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Abstract

We investigate set constraints over set expressions with
Tarskian functional and relational operations. Unlike the
Herbrand constructor symbols used in recent set constraint
formalisms, the meaning of a Tarskian function symbol is
interpreted in an arbitrary first order structure. We show
that satisfiability of Tarskian set constraints is decidable
in nondeterministic doubly exponential time. We also give
complexity results and open problems for various extensions
of the language.

1. Introduction

There has been considerable interest recently in for-
malisms for describing and reasoning about sets. Here
we consider a family of formalisms that have received sur-
prisingly little attention. Consider a set expression of the
form f(C1; : : : ; Cn) where C1, : : :, Cn denote sets. In
recent work on set constraints function symbols are inter-
preted as Herbrand constructors so that the set expressionf(C1; : : : Cn) denotes the set of terms f(t1; : : : ; tn)
where t1 2 C1, : : :, tn 2 Cn. But an equally natural in-
terpretation takes f(C1; : : : ; Cn) to be the set of values
that can derived by applying the meaning of f to elements
of the sets denoted by C1, : : :, Cn. For example, if + de-
notes addition and O denotes the set of odd integers then
we would expect +(O; O) to denote all the integers that
can be expressed as the sum of two odds, i.e., all the even
integers. In general we can let the meaning of operations be
determined by a first order structure in the standard way. We
call set expressions under this form of semantics “Tarskian”
to distinguishthem from the “Herbrand” set expressions that
have received considerable recent attention.

Tarskian set constraints seem fundamentally different
from Herbrand set constraints. There does not seem to
be any simple reduction of Tarskian set constraints to the
monadic class. Since Tarskian set constraints are not re-
stricted to Herbrand interpretations, induction principles for
Herbrand interpretations do not apply. It turns out that
Tarskian set constraints are closely related to modal logics.
Before stating our main results on Tarskian constraints we
review some work on set calculi. We organize the review
around four classes of set calculi — Herbrand set constraints,
modal logics, AI concept languages, and Tarskian set con-
straints.

Herbrand set constraints involve set expressions gener-
ated by the following grammar.C ::= X j f(C1; : : : Cn) j C1 [ C2 j :C
A set expression of the form f(C1; : : : ; Cn) is taken to
denote the set of all terms f(t1; : : : ; tn) with ti 2 Ci.
A set constraint is an expression of the form C1 � C2.
Herbrand set constraints are largely inspired by applications
to the static analysis of computer programs [19, 18, 13,
3]. The problem of determining satisfiability of a finite
set of Herbrand set constraints is known to be complete
for nondeterministic exponential time [1, 4]. The problem
remains decidable in nondeterministic exponential time if
one adds both negative constraints, i.e., C1 6� C2, [2, 7], and
projection functions [8].

Modal logics involve formulas which are true or false
of possible worlds in Kripke structures. Equivalently, each
formula of a modal logic can be taken to denote the set of
worlds in which it is true. Since modal formulas denote sets,
modal logics can be viewed as set calculi. Propositional
dynamic logic (PDL) [12, 29] and the modal �-calculus
[22] are particularly significant modal logics. If R is a
binary relation symbol and C is a set expression then in
both these logics the set expression [R]C denotes the set



fx : 8y R(x; y) ! y 2 Cg. The set expression <R> C
is defined analogously to denote fx : 9y R(x; y) ^ y 2Cg. The modal �-calculus allows for recursively defined set
expressions of the form �X:C[X] where X is a set variable
and C[X] is a set expression in which every occurrence
of X in C[X] occurs inside an even number of negation
signs. PDL can be seen as a restriction of the modal �-
calculus which has much simpler decision procedures and
yet is sufficiently expressive to cover many applications.
Satisfiability for both PDL and the modal �-calculus are
known to be complete for deterministic exponential time
[32, 10, 30].

AI concept languages have been developed for knowl-
edge representation in expert systems [5, 31]. The set ex-
pressions of concept languages are constructed from set vari-
ables and relation variables using a variety of compositional
mechanisms. For example, the expression 8R:C where R
is a relation expression and C is a set expression denotes
the set fx : 8y R(x; y) ! y 2 Cg (and hence is a syn-
tactic variant of [R]C). For the most part these languages
can be viewed as fragments of PDL [6, 15, 14]. However,
many of these languages have satisfiability problems in P,
NP, or PSPACE [9]. Also, concept languages often include
cardinality primitives which appear not to be expressible in
PDL. Furthermore, there is a natural relationship between
certain concept languages and Montague grammar for natu-
ral language. In particular the set expression R(every C)
is taken to be the set fx : 8y 2 C R(x; y)g. This provides
a natural meaning for English verb phrases such as “contains
every prime number.” One simple but expressive Montago-
vian concept language has a polynomial time satisfiability
problem [27].

Tarskian set expressions have been studied by Jónnson
and Tarski in the framework of Boolean algebra with op-
erations [20, 21]. In the work of Jónnson and Tarski the
operation f in the expression f(C1; : : : ; Cn) actually de-
notes a relation on n + 1 arguments. More specifically,f(C1; : : : ; Cn) denotes fy : 9x1 2 C1; : : : ; xn 2 Cn :hx1; : : : ; xn; yi 2 fg. One can think of f as a nonde-
terministic operation — for any given tuple of inputs there
is a set of possible outputs. Jónnson and Tarski’s main re-
sult is a variant of the Stone representation theorem which
can be viewed as a completeness theorem for an algebraic
axiomatization. They did not study decision theoretic com-
plexity issues. Representation theorems for subclasses of
Boolean algebras with operations have recently been stud-
ied in a general setting by Goldblatt [17]. Kozen [23] has
recently obtained a Stone duality in the context of Herbrand
set constraints between the algebra of set constraints and the
topological term automata of [24, 25].

