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Abstract Tarskian set constraints seem fundamentally different

We investigate set constraints over set expressions with
Tarskian functional and relational operations. Unlike the
Herbrand constructor symbols used in recent set constraint
formalisms, the meaning of a Tarskian function symbol is
interpreted in an arbitrary first order structure. \We show
that satisfiability of Tarskian set constraints is decidable
in nondeterministic doubly exponential time. We also give
complexity resultsand open problemsfor variousextensions
of the language.

1. Introduction

There has been considerable interest recently in for-
malisms for describing and reasoning about sets. Here
we consider a family of formalisms that have received sur-
prisingly little attention. Consider a set expression of the
form f(C1, ..., Cn) where C4, ..., C, denote sets. In
recent work on set constraints function symbols are inter-
preted as Herbrand constructors so that the set expression
f(C1, ... Cy) denotes the set of terms f(¢1, ..., tn)
wheret; € Cq, ..., t, € C,. But an equaly natura in-
terpretation takes f(Ci, ..., Cy) to be the set of values
that can derived by applying the meaning of f to e ements
of the sets denoted by C4, ..., C,,. For example, if + de-
notes addition and O denotes the set of odd integers then
we would expect +(0, O) to denote all the integers that
can be expressed as the sum of two odds, i.e., al the even
integers. In genera we can let the meaning of operationsbe
determined by afirst order structurein the standard way. We
call set expressions under thisform of semantics*” Tarskian”
todistinguishthem fromthe“Herbrand” set expressionsthat
have received considerable recent attention.

from Herbrand set constraints. There does not seem to
be any simple reduction of Tarskian set constraints to the
monadic class. Since Tarskian set constraints are not re-
stricted to Herbrand interpretations, induction principlesfor
Herbrand interpretations do not apply. It turns out that
Tarskian set constraints are closaly related to modal logics.
Before stating our main results on Tarskian constraints we
review some work on set calculi. We organize the review
around four classes of set cal culi — Herbrand set constraints,
modal logics, Al concept languages, and Tarskian set con-
straints.

Herbrand set constraints involve set expressions gener-

ated by the following grammar.
C:=X | f(Cl, Cn) | cC1UC> | -C

A set expression of the form f(C1, ..., C,) istakento
denote the set of all terms f(t1, ..., tn) With¢; € C;.
A set congtraint is an expression of the form C; C C..
Herbrand set constraintsare largely inspired by applications
to the static analysis of computer programs [19, 18, 13,
3]. The prablem of determining satisfiability of a finite
set of Herbrand set constraints is known to be complete
for nondeterministic exponentia time [1, 4]. The problem
remains decidable in nondeterministic exponentia time if
one adds both negative constraints, i.e., C1 € C»,[2, 7], and
projection functions[8].

Modal logics involve formulas which are true or false
of possible worldsin Kripke structures. Equivalently, each
formula of a modal logic can be taken to denote the set of
worldsinwhichitistrue. Sincemodal formulasdenote sets,
modal logics can be viewed as set calculi. Propositional
dynamic logic (PDL) [12, 29] and the moda p-caculus
[22] are particularly significant modal logics. If R is a
binary relation symbol and C is a set expression then in
both these logics the set expression [R]C denotes the set



{z: Yy R(z,y) —» y € C}. Theset expression <R> C
is defined analogously to denote {z : Jy R(z,y) Ay €
C'}. Themodal u-calculusalowsfor recursively defined set
expressions of theform pX.C[X] where X isaset variable
and C[X] is a set expression in which every occurrence
of X in C[X] occurs inside an even number of negation
signs. PDL can be seen as a redtriction of the modal p-
calculus which has much simpler decision procedures and
yet is sufficiently expressive to cover many applications.
Satisfiability for both PDL and the modal p-calculus are
known to be complete for deterministic exponentia time
[32, 10, 30].

Al concept languages have been developed for knowl-
edge representation in expert systems [5, 31]. The set ex-
pressionsof concept languagesare constructed from set vari-
ables and relation variablesusing avariety of compositional
mechanisms. For example, the expression VR.C where R
is arelation expression and C is a set expression denotes
theset {z : Vy R(z,y) — y € C} (and henceisa syn-
tactic variant of [R]C). For the most part these languages
can be viewed as fragments of PDL [6, 15, 14]. However,
many of these languages have satisfiability problemsin P,
NP, or PSPACE [9]. Also, concept languages often include
cardinality primitiveswhich appear not to be expressible in
PDL. Furthermore, there is a natural relationship between
certain concept languages and M ontague grammar for natu-
ral language. In particular the set expression R(every C)
istekentobetheset {z : Yy € C R(z,y)}. Thisprovides
anatural meaning for English verb phrases such as* contains
every prime number.” One simple but expressive Montago-
vian concept language has a polynomial time satisfiability
problem [27].

Tarskian set expressions have been studied by Jonnson
and Tarski in the framework of Boolean agebra with op-
erations [20, 21]. In the work of Jonnson and Tarski the
operation f inthe expression f(C1, ..., Cy) actudly de-
notes a relation on » + 1 arguments. More specificaly,
f(C1, ..., Cp)denotes{y : Jz1 € C1, ..., o € Cp :
(21, ..., Zn, ¥} € f}. Onecan think of f as a nonde-
terministic operation — for any given tuple of inputsthere
isaset of possible outputs. Jonnson and Tarski’s main re-
sult is a variant of the Stone representation theorem which
can be viewed as a completeness theorem for an algebraic
axiomatization. They did not study decision theoretic com-
plexity issues. Representation theorems for subclasses of
Boolean algebras with operations have recently been stud-
ied in ageneral setting by Goldblatt [17]. Kozen [23] has
recently obtained a Stone duality in the context of Herbrand
set constraints between the al gebraof set constraintsand the
topological term automata of [24, 25].

