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We consider the concept oflacal set of inference rules. A local rule set can be automatically transformed into a rule

set for which bottom-up evaluation terminates in polynomial time. The local-rule-set transformation gives polyno-
mial-time evaluation strategies for a large variety of rule sets that cannot be given terminating evaluation strategies by
any other known automatic technique. This paper discusses three new results. First, it is shown that every polynomial-
time predicate can be defined by an (unstratified) local rule set. Second, a new machine-recognizable subclass of the
local rule sets is identified. Finally we show that locality, as a property of rule sets, is undecidable in general.
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1. INTRODUCTION

Under what conditions does a given set of inference rules define a computationally tractable infer-
ence relation? This is a syntactic question about syntactic inference rules. There are a variety of
motivations for identifying tractable inference relations. First, tractable inference relations some-

times provide decision procedures for semantic theories. For example, the equational inference
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2 ° R. Givan and D. McAllester

rules of reflexivity, symmetry, transitivity, and substitutivity define a tractable inference relation
that yields a decision procedure for the entailment relation between sets of ground equations
[Kozen, 1977], [Shostak, 1978]. Another example is the set of equational Horn clauses valid in
lattice theory. As a special case of the results in this paper one can show automatically that valid-
ity of a lattice-theoretic Horn clause is decidable in cubic time.

Deductive databases provide a second motivation for studying tractable inference relations. A
deductive database is designed to answer queries using simple inference rules as well as a set of
declared data base facts. The inference rules in a deductive database typically define a tractable
inference relation—these inference rules are usually of a special form known as a datalog pro-
gram. A datalog program is a set of first-order Horn clauses that do not contain function symbols.
Any datalog program defines a tractable inference relation [Ullman, 1988], [Ullman, 1989]. There
has been interest in generalizing the inference rules used in deductive databases beyond the spe-
cial case of datalog programs. In the general case, where function symbols are allowed in Horn
clause inference rules, a set of inference rules can be viewed as a Prolog program. Considerable
work has been done on “bottom-up” evaluation strategies for these programs and source-to-source
transformations that make such bottom-up evaluation strategies more efficient [Naughton and
Ramakrishnan, 1991], [Bry, 1990]. The work presented here on local inference relations can be
viewed as an extension of these optimization techniques. For example, locality testing provides an
automatic source-to-source transformation on the inference rules for equality (symmetry, reflexiv-
ity, transitive, and substitution) that allows them to be completely evaluated in a bottom-up fash-
ion in cubic time. We do not know of any other automatic transformation on inference rules that
provides a terminating evaluation strategy for this rule set.

Tractable rule sets also play an important role in type-inference systems for computer program-
ming languages [Talpin and Jouvelot, 1992], [Jouvelot and Gifford, 1991]. Although we have not
yet investigated connections between the notion of locality used here and known results on tracta-
bility for type inference systems, this seems like a fruitful area for future research. From a practi-
cal perspective it seems possible that general-purpose bottom-up evaluation strategies for
inference rules can be applied to inference rules for type-inference systems. From a theoretical
perspective we show below that any polynomial-time predicate can be defined by a local set of
inference rules and that many type-inference systems give polynomial-time decidable typability.

A fourth motivation for the study of tractable inference relations is the role that such relations
can play in improving the efficiency of search. Many practical search algorithms use some form of
incomplete inference to prune nodes in the search tree [Knuth, 1975], [Mackworth, 1977], [Pearl
and Korf, 1987]. Incomplete inference also plays an important role in pruning search in constraint
logic programming [Jaffar and Lassez, 1987], [van Hentenryck, 1989], [McAllester and Siskind,
1991]. Tractable inference relations can also be used to define a notion of “obvious inference”
which can then be used in “Socratic” proof verification systems which require proofs to be
reduced to obvious steps [McAllester, 1989], [Givan et al., 1991].

As mentioned above, inference rules are syntactically similar to first-order Horn clauses. In fact,
most inference rules can be naturally syntactically expréssgda Horn clause in sorted first-
order logic. IfRis a set of Horn clauseg, is a set of ground atomic formulas, aéds a ground
atomic formula, then we writ& |, ® £ U R|-® infirst order logic. We writg, rather than
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Polynomial-time Computation via Local Inference Rules . 3

[Fr because we think dk as a set of syntactic inference rules agg as the inference relation
generated by those rules. Throughout this paper we use the term “rule set” as a synonym for
“finite set of Horn clauses”. We give nontrivial conditions Brwhich ensure that the inference
relation | is polynomial-time decidable.

As noted above, a rule sBtthat does not contain any function symbols is called a datalog pro-
gram. It is well-known that the inference relation defined by a datalog program is polynomial-
time decidable. Vardi and Immerman independently proved, in essence, that datalog programs
provide a characterization of the complexity cl@#ss— any polynomial time predicate on finite
databases can be written as a datalog program provided that one is given a successor relation that
defines a total order on the domain elements [Vardi, 1982], [Immerman, 1986], [Papadimitriou,
1985] [Hella et al., 1997] [Immerman, 1999].

Although datalog programs provide an interesting class of polynomial-time inference relations,
the class of tractable rule sets is much larger than the class of datalog programs. First of all, one
can generalize the concept of a datalog program to the concepupfeaficialrule set. We call a
set of Horn clauses superficial if any term that appears in the conclusion of a clause also appears
in some premise of that clause. A superficial rule set has the property that forward-chaining infer-
ence does not introduce new terms. We show in this paper that superficial rule sets provide a dif-
ferent characterization of the complexity claBs While datalog programs can encode any
polynomial-time predicate on ordered finite databases, superficial rule sets can encode any poly-
nomial-time predicate on ground first-order terms. Kkt  be a predicate on ground first-order
terms constructed from a finite signature. We define the DAG size of a first-ordet terpe the
number of distinct terms that appear as subexpressidr%lbfs possible to show that i) can be
computed in polynomial time in the sum of the DAG size of its arguments @en  can be repre-
sented by a superficial rule set. More specifically, we prove below that for any such pre@icate
onk ground first-order terms there exists a superficial ruldRsich thatQ 1, ..., t) if and only
if INPUT(ty, ..., i) tgx ACCEPTwhereINPUT is a predicate symbol antiCCEPTis a distin-
guished proposition symbol. Our characterization of the complexity Elasserms of superficial
rule sets differs from the previous characterizatioP af terms of datalog programs in two ways.