Here we consider a superset of the original set expres-

sions studied by Jónnson and Tarski. We make a syntactic
distinction between deterministic and nondeterministic op-
eration symbols corresponding to classical function symbols
and relation symbols respectively. We use this nonstandard
terminology so that we can write set expressions of the formf(C1; : : : ; Cn) where f is an operation symbol (either de-
terministic or nondeterministic). We also allow least fixed
point expressions. The complete grammar of our Tarskian
set expressions is as follows.C ::=X j f(C1; : : : ; Cn) j C1 [ C2 j :C j �X:C
In the above grammar f can be either deterministic or non-
deterministic and may take no arguments, i.e., be a constant
symbol. �X:C is restricted so that X can only occur inside
an even number of negation symbols in C. We consider
finite sets of constraints of the form C1 � C2 or C1 6� C2.

In spite of the apparent naturality of Tarskian set con-
straints, their computational properties have not been widely
studied. It is shown in [28] that satisfiability of non-recursive
Tarskian set constraints not involving Boolean operations is
decidable in cubic time (assuming unit time hash table op-
erations). It is shown in [16] that satisfiability of constraints
on expressions involving meets, joins, and monotone appli-
cations in an arbitrary lattice is similarly decidable in cubic
time. The results of this paper are summarized in the table
below. We categorize Tarskian set constraint satisfiability
problems by the presence or absence of recursion (�-sets),
the presence or absence of functions (deterministic opera-
tions of arity at least one), and the presence or absence of
constants (deterministic operations of arity 0). In all cases
we allow nondeterministic operations (of all arities) and both
positive and negative set constraints.

Rec Fun Const Lower Bound Upper Bound
1. - - - EXPTIME EXPTIME
2. - - + EXPTIME EXPTIME
3. - + - NEXPTIME NEXPTIME
4. - + + NEXPTIME 2-NEXPTIME
5. + - - EXPTIME EXPTIME
6. + - + EXPTIME ?
7. + + - NEXPTIME ?
8. + + + Undecidable ?

The results in the first two lines of the table are proved
using techniques similar to those used for PDL [29]. The
lower bound in line three is proved using techniques sim-
ilar to those used in proving NEXPTIME hardness for the
monadic class [26]. The upper bound in line three is proved
by a filtration-like argument. The lower bounds in lines one
and three are proved in a more complete version of this paper
available from the authors. The proofs of the upper bounds
in lines one through three are discussed briefly in section 3.

Standard techniques fail for the fourth line, the case of



non-recursive constraints with arbitrary operations. We
show in section 3 that satisfiability for non-recursive
Tarskian set constraints is decidable in nondeterministic
doubly exponential time. Our procedure involves a re-
duction to a natural class of Diophantine constraints which
we call prequadratic. We show that satisfiability for pre-
quadratic Diophantine constraints is decidable in nondeter-
ministic exponential time. However, we conjecture that
prequadratic Diophantine satisfiability is in NP. If so, then
we get a nondeterministic single exponential procedure for
non-recursive Tarskian constraints.

The fifth line in the table corresponds to recursive con-
straints with nondeterministic operations. It turns out that
constraint set satisfiability in this calculus is linear time
equivalent to set expression satisfiability in the modal �-
calculus. We show in section 4 that constraint set satisfiabil-
ity for this class is polynomial time reducible to closed set
expression satisfiability in a calculus we call the Herbrand�-calculus. Closed set expression satisfiability for the Her-
brand �-calculus is known to be decidable in exponential
time.

Decision procedures for the modal �-calculus can be
viewed as consisting of two phases. The first phase can
be viewed as a reduction of set expression satisfiability in
the the modal calculus to set expression satisfiability in the
closed Herbrand calculus. The second phase is a decision
procedure for the closed Herbrand calculus. The formal jus-
tification for the first phase is rather elaborate [32]. Here we
give an alternative reduction from the modal �-calculus to
the closed Herbrand�-calculus with a simplified correctness
proof.

It seems likely that techniques used in decision proce-
dures for the the modal �-calculus can be used to construct
decision procedures for lines six and seven, although this
has not yet been done.

The undecidability of the eighth line is proved by a re-
duction of Hilbert’s tenth problem. The reduction, given in
section 5, uses only intersection and union constraints (no
negation) and only a single level of �-quantification.

2. Basic Concepts

We assume a countably infinite collection of set variables
and for each arity (number of arguments) an infinite number
of deterministic and an infinite number of nondeterministic
operation symbols of that arity. We consider set expressions

generated by the following grammar.1C ::=X j f(C1; : : : ; Cn) j C1 [ C2 j :C j �X:C
We take a first order structureM to be a domain (set)D plus
an interpretation, denoted M(f), of each operation symbolf such that if f has arity n then M(f) � Dn+1 and such
that if f is deterministic then for all x1, : : : xn in D there
exists exactly one y such that hx1; : : : ; xn; yi 2 M(f).
A set variable interpretation over a first order structure M
is a mapping from set variables to subsets of the domain ofM. If � is a set variable interpretation then �[X := S] is
the interpretation identical to � except that it interprets the
variableX as the set S. For any set expressionC, first order
structureM with domain D, and set variable interpretation� over M we take M[[C]]� to be a subset of D defined by
the following conditions.M[[X ]]� = �(X)M[[f(C1; : : : ; Cn)]]� = fy :9x1 2M[[C1]]�; : : : ; xn 2M[[Cn]]� :hx1; : : : ; xn; yi 2M(f)gM[[C1 [C2]]� = M[[C1]]�[M[[C2]]�M[[:C]]� = D �M[[C]]�M[[�X:C]]� = the least S such that S = M[[C]]�[X := S]
A constraint is an expression of the form C1 � C2 or C1 6�C2. We say that the pair hM; �i satisfies the constraintC1 � C2 if M[[C1]]� � M[[C2]]�. hM; �i satisfies C1 6�C2 if M[[C1]]� 6� M[[C2]]�. We say hM; �i satisfies a
set Σ of constraints if hM; �i satisfies every member of
Σ. A constraint set Σ is satisfiable if it is satisfied by somehM; �i. We are interested in determining satisfiability of
finite sets of constraints.