Here we consider a superset of the original set expres-

sions studied by Jonnson and Tarski. We make a syntactic
distinction between deterministic and nondeterministic op-
eration symbol s correspondingto classical function symbols
and relation symbol s respectively. We use this nonstandard
terminol ogy so that we can write set expressions of theform
f(C1, ..., Cn)where f isan operation symbol (either de-
terministic or nondeterministic). We also alow least fixed
point expressions. The complete grammar of our Tarskian
set expressionsis as follows.

C:=X|f(C1, ..., Cp) | C1UC2 | ~C | pX.C

In the above grammar f can be either deterministic or non-
deterministic and may take no arguments, i.e., be a constant
symbol. pX.C isrestricted so that X can only occur inside
an even number of negation symbols in C. We consider
finite sets of constraints of theform C; C C, or C1 € Cs.

In spite of the apparent naturaity of Tarskian set con-
straints, their computational propertieshave not been widely
studied. Itisshownin[28] that satisfiability of non-recursive
Tarskian set constraints not involving Boolean operationsis
decidable in cubic time (assuming unit time hash table op-
erations). Itisshownin[16] that satisfiability of constraints
on expressions involving meets, joins, and monotone appli-
cationsin an arbitrary latticeis similarly decidable in cubic
time. The results of this paper are summarized in the table
below. We categorize Tarskian set constraint satisfiability
problems by the presence or absence of recursion (u-sets),
the presence or absence of functions (deterministic opera-
tions of arity at least one), and the presence or absence of
congtants (deterministic operations of arity 0). In al cases
weallow nondeterministic operations(of all arities) and both
positive and negative set constraints.

Rec | Fun | Const | Lower Bound | Upper Bound
1 - - - EXPTIME EXPTIME
2. - - + EXPTIME EXPTIME
3. - + - NEXPTIME NEXPTIME
4. - + + NEXPTIME | 2-NEXPTIME
5 | + - - EXPTIME EXPTIME
6. + - + EXPTIME ?
7. + + - NEXPTIME ?
8. + + + Undecidable ?

The results in the first two lines of the table are proved
using techniques similar to those used for PDL [29]. The
lower bound in line three is proved using techniques sim-
ilar to those used in proving NEXPTIME hardness for the
monadic class[26]. The upper bound inlinethreeis proved
by afiltration-likeargument. The lower boundsin linesone
and threeare proved inamore compl eteversion of thispaper
available from the authors. The proofs of the upper bounds
in lines one through three are discussed briefly in section 3.

Standard techniques fail for the fourth line, the case of



non-recursive constraints with arbitrary operations. We
show in section 3 that satisfiability for non-recursive
Tarskian set constraints is decidable in nondeterministic
doubly exponential time. Our procedure involves a re-
duction to a natura class of Diophantine constraints which
we call prequadratic. We show that satisfiability for pre-
guadratic Diophantine constraintsis decidable in nondeter-
ministic exponential time. However, we conjecture that
prequadratic Diophantine satisfiability isin NP. If so, then
we get a nondeterministic single exponentia procedure for
non-recursive Tarskian constraints.

The fifth line in the table corresponds to recursive con-
straints with nondeterministic operations. It turns out that
congtraint set satisfiability in this calculus is linear time
equivaent to set expression satisfiability in the moda -
calculus. We show in section 4 that constraint set satisfiabil-
ity for this classis polynomia time reducibleto closed set
expression satisfiability in a calculus we call the Herbrand
p-caculus. Closed set expression satisfiability for the Her-
brand p-calculus is known to be decidable in exponential
time,

Decision procedures for the modal p-calculus can be
viewed as consisting of two phases. The first phase can
be viewed as a reduction of set expression satisfiability in
the the modal calculusto set expression satisfiability in the
closed Herbrand calculus. The second phase is a decision
procedurefor the closed Herbrand calculus. Theformal jus-
tification for thefirst phaseisrather elaborate[32]. Herewe
give an dternative reduction from the modal u-caculus to
theclosed Herbrand p.-cal culuswith asimplified correctness
proof.

It seems likely that techniques used in decision proce-
dures for the the modal p-calculus can be used to construct
decision procedures for lines six and seven, although this
has not yet been done.

The undecidability of the eighth line is proved by a re-
duction of Hilbert’'stenth problem. The reduction, given in
section 5, uses only intersection and union constraints (no
negation) and only asinglelevel of u-quantification.

2. Basic Concepts

We assume a countably infinite collection of set variables
and for each arity (number of arguments) an infinite number
of deterministic and an infinite number of nondeterministic
operation symbolsof that arity. We consider set expressions

generated by the following grammar.!

C:=X|f(C1, ..., Cr) | C1UC2 | =C | pX.C

Wetakeafirst order structure M tobeadomain (set) D plus
an interpretation, denoted M( f), of each operation symbol
f such that if f has arity n then M(f) C D™*! and such
that if f isdeterministic then for al z1, ... z, in D there
exists e<actIP/ one y such that (z1, ..., zn, y) € M(f).
A set variable interpretation over afirst order structure M
is amapping from set variables to subsets of the domain of
M. If pisaset variable interpretation then g[X := S§] is
the interpretation identical to p except that it interprets the
variable X astheset S. For any set expression C, first order
structure M with domain D, and set variable interpretation
p over M we take M[C]p to be a subset of D defined by
the following conditions.

