

x0, XI, x2, “’ XN-I. (42) 

Although the DFT defined in Section 2.1.4 is useful for many theoretical 
discussions, for practical purposes it is the following transformation, called 
the finite Fourier transform (FFT), l that is actually calculated with a 
computer: 

X, =h Nz’ X,e-j(2a/NMn 
n=O 

(43) 

for u = 0, 1, 2, a**, N - 1. To explain the meaning of the values X,, 
rewrite (43) as 

(44) 

Comparing (44) and (28), we see that the X,,‘s are the samples of the 
continuous function X(o) for 

1 
0=?4- 

NT 
with u=O, 1, 2, **a, N-l. (45) 

Therefore, we see that if (43) is used to compute the frequency domain 
representation of a discrete function, a sampling interval of r in the t-domain 
implies a sampling interval of l/Nr in the frequency domain. The inverse of 
the relationship shown in (43) is 

N-l 
x,= C Xuej(2r/N)un , n=O, 1, 2, a**, N-l. (46) 

II=0 

Both (43) and (46) define sequences that are periodically replicated. First 
consider (43). If the u = Nm + i term is calculated then by noting that 
ej(2a/wNm = 1 for all integer values of m, it is easy to see that 

X Nm+i=xi- (47) 

I The acronym FFT also stands for fast Fourier transform, which is an efficient algorithm for 
the implementation of the finite Fourier transform. 
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A similar analysis can be made for the inverse case so that 

XNm+i=Xi* (48) 

When the finite Fourier transforms of two sequences are multiplied the 
result is still a convolution, as it was for the discrete Fourier transform 
defined in Section 2.1.4, but now the convolution is with respect to replicated 
sequences. This is often known as circular convolution because of the effect 
discussed below. 

To see this effect consider the product of two finite Fourier transforms. 
First write the product of two finite Fourier transforms 

Z,=X,Y, (49) 

and then take the inverse finite Fourier transform to find 

N-l 
Zn= C e.i@r/N)unX 

u 
y 

U. (50) 

u=O 

Substituting the definition of X, and Y,, as given by (43) the product can now 
be written 

Zn = $ Ni ei(2*/N)un 
N-l N-l 
2 xiei(hdN)iu C yk&(2*/NWm 

(51) 
l l=O k=O 

The order of summation can be rearranged and the exponential terms 
combined to find 

“,& y y xiyk y ej(2u/N)un-ui-uke 

r=O k=O Id=0 
(52) 

There are two cases to consider. When n - i - k # 0 then as a function of 1( 
the samples of the exponential ej(2+/~un-ui-uk represent an integral number 
of cycles of a complex sinusoid and their sum is equal to zero. On the other 
hand, when i = n - k then each sample of the exponential is equal to one 
and thus the summation is equal to IV. The summation in (52) over i and k 
represents a sum of all the possible combinations of Xi and yk. When i = n - 
k then the combination is multiplied by a factor of N while when i # n - k 
then the term is ignored. This means that the original product of two finite 
Fourier transforms can be simplified to 

z,, =; y x,,-kyk. 

k=O 
(53) 

This expression is very similar to (21) except for the definition of x,-k and 
yk for negative indices. Consider the case when n = 0. The first term of the 
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Fig. 2.9: The effect of circular 
convolution is shown in (a). (b) 
shows how the data can be 
zero-padded so that when an FFT 
convolution is performed the 
result represents samples of an 
aperiodic convolution. 

summation is equal to xoyo but the second term is equal to x- 1 yr . Although in 
the original formulation of the finite Fourier transform, the x sequence was 
only specified for indices from 0 through N - 1, the periodicity property in 
(48) implies that x-r be equal to XN- r. This leads to the name circular 
convolution since the undefined portions of the original sequence are replaced 
by a circular replication of the original data. 

The effect of circular convolution is shown in Fig. 2.9(a). Here we have 
shown an exponential sequence convolved with an impulse. The result 
represents a circular convolution and not samples of the continuous 
convolution. 

A circular convolution can be turned into an aperiodic convolution by zero- 
padding the data. As shown in Fig. 2.9(b) if the original sequences are 
doubled in length by adding zeros then the original N samples of the product 
sequence will represent an aperiodic convolution of the two sequences. 

Efficient procedures for computing the finite Fourier transform are known 
as fast Fourier transform (FFT) algorithms. To calculate each of the N points 
of the summation shown in (43) requires on the order of N2 operations. In a 
fast Fourier transform algorithm the summation is rearranged to take 
advantage of common subexpressions and the computational expense is 
reduced to N log N. For a 1024 point signal this represents an improvement 
by a factor of approximately 100. The fast Fourier transform algorithm has 
revolutionized digital signal processing and is described in more detail in 
[Bri74]. 

-w -- 
Positive Negative Positive Negative Positive Negative 

Time Time Time Time Time Time 

Positive Negative 
Time Time 
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2.1.6 Just How Much Data Is Needed? 

In Section 2.1.1 we used a sequence of numbers Xi to approximate a 
continuous function x(t). An important question is, how finely must the data 
be sampled for Xi to accurately represent the original signal? This question 
was answered by Nyquist who observed that a signal must be sampled at least 
twice during each cycle of the highest frequency of the signal. More 
rigorously, if a signal x(t) has a Fourier transform such that 

X(w) = 0 for wBT (54) 

then samples of x must be measured at a rate greater than UN. In other words, 
if T is the interval between consecutive samples, we want 2a/T 1 wN. The 
frequency WN is known as the Nyquist rate and represents the minimum 
frequency at which the data can be sampled without introducing errors. 