3. Constraints without Recursion

We now show that satisfiability of a finite set of Tarskian
set constraints not involving recursion (�-expressions) is de-
cidable in nondeterministic doubly exponential time. Let Σ
be a finite set of constraints not involving recursion. We say
that a set expressionC occurs in Σ if eitherC occurs as a top
level set expression in a constraint in Σ or as a subexpres-
sion of such an expression. By abuse of notation we writeC 2 Σ to indicate that C occurs in Σ. A Σ-type is a set � of
set expressions occurring in Σ and negations of expressions
occurring in Σ satisfying the following conditions:� If (C1 [C2) 2 Σ then � contains (C1 [ C2) if and only if � contains

at least one of C1 and C2.� If C 2 Σ then � contains:C if and only if � does not contain C.� If Σ containsC � W , and � containsC, then � containsW .

If hM; �i satisfies Σ and x is an element of the domain
of M then fC 2 Σ : x 2 M[[C]]�g is a Σ-type — we say

1The (deterministic or nondeterministic) operation symbolf must have
arity n in expressions of the form f(C1; : : : ; Cn) and all occurrences
of X in C in the expression �XC must occur inside an even number of
negations.



that it is the Σ-type inhabited by x. But not all Σ-types need
be inhabited under a given pair hM; �i. Each interpretation
yields a particular set of inhabited types. The set of inhabited
types must satisfy certain conditions. We say that a type � is
a possible output of operation symbol f applied to types �1,: : :, �n, written f(�1; : : : ; �n) ; � , provided that � does
not contain a set expression of the form :f(C1; : : : ; Cn)
where Ci 2 �i for each Ci. A set S of Σ-types is called
locally consistent if:� For each negative constraintU 6� W in Σ there is a type in S which

containsU but notW .� If a type � in S contains f(C1; : : : ; Cn) then there exist types �1,: : :, �n in S such that f(�1; : : : ; �n); � and Ci 2 �i.� For each deterministic operation symbol f and Σ-types �1, : : :, �n
in S, where n is the arity of f , there exists a Σ-type � in S such thatf(�1; : : : ; �n); � .� Each constant (deterministic operation of arity zero) is contained in
exactly one type in S.

If Σ does not contain recursion and either does not con-
tain constants (deterministic operations of arity 0) or does
not contain functions (deterministic operations of arity at
least one) then Σ is satisfiable if and only if there exists a
locally consistent set of Σ-types. In the case where nei-
ther constants or functions are present one can start with all
Σ-types and iteratively remove those violating the second
condition. We then have that Σ is satisfiable if and only if
the resulting set of Σ-types satisfies the first condition. This
gives a deterministic exponential time decision procedure.
If constants are present then we must nondeterministically
guess a unique Σ-type for each constant. However, this
involves only polynomially many nondeterministic choices
and hence the space of all possible guesses can be searched
in deterministic exponential time. So we again get a de-
terministic exponential time procedure. When functions are
present (but not constants) we can again start with allΣ-types
and remove types violating the second and third conditions.
However when the third condition is violated we have a
choice of removing any one of the types �1, : : :, �n. This
gives a nondeterministic exponential time procedure.

When both functions and constants are present we must
consider additional cardinality constraints. Consider the
constraints c1 [ c2 � f(c3) and c1 6� c2 where c1, c2, c3

and f are all deterministic. This constraint set has a locally
consistent set of types but it is not satisfiable because f(c3)
must be a singleton set while c1 [ c2 must contain two
elements.

Consider an element x which inhabits a Σ-type � underhM; �i. For each application expression f(C1; : : : ; Cn)
in � there must exist elements y1 2 M[[C1]]�, : : :, yn 2M[[Cn]]� such that hy1; : : : ; yn; xi 2 M(f). The valuesy1, : : :, yn can be viewed as “predecessors” of x which

“witness” the fact that x is in the set f(C1; ; : : : ; Cn). The
predecessors y1, : : :, yn each have Σ-types �1, : : :, �n. We
now define a range expression (overΣ) to be an expression of
the form f(�1; : : : ; �n), where �1; : : : ; �n are Σ-types andf is an operation symbol. We say that a domain elementd of a model M inhabits a range expression f(�1; : : : ; �n)
if there are some domain elements d1; : : : ; dn inhabiting Σ-
types �1; : : : ; �n respectively such that hd1; : : : ; dn; di 2M(f).

Simply writing and solving inequality constraints on the
cardinalities of the sets of inhabitants of the range expres-
sions is still not enough to force the existence of a model.
Consider the constraints c4 6� c5, c4 [ c5 � f(c1 [ c2), andc4 [ c5 � f(c1 [ c3). These constraints are satisfiable but in
any model we will have that f(c2) = f(c3). The constraint
set becomes unsatisfiable if we add c4 [ c5 � f(c2 [ c3).
There exists a locally consistent set of Σ-types for all three
constraints. In any such set of Σ-types there will exists a
constant c such that f(c) appears in both the (unique) type
containing c4 and the (distinct) type containing c5. The
types for c4 and c5 appear locally consistent even if car-
dinally constraints on Σ-types and range expressions are
considered. Furthermore, each individual constraint of the
form U � V appears consistent with cardinalities. More
sophisticated cardinality constraints are needed.