First, the result is stated in terms of predicates on ground terms rather than predicates on data-
bases. Second, unlike the datalog characterization, no separate total order on domain elements is
required.

Superficial rule sets are a special case of the more general classbifule sets [McAllester,
1993]. A setR of Horn clauses is local if whenever|, @  there exists a prosbdfom X such
that every term in the proof is mentionedinor @. If Ris local then | is polynomial-time
decidable. All superficial rule sets are local but many local rule sets are not superficial. The set of
the four inference rules for equality is local but not superficial. The local inference relations pro-
vide a third characterization of the complexity cl&set Q be a predicate on ground first-order
terms constructed from a finite signatureQf  can be computed in polynomial time in the sum of

1. Any RE inference relation can in principle be defined by first-order Horn clauses but expressing inference rules
involving implicit substitution or higher order matching can be somewhat awkward.

2. The DAG size of a term is the size of the Directed Acyclic Graph representation of the term.
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the DAG size of its arguments then there exists a local rulR seth that for any ground termg

..., iy we have thaQ(ty, ..., ty) if and only if | Q(t,, ..., t,) whereQ is a predicate symbol repre-
sentingQ . Note that no superficial rule set can have this property because forward-chaining infer-
ence from a superficial rule set can not introduce new terms. We find the characterization of
polynomial-time predicates in terms of local rule sets to be particularly pleasing because as just
described it yields a direct mapping from semantic predicates to predicates used in the inference
rules.

Unlike superficiality, locality can be difficult to recognize. The set of four inference rules for
equality is local but the proof of this fact is nontrivial. Useful machine-recognizable subclasses of
local rule sets have been identified by McAllester [McAllester, 1993] and Basin and Ganzinger
[Basin and Ganzinger, 1996] [Basin and Ganzinger, 2000] (the former subclass being semi-decid-
able and the latter subclass being decidable). Even when only semi-decidable, the resulting proce-
dures mechnically demonstrate the tractability of many natural rule sets of interest, such as the
inference rules for equality. Here we introduce a third semi-decidable subclass which contains a
variety of natural rule sets not contained in either of these earlier classes. We will briefly describe
the two earlier classes and give examples of rules sets included in our new class that are not
included in the earlier classes.

Basin and Ganzinger identify the class of rule sets that are saturated with respect to all orderings
compatible with the subterm ordering. The notion of saturation is derived from ordered resolution.
We will refer to these rule sets simply as “saturated”. Saturation with respect to the class of sub-
term-compatible orders turns out to be a decidable property of rule sets. Membership in the
[McAllester, 1993] class or the new class identified here is only semi-decidable --- a rule set is in
these classes if there exists a proof of locality of a certain restricted form (a different form for each
of the two classes).

Basin and Ganzinger identify the subclass of local rule sets that are saturated with respect to all
orderings compatible with the subterm ordering. The approach taken by Basin and Ganzinger is
different from the approach taken here, with each approach having its own advantages. A primary
advantage of the saturation approach is its relationship with well-known methods for first-order
term rewriting and theorem proving — saturation can be viewed as a form of ordered resolution.
A second advantage is that saturation with respect to the class of orders compatible with the sub-
term ordering is decidable while the subclass of local rule sets given here is only semi-decidable.
A third advantage of saturation is that it generalizes the notion of locality to term orders other than
the subterm order. Both approaches support “completion” — the process of extending a rule set
by adding derived rules so that the resulting larger rule set is in the desired subclass of local rule
sets. For the procedures described here and in [McAllester93] one simply converts each counter-
example to locality into a new derived inference rule. The primary advantage of the approach
described in this paper over the saturation approach is the method described here often yields
smaller more efficient rule sets. As an example consider the following rules.

X<Y,y<z=>Xx<z

(1)
x<y= f(xX) < f(y)
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These rules are local and this rule set is in both McAllester’s class and the new class introduced
here. But they are not saturated. Saturation adds (at least) the following rules.

x<zy<f(X)=y< (2

(@)
z<x f(X)<y="1(2<y

A decision procedure based on the larger saturated set would still @m#) time, but the added
rules significantly impact the constant factors and this is an important issue in practice.

The semi-decidable subclass of local rule sets introduced in [McAllester, 1993] is called the
bounded-local rule sets. This subclass is defined carefully in the body of this paper for further
comparison to the new subclass introduced here. The set of the four basic rules for equality is
bounded-local. As another example of a bounded-local rule set we give the following rules for
reasoning about a monotone operator from sets to setd¥le the following set of inference
rules for a monotone operator.

X< X
X<Yy,y<z=>x<z (3)
x<y= f(X) < f(y)

There is a simple source-to-source transformation on any local rule set that converts the rule set
to a superficial rule set without changing the relation described. For example, consider the above
rules for a monotone operator. We can transform these rules so that they can only derive informa-
tion about terms explicitly mentioned in the query. To do this we introduce another predicate sym-
bol M(with the intuitive meaning “mentioned”). Lé¥; be the following transformed version of
Ry.

M (X)) = Mx)
X<y= MX)
x<y=My)
MX) = X< X
MX), My), M2), X<y, y<z=x<z
M (X)), Mf(y)), x<y= f(X) < f(y)
Note thatR; is superficial and hence bottom-up (forward-chaining) evaluation must terminate in

polynomial timé. Then to determine ifs »t<u we determine, by bottom-up evaluation
whether{ Mt), Mu)} U X |_R' t <u . An analogous transformation applies to any local rule set.

(4)

A variety of other bounded-local rule sets are given [McAllester, 1993]. As an example of a rule
set that is local but not bounded local we give the following rules for reasoning about a lattice.

3. For this rule set bottom-up evaluation can be run to completion in cubic time.
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6 ° R. Givan and D. McAllester

X< X
X<Y,y<z=>Xx<z
X< XVY
y<Xvy

(5)

X<ZYy<zZ=>XVvYy<z
XA Y X
XAYLY

Z< X 2Z< Y= Z< XA Y

These rules remain local when the above monotonicity rule is added. With or without the mono-
tonicity rule, the rule set is not bounded-local.

In this paper we construct another useful semi-decidable subclass of the local rule sets which we
call inductively-localrule sets. All of the bounded-local rule sets given in [McAllester, 1993] are
also inductively-local. The procedure for recognizing inductively-local rule sets has been imple-
mented and has been used to determine that the above rule set is inductively-local. Hence the
inference relation defined by the rules in (5) is polynomial-time decidable. Since these rules are
complete for lattices this result implies that validity for lattice-theoretic Horn clauses is polyno-
mial-time decidable.

