Inductive Policy Selection for First-Order MDPs

SungWook Yoon, Alan Fern,andRobert Givan
School of Electrical and Computer Engineering, Rigrd)niversity
West Lafayette, IN 47907

Abstract

We select policies for large Markov Decision
Processes (MDPs) with compact first-order rep-
resentations. We find policies that generalize
well as the number of objects in the domain
grows, potentially without bound. Existing dy-
namic-programming approaches based on flat,
propositional, or first-order representations eithe
are impractical here or do not naturally scale as
the number of objects grows without bound. We
implement and evaluate an alternative approach
that induces first-order policies using training
data constructed by solving small problem in-
stances using PGraphplan (Blum & Langford,
1999). Our policies are represented as ensembles
of decision lists, using a taxonomic concept lan-
guage. This approach extends the work of Martin
and Geffner (2000) to stochastic domains, en-
semble learning, and a wider variety of prob-
lems. Empirically, we find “good” policies for
several stochastic first-order MDPs that are be-
yond the scope of previous approaches. We also
discuss the application of this work to the rela-
tional reinforcement-learning problem.

1 Introduction

Many Al planning domains are naturally described in
terms of objects and relations among objects—elg, t
blocks-world and logistics domains contain blockars,
trucks, and packages. Typically, such domains ane-c
pactly represented with first-order object quattion—
e.g., “picking up any object results in holding thedbject.”

tional algorithms are generally not polynomial ihat
size—rendering the associated algorithms impractical

Recent MDP work uses a relationally factored value-
function to carry out traditional dynamic programugi
methods (Boutilier et al., 2001). This techniquewgso-
fully exploits relational structure, but has tworieeis
shortcomings addressed here. First, value-iterafpn
proaches converge only after at least a numbertarai
tions equal to the problem “solution length”, aststs
have their value affected by rewards only at hongsuf-
ficient to reach the rewards; however, the solutiength
can grow with the number of domain objects. Secdhd,
size of the value-function representation can gexpo-
nentially with the number of iterations as the stapace
may have exponentially many regions of differeniuea

Here, we examine planning problems that exhibitsthe
phenomena when a value-iteration approach is agplie
Our approach does not compute a value functioraigée
domains, but instead attempts to generalize goditipe
for domains with few objects to get a useful polityr
domains with many objects. For example, patternghin
optimal solutions to five block blocks-world prolotes can
be exploited in 50 block problems.

Policy construction by generalization from smallopr
lems was recently studied for deterministic probseby
Khardon (1999) and Martin & Geffner (2000). Hereg w
extend that work to stochastic problems, widenvhdety
of domains considered, and consider a differentotax
nomic concept language for induced policies (i dlif-
ferent language bias). We also add a heuristic ephc
selection technique and an ensemble learning method
(bagging) and show substantial benefits from thexen-
sions.

Our goals preclude guaranteeing an optimal or near-

Markov Decision Processes (MDPs) are a usefuloptimal policy—in many (even toy) planning domains,

representation for stochastic planning domains.eResh
on MDPs, however, has dealt little with the issué o
exploiting relational structure. Most existing algbms
for selecting control policies operate on eitheatf(Bell-
man, 1957; Howard, 1960; Puterman, 1994; Dean gt al
1995) or propositionally factored (Boutilier et aR000;
Dean & Givan, 1997) representations. The size fitor
propositional representation for a relational domaan
be extremely large and is potentially infinite, apibposi-

finding such a policy is NP-hard, or harder, and ye
would like to find useful policies in such domains.

This work raises the interesting question of whetpel-

! As an example problem, consider a blocks-world damwhere the
goal is to clear blocla, where blocks have colors that affect the opera-
tors. While there is a very simple optimal polidiaere are exponentially
many uniform-value regions relative to the horizamd solution length
grows with domain size.

icy selection can be usefully improved by providig

drawn from the natural numbérsand the truth value of

“mostly optimal” policy—one that selects the optimal each predicate application to those domain objeets.

action at a high fraction of states. Intuitivelyermgeraliza-
tion from closely related, but solvable, problerssch as

problems constructed by reducing the number of dama

objects, may often produce policies that make gdedi-
sions in many states, but that make erroneous mesEsn
a (possibly) small fraction of states. Such polgiean
yield arbitrarily poor value functions—neverthelgsisey
represent a potentially rich source of informatevout an
MDP’s solution structure. In spite of this, most N#Dre-
search evaluates the utility of a policy based lsotm its
value function. We know of no work addressing pglic
selection when informed by such a “mostly optimpbl-
icy. Our bagging technique combines a set of (hafgf
“mostly optimal” policies to get an “optimal” polic by
voting, and is successful here.

Another interesting problem raised by inductive ipgl
selection is selection of “small” problem instancekere
the good policies are usefully related to good giels in
large problems. While here we focus only on resinig
the object domain size, construction of small imstas by
abstraction is also of interest. Generating usefustrac-
tions automatically, and learning from the resuwfsana-
lyzing them, is a potential future direction.

Finally, this work is closely related to the relatial rein-
forcement-learning problem, as we discuss in saecsio

2 First-Order Markov Decision Processes

In this work, we use a first-order stochastic plamgnlan-
guage known as “first-order probabilistic STRIPS&{(
ferred to from now on as PSTRIPS) that is the infaut-
guage used by the stochastic planner PGraphplanngBl
& Langford, 1999), and is similar in expressive paw
and compactness to the situation-calculus—baseyukge
used by Boutilier et al. (2001). Our policy selexti

method is not tied to PSTRIPS, and could easily ase

more general language—rather, we focus on this laggu
because we use PGraphplan to generate trainingficata

small problem instances. Our policy selection metho

applies to any MDP representation with a planndedb
solve “small problem instances”. (PGraphplan ishsuac
planner for PSTRIPS; however, it propositionalizée
input problem, scaling poorly to large domains.)