We define a predecessor justification over Σ for a setf(C1; : : : ; Cn) to be a range expression f(�1; : : : ; �n)
over Σ such that Ci 2 �i. A Σ-predecessor-type is a pairh�; ∆iwhere � is a Σ-type and ∆ is a mapping from function
applications appearing in the type � to range expressions
over Σ such that for any function applicationU in � we have
that ∆(U ) is a predecessor justification ofU and ∆(U ); �.
An object x inhabits a Σ-predecessor-type h�; ∆i in a modelM if x inhabits � and, for each application expression U in�, x inhabits ∆(U ).

Each domain element will inhabit at least one predecessor
type. However, an application expression f(C1; : : : ; Cn)
can often be justified in more than one way and it is pos-
sible for a given domain element to inhabit many different
predecessor types. In order to construct simple Diophan-
tine constraints we introduce a choice function so that each
domain element can be assigned a unique predecessor type.

Now let S be a set of Σ-types. For each type � 2 S letz� be a variable representing the number of inhabitants of�. For each range expression f(�1; : : : ; �n) with �i 2 S
let zf(�1; : : : ; �n) be a variable representing the number of
domain members inhabiting f(�1; : : : ; �n). For each Σ-
predecessor-type h�; ∆i let zh�; ∆i be a variable represent-
ing the number of individuals whose selected predecessor
type is h�; ∆i. We define D(S) to be following system of



Diophantine constraints.z� � 1z� = Ph�; ∆i zh�; ∆izf(�1; : : : ; �n) � Ph�; ∆i: 9U2�: ∆(U)=f(�1; : : : ; �n) zh�; ∆izf(�1; : : : ; �n) � Πiz�i for f deterministic

Theorem: A set Σ of non-recursive Tarskian con-
straints is satisfiable if and only if there exists a
locally consistent set S of Σ-types such that the
constraint set D(S) is satisfiable over the positive
integers plus 1.

Without loss of generality we can assume that all opera-
tions take at most two arguments (larger arity operations can
be encoded using a pairing function). Under this assumption
it is possible to show that the size of D(S) is only singly
exponential in the size of Σ. It suffices to show that the num-
ber of predecessor types h�; ∆i is only singly exponential.
Since the number of Σ-types � is singly exponential, it suf-
fices to show that the the number of functions ∆ from class
expressions in Σ to range expressions is singly exponential.
But assuming binary operation symbols, the number of such
functions is bounded by by (jΣj24jΣj)jΣj which is 2O(jΣj2) and
hence singly exponential.

We can eliminate the consideration of 1 in D(S) by
nondeterministically guessing which variables are infinite
and folding this guess into the constraints. The result is a
set of Diophantine constraints over positive integers. By
repeatedly replacing constraints of the form z � xyw byz � xu, u � yw, we can arrive at a system of linear con-
straints on nonnegative integers plus a set of constraints of
the form x � yz. We will call such a systems of constraints
prequadratic.

Prequadratic Decidability Theorem: The prob-
lem of determining the satisfiability of a pre-
quadratic set of Diophantine inequalities is solv-
able in nondeterministic exponential time.

Proof: We give a nondeterministic procedure for accept-
ing solvable prequadratic constraint systems. The linear
inequalities in the given system can be converted into an
equisatisfiable set of Diophantine equations Ax = B by in-
troducing new “slack” variables. Call a variable xi bounded
in Ax = B if there exists a finite upper bound on the value
of xi over all rational solutions to Ax = B. We can use
linear programming (over the rationals) to determine which
variables are bounded. Our nondeterministic procedure can
now guess the values of the bounded variables. We can then
replace each bounded variable by the guessed value giving a

simplified problem. In substituting in the guesses, some of
the nonlinear constraints become linear and must be added
to the resulting linear sub-problem, yielding residual linear
and nonlinear subproblems in fewer variables. We repeat
this process until either it reaches a solution (all variables
have been assigned values), or the residual linear constraints
become unsolvable (over the rationals), or a state is reached
where the residual linear problem is solvable (over the ratio-
nals) and all residual variables are unbounded. In the latter
case, if the residual linear problem Ax = B is solvable
over the nonnegative integers then we accept the original
prequadratic problem as solvable. Otherwise we fail.

We now show that if the procedure accepts a prequadratic
system of constraints then that constraint set is solvable.
If the procedure accepts then there exists a residual linear
problem Ax = B, solvable over nonnegative integers, and
where each variable is unbounded over the rationals, plus
a residual set of nonlinear constraints. Let � be a solution
to Ax = B over the nonnegative integers. It is a fact
of linear programming that if all variables are unbounded
over the rationals then there must be a nonnegative rational
solution � to Ax = 0 such that all components of � are
nonzero. We can assume without loss of generality that � is
integral because any nonintegral � can be made integral by
multiplying by an appropriate constant. The vector � + c�
is a solution to Ax = B for any c. For sufficiently large c
this vector also satisfies all nonlinear constraints because in
any constraint x � yz we have that x grows linearly in c
while zy grows quadratically in c.