Since most real world signals aren’t limited to a small range of frequencies, 
it is important to know the consequences of sampling at below the Nyquist 
rate. We can consider the process of sampling to be equivalent to 
multiplication of the original continuous signal x(t) by a sampling function 
given by 

h(t)=i A(t-iT). (55) 
--m 

The Fourier transform of h(t) can be computed from (26) to be 

(56) 

By (40) we can convert the multiplication to a convolution in the frequency 
domain. Thus the result of the sampling can be written 

(57) 

This result is diagrammed in Fig. 2.10. 
It is important to realize that when sampling the original data (Fig. 2.10(a)) 

at a rate faster than that defined by the Nyquist rate, the sampled data are an 
exact replica of the original signal. This is shown in Fig. 2.10(b). If the 
sampled signal is filtered such that all frequencies above the Nyquist rate are 
removed, then the original signal will be recovered. 

On the other hand, as the sampling interval is increased the replicas of the 
signal in Fig. 2.10(c) move closer together. With a sampling interval greater 
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Fig. 2.10: Sampling a waveform 
generates replications of the 
original Fourier transform of the 
object at periodic intervals. If the 
signal is sampled at a frequency 
of o then the Fourier transform 
of the object will be replicated at 
intervals of 2~. (a) shows the 
Fourier transform of the original 
signal, (b) shows the Fourier 
transform when x(t) is sampled at 
a rate faster than the Nyquist 
rate, (c) when sampled at the 
Nyquist rate and finally (d) when 
the data are sampled at a rate less 
than the Nyquist rate. 

than that predicted by the Nyquist rate some of the information in the original 
data has been smeared by replications of the signal at other frequencies and 
the original signal is unrecoverable. (See Fig. 2.10(d).) The error caused by 
the sampling process is given by the inverse Fourier transform of the 
frequency information in the overlap as shown in Fig. 2.10(d). These errors 
are also known as aliasing. 

2.1.7 Interpretation of the FFT Output 

Correct interpretation of the XU’s in (43) is obviously important. Toward 
that goal, it is immediately apparent that X0 stands for the average (or, what is 
more frequently called the dc) component of the discrete function, since from 
(43) 

x0=$ x,. (58) 
n=O 

Interpretation of Xi requires, perhaps, a bit more effort; it stands for 1 cycle 
per sequence length. This can be made obvious by setting Xi = 1, while all 
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other Xi’s are set equal to 0 in (46). We obtain 

X, = @XT/NW (59) 

=cos ($n)+j sin (zn) (60) 

forn = 0,1,2, **e, N - 1. A plot of either the cosine or the sine part of this 
expression will show just one cycle of the discrete function x, , which is why 
we consider X, as representing one cycle per sequence length. One may 
similarly show that X2 represents two cycles per sequence length. Unfortu- 
nately, this straightforward approach for interpreting X, breaks down for u 
> N/2. For these high values of the index u, we make use of the following 
periodicity property 

x-,=x,-, (61) 

which is easily proved by substitution in (43). For further explanation, 
consider now a particular value for N, say 8. We already know that 

X0 represents dc 
X1 represents 1 cycle per sequence length 
X2 represents 2 cycles per sequence length 
X, represents 3 cycles per sequence length 
X4 represents 4 cycles per sequence length. 

From the periodicity property we can now add the following 

X5 represents - 3 cycles per sequence length 
X, represents - 2 cycles per sequence length 
X7 represents - 1 cycle per sequence length. 

Note that we could also have added “X4 represents - 4 cycles per sequence 
length. ’ ’ The fact is that for any N element sequence, XN,2 will always be 
equal to X-N/& since from (43) 

N-l 

xN/2 = x-N/2 = c %I(- 1)“. 

0 

The discussion is diagrammatically represented by Fig. 2.11, which shows 
that when an N element data sequence is fed into an FFT program, the output 
sequence, also N elements long, consists of the dc frequency term, followed 
by positive frequencies and then by negative frequencies. This type of an 
output where the negative axis information follows the positive axis 
information is somewhat unnatural to look at. 

To display the FFT output with a more natural progression of frequencies, 
we can, of course, rearrange the output sequence, although if the aim is 
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Fig. 2.11: The output of an 8 
element FFT is shown here. 

merely to filter the data, it may not be necessary to do so. In that case the 
filter transfer function can be rearranged to correspond to the frequency 
assignments of the elements of the FFT output. 

It is also possible to produce normal-looking FFT outputs (with dc at the 
center between negative and positive frequencies) by “modulating” the data 
prior to taking the FFT. Suppose we multiply the data with (- 1)” to produce 
a new sequence x,’ 

x,’ =x,( - 1)“. V-53) 

Let Xi designate the FFT of this new sequence. Substituting (63) in (43), we 
obtain 

x: =-&N/2 (64) 

for u = 0, 1,2, e-e, N - 1. This implies the following equivalences 

x,, = x-N,2 (65) 

x; =x-N/2+1 (66) 

xi =x-N/2+2 (67) 
(68) 

xiv2 = x0 (69) 

(70) 
xh-, =&,2-,. (71) 