2.1 First-Order Probabilistic STRIPS

In our variant, a PSTRIPS MDP is a tuples&A, T,1>,
with each component described below.

States. Each MDP is associated with a finite s8tof
predicate symbols that are interpreted as spedajfyirop-
erties of objects (single-arity predicates) andatieins
among objects (multi-arity predicates). Each statean
MDP is a first-order model of the associated pretis.
That is, a state specifies a (finite) set of domaljects

convenience, we assume each domain object (number)
has a unique constant name and then represent digite
listing the true ground facts. For example, thaesta

{{a,b}, {on(a,b), clear(b), on-table(a)})

is a blocks-world state with exactly two blocksandb in
the domain, whera is on the table and is ona. In gen-
eral, there is no limit on the domain size of atetarhe
state space is therefore countably infinite, camted
countably many states for each domain size. Below,
introducing goals, we give one restriction on tle¢S

Actions. Our MDP actions are represented using a
straightforward stochastic generalization of thenooonly
used deterministic STRIPS language (Fikes & Nilsson
1971). Each MDP is associated with a finite sebf ac-
tion-type symbols, each of some specified arityvesi a
state, each way of instantiating the action-typenbypls
with objects from the object domain in that staterre-
sponds to an MDP action. For example, in the sdiswn
above, the actiomick-up(a) is an action of the single-
arity typepick-up.

PSTRIPS compactly defines all actions of actionetyp
via an action schemd(a), using variables to abstract
away from objects. An action schema has three parts

1. prototypdT(a)), which is an action-type symbol of
arity n applied to action variables,, ..., X.

2. preconditior{T(a)), a conjunction of MDP predicates
applied to action variables froi, ..., X,.

3. outcome€l(a)), a probability distribution (giving
“occurrence probability”) over a set gfossible out-
comes each giving an add-list and a delete-list, each
a set of MDP predicates applied to action variables

The behavior of an actioa(o,...,0,) in a stateq contain-
ing theo; is defined by first instantiating eact with o; in
the schemarl(a)—this results in “ground” precondition
and add/delete lists. Actica(o,...,0,) is legalin g only if
the ground precondition is true oy and cannot be taken
in g otherwise. Each possible outcome of the actiondas
“possible next state” associated with it, when takie
stateg—this is the state equal tg, but with any facts in
the ground add (delete)-list added (deleted). & #ttion
can be taken in staig the next-state distribution is given
by outcomegl(a)), with each possible outcome replaced
by its possible next state, and other MDP statesga®sd
probability zero. Deterministic STRIPS actions gust
PSTRIPS actions with deterministautcomegTl(a)) dis-
tributions. Space precludes an example; see (RéRb,).

Two factors often make it unnatural to capture arpling
domain in PSTRIPS. First, PSTRIPS makes a fundamen-
tal assumption that the number of possible outcorses
not large—an assumption also present in the langudge
Boutilier et al. (2001). Thus, defining actions éiKshuf-

2 Domains are finite subsets of number for simpjicitot necessity.

fle-cards” is clearly not feasible, requiring a gdde out-
come for each ordering of cards. Second, the ptessib
outcomes are specified without quantification. Défg
an action that knocks over a tower of arbitrarydteiis
then difficult, since the most natural specification-
volves quantification. Despite these limitation§TRIPS
still allows for challenging MDPs to be defined niag it
adequate for our initial investigation, and hasaamilable,
implemented planner for small problems (PGraphplan)

Goal-Based Reward.In order to use PGraphplan, we
here consider only MDPs with goal-based reward cstru
tures—i.e., a set of goal states is specified a®mrjunc-
tion of MDP predicates applied to objects and thigea-
tive is to expect to reach a goal state as quicdypossi-
ble. However, we note that our policy selectionheitjue,
in general, requires only a reward function langeiagth

a planner that can solve “small problem instancd#:
low, we describe how to specify goal states in MIDPs.

To facilitate generalization across different goale as-
sume that the se$ of predicates is divided into “world
predicates” and “goal predicates”, with the two é&gpof

2.2 Policy Selection

An MDP policy provides a mapping from states to ac-
tions—here, a mapping from first-order models tdi@c
types applied to domain objects from those modidkste,
we focus on policy selection to minimize the expett
number of actions to reach a goal state.

A primary goal of this work is to provide a policselec-
tion method that scales well as the number of otsjea
an MDP grows. While it may be possible (or neceggar
to re-plan for each different domain size, we fodwere
on finding good policies that apply to states invialy any
number of objects. As a simple example considerea d
terministic blocks world MDP where the goal is ttear
off a particular block. Clearly, a simple optimablicy
applies to states with any number of blocks: “fowyaclear
block abovea, pick it up and put it on the table”. Even in
problems where finding the optimal policy is infdals,
there are sometimes (often?) “good” policies thanegral-
ize with the number of objects—e.g., there are well
known “good” policies for (NP-hard) general blocks-
world planning (Selman, 1994).

predicates in one-to-one correspondence. The world

predicates are used to represent the current “worlg3

state”—in the blocks world, these might loa(-,), on-

Learning Taxonomic Decision List Policies

table(-), andclear(?). The goal predicates are used to rep-3-1 ~ Taxonomic Decision List Policies
resent the goals of the agent. We also restrict thuany useful rules for planning domains take thenfor

PSTRIPS action definitions iff to only add or delete
world predicate facts. The systems of Khardon ()%@&d

Martin & Geffner (2000) also use world and goal gire
cates.

Conventionally, we name goal predicates by prepegai
letter ‘g’ onto the corresponding world predicate-g-¢.
the goal predicate correspondingdn(-,-) is gon(,-). The
MDP goal states are those states where, for every t
goal predicate fact, the corresponding world factrue.
Thus,{{a, b}, {on(a,b), clear(b), on-table(a), gclear(b)}
is a goal state, but would not be so withalgar(b).