Finally we show that this nondeterministic procedure ter-
minates in exponential time. Consider a prequadratic set
of m Diophantine inequalities over n variables where the
largest constant has b bits. An analysis of the maximum
possible upper bound that can be imposed by a system of
linear constraints shows that the binary representation of the
value of a bounded variable can contain at mostO�bn logn�
bits. After k guesses the largest constant in the residual lin-
ear problem has at most O�b(cn logn)k+1

�
bits for some

constant c. Since the number of guesses is bounded by n,
we get an exponential upper bound on the size of the numbers
appearing in the sequence of linear problems examined by
the procedure. Since all the linear programming operations
over the rationals can be done in polynomial time, and since
integer programming is in NP, we get a nondeterministic
exponential running time.

The combination of the two theorems above yields a
nondeterministic doubly exponential time procedure. We
conjecture that satisfiability of prequadratic Diophantine
equations is in NP. If so, we get nondeterministic singly
exponential time.



4. Constraints without Determinism

In this section we consider Tarskian set constraints with
recursive set expressions but without deterministic opera-
tion symbols. Constraint set satisfiability in this calculus
turns out to be linear time equivalent to set expression satis-
fiability in the modal �-calculus. Here we give a linear time
reduction from Tarskian constraint set satisfiability without
determinism to set expression satisfiability in a calculus we
call the Herbrand �-calculus. The Herbrand �-calculus is
known to be decidable in exponential time.

We say that a Tarskian set expression C is satisfiable if
there exists hM; �i such thatM[[C]]� is nonempty. For any
set Σ of Tarskian set constraints we define define C[Σ] to be
the following set expression.�X: � (:U1 \W1) [ : : :[ (:Un \Wn) [Si;j fi(T; : : : ; T; X; T; : : : ; T ) �
Here X is a set variable not occurring in Σ, W1 � U1,: : :, Wn � Un are the positive set constraints in Σ, T
is the set expression Z [ :Z for some arbitrary Z, andfi(T; : : : ; T; X; T; : : : ; T ) ranges over all set expres-
sions where fi is an operation appearing in Σ and X occurs
at argument j. Intuitively, we have x 2 C[Σ] if there ex-
ists a y reachable by inverse operations from x such that y
violates a positive constraint in Σ. If x 2 :C[Σ] then the
positive constraints in Σ are satisfied at all points reachable
by inverse operations from x. If hM; �i satisfies Σ thenM[[C[Σ]]]� is the empty set.

It is easy to determine whether Σ is satisfied by the
empty model (the model with the empty domain). For the
nonempty case we have the following lemma.

Lemma: If Σ is a set of Tarskian constraints not involving
deterministic operations then Σ is satisfiable by a nonempty
model if and only if the set expressionf(U1 \ :W1 \ :C[Σ]; : : : ; Ui \ :Wi \ :C[Σ])\ :C[Σ]
is satisfiable where f is a fresh operation symbol and whereU1 6� W1, : : :, Un 6� Wn are all the negative constraints in
Σ.

Proof: First suppose hM; �i satisfies Σ. For each neg-
ative constraint select a yi such that yi 2 Ui \ :Wi.
Now interpret f as the operation containing the single tu-
ple hy1; : : : ; yn; xi where x is an arbitrary element of the
model. Now x is the desired element of the above class
expression. Conversely suppose that x 2 M[[C]]� where C
is the above class expression. Let F be the set of operation
symbols appearing in C. Define the inverse closure of x inM under F to be the least subset S of the domain of M

such that x 2 S and if z 2 S and hy1; : : : ; yn; zi 2 M(f)
for f 2 F then yi 2 S for each yi. The inverse closure
substructure of M generated by x and F is the model M0
whose domain is the inverse closure of x in M under F
and such that for each nondeterministic operation f 2 F
we have that M0(f) is the restriction of the relation M(f)
to the domain of M0. We can now show by structural in-
duction on a class expression C involving only operations
in F that for any y in the domain of M0, and set variable
interpretation � over M, we have y 2 M[[C]]� if and only
if y 2 M0[[C]]�0 where �0(X) is the intersection of �(X)
with the domain of M0. Intuitively we can think of C as
a predicate on objects which only “looks at” objects in the
inverse closure of its given argument. Given this fact it is
possible to show that if x 2 M[[:C[Σ]]]� then the inverse
image substructure ofM generated by x and F satisfies all
positive constraints in Σ. It is easy to see that M0 satisfies
all negative constraints in Σ and hence satisfies Σ.

This lemma fails if we allow deterministic operations.
For example consider the constraints T 6� F and f(T) � F
wheref is deterministic and Tand F denote the universal and
empty sets respectively. The set expression T\:F\:C[Σ]
is satisfiable but the constraint set is not.

Set satisfiability in both the modal �-calculus and the
Tarskian �-calculus are polynomial time reducible to set
satisfiability in a language we call the Herbrand �-calculus.
All of these calculi include set variables, Boolean opera-
tions on sets, and least fixed point expressions of the form�X:C[X] where X occurs positively in C[X]. The modal�-calculus has no application expressions but instead has
set expressions of the form <R> C where R is a binary
relation symbol. The set expression <R> C denotes the setfx : 9y 2 C : R(x; y)g. The Tarskian�-calculus consists
of the Tarskian set expressions defined here but without de-
terministic operations. The Herbrand �-calculus has same
syntax as the Tarskian �-calculus but with only determinis-
tic operations which are interpreted over the fixed universe
of (possibly infinite) Herbrand terms. The set expressionf(C1; : : : ; Cn) denotes the set of (possibly infinite) terms
of the formf(t1; : : : ; tn)with ti 2 Ci. In the Herbrand cal-
culus we only consider the satisfiability problem for closed
set expressions (ones not containing free set variables).