We believe that there are bounded-local rule sets which are not inductively-local, although we
do not present one here. We have not found any natural examples of local rule sets that fail to be
inductively-local. Inductively local rule sets provide a variety of mechanically recognizable poly-
nomial-time inference relations. Throughout this paper, when we claim that a ruleset is either
bounded-local or inductively-local, that fact has been demonstrated mechanically using our tech-
niques.

In this paper we also settle an open question from the previous analysis in [McAllester, 1993]
and show that locality as a general property of rule sets is undecidable. Hence the optimization of
logic programs based on the recognition of locality is necessarily a somewhat heuristic process.

2. BASIC TERMINOLOGY

In this section we give more precise definitions of the concepts discussed in the introduction.
Definition 1. A Horn clause is a first order formula of the fotiy A ... A ¥\, = ® where®
and the?; are atomic formulas. For any set of Horn clauBeany finite sek of ground atoms,

and any ground atomic formuk®, we write X |z ® whenevez U U(R) |-@ in first-order
logic whereU(R) is the set of universal closures of Horn clausBs in

There are a variety of inference relations defined in this paper. For any inference refation and
sets of ground formulas andl” we writeX |-T" ifX ¥ for each inT.

The inference relationty,  can be given a more direct syntactic characterization. This syntactic

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



Polynomial-time Computation via Local Inference Rules o 7

characterization is more useful in determining locality. In the following definitions and letama,
is a set of ground atomic formulas, ahds a single ground atomic formula.

Definition 2. A derivationof ® from X using rule seRis a sequence of ground atomic formu-
las¥q, Yo, ..., ¥, such that¥,, is ® and for each¥; there exists a Horn claugg A ... A Oy

= ¥’ in Rand a ground substitutios such thats[\V’] is ¥; and each formula of the form
o[®;] is either a member af or a formula appearing in earlier th&nin the derivation.

Lemma 1: X | @ if and only if there exists a derivation ®ffrom T using the rule seR.

The following restricted inference relation plays an important role in the analysis of locality.

Definition 3. We write X |», @ if there exists a derivation df from X such that every term
appearing in the derivation appears as a subexpressiroofis a subexpression of some for-
mula inX.

Lemma 2: (Tractability Lemma) [McAllester, 1993] For any finite rule dethe inference
relation |»g is polynomial-time decidable.

Proof: Letn be the number of terms that appear as subexpressiagh®obdf a formula inz. If

Qisa predlcate symbol df arguments that appears in the inference riddésen there are at
mostn* formulas of the fornQ(sy, ..., 8 such thal > Q(sy, ..., s) . Sinc®s finite there

is some maximum ariti over all the predicate symbols that appeaRirnThe total number of
ground atomlc formulas that can be derived under the restrictions in the definitier,of is
then of ordemX. Given a particular set of derived ground atomic formulas, one can determine
whether any additional ground atomic formula can be derived by checking whether each rule
in Rhas an instance whose premises are all in the currently derived formulas — for a rule with
k' variables, there are onlyf’ instances to check, and each instance can be checked in polyno-
mial time. Thus, one can extend the set of derived formulas by checking polynomially many
instances, each in polynomial time; and the set of derived formulas can only be extended at
most polynomially many times. The lemma then follows.

Clearly, if = |»g @ thenZX |5 ® . But the converse does not hold in general. By definition, if the
converse holds theRis local.

Definition 4. [McAllester, 1993]: The rule seR is local if the restricted inference relation
g is the same as the unrestricted relatign

Clearly, ifRis local then}, is polynomial-time decidable.

3. CHARACTERIZING P WITH SUPERFICIAL RULES

In this section we consider predicates on first-order terms that are computable in polynomial time.
The results stated require a somewhat careful definition of a polynomial-time predicate on first-
order terms.
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8 ° R. Givan and D. McAllester

Definition 5. A polynomial-time predicate on terms a predicateé on one or more first-
order terms which can be computed in polynomial time in the sum of the DAG sizes of its
arguments.

Definition 6. A rule set issuperficialif any term that appears in the conclusion of a rule also
appears in some premise of that rule.

Theorem 1: (Superficial Rule Set Representation TheorenQIf is a polynomial-time predi-
cate onk first-order terms of a fixed finite signature, then there exists a superficial rule set
such that for any first-order termg ..., t, from this signature, we have th&@ s true on argu-
mentsty, ..., t if and only ifINPUT (ty, ..., t,) g ACCEPT

As an example consider the “Acyclic” predicate on directed graphs — the predicate that is true of
a directed graph if and only if that graph has no cycles. It is well-known that acyclicity is a poly-
nomial-time property of directed graphs. This property has a simple definition using superficial
rules with one level of stratification — if a graph is not cyclic then it is acyclic. The above theo-
rem implies that the acyclicity predicate can be defined by superficial rules without any stratifica-
tion. The unstratified rule set for acyclicity is somewhat complex and rather than give it here we
give a proof of the above general theorem. The proof is rather technical, and casual readers are
advised to skip to the next section.

Proof: (Theorem 1) We only consider predicates of one argument. The proof for predicates of
higher arity is similar. LetQ be a one argument polynomial-time computable predicate on
terms, i.e., a predicate on terms such that one can determine in polynomial time in the DAG
size of a termt whether or noQQ(t) holds. Our general approach is to construct a database from
t such that the propert®) of terms can be viewed as a polynomial-time computable property
of the database (since the tetrman be extracted from the database and Q& computed).
We can then get a datalog program for computing this property of the database, given a total
ordering of the database individuals, using the result of Immerman and Vardi [Immerman,
1986], [Vardi, 1982]. The proof finishes by showing how superficial rules can be given that
construct the required database fromnd the required ordering of the database individuals.
The desired superficial rule set is then the combination of the datalog program and the added
rules for constructing the database and the ordering. We now argue this approach in more
detail.