M[X]p = P().f) .
MIS(Oy. Ol = W3 S MO o B T
M[C1UC3)p = M[Ci]p U M[C]p

M[=C]p = D-M[C]p

M[uX.Clp = theleast S suchthat § = M[C]p[X = 5]

A constraint is an expression of theform C1 C Cyor C1 €
C,. We say that the pair (M, p) satisfies the constraint
C1 C Cyif M[Ci]p C M[C)p. (M, p) satisfiesCy &
Cy if M[Ci]p € M[C2lp. We say (M, p) satisfies a
set X of constraints if (M, p) satisfies every member of
¥. A constraint set X is satisfiable if it is satisfied by some
(M, p). We are interested in determining satisfiability of
finite sets of constraints.

3. Constraintswithout Recursion

We now show that satisfiability of afinite set of Tarskian
set constraintsnot involvingrecursion (p-expressions) isde-
cidable in nondeterministic doubly exponential time. Let =
be afinite set of constraintsnot involving recursion. We say
that aset expression C occursin X if either C occursasatop
level set expression in aconstraint in X or as a subexpres-
sion of such an expression. By abuse of notation we write
C € Ztoindicatethat C occursin X. A E-typeisaset r of
set expressions occurring in X and negations of expressions
occurring in X satisfying the following conditions:

o If(C1UC)) € Zthenrcontains(Cy U C5) if andonly if ~ contains
at least one of C1 and C».

e If C' € X thenr contains—C if and only if = doesnot contain C.
e |f X containsC C W, and 7 containsC, then + contains W'.

If (M, p) satisfiesZ and z is an element of the domain
of Mthen{C € X : = € M[C]p}isaZ-type— we say

1The (deterministic or nondeterministic) operation symbol f must have
arity n in expressions of the form f(Cy, ..., Cr) and al occurrences
of X in C in the expression pX C must occur inside an even number of
negations.




that it isthe Z-typeinhabited by z. But not al X-typesneed
beinhabited under agiven pair (M, p). Each interpretation
yieldsaparticul ar set of inhabited types. The set of inhabited
types must satisfy certain conditions. We say that atyperis
apossible output of operation symbol f appliedto typesos,
..., Op, Written f(o1, ..., 0,) ~ 7, provided that ~ does
not contain a set expression of the form = f(C1, ..., Cp)
where C; € o; for each C;. A set S of E-typesis called
locally consistent if:

e For each negativeconstraint U ¢ W in X thereisatypein S which
containsU but not W.

o Ifatyperin S contains f(C41, ..., Cr) thenthereexisttypesoy,
...oninSsuchthat f(o1, ..., on)~ TrandC; € o;.

e For each deterministic operation symbol f and 2-typeseay, ..., on
in S, wheren isthe arity of f, thereexistsaX-typer in S such that
floy, .oy on) T

e Each constant (deterministic operation of arity zero) is contained in
exactly onetypein S.

If ¥ does not contain recursion and either does not con-
tain constants (deterministic operations of arity 0) or does
not contain functions (deterministic operations of arity at
least one) then X is satisfiable if and only if there exists a
locally consistent set of X-types. In the case where nei-
ther constants or functionsare present one can start with all
>-types and iteratively remove those violating the second
condition. We then have that ¥ is satisfiable if and only if
theresulting set of 2-types satisfiesthefirst condition. This
gives a deterministic exponential time decision procedure.
If constants are present then we must nondeterministically
guess a unique X-type for each constant. However, this
involves only polynomialy many nondeterministic choices
and hence the space of al possible guesses can be searched
in deterministic exponential time. So we again get a de-
terministicexponential time procedure. When functionsare
present (but not constants) we can again start with all -types
and remove types viol ating the second and third conditions.
However when the third condition is violated we have a
choice of removing any one of thetypes oy, ..., o,. This
gives a nondeterministic exponential time procedure.

When both functions and constants are present we must
consider additiona cardinality constraints. Consider the
constraints c; U ¢z C f(e3) and e1 € c2 where eq, ¢, ¢3
and f areal deterministic. This constraint set hasalocally
consistent set of types but it is not satisfiable because f(c3)
must be a singleton set while ¢; U ¢ must contain two
elements.

Consider an element z which inhabits a 2-type o under
(M, p). For each application expression f(C4, ..., Cn)
in o there must exist ements y1 € M[C1]p, ..., yn €
M][Cy]p such that (y1, ..., yn, ) € M(f). Thevalues
Y1, - .- Yn CaN be viewed as “predecessors’ of z which

“witness’ thefact that z isintheset f(C4, ,..., Cp). The
predecessors vy, - . ., ¥y, €ach have X-typesty, ..., m,. We
now define arange expression (over %) to bean expression of
theform f(o1,...,0n), Where oy, . . ., o, @e Z-typesand
f isan operation symbol. We say that a domain element

d of amodel M inhabitsarange expression f(o1,...,0n)
if there are some domain elementsdy, . . ., d,, inhabiting -
typesoy, . .., on respectively such that (di, ..., dn, d) €
M(f).

Simply writing and solving inequality constraints on the
cardinalities of the sets of inhabitants of the range expres-
sionsis still not enough to force the existence of a model.
Consider theconstraintses € ¢s5, c4Ues C f(e1Uez), and
caUcs C f(e1Ues). These constraintsare satisfiable but in
any model we will havethat f(cz) = f(c3). The constraint
set becomes unsatisfiable if we add ¢4 U es C f(e2 U c3).
There exists alocally consistent set of 2-typesfor al three
congtraints. In any such set of X-types there will exists a
constant ¢ such that f(c) appears in both the (unique) type
containing ¢4 and the (distinct) type containing ¢s. The
types for ¢4 and ¢s5 appear locally consistent even if car-
dinaly constraints on X-types and range expressions are
considered. Furthermore, each individua constraint of the
form U C V appears consistent with cardinalities. More
sophisticated cardinality constraints are needed.