The closed Herbrand �-calculus seems most natural for
understanding the exponential time satisfiability algorithms
for set expressions in these calculi [32], [10], [30]. The
Herbrand calculus is based on the Herbrand universe of pos-
sibly infinite terms over a given set of function symbols.
This would seem to indicate a relationship between the Her-
brand calculus and Herbrand set constraints. However, in
traditional Herbrand set constraint problems we are con-
cerned with the existence of certain sets of Herbrand terms



while here we are concerned with the existence of a single
(possibly infinite) term satisfying given constraints.

There are many interesting examples of term sets defin-
able in the Herbrand �-calculus. The expression �X:a [f(X) is the set of all finite terms which are some number of
applications of f to a. We let �X:C[X], a greatest fixed
point expression, be an abbreviation for :�X::C[:X].
The expression �X:f(X) denotes a singleton set contain-
ing the infinite term f(f(f(: : :))). We will abbreviate
this expression as f! . Another interesting example is�X:g! [ f(X) [ g(X). This is the set of infinite terms
constructed from monadic function symbols f and g that
have only finitely many occurrences of f . One can similarly
define the set of infinite terms constructed from f and g that
have only finitely many occurrences of g. Any satisfiability
testing procedure must be capable of determining that the
intersection of these two term sets is empty. It is known
that the Herbrand �-calculus defines exactly those term sets
definable by Rabin tree automaton, or alternatively by for-
mulas of SnS (the second order theory of n successors) [11].

It is known that the modal �-calculus can be reduced in
linear time to the Herbrand �-calculus. Here we factor this
reduction through the Tarskian calculus. There is a trivial
satisfiability preserving reduction from the modal�-calculus
to the Tarskian �-calculus where <R> C is translated toR(C). The reduction from the Tarskian calculus to the Her-
brand calculus is almost as simple syntactically but more dif-
ficult to prove correct. For any expression C of the Tarskian
calculus we define T (C) by the equations T (Y ) = Y ,T (:C) = :T (C), T ((C1 [ C2)) = (T (C1) [ T (C2)),T (�X:C[X]) = �X:T (C[X]), andT (f(C1; : : : ; Cn))= �Xf(T (C1); : : : ; T (Cn)) [ g(T; X)[ g(X;T)
where X is a fresh set variable and g is a fresh function
symbol.

We will show that ifC is a closed Tarskian set expression
then C is satisfiable if and only if T (C) is satisfiable. Since
free set variables can be replaced with set constants (nonde-
terministic operations of no arguments) it suffices to consider
closed expressions. For an expression C of the Herbrand�-calculus we define [[C]]� by analogy with M[[C]]� — in
the Herbrand calculus no model is required. If C is closed
then we write [[C]] to denote the meaning of C independent
of any variable interpretation.

First we show that if T (C) is satisfiable then so is C.
We say that subterm s of a (possibly infinite) term w isg-accessible from w if either s is w or w is of the formg(u; v) where s is g-accessible from either u or v. LetM be the Tarskian model whose domain is the set of all
(possibly infinite) Herbrand terms and such that M(f) is

the set of tuples hy1; : : : ; yn; xi such that f(y1; : : : ; yn)
is g-accessible from x. We can show by induction on C
that for any variable environment � mapping variables to
sets of (possibly infinite) Herbrand terms we have M[[C]]�
equals [[T (C)]]�. So if [[T (C)]] is nonempty then M[[C]] is
nonempty and hence C is satisfiable.

Now we prove the converse. This proof is essentially a
simplification of the proof given in [32] that any satisfiable
set expression of the model �-calculus can be satisfied by
a model with bounded branching. First we simplify the
problem by converting every expression to a purely positive
form. This is done by introducing conjunctions, greatest
fixed points �X:C and “disapplications” [f ](C1; : : : ; Cn).
We define M[[�X:C]]� to be the greatest subset S of the
domain of M such that S = M[[C]]�[X := S]. We define
the meaning of disapplications by [f ](C1; : : : ; Cn) =:f(:C1; : : : ; :Cn). In the Tarskian calculus we havex 2 M[[[f ](C1; : : : ; Cn)]]� if and only if for every tuplehy1; : : : ; yni such that hy1; : : : ; yn; xi 2 M(f) we have
that yi 2M[[Ci]]� for at least one yi. We can now eliminate
negation from any closed expression using de Morgan’s laws
and the following rules to push negations down.:�X:C[X ] = �X::C[:X ]:�X:C[X ] = �X::C[:X ]:f(C1; : : : ; Cn) = [f ](:C1; : : : ; :Cn):[f ](C1; : : : ; Cn) = f(:C1; : : : ; :Cn)
Since all recursion must be monotone, variables can not ap-
pear in negative contexts and negation disappears entirely.2

For any set expression of either the Tarskian or Herbrand�-calculus we let pos[C] be the positive form of C achieved
by pushing negations down using these rules. We can ex-
tend the translation of the Tarskian calculus to the Herbrand
calculus to handle greatest fixed points and disapplications
by T (�X:C) = �X:T (C) and T ([f ](C1; : : : ; Cn)) =�X:[f ](T (C1); : : : ; T (Cn)) \ [g](F; X) \ [g](X; F).
We now have that T (pos(C)) is semantically equivalent toT (C). So to prove that T preserves satisfiability we need
only consider positive expressions.

To handle the transfinite nature of �-calculi we introduce
syntactically indexed fixed point expressions of the form��X:C and ��X:C where � is any ordinal. The semantics
of these expressions are defined by the followingequations.3M[[��X:C[X ]]]� = [�<�M[[C[��X:C[X ]]]]�M[[��X:C[X ]]]� = \�<�M[[C[��X:C[X ]]]]�
One can show that M[[�X:C]] = M[[��X:C]] where �

is any ordinal larger than the cardinality of M. The same

2If P is a zero-ary nondeterministic operation of the Tarskian calculus
then we can think of [P ] as a syntactic variant of :P .