Our MDP state space has more states than trulynied.
In the blocks world, there will be states whereblock is
on the table. Similarly, there will be states whéhe (un-
achievable) goal is to have every block on bl@clRather
than attempt to give a language for axiomatizing th-
tended states and goals in the MDP, we insteadrassu
that we are provided a problem-instance distributio
over MDP states (which include the goal predicaths)
describes the policy-selection problem of interéstthis
work, we will describe this distribution in Engliskand
implement it with a computer program that generatés
tial state/goal combinations from the distributifor each
domain we study.Our learning goal will be to find a pol-
icy that gives a low expected number of steps tgoal
state from initial states drawn from the distrikanil.

% This program must be able to condition the problgistribution on
problem size, so that it can be used to generatblpms of any given
size.

“apply action typea to any object in clas€” (Martin &
Geffner, 2000). For example, in the blocks worlgck
up any clear block that belongs on the table butas on
the table”. Using a concept language for descrilmbgect
classes, a class-based policy space has been stmwn
provide a useful learning bias for the determimidilocks
world (Martin & Geffner, 2000). In particular, sugtoli-
cies improve upon previous non-class-based blocsdewv
learning results (Khardon, 1999), without using trend-
engineered definitions that those results required.

With that motivation, we consider a policy spacaitls
similar to the one used by Martin and Geffner. Hos-
torical reasons, our concept language is based tgao+
nomic syntax (McAllester & Givan, 1993; McAllester,
1991), rather than on description logic.

3.11

Taxonomic syntax provides a language for writingsd
expressions, built from an MDP’s predicate symbthisit
describe sets of domain objects with propertiemtdrest.
Quantifier-free “taxonomic” concepts often requigan-
tifiers to be expressed in first-order logic. Fomglicity,

we only consider predicates of arities one and twhich
we call primitive classesand relations respectively.
Given a set of such predicates (the Setefining the MDP
states), class expressions are given by:

C:=Cyla-thing| -C|RQO|CnC
R:=R|R*|RNR|R*
whereC is a class expressioR is a relation expression,

Taxonomic Syntax

Cois a primitive class, an&, is a primitive relation. Intui-
tively, the class expressioiR(C) denotes the set of ob-
jects that are related through relati®to some object in
the setC. The expressionR* C) denotes the set of objects
that are related through som®& ‘thain” to an object in
C—this constructor is important for representing ofte
needed recursive concepts (e.g., the blocks ahpve

Given an MDP state (i.e., a first-order interpréeia) q
with domainD, the interpretatiorC? of a class expression
C, relative toq, is a subset oD. A primitive classC, is
interpreted as the set of objects for which preticsym-
bol C, is true inq. Likewise, a primitive relatiorR; is
interpreted as the set of all object tuples for ehhithe
relation Ry holds in g. The class-expressioa-thing is
interpreted to b®. For compound expressions,

(-0 ={oeD|ogC'}

(ROY={o0eD|30 €C' <0,0> e R}
(Cl M Cz)q = C]_q M Czq
(R = Idu
{<01,0>|30,,...,0c1 Vi <0,,0:>R%
(RY" = {<0,0>|<0’, 0> ¢ RY}
(R]_ M Rz)q = qu M qu

whereC, C,, C, are class expressionR, R, R, are rela-
tion expressions, anidl is the identity relation. Some ex-
amples of useful blocks-world concepts, given thenp
tive classesclear, gclear, and holding, along with the
primitive relationson andgon, are:

(gon™ holding), the block we want under the held block.
(on* (on gclear)) N clear, clear blocks currently above
blocks we want to make clear.

3.1.2

Like Martin and Geffner, we restrict to one argurhas-
tion typesa;, and represent policies as decision lists:

,Cn:an

Decision List Policies

Ci:qq,Cray, ...

3.1.3

For effectiveness, we search through a restrictexsion
of the policy space just described. The use of £lard
relational intersection is tightly controlled. Belowe in-
troduce “class-expression depth” to organize oarcle.

Policy-Space Restrictions

First, we introduce an abbreviation that we willdtnex-
pand” when measuring depth, to derive a useful lagp
bias motivated by the classic Al planning principdé
means-ends analysis (Newell & Simon, 1972). Thispr
ciple suggests comparing the goal and current stated
selecting an action that maximally reduces theatd#hce.

Leveraging the idea of comparing the goal and autrre
states, we encourage our learner to use the irdéoseof

a world predicate and corresponding goal predidaje
treating such intersections as primitive predicat&sen a
world predicate Reither a class or relation) and corre-
sponding goal predicatgP, we write cP (which we refer
to as a tomparison predicatg’to abbreviatd® N gP. So,
the fact con(a,b) abbreviateslonngon)(a,b) and indi-
cates that blocla is currently “correctly on”b. We con-
sider a class expression to be “intersection-fréethe
only uses of intersection occur inside comparisoadp
cate abbreviations. This treatment of comparisoedpr
cates encourages our learner to use them aggréssive

We define the deptll(C) of each intersection-free class
expressiorC. The depth ofa-thing, as well as any primi-
tive or comparison class expression, is taken toohe.
The depthgl(—C) andd((R Q) are both one plud(C), for
any intersection-free relation expressiéh So, clear,
gclear, andcclear are all depth ongcon* con-table) has
depth two (the set of blocks in well constructedvess),
and(gon (con* con-table))has depth three (blocks to be
added to a currently well constructed tower).

To add intersection, define the s&f,, as the set of all
classes formed by at most intersections, from deptd
intersection-free expressions. Excluding doubleatieg
and relation expressions that use either * or iseewice,

where theG; are class expressions, and an expressioﬁ:dw is finite for a given finiteS. Our learning method uses

Ci:q is called arule. Given an MDP state, we say that a
rule R = G;:a suggestan actiona;(o) for q if objecto is
in C? and satisfies the preconditions @fin g¢—the set of
such actions is calleduggedR, ¢). A single rule may
suggest no action, or many actions of one type. 8&¢ a
decision listsuggestsan action for state if a rule in the
list suggests that action fay, and every previous rule
suggests no action. Again, a decision list may ssggno
action or many actions of one type. Each decisiish Ll
for an MDP defines a policyt[L] for that MDP—we as-
sume an ordering on MDP actions, andLifsuggest no
action forq, n[L](q) is the least legal action ig; other-
wise, n[L](q) is the least action that suggests foq.