2.1.8 How to Increase the Display Resolution in the Frequency 
Domain 

The right column of Fig. 2.12 shows the magnitude of the FFT output (the 
dc is centered) of the sequence that represents a rectangular function as shown 
in the left column. As was mentioned before, the Fourier transform of a 
discrete sequence contains all frequencies, although it is periodic, and the 
FFT output represents the samples of one period. For many situations, the 
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Fig. 2.12: As shown here, 
padding a  sequence of data with 
zeros increases the resolution in 
the f requency domain. The 
sequence in (a) has only 16  
points, (b) has 32  points, while 
(c) has 64  points. 

frequency domain samples supplied by the FFT, although containing 
practically all the information for the reconstruction of the continuous Fourier 
transform, are hard to interpret visually. This is evidenced by Fig. 2.12(a), 
where for part of the display we have only one sample associated with an 
oscillation in the frequency domain. It is possible to produce smoother- 
looking outputs by what is called zero-padding the data before taking the 
FFT. For example, if the sequence of Fig. 2.12(a) is extended with zeros to 

SIGNAL PROCESSING FUNDAMENTALS 23 



twice its length, the FFT of the resulting 32 element sequence will be as 
shown in Fig. 2.12(b), which is visually smoother looking than the pattern in 
Fig. 2.12(a). If we zero-pad the data to four times its original length, the 
output is as shown in Fig. 2.12(c). 

That zero-padding a data sequence yields frequency domain points that are 
more closely spaced can be shown by the following derivation. Again let x1, 
x2, ***, xN- i represent the original data. By zero-padding the data we will 
define a new x’ sequence: 

x,’ =x, for n=O, 1, 2, em*, N-l 

=o for n=N, N+l, *se, 2N-1. 

Let X; be the FFT of the new sequence x,‘. Therefore, 

(72) 

(73) 

ZN- I 
x; = C X;e-j(2s/2N)un 

0 

(74) 

which in terms of the original data is equal to 

N-l 
x,: = C Xne-i(2d2Nh, (75) 

0 

If we evaluate this expression at even values of U, that is when 

u=2m where m=O, 1, 2, *mm, N-l (76) 

we get 
N-l 

Xi,= C 
Xne-j(2xr/N)mn (77) 

0 

=X,. (78) 

In Fig. 2.13 is illustrated the equality between the even-numbered elements of 
the new transform and the original transform. That X; , Xi, * * *, etc. are the 
interpolated values between X0 and Xi; between Xi and X2; etc. can be seen 
from the summations in (43) and (74) written in the following form 

N-l = C X(nT)e-j(2rm/Nr)nre 

n=O 

(79) 

(80) 

Comparing the two summations, we see that the upper one simply represents 
the sampled DFT with half the sampling interval. 
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Fig. 2.13: When a data sequence So we have the following conclusion: to increase the display resolution in 
is padded with zeros the effect is 
to increase the resolution in the 

the frequency domain, we must zero-extend the time domain signal. This also 
frequency domain. The points in means that if we are comparing the transforms of sequences of different 
(a) are also in the longer sequence lengths, they must all be zero-extended to the same number, so that they are 
shown in (b), but there are 
additional points, as indicated by 

all plotted with the same display resolution. This is because the upper 
circles, that provide interpolated summation, (79), has a sampling interval in the frequency domain of 27r/2Nr 
values of the FFT. while the lower summation, (BO), has a sampling interval that is twice as long 

or 27r/Nr. 

2.1.9 How to Deal with Data Defined for Negative Time 

Since the forward and the inverse FFT relationships, (43) and (46), are 
symmetrical, the periodicity property described in (62) also applies in time 
domain. What is being said here is that if a time domain sequence and its 
transform obey (43) and (46), then an N element data sequence in the time 
domain must satisfy the following property 

x-,=xN-,,. (81) 

To explain the implications of this property, consider the case of N = 8, for 
which the data sequence may be written down as 

x0, Xl, x2, x3, x4, x5, x5, x7. W-4 

By the property under discussion, this sequence should be interpreted as 

x0, XI, x2, x3, x4 (or x-41, x-3, x2, x-]. (83) 

Then if our data are defined for negative indices (times), and, say, are of the 
following form 

X-3, x-2, x-1, x0, Xl, x2, x3, x4 (84) 
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they should be fed into an FFT program as 

x0, Xl, x2, x3, x4, x-3, x-2, X-l. (85) 

To further drive home the implications of the periodicity property in (62), 
consider the following example, which consists of taking an 8 element FFT of 
the data 

0.9 0.89 0.88 0.87 0.86 0.85 0.84 0.83. 036) 

We insist for the sake of explaining a point, that only an 8 element FFT be 
taken. If the given data have no association with time, then the data should be 
fed into the program as they are presented. However, if it is definitely known 
that the data are ZERO before the first element, then the sequence presented 
to the FFT program should look like 

0.86+0 
0.9 0.89 0.88 0.87 -0 0 0. 

2 (87) I 

positive time (88) 

negative time (89) 

This sequence represents the given fact that at t = - 1, - 2 and - 3 the data 
are supposed to be zero. Also, since the fifth element represents both x4 and 
x-~ (these two elements are supposed to be equal for ideal data), and since in 
the given data the element xv4 is zero, we simply replace the fifth element by 
the average of the two. Note that in the data fed into the FFT program, the 
sharp discontinuity at the origin, as represented by the transition from 0 to 
0.9, has been retained. This discontinuity will contribute primarily to the high 
frequency content of the transform of the signal. 