We first describe the databasgthat will represent the term For each subtermof t we intro-

duce a database individual, i.e., a new constant symbol unique to the tesm\We have
assumed that the predicafe  is defined on terms constructed from a fixed finite signature, i.e.,
a fixed finite set of constant and function symbols. We will consider constants to be functions
of no arguments. For each function symibaf n arguments in this finite signature we intro-
duce a database relatiéh of n+1 arguments, i.eP; is an+l-ary predicate symbol. Now for

any termt we definex; to be the set of ground formulas of the fofa(Ct(s,, ... s> Cs» ---» Cs )

wheref (sy,...,8,) is a subterm of (possibly equal ta). The se&; should be viewed as a data-
base with individualgg and relation$;. LetI'; be a set of formulas of the for®(cg, c;) where

sandu are subterms df such thatS represents a successor relation on the individuals,of
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Polynomial-time Computation via Local Inference Rules . 9

i.e., there exists a bijectignfrom the individuals of, to consecutive integers such ti&{s, U

is in Iy if and only if p(u) = p(s) + 1. The result of Immerman and Vardi [Immerman, 1986],
[Vardi, 1982] implies that for any polynomial time propeRyof ordered databases there exists
a datalog prograrR such that for all databas&we hayeP(D) if and only if D | ACCEPT.
Since the ternt can be easily recovered from the 8gtQ can be viewed as a polynomial-time
property of%;, and so there must exist a datalog progmsuch that; v I'y | ACCEPT if
and only if Q(t) . We can assume without loss of generality that no rul® @an derive new
formulas involving the database predicais|f R has such rules they can be eliminated by
introducing duplicate predicatd?’, adding rules that copys facts toP;’ facts, and then
replacingPs by P¢’ in all the rules.

We now add to the rule s&superficial rules that construct the formulas needetj andl'y —

these rules use a number of “auxiliary” relation symbols in their computations; we assume the
names of these relation symbols are chosen after the choiResofthat there are no occur-
rences of these relation symbolsRnFirst we define a “mentioned” predicatsuch thats)

is provable if and only i§ is a subterm of.

INPUT(t) = Mt)
Mf(Xy, ...h Xp) = MX))

The second rule is a schema for all rules of this form wheseone of the finite number of
function symbols in the signature amdis one of the variableg,, ..., X,. Now we give rules
(again via a schema) that construct a version of the formula;sehere we use the subterms
themselves instead of the corresponding constants.

MF(Xq, -.os X)) = P (F(Xg, o0y X)), Xps -0 X)) (7)

Now we write a collection of rules to construct the formula Bgtwhere we again use the

terms themselves rather than corresponding constants. These rules define a successor relation
on the subterms df The basic idea is to enumerate the subtermygfdoing a depth-first tree
traversal starting at the root b&ind ignorning terms that have been encountered earlier. This
tree traversal is done below in rule sets (11) and (12), but these rule sets rely on various “utility
predicates” that we must first define.

(6)

We start by defining a simple subterm predicatesuch thaSu(u, V) is provable ifu andv are
subterms ot such thatu is a subterm of. The second rule is again a schema for all rules of
this form within the finite signature.

MX) = Su(X, X)

M (X, ..., Xp), Su(y, x) = Su(y, f(x, ..., X)) (8)

We also need the negation of the subterm predicate, which we wilNgafbr “not in”. To
define this predicate we first need to define a “not equal”’ predis&euch thatNKHu, V) is
provable if and only iti andv are distinct subterms of the ingut
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10 ° R. Givan and D. McAllester

Mf(Xy, ..0h X)), MO(Yys -0 Vi) =
NEf (X1, .. X0)s 9(Yps -5 Vi)

MF(Xq, -os Xy ooty X)), MF(Xg, .00 Y5, -0 X)), NE(X, ) =
NE(F(Xp, ..os Xy ooy X))y F(Xgs o0 Vi oo0s X))

(9)

Instances of the first rule schema must hiaedg distinct function symbols and in the second

rule schema; andy; occur at the same argument position and all other argumentsréothe

same in both terms. Now we can define the “not in” predi®dtesuch thaNl (s, U if sis not a
subterm ofu. We only give the rules for constants and functions of two arguments. The rules
for functions of other numbers of arguments are similar. Instances of the first rule schema must
havec a constant symbol.

NEX, ¢) = NI(x, ¢
NEZz f(x ¥), NI (z ¥, NI(z y) = NI(z f(x )

Now for any subterns of the input we simultaneously define a three-place “walk” relais)

u, W) and a binary “last” relatioh.(s, U. Ws, u, w will be provable ifsandu are subterms oi

andu is the successor &in a left-to-right preorder traversal of the subtermswoivith elimi-
nation of later duplicated.(s, U will be provable ifsis the last term of the left-to-right preor-
der traversal of the subterms of again with elimination of later duplicates. In these
definitions, we also use the auxiliary three-place relatdfs, u, ), whereW’(s, u, f(w, V)
means roughly thatandu are subterms of such thau comes aftesin the preorder traversal

of vand every term betweesandu in this traversal is a subterm af More preciselyW'(s, u,

v) is inferred if and only ifv has the fornf (x,y) such that there are occurrencesanduin the
pre-order traversal of (removing duplicates withig) where the occurrence ofis later than

the occurrence of and all terms in between these occurrences in the traversal are subterms of
x. UsingW’ andNI together (see two different rules below) enables the construction of a pre-
order traversal off with subterms of removed that can be used to construct a preorder tra-
versal off (x,y) with duplicates removed.

(10)

= L(c, 0
Mf(x, ¥)), L(ylast ), NI (ylast X = L(ylast f(x y)
M T (X, Y)), Su(y, X), L(xlast ¥ = L(xlast f(x Y)) (11

L(ylast y), Su(ylast X, NI (y, X),
W(flast, ylast f x V), NI (flast, ¥ = L(flast f(x }))
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Mf (X ¥)) = WE(X ), X, f(x V)
M (X, ), Wu, v, ¥ = Wu, v, f(x )
MF(x ). NI (Y. 9. L(s ¥ = Ws . f(x Y) (12)
M (X ¥)), Wu, v, ) = W(u, v, f(x Y)
W(u, v, f(x V), NI (u, X), NI (v, X) = Wu, v, f(x }))
W(u, v, f(x ), W(v, w, f(x ), Su(v, x) = W(u, w, f(x )

Finally we define the successor predicaia terms oW as follows.
INPUT(2), WX, Y, 9 = S(X, Y) (13)

Let R’ be the datalog prograiR plus all of the above superficial rules. We now have fjav
It lg ACCEPTIf and only if INPUT(t) |, ACCEPT and the proof is complete.]
(Theorem 1)

4. CHARACTERIZING P WITH LOCAL RULES

Using the theorem of the previous section one can provide a somewhat different characterization
of the complexity clas® in terms of local rule sets. Recall from Definition 4 that a ruleR&t

local if for any set of ground atomic formulasand any single ground atomic formuia we have

T |z @ if and only if X =5 @ . We note that the tractability lemma (Lemma 2) implies immedi-
ately that ifR is local thenly,  is polynomial-time decidable.