* Note that problems involving multiple-argumentiaas can be con-
verted to ‘equivalent’ problems with only singlegarment actions. The
resulting problems may be more difficult to soly®pviding a practical
motivation for special techniques for multiple-argent action types.

a heuristic beam search to find useful conceptshiwit
Caw Whered andw are parameters of the algorithm.

3.2 A Greedy Learning Algorithm

We use a Rivest-style decision-list learning apptoa
(Rivest, 1987)—an approach also taken by Khardon as
well as Martin and Geffner. The primary differenbe-
tween our technique and theirs is the method féectang
individual rules of the decision list. We use a gdg, heu-
ristic search, while previous work used an exhaugsti
enumeration approach. This difference allows uditd
rules that are more complex at the potential cdgaiting

to find some good, simple rules that enumeratiomgtmi
discover.

A training instance is a pairg; o> whereq is a state and
a is the set of actions that are desiredjinWe say that a
decision listL coversa training instanceé = <q, o> if L

suggests an action fay. We say that correctly covers

if L coversi and the set of actions suggestedlbfor q is

a subset ofx. Given a set of training instances, we will
typically assume that the states of the instandedesive
from the same MDP, and that the action sets contaiy
optimal actions for the corresponding states. Gitlegse
assumptions, if a decision liktcorrectly covers a training
instance, them[L] selects an optimal action for the corre-
sponding state (under any ordering of the actiofi$iis
motivates searching foconsistentdecision-lists, those
that correctly cover the training instances. Theem is to
learn a decision list consistent with a sizablertiag-data
set obtained by solving small-domain instances, tuah
apply that decision list to previously unseen MDtates
with larger domains.

Learning Lists of Rules. Given a set of training instances
we search for a consistent or nearly consistentisitat
list via an iterative set-covering approach. Demslist
rulesC:a are constructed one at a time and in order until
the list covers (ideally, correctly covers) all tfe training
instances—we give pseudo-code for the algorithm in
Algorithm 1. Initially, the decision list is the riuist and
does not cover any training instances. During eiefa-
tion, we search for a “high-quality” rul€: a, with quality
measured relative to the set of currently uncovetraah-
ing instances. The selected rule is appended tatnent
decision-list, and training instances covered bg trew
decision list, i.e., the ones newly covered by tiev rule,
are removed from the training data set. This preces
peats until the list covers all of the training faaces.
The success of this approach depends heavily ofutihe
tion Learn-Rule which selects a “good” rule relative to
the uncovered training data—typically, a good ridene
that is consistent or nearly consistent with thairing
data, and also covers a significant number of incés.

Learning Individual Rules. The input to the learner is a
set of training instances, along with depth and tiga-
rametersd and w, and a beam widttb controlling the
beam search described below. Currently, we focus of

finding rules of the fornC:a with C in C,,, anda an ac-

Learn-Decision-List (Fo, d, w, b)
/I training set k, concept depth d, width w, beam width b
L« NULL; F<« Fg
while (F is not empty)

C:a <« Learn-RuleF, d, w, B;
F« F-{feF|C:acoversf}
L « extend-decision-list(, C:a);

Return: L

/I end while
/I L is a taxonomic decision list that covers F
Algorithm 1. Pseudo-code for Learn-Decision-List.

Learn-Rule (F, d, w, b)
/I training set F,concept depth d, concept width w, beam width b

for each action typa € A // compute Gfor each a
R. < Beam-Searcl,d,w,a,H,);
if (not consistent®,, F))

then R’ « Beam-Search{,d,w,a,H.);
if (consistent®R’, F)) then R,«R; // endfor

X<«{Ra.|a € A, consistentR,, F)}
if (Xis empty) thenX<«{R,|ae A}
Return: argmax.x Hi(R,F)

Algorithm 2. Pseudo-code for Learn-Rule. Here, dstent? R,F)
is true iff rule R is consistent for instancds H;() andH,() are the
heuristic functions described in Section 3.2.

Beam-Search F, d, w, b, a, H)
/I training set F,concept depth d, concept width w, beam width b,
/I action typea, heuristic function H

By« { a-thing };
while ((not consistent?(best; F)) &&

(i=1 || HvaluesB.,,a,F,H)!=
HvaluesBi,,a,F,H)))
G=B1U{(CNC)eCo|CeBi, CecCyik;

Bi < beam-selec, b, a, H); // select b best H values

best« argmax.s H(C:a,F);
i« i+1;

i« 1; best a-thing

/I end while
Return: besta

Algorithm 3. Pseudo-code for Beam-Search. Here, ¢Rpression
consistent?R,F) is true iff rule R is consistent for instances,
HvaluesB, a, F,H) returns the set of heuristic values (measured
H) of members oB when used in rules for actiomon instances in|
F; and beam-seled, b, a, h) selects théd best concepts i with

different Hvalues (see footnote 6).

tion-type symbol. We say a rule (correctly) covertrain-
ing instance when the decision-list containing otiyat
rule (correctly) covers the instance—a rule is cetesit
with a set of training data if all of the instanciésovers
are correctly covered.

Algorithm 2 gives pseudo-code for our rule-learnaigo-
rithm, which uses two heuristids,(-) andHy(), described
below, to rank candidate rules. First, for eachactype
a we define a ruleR,, as follows: we conduct two beam

each typea, our rule-learning algorithm returns the rule
R, with the highesH; value among thosB, that are con-
sistent, if any are consistent, or among all fReother-
wise.