We define a predecessor justification over ¥ for a set
f(C1, ..., Cp) to be arange expression f(r1, ..., Tn)
over X such that C; € ;. A Z-predecessor-type is a pair
(o, Ay whereo isaX-typeand A isamapping fromfunction
applications appearing in the type o to range expressions
over X such that for any function applicationU in o we have
that A(U) isapredecessor justificationof U and A(U) ~ o.
An object z inhabitsa -predecessor-type (o, A) inamodel
M if z inhabitso and, for each application expression U in
o, z inhabits A(T).

Each domain element will inhabit at |east one predecessor
type. However, an application expression f(Ci, ..., Cp)
can often be justified in more than one way and it is pos-
sible for a given domain element to inhabit many different
predecessor types. In order to construct simple Diophan-
tine constraints we introduce a choice function so that each
domain element can be assigned a unique predecessor type.

Now let S be a set of Z-types. For each typeo € S let
z, be avariable representing the number of inhabitants of
o. For each range expression f(71, ..., ) Withm, € §
let z¢(r,, ..., r,) D& avariable representing the number of
domain members inhabiting f(71, ..., ). For each X-
predecessor-type (o, A) et z;,, Ay be avariable represent-
ing the number of individuals whose selected predecessor
typeis{c, A). We define D(S) to be following system of



Diophantine constraints.

Zo > 1

Zo = Z<a_, A) 2(0.7 A)

iy ey ) 2 (o, AY: 3U€a: AU)=F(T1, -+, Tn) ZHov A)
Zf(ry, ..., ) < iz for £ deterministic

Theorem: A set X of non-recursive Tarskian con-
graints is satisfiable if and only if there exists a
locally consistent set S of Z-types such that the
congtraint set D(S) is satisfiable over the positive
integers plus co.

Without loss of generality we can assume that al opera
tionstake at most two arguments (larger arity operationscan
beencoded usingapairing function). Under thisassumption
it is possible to show that the size of D(S) is only singly
exponential inthesize of X. It sufficesto show that the num-
ber of predecessor types (o, A) isonly singly exponential.
Since the number of X-typeseo is singly exponential, it suf-
fices to show that the the number of functions A from class
expressionsin X to range expressionsis singly exponential.
But assuming binary operation symbols, the number of such
functionsisbounded by by (|=]24=)*l whichis20(") and
hence singly exponential.

We can eliminate the consideration of oo in D(S) by
nondeterministically guessing which variables are infinite
and folding this guess into the constraints. The result isa
set of Diophantine constraints over positive integers. By
repeatedly replacing constraints of the form z < zyw by
z < zu, v < yw, We can arrive a a system of linear con-
straints on nonnegative integers plus a set of constraints of
theformz < yz. Wewill call such asystems of constraints
prequadratic.

Prequadratic Decidability Theorem: The prob-
lem of determining the satisfiability of a pre-
quadratic set of Diophantine inequalitiesis solv-
able in nondeterministic exponentia time.

Proof: We give a nondeterministic procedure for accept-
ing solvable prequadratic constraint systems. The linear
inequalities in the given system can be converted into an
equisatisfiable set of Diophantineequations Az = B by in-
troducing new “dack” variables. Call avariable z; bounded
in Az = B if there exists afinite upper bound on the value
of z; over al rational solutionsto Az = B. We can use
linear programming (over the rationals) to determine which
variables are bounded. Our nondeterministic procedure can
now guess the values of the bounded variables. We can then
replace each bounded variable by the guessed valuegiving a

simplified problem. In substituting in the guesses, some of
the nonlinear constraints become linear and must be added
to the resulting linear sub-problem, yielding residual linear
and nonlinear subproblems in fewer variables. We repeat
this process until either it reaches a solution (all variables
have been assigned values), or theresidual linear constraints
become unsolvable (over therationals), or astate is reached
wheretheresidual linear problem issolvable(over theratio-
nals) and all residua variables are unbounded. In the latter
case, if the residua linear problem Az = B is solvable
over the nonnegative integers then we accept the original
prequadratic problem as solvable. Otherwise wefail.

We now show that if the procedure accepts aprequadratic
system of constraints then that constraint set is solvable.
If the procedure accepts then there exists a residua linear
problem Az = B, solvable over nonnegative integers, and
where each variable is unbounded over the rationals, plus
aresidua set of nonlinear constraints. Let 8 be a solution
to Az = B over the nonnegative integers. It is a fact
of linear programming that if all variables are unbounded
over the rational s then there must be a nonnegative rational
solution & to Az = 0 such that all components of a are
nonzero. We can assume without loss of generality that o is
integral because any nonintegral o can be made integral by
multiplying by an appropriate constant. The vector 8 + ca
isasolutionto Az = B for any ¢. For sufficiently large ¢
this vector also satisfies al nonlinear constraints because in
any constraint z < yz we have that z grows linearly in ¢
while zy grows quadratically in c.