Theorem 2: (Local Rule Set Representation TheoremQIf is a polynomial-time predicate on
first-order terms then there exists a local ruleRstich that for any first-order ternsg ..., t,

we have tha is true on argumenfs..., ty if and only if | Q(ty, ..., t,) whereQ s a pred-
icate symbol representing

Before giving a proof of this theorem we give a simple example of a local rule set for a polyno-
mial-time problem. Any context-free language can be recognized in cubic time. This fact is easily
proven by giving a translation of grammars into local rule sets. We represent a string of symbols
using a constant symbol for each symbol and the binary fun@@iNSo construct terms that
represent lists of symbols. For each nonterminal syndbal the grammar we introduce a predi-
cate symboP, of two arguments wherBa(X, y) will indicate thatx andy are strings of symbols

and thaty is the result of removing a prefix afthat parses as categofy For each grammar pro-
ductionA — c wherec is a terminal symbol we construct a rule with no premises and the conclu-
sion Po(CONgc, X), X). For each grammar productign— B C we have the following inference

rule:

Pg(X, ¥) APc(Y, 2 = PA(X 2. 14

Finally, we letP be a monadic predicate which is true of strings generated by the distinguished
start nontermina$b of the grammar and add the following rule:
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12 ° R. Givan and D. McAllester
Ps(x, NIL) = P(X). (15)

Let R be this set of inference ruleR.is a local rule set. To see this first note that the rules main-
tain the invariant that iP,(X, y) is derivable thery is a subterm ok. From this it is easy to show

that any use of any rule iR on derivable premises has the property that every term appearing in
an premise (either at the top level or as a subterm of a top-level term) also appears in the conclu-
sion (either at the top level or as a subterm of a top-level term). This implies that a priegfof

y) can not mention terms other thaand its subterms (which includgs

The rule seRalso has the property thg, P(XY)  if and onlyxifs a string in the language gen-
erated by the given grammar. General methods for analyzing the order of running time of local
rule sets can be used to immediately give that these clauses can be run to completionliﬁ order
time wheren is the length of the input strinWe have implemented a compiler for converting
local rule sets to efficient inference procedures. This compiler can be used to automatically gener-
ate a polynomial-time parser from the above inference rules.

Proof: (Theorem 2) We now prove the above theorem for local inference relations from the
preceding theorem for superficial rule sets. By the superficial rule-set representation theorem
there must exist a superficial rule $&such that for any first order termsg ..., t, we have that

Q(ty, ..., t) ifand only if INPUT(ty, ..., t)) |z ACCEPTwhereINPUT is a predicate symbol
andACCEPTis a distinguished proposition symbol. Our goal now is to define a local rule set
R’ such thalNPUT(ty, ..., t) g ACCEPT if and only if | Q(ty, ..., t)). For each predicate
symbolS of marguments appearing Rlet S’ be a new predicate symbol k#m arguments.

We define the rule s& to be the rule set containing the following clauses.

= INPUT'(X1, ..., Xpo Xq5 -5 X))
ACCEPT(Xy, ..., X) = Q(Xg, ..., Xp)

ST{CSTRITS 08 STETRPRN SID RARee (16)
e A SH(X g s X th 1 ...,tn,w) = S'(Xg, -oos Xpo Sp» -+ sj)
whereS,(t; 4, ...t p ) A AS(ty 1 nty ) = (S, - ) IsinR
Given the above definition we can easily show thgtS'(ty, ..., t,, s, ..., Sy) if and only if

INPUT(ty, ..., t) Fg S(S1, ---» Sy)- Therefore, it follows thatNPUT(t, ..., t)  ACCEPTIf
and only if | Q(ty, ..., t). It remains only to show th&’ is local. Suppose that | ® . We
must show thak |»,® . Lety, ..., ty be the firstk arguments ind. If @ is Q(ty, ..., t}) then
either ® is in ¥ (in which case the result is trivial), or we must also have
T |z ACCEPT(t,, ..., t,) so that it suffices to prove the result assuming thas the applica-
tion of the primed version of a predicate appearinRiftvery derivation based dr’ involves
formulas which all have the same fiksirguments — in particular, given thatlz, ® we must

4. An analysis of the order of running time for decision procedures for local inference relations is given in [McAll-
ester, 1993].
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Polynomial-time Computation via Local Inference Rules . 13

have that’ | @ whereX'’ is the set of formulas i that havety, ..., t as their firstk argu-
ments. Le” and®’ be the result of replacing each form®4t, ..., t, Sy, ..., Sy) by sy,

.+ Sm) IN £’ and®, respectively. Sinc&’ | ® we must havénput  (ty, ..., t) VX" | D'
But sinceRis superficial every term in the derivation underlyingut (ty, ..., ) VX" | @
either appears in somig or appears irx”. This implies that every term in the derivation
appears in eithex’ or @, and thus thak |»,® [J (Theorem 2)

5. ANOTHER CHARACTERIZATION OF LOCALITY

In this section we give an alternate characterization of locality. This characterization of locality
plays an important role in both the definition of bounded-local rule sets given in [McAllester,
1993] and in the notion of inductively-local rule sets given in the next section.

Definition 7. A bounding setis a set Y of ground terms such that every subterm of a member
of Y is also a member of Y (i.e., a subterm-closed set of terms).

Definition 8. A ground atomic formulaV is called alabel formulaof a bounding set Y if
every term in¥ is a member of Y.

Definition 9. For any bounding set Y, we define the inference relaﬁeﬂ v to be such that
I f»g @ if and only if there exists a derivation @ from X such that every formula in the
derlvatlon is a label formula of the term set Y.

We have thak |»; @ ifand only i |»5 @ where Y is the set of all terms appearing as sub-
expressions o or of formulas inZ. The mference relatiof»g \,  can be used to give another
characterization of locality. Suppose tiiais not local. In this case there must exist saorend®
such thatX |f»; @ bu | @ . LetY be the set of terms that appea and ®. We must have
2 g O However sinceX |, @ we must ha\E|—»R v for some finite superset Y’ of Y.
ConS|der growing” the boundlng set one term at a time, starting with the terms that apfear in
ando.