Algorithm 3 gives pseudo-code for the beam seaiiai.
find C,:a, givena, we generate a beaBy, By, etc., of sets
of class expressions fro,,, repeatedly specializing

searches, one with each heuristic function, to fime
candidate rules using concepts frofy,—we then
choose the consistent rule if only one is consistamd

otherwise choose thd;-selected rule. We have found this

process to significantly improve results comparedising

either heuristic alone. After ruld®, have been defined for

5 Every instance can be covered by usingakihing class expression.

expressions by intersecting them with other degitiass
expressions, guided by the specified heuristic fiamc
Search begins with only the most general conceet, B,
is the set{a-thing}. Search iteration produces a seB,
that contains thé class expressions with the higheff

ferentheuristic valueSamong those in the following set
G=B_,uU{(CNnC)eCyu|CeBii,Ce Cy}

The sequence is terminated if the concept withhighest
heuristic value inB; is consistent, or if there is no im-
provement in going fronB,; to B; (i.e., their elements
yield the same set of heuristic values). We retilma ele-
ment ofB; with the highest heuristic value.

Heuristic Functions. Heuristic functionsH,; andH, each
take a ruleR=C:a and a set of instancds as input, and
return a pair of real numbers between zero and wiité,

Hi(R,F) = <N4(R,F), V(R,F)>, and
H,(R,F) = <No(R,F), V(R,F)>.

We take the heuristic values to be totally orderedijco-
graphically. The valu&/(R,F) is the fraction of the in-
stances inF covered byR, and each\;(R,F) measures
rule consistency, as follows.

Define F, to be the set of all instances lhwhere there is
a legal action of typea. We evaluateR by how well it
suggests actions for the training instancebnif a is not
a legal action for a state, then there is no decidio be

made byR at that state, so we ignore training instances

outside ofF,.
To defineN;(R,F), for each instancé= <q,a> of Fg,

our algorithm does nothing to control the standand-
chine learning problem of “overfitting” these patts. We
address these issues by using the ensemble method o
“bootstrap aggregation”, or “bagging” (Breiman, B)9

We note that other methods are available: ovenfittcan

be controlled by larger training sets (possibly nagtical)

or regularization, and a mostly-optimal policy cdybo-
tentially be improved by a heuristic search at tume.

In bagging, we generate several different traingegs for
the same MDP, and learn separate large-domain ipslic
(“ensemble members”) from each training set. Wenthe
combine these large-domain policies into one poligy
voting. This approach addresses overfitting if thislead-
ing patterns in the different training sets aregpendent,
so that only a minority of the ensemble members afre
fected; the approach can be viewed as combining-ind
pendent “mostly optimal” policies, assuming thae then-
eralization errors made by each are independent.

It is usually the case that our learned policieskméatal
mistakes in a small percentage of the trajectodssd to
test the policy. For example, a typical mistake heve
observed in the blocks world is for a learned pylio
unstack a block that is on top of a well-constructed
tower. Such mistakes occur for example, when that la
rule of a learned decision list &thing : unstack and a
state with ‘good towers’ is encountered, where mevp

let P(R,f) be the probability that a randomly selected ous rule suggests an action. When this happensnéte

action fromsuggediR,q) is in a—whensugge«iR,q) is
empty, so that no action is suggested, we tBKR,f) to
be zero ifa contains any actions of typg and one other-
wise. N;(R,F) is then the average value B{R,f) over
all instanced in F,, but zero ifF, is empty.

To defineN,(R,F), let X(R,F) be the number of exam-
ples inF, that R covers incorrectly—N,(R,F) is equal to
1/(1+X(R,F)). This heuristic is biased more heavily to-
wards consistency thay.

3.3 Bagging

We intend our learner to learn patterns that sefleetop-
timal action at many states. Of course, this leagsn be
expected to make mistakes, given the inductive e tif
policy selection—we suggested above that this learn
tries heuristically to produce a “mostly optimal’dlicy,
selecting an optimal action at a high fraction bétstates.
One reason the policy may deviate from optimalgyttat
practical constraints force our training sets tod@éimited
size, so that some misleading patterns may apsead,

% Since many expressions (B, are equivalent, we must prevent the
beam from “filling up” with semantically equivalertiass expressions.
Rather than deal with this problem via expensivaieglence testing we
take an ad-hoc, but practically effective approadle assume that class
expressions do not coincidentally have the sameistiuvalue, so that
ones that do must be equivalent. Thus, we constvraams whose mem-
bers all have different heuristic values. We chobstwveen class expres-
sions with the same value by preferring smallerttispthen arbitrarily.

" P(R,) thus rewards rules for action typethat suggest no action
when no typea action is optimal, but penalize them otherwise.

action selected by the policy is usually to stahk block
back where it came from, resulting in an infiniteob.
Typically, the rule suggesting the fatal action eos only

a few examples, and most other ensemble membeits wil
not make the same mistake. Our experiments show bag
ging to be very effective at avoiding such actions.

Bagging requires additional parameters: an ensesibé

Z and a sample siz®1, and returns an ensemble (i.e., a
set) of Z decision lists found using our base learner on
different training sets of siz#. Specifically, given a set
of training instancesF, bagging proceeds as follows.
First, we create training setd, ..., Fz, all of sizeM by
randomly samplingM training instances fronf, with
replacement. Next, we form an ensemiide{L,, ...,
L,}, where L; is the decision list found using our base
learner from Algorithm 1 applied t&;. The policy n[E]

for the ensemble is defined using a simple vote agthe
ensemble members—so thdtE](q), for stateq, is equal

to the action that is suggested fg@by the most members
of E, breaking ties by selecting the least (legal) @t

3.4 Training Example Generation

Our framework provides us with a distributiorfor gen-
erating initial states of a PSTRIPS MDP accordingat
distribution of interest. By conditioning this digiution
on the object-domain size, we can control the camity
of the problem instances by varying the number lojeats

8 Recall that a single ensemble member can suggekipie actions of
the same action type.

Tablel: Planning Domair

Blocks World 1 (BW,). One of the problems used to evaluate PGra
plan. World predicates amen(,-), on-table(), clear(-), and holding(:),

with the standard blocks-world interpretations. tido types arepick-

up (...a block from the table)put-down (...the held block onto the
table), unstack (...a block off a tower),stack (...held block onto a
tower), faststack (move a block from the table to a towgr Only fast-

stackis stochastic, changing the state only with 0.8hability. Problem
sizep is a number of blocks, and initial and goal statéssize p are
drawn uniformly with BWSTATES (Slaney, URL). We duate with

p=6, h=20,e=80,d=3, w=12,b=5, and 20 block test problems.