Finally we show that thisnondeterministic procedure ter-
minates in exponentia time. Consider a prequadratic set
of m Diophantine inequalities over n variables where the
largest constant has b bits. An anaysis of the maximum
possible upper bound that can be imposed by a system of
linear constraints showsthat the binary representation of the
value of abounded variable can contain at most O (br logn)
bits. After k& guesses the largest constant in theresidual lin-
ear problem has at most O (b(cnlogn)¥+1) bits for some
congtant ¢. Since the number of guesses is bounded by r,
weget an exponentia upper bound onthesizeof thenumbers
appearing in the sequence of linear problems examined by
the procedure. Since all the linear programming operations
over the rational s can be donein polynomial time, and since
integer programming is in NP, we get a nondeterministic
exponentia running times

The combination of the two theorems above yields a
nondeterministic doubly exponentia time procedure. We
conjecture that satisfiability of prequadratic Diophantine
equations is in NP, If so, we get nondeterministic singly
exponential time.



4. Constraintswithout Deter minism

In this section we consider Tarskian set constraints with
recursive set expressions but without deterministic opera
tion symbols. Constraint set satisfiability in this calculus
turnsout to belinear time equivalent to set expression satis-
fiability inthemodal p-calculus. Here we givealinear time
reduction from Tarskian constraint set satisfiability without
determinism to set expression satisfiability in a calculus we
cal the Herbrand p-calculus. The Herbrand p-calculusis
known to be decidable in exponential time.

We say that a Tarskian set expression C is satisfiable if
thereexists (M, p) such that M[C]pisnonempty. For any
set ¥ of Tarskian set constraints we define define C[X] to be
the following set expression.

MX[(_‘Ulﬂwl)u---u(_‘UnﬂWn)U ]
U Hi(T,....,T, X, T, ..., T)

Here X is a set variable not occurring in X, Wy C Uy,
.eoy Wy C U, ae the positive set condtraints in X, T
is the set expression Z U —Z for some arbitrary Z, and
(T, ..., T, X, T, ..., T) ranges over al set expres-
sionswhere f; isan operation appearing in £ and X occurs
at argument ;. Intuitively, we have z € C[Z] if there ex-
ists a y reachable by inverse operations from z such that y
violates a positive constraint in =. If z € —~C[Z] then the
positive constraintsin X are satisfied at al pointsreachable
by inverse operations from z. If (M, p) satisfies X then
M[CZ]]pisthe empty set.

It is easy to determine whether X is satisfied by the
empty model (the model with the empty domain). For the
nonempty case we have the following lemma.

Lemma: If X isaset of Tarskian constraints not involving
deterministic operationsthen X is satisfiable by anonempty
mode! if and only if the set expression

flin=WiN-=C[z], ..., U;n=W; N =C[Z]) N -C[Z]

is satisfiable where f isafresh operation symbol and where
U & W,...,U, € W, areall the negative constraintsin
3.

Proof: First suppose (M, p) satisfies . For each neg-
aive constraint select a y; such that yv; € U; N —W;.
Now interpret f as the operation containing the single tu-
ple{yi, ..., yn, =) Wherez isan arbitrary element of the
model. Now z is the desired element of the above class
expression. Conversely supposethat z € M[C]p where C
isthe above class expression. Let F be the set of operation
symbols appearing in C. Define the inverse closure of z in
M under F to be the least subset S of the domain of M

suchthatz € Sandif z € Sand(y1, ..., yn, 2) € M(f)
for f € F theny; € S for each y;. The inverse closure
substructure of M generated by z and F is the model M’
whose domain is the inverse closure of z in M under F
and such that for each nondeterministic operation f € F
we have that M'(f) isthe restriction of the relation M( f)
to the domain of M’. We can now show by structura in-
duction on a class expression C involving only operations
in F that for any y in the domain of M', and set variable
interpretation p over M, we havey € M[C]p if and only
if y € M'[C]p’' where p'(X) is the intersection of p(X)
with the domain of M'. Intuitively we can think of C as
a predicate on objects which only “looks at” objects in the
inverse closure of its given argument. Given thisfact it is
possible to show that if z € M[-C[Z]]p then the inverse
image substructure of M generated by  and F satisfies all
positive constraintsin . It is easy to see that M’ satisfies
all negative congtraintsin X and hence satisfies > .m

This lemma fails if we alow deterministic operations.
For example consider the congtraints T ¢ F and f(T) C F
where f isdeterministicand T and F denotetheuniversal and
empty setsrespectively. The set expression TN —FN-C[Z]
is satisfiable but the constraint set is not.

Set satisfiability in both the moda p-caculus and the
Tarskian p-calculus are polynomia time reducible to set
satisfiability in alanguage we call the Herbrand p-calculus.
All of these calculi include set variables, Boolean opera-
tions on sets, and least fixed point expressions of the form
#X.C[X] where X occurs positively in C[X]. The modal
p~-caculus has no application expressions but instead has
set expressions of the form <R> C where R is abinary
relation symbol. The set expression <R> C denotesthe set
{z: Jye C: R(z,y)}. TheTarskianu-calculusconsists
of the Tarskian set expressions defined here but without de-
terministic operations. The Herbrand p-calculus has same
syntax as the Tarskian p-calculus but with only determinis-
tic operations which are interpreted over the fixed universe
of (possibly infinite) Herbrand terms. The set expression
f(C1, ..., Cy) denotesthe set of (possibly infinite) terms
of theform f(¢1, ..., t,)witht; € C;. IntheHerbrand cal-
culus we only consider the satisfiability problem for closed
set expressions (ones not containing free set variables).