Definition 10. A one-step extensiasf a bounding set Y is a ground temnthat is not in Y but
such that every proper subtermoois a member of Y.

Definition 11. A feedback event foR consists of a finite séi of ground formulas, a ground
formula®, a bounding set Y containing all terms that appeat and®, and a one-step exten-
siona of Y such thal |»g v, 1oy @+ BUE g (@

By abuse of notation, a feedback event will be writteR g v, (o) P
Lemma 3: [McAllester, 1993]:Ris local if and only if there are no feedback events:for

Proof: First note that ifR has a feedback event th&is not local — if X }»g v, (o @ then
R ® butif X g (@ then X f»p @ . Conversely suppose tHatis not local. In that case
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14 ° R. Givan and D. McAllester

there is some& and® such thatX {f»g @ bul |», @ for some finite Y. By considering at
least such Y one can show that a feedback event exig®s for

The concepts of bounded locality and inductive locality both involve the concept of a feedback
event. We can define bounded locality by first definBigZ, Y) to be the set of formula¥ such
that |—»R’Y‘P .Ris bounded-local if it is local and there exists a natural nunksuch that
wheneverz g v, o ¥ there existskastep or shorter derivation d&f from Cr(Z, Y) such that
every term in the élerivation is a membervfu {a}. As mentioned above, the set of the four
basic inference rules for equality is bounded-local — moreover, there exists a procedure for deter-
mining if a given rule set ig-bounded-local for any particul&r and hence there exists semi-deci-
sion procedure which can verify locality for any bounded-local rule set [McAllester, 1993]. This
procedure is sufficiently efficient in practice to verify the locality of a large number of bounded-
local rule sets. But not all local rule sets are bounded-local. The next section introduces the
intuctively-local rule sets, a new recursively-enumerable subclass of the local rule sets.

6. INDUCTIVE LOCALITY

To define inductive locality we first define the notion of a feedback template. A feedback template
represents a set of potential feedback events. We also define a backward chaining process which
generates feedback templates from a rulds®&¥e show that if there exists a feedback evenfRor

then such an event will be found by this backchaining process. Furthermore, we define an “induc-
tive” termination condition on the backchaining process and show that if the backchaining process
achieves inductive termination thBis local.

Throughout this section we I&be a fixed but arbitrary set of Horn clauses. The inference rela-
tion |»g  will be written asl», with the understanding tHais an implicit parameter of the
relation.’

We define feedback templates as ground objects — they contain only ground first-order terms
and formulas. The process for generating feedback templates is defined as a ground process — it
only deals with ground instances of clause®inrhe ground process can be “lifted” using a lift-
ing transformation. Since lifting is largely mechanical for arbitrary ground procedures [McAll-
ester and Siskind, 1991], the lifting operation is only discussed very briefly here.

Definition 12. A feedback templateonsists of a set of ground atomic formuksa multiset
of ground atomic formula§’, a ground atomic formul&, a bounding se¥, and a one-step
extensior of Y such thatb and every formula iiX is a label formula of Y, every formula i
is a label formula ot U {a} that containg, and such thal U T f»y o @

By abuse of notation a feedback template will be writte@ a5 |»y ., (,, ®. T is a multiset of
ground atomic formulas, each of which is a label formul&ab {a} containinga, and such that
the union ofZ andTI allow the derivation ofD relative to the bounding s&t U {a}. A feedback
template is a potential feedback event in the sense that an extensiahatfallows a derivation
of the formulas in" may result in a feedback event. The requirement théie a multiset is
needed for the template-based induction lemma given below. Feedback templadResafoibe
constructed by backward chaining.
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Polynomial-time Computation via Local Inference Rules . 15

Non-deterministic Procedure for Generating a Template foR:
1. Let¥, A ... A'¥,= @ be a ground instance of a claus®in

2. Leta be a term that appears in the clause but does not appear in the conizlastbn
does not appear as a proper subterm of any other term in the clause.

3. LetY be a bounding set that does not contaiout does contain every term in the clause
other tharo.

4. LetX be the set of premis&§ which do not contain..
5. LetI be the set of premis&§ which do contair.
6. Return the feedback templaiel” f»y, (,, P.

We letTo[R] be the set of all feedback templates that can be derived Rday an application of
the above procedure. We leave it to the reader to verify THd] is a set of feedback templates.
Now consider a feedback templaid” vy, ¢, P.

A feedback templat&, I" |»y, (,, @ is a statement that there exists a proofiofocal toY U

{a} from the multise® of Y-local premises and the multisetof (Y U {a})-local premises. The
following procedure defines a method of constructing a new template by backchaining from some
(Y U {a})-local premise of a given template.

Non-deterministic Procedure for Backchaining fromX, I' by, oy @
1. Let® be a member df

2. Non-deterministically choose a ground instalgex ... A ¥, = © of a clause irR that
has® as its conclusion and such that e¥¢lis a label formula of U {a}.

3. LetX’ beX plus all premise¥; that do not contain.
4. LetI” bel’ minus® plus all premise¥; that contairw.
5. Return the template’, I" >y, P.

Note that there need not be any clauses satisfying the condition in step 2 of the procedure in which
case there are no possible executions and no templates can be generated. In step 4 of the above
procedure]” is constructed using multiset operations. For example, if the multisentains two
occurrences o8, then ‘T minus®” contains one occurrence 6f. We need" to be a multiset in

order to guarantee that certain backchaining operations commute in the proof of the induction
lemma below — in particular, we will use the fact that if a sequence of backchaining operations
remove an elemer® of I at some point, then there exists a permutation of that sequence of back-
chaining operations producing the same resulting template, but that regnbrsts

For any sefl of feedback templates we defiBET] to beT plus all templates that can be derived
from an element off by an application of the above backchaining procedure. It is important to
keep in mind that by definitioB[T] containsT. We letB"[T] be B[B[---B[T]]] with n applications
of B.

Definition 13. A feedback template is callexitical if I is empty.
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16 ° R. Givan and D. McAllester

It Z, 8 oy (o Pis acritical template theB by, . If Z |y @ thenX p»y, o, Pisa
feedback event. By abuse of notation, a critical tempia (>, oy @ such that [y @ will

itself be called a feedback event. The following lemma provides the motivation for the definition
of a feedback template and the backchaining process.