2.1.10 How to Increase Frequency Domain Display Resolution of 
Signals Defined for Negative Time 

Let’s say that we have an eight element sequence of data defined for both 
positive and negative times as follows: 

x-3 x-2 x- 1 x0 x1 x2 x3 x4. (90) 

It can be fed into an FFT algorithm after it is rearranged to look like 

X0X1X2X3X4X-3X-2X-l. (91) 

If x-4 was also defined in the original sequence, we have three options: we 
can either ignore xT4, or ignore x4 and retain x-4 for the fifth from left 
position in the above sequence, or, better yet, use (x-4 + x4)/2 for the fifth 
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position. Note we are making use of the property that due to the data 
periodicity properties assumed by the FFT algorithm, the fifth element 
corresponds to both x4 and x-~ and in the ideal case they are supposed to be 
equal to each other. 

Now suppose we wish to double the display resolution in the frequency 
domain; we must then zero-extend the data as follows 

x0 x1 x2 x3 x4 0 0 0 0 0 0 0 x-4 x-3 x-2 x-1. (92) 

Note that we have now given separate identities to x4 and x-~, since they 
don’t have to be equal to each other anymore. So if they are separately 
available, they can be used as such. 

2.1.11 Data Truncation Effects 

To see the data truncation effects, consider a signal defined for all indices 
n. If X(w) is the true DFT of this signal, we have 

X(0) = 3 x,e-jwflTs. 
-m 

(93) 

Suppose we decide to take only a 16 element transform, meaning that of all 
the x,‘s, we will retain only 16. 

Assuming that the most significant transitions of the signal occur in the 
base interval defined by n going from - 7 to 8, we may write approximately 

X(W) = i xne-jmnTs. 
-7 

(94 

More precisely, if X’(w) denotes the DFT of the truncated data, we may 
write 

X’(W) = i xne-j~nTs 
-7 

(9% 

= g xnZ,6(n)e-jWnTs 
--(I 

(96) 

where Z&r) is a function that is equal to 1 for n between - 7 and 8, and zero 
outside. By the convolution theorem 

XYw)=~ X(w) * A(w) (97) 
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where 

(98) A(& e-jwnTs 

-7 

. oNTs sin - 
= e-j4 73 2 

w Ts 
(99) 

sin - 
2 

with N = 16. This function is displayed in Fig. 2.14, and illustrates the 
nature of distortion introduced by data truncation, 

2.2 Image Processing 

Fig. 2.14: Truncating a sequence 
of data is equivalent to 
multiplying it by a rectangular 
window. The result in the 
frequency domain is to convolve 
the Fourier transform of the 
signal with the window shown 
above. 

The signal processing concepts described in the first half of this chapter are 
easily extended to two dimensions. As was done before, we will describe how 
to represent an image with delta functions, linear operations on images and 
the use of the Fourier transform. 

2.2.1 Point Sources and Delta Functions 

Let 0 be an operation that takes pictures into pictures; given the input 
picture f, the result of applying 0 to f is denoted by O[f]. Like the l- 
dimensional case discussed earlier in this chapter, we call 0 linear if 

O[af+ bg] = aO[fj + bO[g] (100) 

for all pictures, f, g and all constants a, b. 
In the analysis of linear operations on pictures, the concept of a point 
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source is very convenient. If any arbitrary picture f could be considered to be 
a sum of point sources, then a knowledge of the operation’s output for a point 
source input could be used to determine the output for f. Whereas for one- 
dimensional signal processing the response due to a point source input is 
called the impulse response, in image processing it is usually referred to as 
the point spread function of 0. If in addition the point spread function is not 
dependent on the location of the point source input then the operation is said 
to be space invariant. 

A point source can be regarded as the limit of a sequence of pictures whose 
nonzero values become more and more concentrated spatially. Note that in 
order for the total brightness to be the same for each of these pictures, their 
nonzero values must get larger and larger. As an example of such a sequence 
of pictures, let 

rect (x, y) = 
1 for Ix[s~ and 1~~15; 

(101) 
0 elsewhere 

(see Fig. 2.15) and let 

&(x, y) =n2 rect (nx, ny), n=l, 2, *-* . (102) 

Thus 6, is zero outside the l/n x I/n square described by 1x1 I 1/2n, ( y 1 
I 1/2n and has constant value n2 inside that square. It follows that 

m 

JJ 6,(x, y) dx dy= 1 (103) 
Fig. 2.15: As in the -m 

one-dimensional case, the delta 
function (6) is defined as the limit 

for any n. 
of the rectangle function shown As n -+ CQ, the sequence 6, does not have a limit in the usual sense, but it is 
here. convenient to treat it as though its limit existed. This limit, denoted by 6, is 
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called a Dirac delta function. Evidently, we have 6(x, y) = 0 for all (x, y) 
other than (0, 0) where it is infinite. It follows that 6(-x, -y) = 6(x, y). 

A number of the properties of the one-dimensional delta function described 
earlier extend easily to the two-dimensional case. For example, in light of 
(103), we can write 

m 
ss 6(x, y) dx dy= 1. (104) 
-c4 

More generally, consider the integral Jr, j “, g(x, y)&(x, y) dx dy. This 
is just the average of g(x, y) over a l/n x l/n square centered at the origin. 
Thus in the limit we retain just the value at the origin itself, so that we can 
conclude that the area under the delta function is one and write 

00 

JJ gk YMX, Y) dx dy=g(O, Oh (105) -m 
If we shift 6 by the amount ((Y, fl), i.e., we use 6(x - (Y, y - 0) instead of 

6(x, y), we similarly obtain the value of g at the point ((Y, P), i.e., 

m 

JS g(x, y)&(x-a, y-0) dx dy=g(cr, P). (106) 
-m 

The same is true for any region of integration containing (CX, 0). Equation 
(106) is called the “sifting” property of the 6 function. 