3In these equation � can be empty, in which case the empty union
denotes the empty set and the empty intersection the entire domain of M.� can also be either a limit or successor ordinal.



statement holds for greatest fixed point expressions. An
unindexed fixed point expression �X:C can be viewed as a
syntactic variant of �1X:C where1 is the class of all ordi-
nals. Intuitively,1 plays the role of a “largest ordinal”. So
we can assume that all fixed point expressions are indexed.
An expression in which all fixed point expressions are in-
dexed with 1 (i.e., unindexed) will be called a maximally
indexed expression.

We now define a type to be a set � of positive closed
expressions satisfying the following conditions.� If (C \W ) 2 � then C 2 � and W 2 �.� If C [W 2 � then either C 2 � or W 2 �.� If ��X:C[X ] 2 � then C[��X:C[X ]] 2 � for some � < �.� If ��X:C[X ] 2 � then C[��X:C[X ]] 2 �.

Finally, we define an execution tree to be a pair h�; ∆i
such that � is a type and ∆ is a set of expressions of the
form f(
1; : : : ; 
n) where each 
i is (recursively) an
execution tree. We will be interested in infinite execu-
tion trees. We write C 2 
 if 
 is a tree of the formh�; ∆i with C 2 �. An execution tree is called locally
consistent if for every subtree h�; ∆i we have that both �
and ∆ are countable sets, for every f(
1; : : : ; 
n) 2 ∆

and [f ](W1; : : : ; Wn) 2 � there is some Wi such thatWi 2 
i, and for every f(W1; : : : ; Wn) 2 � there is somef(
1; : : : ; 
n) 2 ∆ such that for all Wi we have Wi 2 
i.
Lemma: If C is a closed satisfiable Tarskian set expression
then there exists a locally consistent execution tree 
 such
that C 2 
.

Proof: Suppose x 2 M[[C]]. We say that a set of expres-
sionsΣ is true at x (inM) if x 2M[[W ]] for allW 2 Σ. For
any countable set Σ of expressions true a pointxwe construct
a locally consistent executionE(Σ; x) whose root type con-
tains Σ. Let � be a countable type containing Σ and true atx. For each expression f(C1; : : : ; Cn) in � construct
an element of ∆ as follows. Select points hy1; : : : ; yni
such that hy1; : : : ; yn; xi 2 M(f) and yi 2 M[[Ci]].
For each [f ](W1; : : : ; Wn) 2 � select a Wi such thatyi 2 M[[Wi]]: Let Σi consist of Ci and all selected Wi.
Now add f(E(Σ1; y1); : : : ; E(Σn; yn)) to ∆. Finally
return the pair h�; ∆i.

We now map an execution tree 
 to a term t(
) using the
following conditions where a is a new constant.t(h�; fgi) = at(h�; ff(
1; : : : ; 
n)g [ ∆2i) = g(f(t(
1); : : : ; t(
n)); t(h�; ∆2i))
The second rule is applied “fairly” so that if 
 is h�; ∆i
and f(
1; : : : ; 
n) 2 ∆ then f(t(
1); : : : ; t(
n)) is g-
accessible from t(
).

Lemma: There exists a well founded ordering < on closed
syntactic expressions such thatW < C for W a closed proper subexpression of CC[��X:C[X ]] < ��X:C[X ] for � < �C[��X:C[X ]] < ��X:C[X ] for � < �
Proof: We define the Fisher-Ladner closure of an expres-
sion C to be the least set FL(C) of maximally indexed
expressions such thatC0 2 FL(C) where C 0 is the result of
maximally indexing all fixed points in C, any closed subex-
pression of an element ofFL(C) is an element of FL(C), if�1X:C[X] 2 FL(C) then C[�1X:C[X]] 2 FL(C) and
if �1X:C[X] 2 FL(C) then C[�1X:C[X]] 2 FL(C).
The set FL(C) is finite — it has one member for each (pos-
sibly open) subexpression of C. We define the rank of an
expression to be the level of nesting of recursion of closed
subexpressions. We define the signature of an expression C
to be the tuple h�1; : : : ; �ni where n is the largest rank of
any expression inFL(C) and�i is the maximum index of all
closed recursion subexpressions of C of rank i, or 0 if there
is no such subexpression. The signature of ��X:C is of the
form h�1; : : : ; �j�1; �; 0; : : : ; 0i where j is the rank of��X:C. The signature of an unrolling C[��X:C[X]] with� < � is h�1; : : : ; �j�1; �; 
1; : : : ; 
ki. The second
signature is lexicographically smaller than the first (given� < �) and hence unrolling reduces signature. We order
signatures first by length and then lexicographically within
signatures of the same length. We order expressions lexico-
graphically by signature then syntactic depth.

Lemma: If 
 is a locally consistent execution and C 2 

then t(
) 2 [[T (C)]].
Proof: We define a �-reindexing of an expression C to
be any expression C0 identical to C except for the in-
dices of �-expressions. We prove by induction on ex-
pressions using the ordering of the preceding lemma that
if C is any �-reindexing of an expression C 0 2 
 thent(
) 2 [[T (C)]]: To show the need for �-reindexing we will
explicitly give the proof for �-expressions. Consider an
expression ��X:C[X] which is a �-reindexing of an expres-
sion ��X:C0[X] 2 
. We have C 0[��X:C0[X]] 2 
. Now
consider any ordinal � < �. By the induction hypothesis
we have that t(
) 2 [[T (C[��X:C[X])]]. But we have that[[T (��X:C[X])]] is the intersection of all such sets so we
have t(
) 2 [[��X:C[X]]]. The other cases of the induction
are straightforward given the above properties of the well
founded ordering on expressions.