Lemma 4: There exists a feedback event #®if and only if there exists asuch thaBj[To[R]]
contains a feedback event.

Proof: The reverse direction is trivial. To prove the forward direction, suppose that there exists
a feedback event fdR. LetX |»y (., ® be a minimal feedback event f& i.e., a feedback
event forR which minimizes the length of the derivation @ffrom X under the bounding sét

v {a}. The fact that this feedback event is minimal implies that every formula in the derivation
other than® containso.. To see this suppose thatis a formula in the derivation other than

that does not involve.. We then have |y, (o, ® andZ U {®} |»y 4, ©. One of these

two must be a feedback event — otherwise we would haye>, ®. But if one of these is a
feedback event then it involves a smaller derivation thawy, ,, ® and this contradicts the
assumption thal [y, (,, @ is minimal. Since every formula other thenin the derivation
underlyingX f»y o, ® containso, the template, @ |»y,, (,, @ can be derived by back-
chaining steps mirroring that derivatian.

The above lemma implies that if the rule set is not local then backchaining will uncover a feed-
back event. However, we are primarily interested in those cases where the rule set is local. If the
backchaining process is to establish locality then we must find a termination condition which
guarantees locality. LeT be a set of feedback templates. In practicean be taken to be
B'[To[R]] for some finitej. We define a “self-justification” property for sets of feedback templates
and prove that il is self-justifying then there is nosuch thaB"[T] contain a feedback event. In
defining the self-justification property we treat each templaté as an independent induction
hypothesis. If each template can be “justified” using the set of templates as induction hypotheses,
then the seT is self-justifying.

Definition 14. We writeX, I" | @ if T contains templates

2, Iy |‘»Yu{a} ¥y

2o, ' > Y
2 To vy oy ¥ 17)

Zio T Py oy Y
where eacly; is a subset af, eachl’j is a subset df andX U {¥q, ¥, ..., ¥i} >y .
Definition 15. A set of templated is said tojustify a templateZ, I" |y, . @ if there exists

a® e I' such that for each templak, I |»y, ,, P generated by one step of backchaining
from X, T |—»Yu{a} @ by selecting® at step 1 of the backchaining procedure we have

ST pory O
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Polynomial-time Computation via Local Inference Rules o 17

Definition 16. The sefT is calledself-justifyingif every member ofl is either critical or justi-
fied by T, andT does not contain any feedback events.

Theorem 3: (Template-based Induction Theorem)Tifis self-justifying then no set of the
form B"[T] contains a feedback event.

Proof: Consider a self-justifying st of templates. We must show that for every critical tem-
plateX, g |—»Yu{a} @ in B"[T] we have that |», ®. The proof is by induction on. Con-
sider a critical templat&, @ f»y, ar @ in BY[T] and assume the theorem for all critical
templates irB![T] for j less tham. The critical templat&, @ |—>>Yu{a} ® must be derived by
backchaining from some template, I }»y, (,, @ in T. Note thatZ’ must be a subset af.

If I is empty thert’ equalsX andX p», @ becausd is self-justifying and thus cannot con-
tain any feedback events.IIf is not empty then, sinc€ is self-justifying, we can choose@

in I such that for each templa¥ , I'" |»y, (o, © derived fromX’, T »y,, {61} ® by a
single step of backchaining @ we haveX” , I |» y ®@. We noted above that backchaining
operations commute (to ensure this we tdoto be a multiset rather than a set). By the com-
mutativity of backchaining steps there exists a backchaining sequence from
T oy PUOZ, 8 Py, o @ such that the first step in that sequence is a backchain-
ing step omd. Letx*, I'* |—»Yu{a} @ be the template that results from this first backchaining
step from2', T" |»y,, (o, ©. Note that* is a subset oE. We must now have”, I p»r y @

By definition, T must contain templates

2, Ty oyo oy i
ST, » ¥
22 |_>Yu {a} *2 (18)

i Ty o () Y

such that each; is a subset of*, eachl’; is a subset of *, andx* U {¥, ¥y, ..., ¥y} |»y ©.

Note that eaclx; is a subset of. Sincerl’ is a subset of * there must be a sequencefeiver

than n backchaining steps that leads from;, I'; >y, oy ¥ to a critical template
2, 8 Py oy i such thal’ is a subset of. This critical template is a member Bi[ T] for

j less tham and so by our induction hypothesis this template cannot be a feedback event; as a
consequence we havEj |»y ¥; and thusX p»y ¥;. But if £ |» ¥, for each¥;, and

TU{¥ ¥y, ..., ¥y} by @ thent p»y ®. 00 (Template-based Induction Theorem)
The following corollary then follows from Theorem 3 along with Lemmas 3 and 4:

Corollary 1: If B[T[R]] is self-justifying, for somen, thenR is local.
We now come the main definition and theorem of this section.

Definition 17. A rule setRis calledinductively-localif there exists soma such thaB"[ Ty[R]]
is self-justifying.
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18 ° R. Givan and D. McAllester

Theorem 4: There exists a procedure which, given any finiteRsef Horn clauses, will termi-
nate with a feedback event whenewrs not local, terminate with “success” whenewris
inductively-local, and fail to terminate in cases whie local but not inductively-local.

Proof: The procedure is derived by lifting the above ground procedure for computing
B"[To[R]]. Lifting can be formalized as a mechanical operation on arbitrary nondeterministic
ground procedures [McAllester and Siskind, 1991]. The lifted procedure maintains a set of
possibly non-ground templatés I |—»Yu{a} ®. Each template must satisfy the conditions
thata occurs as a top-level argument in every atorlvjix does not occur at all il or @, and
every term inZ or Phi occurs irlY. A lifted template represents the set of ground templates that
can be derived by applying a subsitutierio the lifted template. More specifically, for any set
of ground termsy let C(Y) denoteY plus all subterms of terms inY. A lifted feedback tem-
plateX, I' |»y, (,, P represents the set of all well-formed feedback templates of the form
o(2), o(I") |—»C(G YU {a}) ©(®@). .Note that not all expressions of this form need be well-
formed feedbac temp?ates, e.g., we might have #{t equalsc(a) wheret occurs inX.
However, ifo(X), o(I") |—»C(G YU {a})) O(P) is a well-formed feedback template, then we say it
is coveredby the lifted temp(late.