As a final useful property of 6, we have 

m 

SJ exp [ -j2n(ux+ uy)] du du=6(x, y). 
-ca 

(107) 

For a discussion of this property, see Papoulis [Pap62]. 

2.2.2 Linear Shift Invariant Operations 

Again let us consider a linear operation on images. The point spread 
function, which is the output image for an input point source at the origin of 
the xy-plane, is denoted by h(x, y). 

A linear operation is said to be shift invariant (or space invariant, or 
position invariant) if the response to 6(x - CY, y - ,8), which is a point source 
located at (CY, /3) in the xy-plane, is given by h(x - CX, y - /3). In other 
words, the output is merely shifted by 01 and 8 in the x and y directions, 
respectively. 
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Now let us consider an arbitrary input picture f (x, y). By (106) this picture 
can be considered to be a linear sum of point sources. We can write f (x, y) as 

f(x, Y)= Jy, J,=,m .m(a-x, P-Y) da do. (108) 
In other words, the image f (x, y) is a linear sum of point sources located at 
(a, 0) in the xy-plane with (Y and p ranging from - 03 to + 00. In this sum the 
point source at a particular value of (a, 0) has “strength” f (a, 0). Let the 
response of the operation to the input f (x, y) be denoted by O[f 1. If we 
assume the operation to be shift invariant, then by the interpretation just given 
to the right-hand side of (108), we obtain 

omx, Y)I=O Jm J=’ f(a, PYG-xx, P-Y) da do [ 1 -m -co (10% 
= JJ f(a, P)O[Wa-x, P-r)1 da dL-3 (110) 

by the linearity of the operation, which means that the response to a sum of 
excitations is equal to the sum of responses to each excitation. As stated 
earlier, the response to 6(a - x, fl - y) [=6(x - (II, y - @)I, which is a 
point source located at (CY, P), is given by h(x - CX, y - 0) and if O[f] is 
denoted by g, we obtain 

gk Y)= SW s’* f(w P)h(x-au, Y -PI da do. -cv --m (111) 

The right-hand side is called the convolution off and h, and is often denoted 
by f * h. The integrand is a product of two functions f (a, 0) and h(a, @) with 
the latter rotated about the origin by 180’ and shifted by x and y along the x 
and y directions, respectively. A simple change of variables shows that (111) 
can also be written as 

g(x, Y)= s’“, J;p-a, y--PM(~, PI da d@ (112) 

sothatf * h = h *f. 
Fig. 2.16 shows the effect of a simple blurring operation on two different 

images. In this case the point response, h, is given by 

h(x, Y)= ; 
~‘+y~<O.25~ 
elsewhere. (113) 

As can be seen in Fig. 2.16 one effect of this convolution is to smooth out the 
edges of each image. 
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2.2.3 Fourier Analysis 

Representing two-dimensional images in the Fourier domain is as useful as 
it is in the one-dimensional case. Let f (x, y) be a function of two independent 
variables x and y; then its Fourier transform F(u, u) is defined by 

F(u, II)= IT, I;- f(x, y)e-j2r(ur+vr) dx dy. (114) 

In the definition of the one- and two-dimensional Fourier transforms we 
have used slightly different notations. Equation (26) represents the frequency 
in terms of radians per unit length while the above equation represents 
frequency in terms of cycles per unit length. The two forms are identical 
except for a scaling and either form can be converted to the other using the 
relation 

f=u=u=2ao. (115) 

By splitting the exponential into two halves it is easy to see that the two- 
dimensional Fourier transform can be considered as two one-dimensional 
transforms; first with respect to x and then y 

F(~, u)= JT, e-j2ruy dy Jy, f(x, y)e-j2ru dx. (116) 

In general, F is a complex-valued function of u and u. As an example, let f (x, 
y) = rect (x, y). Carrying out the integration indicated in (114) we find 

F(u, u)= J”‘,, J”‘,, e-j2r(u+uH dx dy (117) 

sin 7ru 
s 

l/2 

=- -,,2 e- 
j2w dy 

?TU 
(118) 

sin *u sin m =--* (119) 
Tl.4 ?TU 

This last function is usually denoted by sine (u, u) and is illustrated in Fig. 
2.17. More generally, using the change of variables x’ = IW and y ’ = ny, it 
is easy to show that the Fourier transform of rect (nx, ny) is 

(l/n2) sine (u/n, u/n). (120) 

Given the definition of the Dirac delta function as a limit of a sequence of 
the functions n2 rect (nx, ny); by the arguments in Section 2.1.3, the Fourier 
transform of the Dirac delta function is the limit of the sequence of Fourier 
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Fig. 2.17: The two-dimensional transforms sine (u/n, u/n). In other words, when 
Fourier transform of the 
rectangle function is shown here. fk Y)=w> Y) (121) 

then 

F(u, u)=lim sine (u/n, u/n)=l. (122) n-m 

The inverse Fourier transform of F(u, u) is found by multiplying both sides 
of (114) by ej2r(U+ufl) and integrating with respect to u and u to find 

m  cu J J F(u, u) exp [-j2?r(ux+u@)] du du -co -co 

=J:, J:, J:, J:+ y) ej2r(ua+ @

)ej2~

W+ 

d) du du & dy (123) 

=J:, J:, J:, J:, f(x, y)e-j2*[U(x-~)+"(Y-B)1 du du &  dye (124) 

Making use of (107) it is easily shown that 

m  m  S J F(u, u) exp [j2a(ux+u@)J du du -ca -m m  m  = J S f(x, Y)~(x-w Y-P) dx dy (125) 

=f(Z s,- (126) 

or equivalently 

m

, 

n=J- Jm F(u, u) exp li27r(ux+uy)] du du. (127) -m -co 
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This integral is called the inverse Fourier transform of F(u, u). By (114) 
and (127), f(x, y) and F(u, u) form a Fourier transform pair. 