The closed Herbrand p-cal culus seems most natura for
understanding the exponentia time satisfiability algorithms
for set expressions in these calculi [32], [10], [30]. The
Herbrand cal culusis based on the Herbrand universe of pos-
sibly infinite terms over a given set of function symbols.
Thiswould seem to indi cate a rel ationship between the Her-
brand calculus and Herbrand set constraints. However, in
traditional Herbrand set constraint problems we are con-
cerned with the existence of certain sets of Herbrand terms



while here we are concerned with the existence of asingle
(possibly infinite) term satisfying given constraints.

There are many interesting examples of term sets defin-
able in the Herbrand p-calculus. The expression pX.a U
f(X) istheset of al finitetermswhich are some number of
applications of f toa. Welet vX.C[X], a greatest fixed
point expression, be an abbreviation for —pX.~C[-X].
The expression v X. f(X) denotes a singleton set contain-
ing the infinite term f(f(f(...))). We will abbreviate
this expression as f“. Another interesting example is
pX.g¥ U f(X) U g(X). Thisisthe set of infinite terms
congtructed from monadic function symbols f and g that
have only finitely many occurrencesof f. Onecan similarly
definethe set of infiniteterms constructed from f and g that
have only finitely many occurrences of g. Any satisfiability
testing procedure must be capable of determining that the
intersection of these two term sets is empty. It is known
that the Herbrand p.-cal culus defines exactly those term sets
definable by Rabin tree automaton, or alternatively by for-
mulas of SnS (the second order theory of n successors) [11].

It is known that the modal p-calculus can be reduced in
linear time to the Herbrand u-calculus. Here we factor this
reduction through the Tarskian calculus. There is atrivia
satisfiability preserving reductionfromthemodal p-caculus
to the Tarskian p-calculus where < R> C istrandated to
R(C). Thereduction from the Tarskian cal culus to the Her-
brand cal culusisalmost assimpl e syntactically but moredif-
ficult to prove correct. For any expression C of the Tarskian
calculus we define T(C) by the equations T(Y) = Y,
T(=C) = -T(C), T((C1UC?)) = (T(C1)UT(CR)),
T(pX.C[X]) = uX.T(C[X]),and

T(.f(cly ey Cn))
= pX f(T(Cy), ..., T(Cn)) Ug(T,X)Ug(X,T)

where X is a fresh set variable and g is a fresh function
symbol.

Wewill show that if C isaclosed Tarskian set expression
then C issatisfiableif and only if T'(C) is satisfiable. Since
free set variables can be replaced with set constants (nonde-
termini stic operationsof no arguments) it sufficesto consider
closed expressions. For an expression C of the Herbrand
p-calculus we define [C]p by analogy with M[C]p — in
the Herbrand calculus no model is required. If C isclosed
then we write [C] to denote the meaning of C' independent
of any variable interpretation.

First we show that if T(C) is satisfiable then so is C.
We say that subterm s of a (possibly infinite) term w is
g-accessible from w if ether s isw or w is of the form
g(u,v) where s is g-accessible from either » or v. Let
M be the Tarskian model whose domain is the set of all
(possibly infinite) Herbrand terms and such that M(f) is

the set of tuples {y1, ..., yn, ) suchthat f(y1, ..., yn)
is g-accessible from z. We can show by induction on C
that for any variable environment p mapping variables to
sets of (possibly infinite) Herbrand terms we have M[CJp
equals [T(C)]p. Soif [T(C)] is nonempty then M[C] is
nonempty and hence C is satisfiable.

Now we prove the converse. This proof is eﬁsentialil% a
simplification of the proof given in [32] that any satisfiable
set expression of the model p-calculus can be satisfied by
a model with bounded branching. First we simplify the
roblem by converting every expression to a purely positive
orm. This is done by introducing conjunctions, greatest
fixed pointsy X.C and “disapplications’ [f](C1, ..., Cn).
We define M[vX.C]p to be the grestest subset S of the
domain of M such that S = M[C]p[X = S]. We defin
the meaning of disapplications by [f](C1, ..., Cn) =
-f(—=C1, ..., =Cy). In the Tarskian caculus we have
z € M[[fI(Cy, ..., Cu)]pif and only if for every tuple
<yla teey yn> such that <yla cevy Yn, 1"> € M(f) we have
that y; € M[C;]p for at least oney;. We can now eiminate
negation from any closed expression using de Morgan’slaws
and the following rules to push negations down.

~puX.C[X] = vX.~C[-X]
-vX.0[X] = pX.~C[-X]
-f(C1, ..., Cn) =[fl(-Cy, ..., =Chr)
=[f(C1y --+s Cn) = f(=C1y ..., ~Cr)
Sinceall recursion must be monotone, variables can not ap-
pear in negative contexts and negation disappears entirely.?
For any set expression of either the Tarskian or Herbrand
p-caculuswelet pos[C] bethe positiveform of C achieved
by pushing negations down using these rules. We can ex-
tend the trandlation of the Tarskian cal culusto the Herbrand
calculus to handle greatest fixed points and disapplications
by T(vX.C) = vX.T(C) and T([f](C1, ..., Cr)) =
vX.[fI(T(C1), ..., T(Cw)) Ngl(F, X)NI[gl(X, F).
We now have that T'(pos(C)) is semantically equivalent to
T(C). So to prove that T preserves satisfiability we need
only consider positive expressions.
To handlethetransfinite nature of u-calculi we introduce

syntactically indexed fixed point expressions of the form
upX.C and vg X.C where 8 is any ordinal. The semantics

of these expressionsare defined by thefollowing equations.®

MpgX C[X]lp= | | MICluaX.CIX]lp
a<lf

MlvgX.C1X]lp = (| MIC[kaX.CIX]]lp
a<f
One can show that M[uX.C] = M[ugX.C] where 8
is any ordinal larger than the cardinaity of M. The same

2|f P is azero-ary nondeterministic operation of the Tarskian calculus
then we can think of [P] asasyntactic variant of —P.