Blocks World 2 (BW,). As BW;,, except blocks are eithdalack(-) or
gold(-), andfaststacksuccess probability varies (0.8 black vs. 0.2 gol
Colors uniform at random.

Paint World 1 (PW,). As BW,, except:faststackis removedstackis

ph-ogistics World 1 (LW). Similar to that in (Boutilier et al., 2001). Wg¢

d no other true goal facts). We evaluate wipir<3 cities, 2 cars, 2 trucks,

have four object typesity(-), package(), truck(-), andcar(-). Predicate
in(+,-) used for packages in trucks/cars/ cities and forcks/cars in
cities. selected() predicate applies to trucks and cars, it is usethti-

cate which vehicle is involved in next action. Amti types are
load(pkg,vehiclg unload(pkg,vehiclg drive(vehicle, city, and se-
lect(vehiclg. Only drive is stochastic, with success probability 0.9 f
cars, 0.2 for trucks. Problem size is a vector ggvthe number of cities
cars, trucks, and packages. Distributlas given by uniformly distrib-
uting each vehicle among the cities, and each pgekanong the vehi
cles and cities; with uniformly chosen goal citiies each package (an

=

3 pkgs>,h=20, e=160,d=4, w=12, b=5, and test problem size <5 citieg,
7 cars, 7 trucks, 20 pkgs>.

now stochastic with the success probability varyiwgh held block
color, and new actiopaint 50% chance of changing held block colqg
Also, p=5, h=25 ande = 100 (others unchanged).

Paint World 2 (PW,). Same as P\\except success probability sfack
also varies with destination color.

Logistic 2 (LW;). As LW;, with a new predicateain(-), and drive

r.success probability is unchanged when no rain, @8t for trucks in
rain vs. 0.9 for cars irrain. rain is unchanging and uniformly rando
among cities.

in the domain. It is important to note that thetetagener-
ated by the program will not necessarily be repnéséve
of the states encountered later in full trajecteriieom

generated initial states to generated goals. If leatrning
from such training data is unlikely to produce aotgl”

policy at the un-represented states. To deal with prob-
lem we augment the training data from the initithtes
provided by the problem generator with states odogr
along “optimal” paths from those states to a gad&le use
PGraphplan (Blum & Langford, 1999) to find such pst
and to find “optimal” actions for all the trainingata.

PGraphplan can be trivially adapted to accept aRIFB
MDP description, an initial state in that MDP, aachori-
zon time, and returns a contingent plan tree withxim
mum probability of reaching a goal state within tgeci-
fied horizon time. This plan tree mayot satisfy our ob-
jective function, which is to minimize the expectéche
to the goal. For example, if there is a long detanistic
sequence of actions leading to the goal within liogizon
time, that sequence of actions may be returnecksiticas
a success probability of one. In such cases, howekere
may be far better plans in terms of average plaigth.

Rather than reject PGraphplan (which is one of he&er
publicly-available, open-source, probabilistic pians),

we have chosen to use an ad-hoc technique thahgitro
encourages plans with short expected time to tra.gt'e

simulate a discount factor (of 0.95) by modifyinget
original MDP to transition to a “dead” non-goal sawith

a fixed probability. Space precludes giving detaise.

We note that an alternative here would be to usé/&P
solver to return a complete policy for each smailhthin
MDP instance. We believe that explicit/flat MDP tec
nigues will be impractical for this purpose, sineeen the
small domains we are using here result in explMDPs
that are near or beyond the limits of practicalfty ex-
plicit techniques. A more promising alternativetss use
solvers for propositionally factored (Boutilier ak, 2000;
Guestrin et al., 2000) and relationally factoredo(ilier
et al., 2001) MDPs. However, even small relatiopedb-

lems can give rise to relatively large propositiand ac-
tion spaces, and yield complex and fragmented value
functions. We also believe that it is both impraeti and
unnecessary to consider all of the information &lale in

a complete small MDP policy.

To generate training data we specify a problem giza
problem horizorh, and a trajectory court We samplet
initial states with problem sizp, using the problem gen-
erating distributionl. For each of these initial states we
then use PGraphplan with horizérto solve for trajecto-
ries to the goal by repeating the following stepther h
times or until a goal state is reached, whichegdirst:

1. Beginning in the initial state use PGraphplargem-
erate an “optimal” contingent plan tree relativethe

MDP, transformed to simulate discounting, as above.

Next, simulate the root action at the originalDi
state, yielding a new “initial” MDP state.

The result is a sequence of states from some Irstiate
provided by the problem generator to a goal sté&ter
each states along the trajectory, we include the training
example <,a> wherea is the set of all optimal actions
in stateq according to PGraphplah We refer to the re-
sulting training set with the random variafitain(l,p,t,h).