If x and y represent spatial coordinates, (127) can be used to give a physical 
interpretation to the Fourier transform F(u, u) and to the coordinates u and u. 
Let us first examine the function 

&2r(u+ UY) (128) 

The real and imaginary parts of this function are cos 27r(ux + uy) and sin 
2n(ux + uy), respectively. In Fig. 2.18(a), we have shown cos 27r(ux + 
uy). It is clear that if one took a section of this two-dimensional pattern 
parallel to the x-axis, it goes through u cycles per unit distance, while a 
section parallel to the y-axis goes through u cycles per unit distance. This is 
the reason why u and u are called the spatial frequencies along the x- and y- 
axes, respectively. Also, from the figure it can be seen that the spatial period 
of the pattern is (u2 + u2)- i12. The plot for sin 2n(ux + uy) looks similar to 
the one in Fig. 2.18(a) except that it is displaced by a quarter period in the 
direction of maximum rate of change. 

From the preceding discussion it is clear that ej2r@x+Uy) is a two- 
dimensional pattern, the sections of which, parallel to the x- and y-axes, are 
spatially periodic with frequencies u and u, respectively. The pattern itself 
has a spatial period of (u2 + u2)- 1’2 along a direction that subtends an angle 
tan-’ (u/u) with the x-axis. By changing u and u, one can generate patterns 
with spatial periods ranging from 0 to’ 00 in any direction in the xy-plane. 

Equation (127) can, therefore, be interpreted to mean thatf(x, y) is a linear 
combination of elementary periodic patterns of the form ej2*(Ux+UJ’). 
Evidently, the function, F(u, u), is simply a weighting factor that is a 
measure of the relative contribution of the elementary pattern to the total sum. 
Since u and u are the spatial frequency of the pattern in the x and y directions, 
F(u, u) is called the frequency spectrum of f(x, y). 

2.2.4 Properties of Fourier Transforms 

Several properties of the two-dimensional Fourier transform follow easily 
from the defining integrals equation. Let F(f) denote the Fourier transform 
of a function f(x, y). Then F{f(x, y)} = F(u, u). We will now present 
without proof some of the more common properties of Fourier transforms. 
The proofs are, for the most part, left for the reader (see the books by 
Goodman [Go0681 and Papoulis [Pap62]). 

I) Linearity: 

Fiafdx, Y) + WAX, Y>> = aF{fdx, Y>> + bFLMx, Y>> (129) 

=aF,(u, u)+bF2(u, u). (130) 

This follows from the linearity of the integration operation. 

SIGNAL PROCESSING FUNDAMENTALS 35 



Fig. 2.18: The Fourier 
transform represents an image in 

2) Scaling: 
terms of exponentials of the form 
e*2r(ux+uy). Here we have shown 
the real (cosine) and the FLf (ax, (131) 
imaginary (sine) parts of one such 
exponential. To see this, introduce the change of variables x

’ 

= CXX, y

’ 

= fly. This 
property is illustrated in Fig. 2.19. 

3) Shift Property: 

F{f(x-a, y-&}=F(u, u)e-j2*(uu+u~). (132) 
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Fig. 2.19: Scaling the size of an This too follows immediately if we make the change of variables x

’ 

= x - 
image leads to compression and 
amplification in the Fourier a, Y

’ 

= y - 0. The corresponding property for a shift in the frequency 

domain. domain is 

F {exp W7du0x+ v~u)lf(x, Y>> =F(u - UO, u - ~0). (133) 

4) Rotation by Any Angle: In polar coordinates we can write 

FW, fO> =Fh, 4). (134) 

If the function, f, is rotated by an angle CY then the following result follows 

F{f(r, 19+cx)}=F(w, d+a). (135) 

This property is illustrated in Fig. 2.20. 
5) Rotational Symmetry: If f(x, y) is a circularly symmetric function, 

i.e., f(r, 0) is only a function of r, then its frequency spectrum is also 
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Fig. 2.20: Rotation of an object circularly symmetric and is given by 
by 30

” 

leads to a similar rotation 
in the Fourier transform of the 
image. F(u, U) = F(p) = 2~ 1: rf(r)Jo(2rrp) dr. (136) 

The inverse relationship is given by 

f (4 = 2n 1, pF@) JdWp) dp (137) 

where 

r=m, O=tan-

’ 

(y/x), p=GT7, +=tan-

’ 

(u/U) (138) 

and 

Jo(x) = (1/27r) j: exp [ -jx cos (6 - 4)1 de (139) 
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is the zero-order Bessel function of the first kind. The transformation in (136) 
is also called the Hankel transform of zero order. 

6) 180” Rotation: 

F{FU-(x, Y)I) =f(-x, -Y). 