3In these equation 8 can be empty, in which case the empty union
denotes the empty set and the empty intersection the entire domain of M.
B can also be either alimit or successor ordinal.



statement holds for greatest fixed point expressions. An
unindexed fixed point expression 4 X.C can beviewed as a
syntactic variant of e, X.C Where oo istheclassof al ordi-
nals. Intuitively, oo playstherole of a“largest ordina”. So
we can assume that all fixed point expressions are indexed.
An expression in which al fixed point expressions are in-
dexed with oo (i.e., unindexed) will be called a maximally
indexed expression.

We now define a type to be a set o of positive closed
expressions satisfying the following conditions.

o If(CNW)cothenC €gandW € 0.

o fCUW cotheneither C cocorW €o.

o If ugX.C[X] € o then C[uaX.C[X]] € o for somea < 8.
o IfugX.C[X] € othen ClygX.C[X]] € o

Finally, we define an execution tree to be a pair (o, A)
such that o is atype and A is a set of expressions of the
form f(y1, ..., vn) Where each ~; is (recursively) an
execution tree.  We will be interested in infinite execu-
tion trees. We write C € v if v is a tree of the form
(o, A) with C € . An execution tree is cdled locally
consistent if for every subtree (&, A} we have that both o
and A are countable sets, for every f(v1, ..., Yn) € A
and [f](W1, ..., W) € o there is some W; such that
W; € v;, and for every f(W1, ..., W) € o thereissome
f(y1, -+, 1) € Asuchthat for al W; we have W; € ;.

Lemma: If C isaclosed satisfiable Tarskian set expression
then there exists alocally consistent execution tree -y such
that C € ~.

Proof: Supposez € M[C]. We say that a set of expres-
sionsXistruea z (inM)ifz € M[W]foradl W € X. For
any countableset ¥ of expressionstrueapoint z we construct
alocally consistent execution E(X, z) whoseroot typecon-
tainsX. Let o be a countable type containing ¥ and true at
z. For each expression f(C1, ..., Cy) in ¢ construct
an element of A as follows. Select points {(y1, ..., ¥n)
such that {(y1, ..., ¥n, z) € M(f) and y; € M[C;].
For each [f](W1, ..., W,) € o sdect a W; such that
yi € M[W;]. Let X; consist of C; and al selected W;.
Now add f(E(Z1, v1), -.., E(Zn, yn)) to A. Finaly
returnthe pair (o, A).m

We now map an execution treey to aterm¢(-y) using the
following conditionswhere a is a new constant.
t({o, {}) =a

t((oy {F(ves -y )}V A2)) = g(f(E(v1), -+, twm))s E({e A2)))

The second rule is applied “fairly” so that if v is (o, A)

and f(v1, ..., Yn) € Athen f(#(y1), ..., t(m)) iSg-
accessible from ().

Lemma: There existsawell founded ordering < on closed
syntactic expressions such that

W < C for W aclosed proper subexpressionof ¢

ClpaX.CX]] < ugX.C[X] for a < B

ClvaX.C[X]] < vgX.C[X] for a < B

Proof: We define the Fisher-Ladner closure of an expres-
sion C to be the least set FL(C) of maximally indexed
expressionssuchthat C' € FL(C) where C' istheresult of
maximally indexing all fixed pointsin C, any closed subex-
pression of an element of FL(C) isanelement of FL(C), if
Poo X.C[X] € FL(C) then ClpeX.C[X]] € FL(C) and
if v X.C[X] € FL(C) then ClveX.C[X]] € FL(C).
Theset F L(C) isfinite— it has one member for each (pos-
sibly open) subexpression of C. We define the rank of an
expression to be the level of nesting of recursion of closed
subexpressions. We define the signature of an expression C
to bethetuple{as, ..., a,) wheren isthelargest rank of
any expressionin F L(C) and «; isthemaximumindex of all
closed recursion subexpressions of C' of rank ¢, or O if there
isno such subexpression. The signature of ug X.C isof the
form{a1, ..., aj_1, B, 0, ..., 0) where j istherank of
ppX.C. The signature of an unrolling Cu.X.C[X]] with
a < gis{aey, ..., aj_1, a, y1, ..., Y&). The second
signature is lexicographically smaller than the first (given
a < f3) and hence unrolling reduces signature. We order
signatures first by length and then lexicographically within
signatures of the same length. We order expressions lexico-
graphically by signature then syntactic depth.s

Lemma: If v isalocaly consistent execution and C € vy
thent(vy) € [T(C)].

Proof: We define a v-reindexing of an expression C to
be any expresson C' identica to C except for the in-
dices of v-expressions. We prove by induction on ex-
pressions using the ordering of the preceding lemma that
if C is any v-reindexing of an expression ¢’ € « then
t(y) € [T(C)]. To show the need for v-reindexing we will
explicitly give the proof for v-expressions. Consider an
expression vg X.C[X] whichisav-reindexing of an expres-
sonvs X.C'[X] € v. Wehave C'[vsX.C'[X]] € v. Now
consider any ordinal & < 8. By the induction hypothesis
we have that ¢(y) € [T(ClvX.C[X])]. But we have that
[T(vsX.C[X])] isthe intersection of al such sets so we
havet(y) € [¥sX.C[X]]. The other cases of theinduction
are straightforward given the above properties of the well
founded ordering on expressionsa

Theorem: T(C) issatisfiableif and only if C issatisfiable.