4 Experiments
4.1

We evaluate our policy-selection approach on six
PSTRIPS MDPs, described in Table 1, as follows. The
parameters to our evaluation procedure are a PSFRIP
MDP definition <S,A,T,l>, a training-set problem size
parametel’ p, a training-set sizé, training horizonh, a

Experimental Procedure

9 Since our system requires single-argument actismsyuse a single-
argument version diststack inducing the desired tower from the goal.
0 We have trivially modified PGraphplan to return aptimal actions

of the root rather than just one.
" The domain of this parameter varies—e.g., in Idgistiomains this
may be a vector giving numbers of trucks, packagés,

test set of 1000 initial state® drawn froml conditioned size—our method is turning training into improvedlipo
on a problem size, an evaluation horizgrand finally the cies. Even for the poar=10, there is much improvement
concept depthd, concept widthw, and beam widtlb pa- on the random policy¢=0). Additional training data may
rameters required by our learning algorithm. Hoe €n- further improved, as¢ att=200 still improves ori=100.
semble learner, we use ensemble size 9, and sabtple
training instances for each ensemble member frawia
training set of size 200.

In contrast, the variation of at largert values is small.
We speculate that larger training sets are neediecgpily

to avoid occasional “fatal” action choices, notitoprove
A single trial of our evaluation proceeds as folevdraw successful plan lengti.Our bagging method provides an
a training sef from train(p,h,t,1), as described in Sec- alternative attack on “fatal” choices, see Sect3od
tion3.4. Next, letL be the result of Learn-Decision-
List(F,d,w,b) (or corresponding ensemble hypothesis, in
the case of bagging). Finally, for each initial tstg in the
test setQ, run policyr[L], starting atq, until either a goal
state is reached, or more thanactions have been exe-
cuted. We return two humbers from each evaluatiaai:

the percentage of test problems fronQQ where a goal
was reached within the evaluation horizenwhich we
call the success probabilityand the average length of
the trajectories that reached the goal. We run v&la-
tion trials for each MDP and report the averageueatdf ¢
andy over those trials.

Comparing to Previous Work. To compare our tech-
nigue with that of Martin and Geffner (2000), weaduate
our method in the same deterministic blocks worla d
main reported there. For a training set of 50 ramdiove-
block problems, Martin and Geffner (2000) reporare-
ing a policy achievingh=0.722 andy=54.94 when evalu-
ated on 20 block problems. We ran 30 trials of #amne
experiment using our individual decision-list learrand
10 trials adding bagging (with ensemble size 7 aath-
ple size 50). The policies learned by the indivitidaci-
sion list learner achieved=0.804 andy=55.4, on aver-
age—improving on the success probability reported by
Martin and Geffner. The average over all trials foag-
ging yielded$=0.982 andy=56—giving a further signifi-

Table 2. Evaluation Data

t=10 T=50 T=100 t=200 t=200+C Bag Hand cant increase in success probabili;y. It is unclelether
BW: ¢ |067 083 082 091 NA 10 1.0 the'|mprov'ement without bagglng is due to our neswuh
v|496 468 464 464 46.1 44.7 ristic learning method or our different undeﬂymgncep"c
BW, ¢ |049 082 086 089 NA 098 1.0 language. We expect that the use of bagging in wory
v|564 514 512 509 50.9 48.7 tion Wllth.Martln and Geff_ne_r s decision-list leameould
result in improvements similar to those seen here.
PW, ¢ [041 088 089 091 N/A 0.99 1.0
v |[80.1 758 757 755 75.4 72.5 Comparing to Hand-Coded Policies.Humans win! The
PW, ¢ |009 043 05 042 058 097 1.0 learned policies never outperform the hand-coddities
v|776 754 745 747 746 747 723 in either ¢ or y. Humans have no trouble constructing
LW: ¢ |066 082 078 093 099 096 1.0 ¢=1 policies he_re, and work _ma|_nly on designing ps
v|117 109 104 105 996 102 947 to reducey (typically by considering small problems).
LW, ¢ [0.41 076 085 0.85 094 096 1.0 The learner often finds rules that are similar quivalent
v|123 111 107 107 105 106 98.1 to parts of the human policies. Comparing the twogd
designing (perhaps reasoning-based) methods taydrid
4.2 Results the difference is a significant direction for fusuwork.
The Data. Table 2presents meat andy values for the Bagging. Bagging results fot=200 are a clear improve-
six domains for machine-learned single decisiohfisli- ment over decision-list policies learned with thame

cies from four training-set size¢ %10, 50, 100, 200), amount of data, especially ifi (dramatically in PW).
machine-learned ensemble policies (bag), and clyefu That¢ improves much more thap indicates that bagging
hand-coded policies (handf). One additional column s serving to filter out rare very “foolish” actionhoices
(t=200+C) is explained belowThe hand-coded policies that lead to failed policies. Although ensemble ipiels
are written in a richer language than our learnedigies improve performance, a disadvantage is that theydii:
(e.g., allowing quantified taxonomic formulas), she ficult to analyze, either by hand or automated cedisg.
human coder can express concepts that the leaamerot.) ,

Adding Concepts. Our system uses a restricted concept
Varying Training-Set Size. Both success probability ~ '@nguage to facilitate effective learning—howeveme

and plan lengthy generally improve with training set u_seful concepts, typically requiring_ quantifiersallfout_-
side this language, and are exploited by humansh&

_ hand-coded policies. It is trivial to enable ouataer to
2 We note that this small table summarizes an enasr@mount of exploit such concepts if they are provided as adddl
algorithm execution. For instance, each single siecklist policy entry input by a human—simply treat the new concepts as

corresponds to the generation of 40 training setxh of size ten to imiti | d include th - tructeld
twenty thousand, learning from these training satsj then executing PTMItIVE Classes, and Include them in constru S.

each of the resulting 40 policies from 1000 differestart statestoa —————
significant problem-dependent horizon (or success). 3 Recall,y is the mean over successful trajectories only.

The column t=200+C” reports three such experiments.
For logistics, we added: “packages heading to thmes
city as a package in the selected vehicle” and kaaes
not currently at their goal’. Adding these concepts
lowed the learner to equal or beat the other leexnex-
cept the human. A similar experiment for B\Also shows
a significant improvement, but significantly underp
forms bagging.