7) Convolution: 

- - F 
Is 1 

fib, PMx-a, Y-P) da d0 -co -m 

=F{fdx, Y>> F{h(x, Y>> 

(140) 

=Fdu, u)Fz(u, u). (142) 

Note that the convolution of two functions in the space domain is equivalent 
to the very simple operation of multiplication in the spatial frequency domain. 
The corresponding property for convolution in the spatial frequency domain 
is given by 

F{fLx, YUXX, Y>> = (-1 Fdu -s, u- t)Ms, 0 ds dt. (143) 
-m 

A useful example of this property is shown in Figs. 2.21 and 2.22. By the 
Fourier convolution theorem we have chosen a frequency domain function, 
H, such that all frequencies above Q cycles per picture are zero. In the space 
domain the convolution of x and h is a simple linear filter while in the 
frequency domain it is easy to see that all frequency components above s1 
cycles/picture have been eliminated. 

8) Parseval’s Theorem: 

l"", j;,fd% J')f;(x, Y) dx dy= j;, s'", FLU, u)F:(u, u) du dy 

(144 

where the asterisk denotes the complex conjugate. Whenfi(x, y) = f2(x, y) 
= f(x, y), we have 

I=-, {;- If@, y)12 dx dy= j;, [-+ IF@, u)12 du du. (145) 

In this form, this property is interpretable as a statement of conservation of 
energy. 
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Fig. 2.21: An ideal low pass filter is implemented by multiplying the Fourier transform of an object by a circular window. 
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Fig. 2.22: An ideal low pass filter is implemented by multiplying the Fourier transform of an object by a circular window. 
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2.2.5 The Two-Dimensional Finite Fourier Transform 

Letf(m, n) be a sampled version of a continuous two-dimensional function 
f. The finite Fourier transform (FFT) is defined as the summation2 

F(u, u)=I&~~’ Ni f(m, n) exp 
m=O n=O 

[ -j2r( :+:)I (146) 

for u = 0, 1, 2, .* *, it4 - 1; u = 0, 1, 2, * * *, N - 1. 
The inverse FFT (IFFT) is given by the summation 

M-l N-l 
f(m, n)=x c F( u, u) exp [j27r(z+;)] (147) 

u=o r=O 

form = 0, 1, ***,M- l;n = 0, 1, ***,N- l.Itiseasytoverifythatthe 
summations represented by the FFT and IFFT are inverses by noting that 

F. exp [$ km] exp [T mn] = {: ii:. (148) 

This is the discrete version of (107). That the inverse FFT undoes the effect 
of the FFT is seen by substituting (43) into (147) for the inverse DFT to find 

f(m, n)=kNME’ Nz’ Mg’ Nz’f(m, n) 
u=o r=O m=O n=O 

* exp [ -j27r(z+s)] exp [j2r( ;+:)I . (149) 

The desired result is made apparent by rearranging the order of summation 
and using (148). 

In (146) the discrete Fourier transform F(u, u) is defined for u between 0 
and A4 - 1 and for u between 0 and N - 1. If, however, we use the same 
equation to evaluate F( k u, + u), we discover that the periodicity properties 

* To be consistent with the notation in the one-dimensional case, we should express the space 
and frequency domain arrays as fm,. and F,,.. However, we feel that for the two-dimensional 
case, the math looks a bit neater with the style chosen here, especially when one starts dealing 
with negative indices and other extensions. Also, note that the variables u and v are indices here, 
which is contrary to their usage in Section 2.2.3 where they represent continuously varying 
spatial frequencies. 
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of the exponential factor imply that 

F(u, -u)=F(u, N-u) 

F(-u, u)=F(M-u, u) 

F(-u, -u) = F(M- u, N- u). 

Similarly, using (147) we can show that 

(150) 

(151) 

(152) 

f(--m, n)=fW-m, n) (153) 

.f(m, -n)=f(m, N-n) (154) 

f(-m, -n) =f (M- m, N-n). (155) 

Another related consequence of the periodicity properties of the exponen- 
tial factors in (28) and (147) is that 

F(aM+ u, bN+ u)=F(u, u) and f(aM+m, bN+n)=f(m, n) (156) 

for a = 0, +l, +2, .*a, b = 0, +_l, k2, *.* . Therefore, wehavethe 
following conclusion: if a finite array of numbers f,,, and its Fourier 
transform F,,, are related by (28) and (147), then if it is desired to extend the 
definition off (m, n) and F(u, u) beyond the original domain as given by [0 
5 (m and u) I M - 11 and [0 I (n and u) I N - 11, this extension must 
be governed by (151), (154) and (156). In other words, the extensions are 
periodic repetitions of the arrays. 

It will now be shown that this periodicity has important consequences when 
we compute the convolution of two M x N arrays, f (m, n) and d(m, n), by 
multiplying their finite Fourier transforms, F(u, u) and D(u, u). The 
convolution of two arrays f (m, n) and d(m, n) is given by 

g(cx, fl)=kNMz’ Nz’ f(m, n)d(u-m, /3-n) 
m=O n=O 

(157) 

=kNy y f(a!-m, fl-n)d(m, n) 
m=O n=O 

(158) 

fora = 0, 1, ***,M- l,p = 0, 1, ***,N- 1,whereweinsistthatwhen 
the values off (m, n) and d(m, n) are required for indices outside the ranges 0 
smsM- landOsn<N- l,forwhichf(m,n)andd(m,n)are 
defined, then they should be obtained by the rules given in (151), (154) and 
(156). With this condition, the convolution previously defined becomes a 
circular or cyclic convolution. 