5 TheFull Tarskian Calculus

Inthis section we show that satisfiability for full Tarskian
set constraints(with recursion and arbitrary functions) isun-
decidable. The proof is by a reduction of Hilbert's tenth
problem. The proof uses only set variables, constants,
monadic functions, set unions and intersections (no com-
plementation), and asinglelevel of x quantification.

Theorem: Satisfiability for Tarskian set con-
straints with constants and monadic functions is
undecidable.

Proof: Let ¥ be a set of constraints of the form n = 1,
n = p+q Or n = pg Wheren, p and g range over nonnegative
integers. Itfollowsfromtheundecidability of Hilbert’stenth
problem that satisfiability for such systems of constraintsis
undecidable. We reduce the Diophantine constraint set ¥ to
aset T(X) of Tarskian set constraintsas follows.

For each natural number variable » occurring in £ we
introduce aset variable X,, withtheintentionthat the cardi-
nality of X, representsthe value of n. For set expressions
C and W we will use C = W as an abbreviation for the
two constraints C C W and W C C. We will also use
|C| < |W| as an abbreviation for C C f(W) where f is
a fresh monadic function symbol. We will use |C| = |W|
as an abbreviation for |C| < |W| and |[W| < |C|. For any
monadic function symbol s and class expression C we let
s*(C) bean abbreviationfor uW. C U s(W), i.e,, the set of
thingsthat can be gotten by applying s zero or more times
to an element of C. For each variable n in £ we introduce
aconstant symbol ¢,, and monadic function symbol s,, and
add the constraints

Xn = sh(cn)

¢n C sn(sp(cn))-

Thefirst constraint statesthat X, istheset containinge,, and
al itstransitive successors under s,,. The second constraint
statesthat c,, isthe successor of some element of s}, (¢, ) and
therefore that the set X,, forms a loop under the successor
function s,,. Thisimpliesthat X,, isafinite set but does not
otherwise congtrain its cardinality. We now need to impose
the constraintsgiven in X.

If = containsthe constraint n = 1 then T'(X) containsthe
constraint X,, = ¢,. If £ containsn = p + ¢ then we add
the constraints

X,=UUW
|Xp| = U]
|Xq| = W]
UNnWCF

to T'(X) where C, U, and W are fresh set variables and
F isthe set expression pX. X. It remains only to express
product constraints.

To handle the product case we use the notation Vz €
f*(¢) = = Clz] asan abbreviationfor

f(e) = pX.(enCle)) U (F(X) N CLF(X)])

For example, Vz € f*(c) = = g(f(z)) statesthat g isthe
inverse of f on the set f*(c). More generadly, if thereis
only one occurrence of X in C[X], and C[X] is constructed
purely from X and function symbols, thenVz € f*(c¢) z =
C[z] hasthe obviousintended meaning. Suppose X contains
n = pg. We add the following constraintsto 7'(X).

1 Xn = #*(c)
2. ¢ C f(£*(c)
3. Xp=g"(c)
4. ¢ C g(g*(c))
5. Xg = h*(c)

9. Vz € f*(c) = = h'(h(z))
10. Vz € f*(c) = = g'(h'(g(h(z))))

11. g*(c)Nh*(c) =¢c

Where c is afresh constant and f, g, h, ¢’ and &' are
fresh monadic function symbols. Constraints 2, 4, and 6
imply that f*(c), ¢*(c), and h*(c) are all “loops’. Con-
gtraint 7 implies that g and & are both functions mapping
f*(c) into f*(c). Constraints8, and 9 imply that ¢’, and k'
areinverses of g and h respectively onthe set f*(c). Since
both g and k areinvertiblethey must both be bijectionsfrom
f*(c) toitself. Thisimpliesthat theinverses g’ and k' are
also bijections. Condition 10 implies that ¢ and A com-
muteon f*(c), i.e, f(g(z)) equasg(f(z)). Now consider
g™ (h*(c)). Since g is bijective, g™ is bijective. Note that
h(g™(z)) equalsg™(h(z)). Sothemapping g™ isabijection
which “preserves h structure”. Hence the set g™ (h*(c)) is
an h-loop with the same cardinality as h*(c). Since sets
of the form g7 (h*(c)) are h-loops they are either equal or
disioint. Suppose ¢’ (h*(c)) = g*(h*(c)). Applying (¢'y’
toboth sidesweget h*(c) = g*~7(h*(c)). Thisimpliesthat
g*~7(c) must bein k*(c) and hence by condition 11 above
we have g*~9(c) = ¢. But thisimpliesthat k equals j mod
lg*(c)|. Hence for k # j mod |g*(c)| we have g7 (h*(c))
is digoint from g*(h*(c)). Since al these sets are of size
|1*(c)| wehave |£*(c)| = lg* (c)lA*(c)]. m



6. Conclusions

A wide variety of set calculi have been studied in the
logic and computer science literature. Tarskian set ex-
pressions yield a natural set calculus which has received
surprisingly little attention. We have answered a variety
of questions concerning the computational complexity of
Tarskian set constraints but several problems remain open.
It seems likely that Tarskian set constraints without recur-
sion (but with deterministic operations) can be solved in
nondeterministic singly exponentia time. This would fol-
low from a demonstration that satisfiability of prequadratic
Diophantineequationsisin NP. The decidability of Tarskian
set constraints with recursion and deterministic operations
of arity at least 1, or with arity just zero, remains open. It
seems likely that techniques used in decision proceduresfor
the modal p-calculus can be also be used to construct de-
cision procedures for these cases, although this has not yet
been done.
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