To prove Theorem 4, we first show that there exists a finite set of lifted templates such that the
set of ground templates covered by this lifted set is exalflR]. This is done by lifting the
procedure for generatinty[R], i.e., each step of the procedure can be made to nondeterminis-
tically generate a lifted object (an expression possibly containing variables) in such a way that
a ground feedback event can be nondeterministically generated by the ground procedure if and
only if it is covered by some lifted feedback event that can be nondeterministically generated
by the lifted procedure. For example, the first step of the procedure for genefgtiRigim-

ply nondeterministically selects one of the (lifted) rulesin Step 2 selects a unifiable subset

of top-level subterms of the premise of the clause. The most general unifier of this set is then
applied to the clause and is taken to be result of applying that unifier to any one of the
selected terms. Steps 3, 4, 5, and 6 are then computed deterministically as specified.

Now given a finite seT of lifted templates covering a possibly infinite ground $etthe pro-
cedure for generating[T'] can be modified to generate a finite set of lifted templates that cov-
ers exactlyB[T’]. The lifted non-deterministic backchaining procedure starts with a lifted
feedback template and non-deterministically selects, in step 2, a rule whose conclusion is unifi-
able with an atom ifi". If the unification violates any part of the definition of a feedback event
then the execution fails; for example, the unification might identifiyith a subterm of a term

in'Y, and thus fail. Steps 3 and 4 are preceeded with a step that nondeterministically selects a
subset of the top level terms occuring', ..., ¥, to identify with a. The most general uni-

fier of these terms and is then applied to all expressions. Again, if any part of the definition

of a feedback template is violated, then the execution fails. Then steps 3, 4, and 5 are com-
puted as specified. We then get tBI Ty[R]] can be represented by a finite set of lifted tem-
plates. Finally, Definition 15 can also be lifted so that we can speak of a lifted template being
justified by a finite set of lifted templates. Now we have tRas$ inductively local if and only

if there exists am such that the finite set of lifted templates represenBg [R]] is self-jus-

tifying. For any givem this is decidable and theorem 4 follows.
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Polynomial-time Computation via Local Inference Rules . 19

We have implemented the resulting lifted procedure and used it to verify the locality of a variety

of rule sets, including for instance the rule set given as equation (5) above for reasoning about lat-
tices. This procedure is also useful for designing local rule sets — when applied to a nonlocal rule
set the procedure returns a feedback event that can often be used to design additional rules that
can be added to the rule set to give a local rule set computing the same inference relation.

7. LOCALITY IS UNDECIDABLE

We prove that locality is undecidable by reducing the Halting problem.
Theorem 5: The problem of deciding the locality of a rule Bas undecidable.

Proof: LetM be a specification of a Turing machine. We first show one can mechanically con-
struct a local rule seR with the property that the machimé halts if and only if there exists a
termt such that| H(t) wherél is a monadic predicate symbol. Turing machine computa-
tions can be represented by first-order terms and the forki()antuitively states that is a

term representing a halting computatiorivbf

To prove this preliminary result we first construct a superficial ruleSsaich thatV halts if
and only if there exists a tertnsuch thatNPUT(t) |z H(t). The mechanical construction of
the superficial rule se® from the Turing machind is fairly straightforward and is not given
here. We convert this superficial rule $to a local rule seR as follows. For each predicate
symbolQ of marguments appearing Blet Q' be a new predicate symbol of+1 arguments.
The rule seR will be constructed so thdt, Q" t,(sy, ..., Sy if and only if INPUT(t) |5 Q(t,

Si, ---» Sy)- We define the rule seR to be the rule set containing the following clauses:
= Input '(x, X), H'(x, X) = H(X), and each clause of the form

Q]’_(X, tl, 1 oeeeo t1’ ml) AN (19)
oA QX th 1ty ) D WIX S, L S))

where Qy(ty 1, ...ty ) A .. AQu(ty 1 sty ) = W(S,, ..., S)) s in S By the design of

R we can easily show thadf, Q'(t, sy, ..., Sy if and only if INPUT(t) |5 Q(t, sy, --., S, and

so it directly follows thatNPUT(t) 5 H(t) if and only if | H(t) . So the Turing machini
halts if and only if | H(t) for some termy as desired. The proof that the rule &eis local
closely follows the proof thaR’ is local in the Local Rule Set Representation Theorem proven
above (Theorem 2).

We have now constructed a local rule 8awvith the property thaM halts if and only if there
exists some terrhsuch thatl H(t) . Now leR’ be R plus the single clausé(x) = HALTS
whereHALTSis a new proposition symbol. We claim th@t  is local if and onliliioes not
halt. First note that iM halts then we have botigy HALTS  arfth, HALTS  Ras not local.
Conversely, suppose thit does not halt. In this case we must show tRais local. Suppose
that X | ® . We must show th& [»,® . Suppo®eis some formula other thadALTS In
this caseX | ® is equivalent ti |z ® . Sinéeis local we must have f», ® and thus
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20 ° R. Givan and D. McAllester

% f»®. Now suppose is the formulaHALTS If HALTSis a member oE then the result is
trivial so we assume th&dALTSis not inX. SinceX | HALTS we must have f,H(c) for
some termc. This implies thatX |z H(c) and thu& |»;H(c) anB|»g H(c) . To show
T f»HALTS it now suffices to show thatis mentioned irk. By the preceding argument we
haveX |»5 H(c) . Since the rule sBtwas generated by the construction given above, we have
that every inference based on a claus®iis such that every formula in the inference has the
same first argument. This implies thet|», H(c) ~ whé&re s the set of all formulaghat
havec as a first argument. We have assumed khaoes not halt, and thug, H(c) . Henze
must not be empty. Since every formulain mentignand X’ is contained iX, we can
conclude thaE must mentiore —thus sinceX |»g H(c) we havE |»gHALTSE [

8. OPEN PROBLEMS

In closing we note some open problems. There are many known examples of rule sets which are
not local and yet the corresponding inference relation is polynomial-time decidable. In all such
cases we have studied there exists a conservative extension of the rule set which is local. We con-
jecture that for every rule s&such thattw is polynomial-time decidable there exists a local con-
servative extension d&®. Our other problems are less precise. Can one find a “natural” rule set that

is local but not inductively local? A related question is whether there are useful machine recogniz-
able subclasses of the local rule sets other than the classes of bounded-local and inductively-local
rule sets?
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