As in the l-dimensional case, the FFT of (157) can be written as the 
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product of the two Fourier transforms. By making use of (147), we obtain 

g(a, /3)=&NMg’ Ng’ f(m, n)d(cx-m, P-n) 
m=O n=O 

(159) 

expanding f and d in terms of their DFTs 

F(u, u) exp [j2*(:+:)]] 

* [y y D(w, z) exp [jhr((a-rn)$+y)]j (160) 
w=o z=o 

and then rearranging the summations 

=&y y y y k(U, u)D(w, z) exp [j2r(z+$)] 
u=o u=o w=o z=o 

* z: z: exp [j27rm(L “‘1 exp [j2n v]) . (161) 

Using the orthogonality relationship (148) we find 

M-l N-l 

= c c F(u, u)D(u, u) exp j27r 
u=o u=o 

[’ (;+$)I . (162) 

Thus we see that the convolution of the two-dimensional arrays f and d can be 
expressed as a simple multiplication in the frequency domain. 

The discrete version of Parseval’s theorem is an often used property of the 
finite Fourier transform. In the continuous case this theorem is given by (144) 
while for the discrete case 

M-I N-l M-l N-l 

c c f(m, n)g*(m, n)=MN z c F(u, u)G*(u, u). (163) 
m=O n=O u=o u=o 

The following relationship directly follows from (163): 

M-l N-l M-l N-l 

-c c If(m, n)J2=MN C C IF(u, u)l’. 
m=O n=O u=o n=O 

As in the one-dimensional and the continuous two-dimensional cases 
Parseval’s theorem states that the energy in the space domain and that in the 
frequency domain are equal. 
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As in a one-dimensional case, a two-dimensional image must be sampled at 
a rate greater than the Nyquist frequency to prevent errors due to aliasing. 
For a moment, going back to the interpretation of u and u as continuous 
frequencies (see Section 2.2.3), if the Fourier transform of the image is zero 
for all frequencies greater than B, meaning that F(u, u) = 0 for all u and u 
such that ]u] 2 B and I u( L B, then there will be no aliasing if samples of the 
image are taken on a rectangular grid with intervals of less than A. A pictorial 
representation of the effect of aliasing on two-dimensional images is shown in 
Fig. 2.23. Further discussion on aliasing in two-dimensional sampling can be 
found in [Ros82]. 

2.2.6 Numerical Implementation of the Two-Dimensional FFT 

Before we end this chapter, we would like to say a few words about the 
numerical implementation of the two-dimensional finite Fourier transform. 
Equation (28) may be written as 

F(u, u)=i$’ kNz’f(m, n) exp 
m=o [ n=O 

(-jsnu)] 

* exp (-j$mu) , 

u=o, ***, M-l, u=O, *.a, N-l. (165) 

The expression within the square brackets is the one-dimensional FFT of the 
mth row of the image, which may be implemented by using a standard FFT 
(fast Fourier transform) computer program (in most instances N is a power of 
2). Therefore, to compute F(u, u), we replace each row in the image by its 
one-dimensional FFT, and then perform the one-dimensional FFT of 
each column. 

Ordinarily, when a 2-D FFT is computed in the manner described above, 
the frequency domain origin will not be at the center of the array, which if 
displayed as such can lead to difficulty in interpretation. Note, for example, 
that in a 16 x 16 image the indices u = 15 and u = 0 correspond to a 
negative frequency of one cycle per image width. This can be seen by 
substituting u = 1 and u = 0 in the second equation in (151). To display the 
frequency domain origin at approximately the center of the array (a precise 
center does not exist when either M or N is an even number), the image data 
f (m, n) are first multiplied by ( - l)m+” and then the finite Fourier 
transformation is performed. To prove this, let us define a new arrayf’(m, n) 
as follows: 

f’(m, n)=f(m, n)(- l)m+n (166) 
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Fig. 2.23: The effect of aliasing 
in two-dimensional images is 
shown here. (This is often known 
as the Moire effect.) In (a) a 
high-frequency sinusoid is shown. 
In (b) this sinusoid is sampled at 
a rate much lower than the 
Nyquist rate and the sampled 
values are shown as black and 
white dots (gray is used to 
represent the area between the 
samples). Finally, in (c) the 
sampled data shown in (b) are 
low pass filtered at the Nyquist 
rate, Note that both the direction 
and frequency of the sinusoid 
have changed due to aliasing. 

and let F'(u, u) be its finite Fourier transform: 

F

’

(U, 

+$NM~

’ 

Nglf(m, n)(- I),+, 
m=O n=O 

* exp [-j&r (z+:)] . 

Rewriting this expression as 

F(u, v) =&-& Mz

’ 

Ns f(m, n) 
m=O n=O 

(167) 
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* exp j2?r c [ (M/2)m + (Av2)n 
- - 

- exp [-j2r(i+gj] 

II 
it is easy to show that 

W3) 

(169) 

F(u, u)=F u-t, u-g 
( > 

, 

u=o, 1, *mm, M-l; u=o, 1, *em, N-l. (170) 

Therefore, when the array F’(u, u) is displayed, the location at u = A412 and 
v = N/2 will contain F(0, 0). 

We have by no means discussed all the important properties of continuous, 
discrete and finite Fourier transforms; the reader is referred to the cited 
literature for further details. 
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