5 Relational Reinforcement Learning

Our approach can be adapted for model-based, oelalti
reinforcement learning (RRL). Exploration, along thvi
some form of standard relational learning (e.g. iQam,
1990), can presumably be used to learn a relatitaaki-
tion model for the MDP (e.g., a PSTRIPS model foet
actions). Learning the reward function is more cdemp
for an RRL problem to be plausibly solvable by any
means, the reward function must either include s&ind

of “shaping” rewards (e.g., Mataric, 1994), in whicase
relational learning should be able to learn thedtion, or
some access must be given to small problems (sp-“ra
dom wandering” can discover good policies). In poas
RRL work, the latter case is typically assumed (Emki

et al., 2001), and we also take that approach tgras-
suming a problem generator, parameterized by proble
size, for generating small instances.

Given means to learn the transition model and #heard
model, the techniques in this paper can be apptiddarn
a policy that can then be greedily applied. We ospieci-
fying exploration control for this method here.

Previous, Q-value—based, relational learners silQa
RRL (Dzeroski et al., 2001) suffer from drawbackisel
those described earlier for value-function—based ap
proaches to relationally factored MDPs; these dragis
can be avoided by using an inductive policy selamti
approach. This is the approach taken in P-RRL (als
(Dzeroski et al., 2001)), where small problems soé/ed
with Q-learning to provide policy-training data. lfat
work, learning was made practical by providing the
learner with small problem instances in the eatigges
and then gradually increasing the problem size. Wd&e
that the experiments reported in that work invoha&oh-
pler problems (e.g., placing all blocks on the &bthan
those we consider (e.g., building arbitrary tower§y
RRL and P-RRL, both based on standard first-ordeid
syntax, also required the inclusion of human predd
background knowledge in the form of predicate defin
tions (e.g., in the blocks world, the recursive gicate
abovg. We show how to avoid providing background
knowledge by choosing an appropriate policy languag

6 Conclusion

We have designed and empirically evaluated an itideic
policy selection method for relationally factoredC¥?s.
Exploiting solutions to small domain instances af a
MDP, we learn policies that generalize well to larglo-

main sizes. Inspired by Martin and Geffner (2000
utilize a policy language based on taxonomic syntahis
language allows for the compact representation edd-r
tionally factored policies, facilitating learningVe extend
Martin and Geffner (2000) in a number of ways: cioies-
ing stochastic MDPs, considering a wider varietyduf
mains, introducing a heuristic learning method, impng
performance using ensembles (i.e., bagging), arm-n
ducing a learning bias inspired by means-ends aigly

Our method represents an alternative to structutige
namic programming (SDP) techniques for first-order
MDPs. While first-order SDP techniques are a siigant
advance over flat or propositional techniques, tliege
fundamental difficulties when applied to the MDPs w
consider here, due to complex value functions aold-s
tion lengths that grow with the number of domairjedis.

References

Bellman, R. (1957)Dynamic ProgrammingPrinceton University Press.
Blum, A., & Langford, J. (1999). Probabilistic Plaimg in the Graph-
plan Framework. IiProceedings of European Conference on Planning.
Boutilier, C., Reiter, R., & Price, B. (2001). Symlic Dynamic Pro-
gramming for First-order MDPs. IRroceedings IJCAI-01.

Boutilier, C., Dearden, R., & Goldszmidt, M. (200&tochastic dynamic pro-
gramming with factored representatioAsificial Intelligence 121:49-107.

Boutilier, C., Dearden, R., & Hanks, S. (1999). xan theoretic plan-
ning: Structural assumptions and computation leyerdournal of Arti-
ficial Intelligence Researcii1:1-94.

Breiman, L. (1996). Bagging Predictokdachine Learning24:123-140.

Dean, T., Kaelbling, L. P., Kirman, J., & NicholspA. (1995). Planning
under time constraints in stochastic domains. Aqitid Intelligence, 76.

Dean, T., & Givan, R. (1997). Model minimization Markov decision
processes. |IProceedings AAAI-Q7

Dzeroski, S., Raedt, L., & Driessens, K. (2001).|&ienal Reinforce-
ment LearningMachine Learning}3:7-52.

Fern, A. URL: http://www.ece.purdue.edu/~givan/@aifiml.

d:ikes, R., & Nilsson, N. (1971). STRIPS: A New Appch to the Application

of Theorem Proving to Problem Solvingtificial Intelligence 2(3/4):189—208.

Guestrin, C., Koller, D., & Parr, R. (2001). Max-mo Projections for
Factored MDPs. IfProceedings IJCAD1.

Howard, R. (1960)Dynamic Programming and Markov Proces3d$T Press.

Khardon, R. (1999). Learning Action Strategies filanning Domains
Atrtificial Intelligence 113:125-148.

Martin, M., & Geffner, H. (2000). Learning Generadid Policies in
Planning Using Concept LanguagesAroceedings KRR-00.

Mataric, M. (1994). Reward Functions for Accelethtearning. ICML-94.

McAllester, D. (1991). Observations on Cognitivedgdements. IrPro-
ceedings of AAADL.

McAllester, D., & Givan, R. (1993). Taxonomic Symtéor First Order
Inference Journal of the ACM40(2):246—283.

Newell, A., Simon, A. (1972)Human Problem SolvindgPrentice Hall.

Puterman, M. (1994)Markov Decision Processes—Discrete Stochastic
Dynamic ProgrammingJohn Wiley & Sons, Inc.

Quinlan, R. (1990). Learning Logical Definitionsofn RelationsMa-
chine Learning5(3):239-266.

Rivest, R. (1987). Learmning Decision Lididachine Learning2(3):229-246.

Selman, B. (1994). Near-Optimal Plans, Tractahilapd Reactivity. In
Proceedings of KRR-94

Slaney, J. BWSTATES. URL:http://cslab.anu.edu.dtghwstates.html.