Theorem: T (C) is satisfiable if and only if C is satisfiable.



5 The Full Tarskian Calculus

In this section we show that satisfiability for full Tarskian
set constraints (with recursion and arbitrary functions) is un-
decidable. The proof is by a reduction of Hilbert’s tenth
problem. The proof uses only set variables, constants,
monadic functions, set unions and intersections (no com-
plementation), and a single level of � quantification.

Theorem: Satisfiability for Tarskian set con-
straints with constants and monadic functions is
undecidable.

Proof: Let Σ be a set of constraints of the form n = 1,n = p+q orn = pqwheren, p and q range over nonnegative
integers. It follows from the undecidabilityof Hilbert’s tenth
problem that satisfiability for such systems of constraints is
undecidable. We reduce the Diophantine constraint set Σ to
a set T (Σ) of Tarskian set constraints as follows.

For each natural number variable n occurring in Σ we
introduce a set variableXn with the intention that the cardi-
nality of Xn represents the value of n. For set expressionsC and W we will use C = W as an abbreviation for the
two constraints C � W and W � C. We will also usejCj � jW j as an abbreviation for C � f(W ) where f is
a fresh monadic function symbol. We will use jCj = jW j
as an abbreviation for jCj � jW j and jW j � jCj. For any
monadic function symbol s and class expression C we lets�(C) be an abbreviation for �W: C [ s(W ), i.e., the set of
things that can be gotten by applying s zero or more times
to an element of C. For each variable n in Σ we introduce
a constant symbol cn and monadic function symbol sn and
add the constraints Xn = s�n(cn)cn � sn(s�n(cn)):
The first constraint states thatXn is the set containingcn and
all its transitive successors under sn. The second constraint
states that cn is the successor of some element of s�n(cn) and
therefore that the set Xn forms a loop under the successor
function sn. This implies that Xn is a finite set but does not
otherwise constrain its cardinality. We now need to impose
the constraints given in Σ.

If Σ contains the constraint n = 1 then T (Σ) contains the
constraint Xn = cn. If Σ contains n = p + q then we add
the constraints Xn = U [WjXpj = jU jjXq j = jW jU \W � F

to T (Σ) where C, U , and W are fresh set variables andF is the set expression �X: X. It remains only to express
product constraints.

To handle the product case we use the notation 8x 2f�(c) x = C[x] as an abbreviation forf�(c) = �X:(c \ C[c])[ (f(X) \ C[f(X)])
For example, 8x 2 f�(c) x = g(f(x)) states that g is the
inverse of f on the set f�(c). More generally, if there is
only one occurrence ofX inC[X], andC[X] is constructed
purely fromX and function symbols, then 8x 2 f�(c) x =C[x]has the obvious intended meaning. Suppose Σ containsn = pq. We add the following constraints to T (Σ).

1. Xn = f�(c)
2. c � f(f�(c))
3. Xp = g�(c)
4. c � g(g�(c))
5. Xq = h�(c)
6. c � h(h�(c))
7. f�(c) = �X c [ g(X)[ h(X)
8. 8x 2 f�(c) x = g0(g(x))
9. 8x 2 f�(c) x = h0(h(x))

10. 8x 2 f�(c) x = g0(h0(g(h(x))))
11. g�(c)\ h�(c) = c

Where c is a fresh constant and f , g, h, g0 and h0 are
fresh monadic function symbols. Constraints 2, 4, and 6
imply that f�(c), g�(c), and h�(c) are all “loops”. Con-
straint 7 implies that g and h are both functions mappingf�(c) into f�(c). Constraints 8, and 9 imply that g0, and h0
are inverses of g and h respectively on the set f�(c). Since
both g and h are invertible they must both be bijections fromf�(c) to itself. This implies that the inverses g0 and h0 are
also bijections. Condition 10 implies that g and h com-
mute on f�(c), i.e., f(g(x)) equals g(f(x)). Now considergn(h�(c)). Since g is bijective, gn is bijective. Note thath(gn(x)) equals gn(h(x)). So the mapping gn is a bijection
which “preserves h structure”. Hence the set gn(h�(c)) is
an h-loop with the same cardinality as h�(c). Since sets
of the form gj(h�(c)) are h-loops they are either equal or
disjoint. Suppose gj(h�(c)) = gk(h�(c)). Applying (g0)j
to both sides we get h�(c) = gk�j(h�(c)). This implies thatgk�j(c) must be in h�(c) and hence by condition 11 above
we have gk�j(c) = c. But this implies that k equals j modjg�(c)j. Hence for k 6= j mod jg�(c)j we have gj(h�(c))
is disjoint from gk(h�(c)). Since all these sets are of sizejh�(c)j we have jf�(c)j = jg�(c)jjh�(c)j.



6. Conclusions

A wide variety of set calculi have been studied in the
logic and computer science literature. Tarskian set ex-
pressions yield a natural set calculus which has received
surprisingly little attention. We have answered a variety
of questions concerning the computational complexity of
Tarskian set constraints but several problems remain open.
It seems likely that Tarskian set constraints without recur-
sion (but with deterministic operations) can be solved in
nondeterministic singly exponential time. This would fol-
low from a demonstration that satisfiability of prequadratic
Diophantine equations is in NP. The decidability of Tarskian
set constraints with recursion and deterministic operations
of arity at least 1, or with arity just zero, remains open. It
seems likely that techniques used in decision procedures for
the modal �-calculus can be also be used to construct de-
cision procedures for these cases, although this has not yet
been done.
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