
Relational Sequential Inference with Reliable Observations

Alan Fern afern@purdue.edu

Robert Givan givan@purdue.edu

School of Electrical and Computer Engineering, Purdue University

Abstract

We present a trainable sequential-inference
technique for processes with large state and
observation spaces and relational structure.
Our method assumes “reliable observations”,
i.e. that each process state persists long
enough to be reliably inferred from the ob-
servations it generates. We introduce the
idea of a “state-inference function” (from
observation sequences to underlying hidden
states) for representing knowledge about a
process and develop an efficient sequential-
inference algorithm, utilizing this function,
that is correct for processes that generate re-
liable observations consistent with the state-
inference function. We describe a represen-
tation for state-inference functions in rela-
tional domains and give a corresponding su-
pervised learning algorithm. Experiments, in
relational video interpretation, show that our
technique provides significantly improved ac-
curacy and speed relative to a variety of re-
cent, hand-coded, non-trainable systems.

1. Introduction

We consider processes with hidden state that pro-
duce sequences of noisy observations. By watching
the observations, our task is to infer the underlying
state sequence of the process. We are interested in
problems with enormous numbers of possible states
and observations that are represented in relationally
factored form (with sets of relational atoms such as
ON(block1, block2)). In such large problems, general-
purpose modeling approaches that fail to make strong
structural assumptions are typically intractable.

In place of more familiar independence assumptions
(e.g. Markov modeling), our inference approach ex-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

ploits an assumption that the process generates “re-
liable” observations. By this we mean that hidden
states persist for multiple observations, and that the
sequence of observations generated while remaining in
a single hidden state reliably determines the state—
i.e. no other hidden state is likely to generate that
sequence of observations. The assumption of reli-
able observations appears to hold well in our video-
interpretation domain. Many video frames pass while
the underlying interpretation remains fixed, and we are
able to infer (using a “state inference function”) that
underlying interpretation from the sequence of frames.

We introduce the idea of using a state-inference func-
tion to represent process knowledge. We provide an
efficient sequential-inference algorithm that is correct,
assuming reliable observations and a correct state-
inference function. Our inference method is not tied
to a particular representation of states, observations,
or state-inference function. Thus, we first describe
the problem setup (Section 2) and inference method
(Section 3) for arbitrary sets of observations and
states. When these sets are relationally represented,
our method provides general-purpose, relational, se-
quential inference, given reliable observations.

Although our inference technique is independent of the
representation, representation is relevant because the
required state-inference function is generally unavail-
able and must be learned automatically. To facilitate
learning, the states and observations must be repre-
sented in some factored form, and below we describe
a familiar general relational representation (in Section
4). We then describe a logic-based representation for
relational state-inference functions and provide a cor-
responding supervised learning algorithm (in Section
5). Finally, we give promising experimental results
for that relational representation (in Section 6) in our
noisy video-interpretation application.

We note that probabilistic modeling is a popular ap-
proach to dealing with noisy problems such as ours;
however, here we do not use probabilistic methods. As
discussed in Section 7, applying probabilistic modeling

work to our setting presents a number of challenges.
Here, we present a simple, logical-constraint-based ap-
proach with good robustness to noise.

2. Problem Setup

A sequential process is a triple P = (O,S,D), where
the observation space O and state space S are ar-
bitrary disjoint sets that contain all possible obser-
vations and states, respectively. D is a probability
distribution over (O × S)∗, i.e. the space of finite se-
quences constructed from members of O × S. We can
extract from each such sequence a pair of an obser-
vation sequence (o-sequence) and a state sequence (s-
sequence), and we often treat P as assigning proba-
bilities to such pairs according to D. We say state
s generates o-sequence o1, . . . , ok in state-observation
sequence P , if (s, o1), . . . , (s, ok) is a subsequence of
P , and also that o1, . . . , ok is generated by consecutive
states s1 and s2 in sequence P if, for some t, the se-
quence (s1, o1), . . . , (s1, ot), (s2, ot+1), . . . , (s2, ok) is a
subsequence of P .

Sequential inference is the problem of mapping an o-
sequence to the most likely hidden s-sequence. In our
large structured problems, the o-sequence typically de-
termines the s-sequence, so we simplify this goal to
finding the single possible s-sequence. Here, we do not
require a model of P , rather we use supervised learn-
ing, needing only to sample a training set of sequences
of state/observation pairs from P .

Our method leverages an assumption that hidden
states persist for many observation steps. We also
assume that the utility of an inferred state se-
quence primarily derives from the sequence of dis-
tinct states (with consecutive repetitions removed),
rather than whether it also identifies the exact state-
transition points. This assumption holds in our video-
interpretation domain, where the exact locations of
transition points are often ambiguous (as judged by a
human) and unimportant. For example, in Figure 1,
it will typically be unimportant exactly which frame
is considered to be the transition. Thus, we consider
a state-sequence label to be accurate if it agrees on
the sequence of distinct states. Let Compress(S)
denote the sequence that is derived from S by re-
moving its consecutive repetitions. For example,
Compress(a; a; a; b; b; a; c; c) = a; b; a; c. We consider
Compress(S) to be an accurate label for sequence S.

Example 1. In our experimental video-
interpretation domain, the process corresponds to
a hand playing with a set of blocks. Figure 1 shows
key video frames from a sequence where the hand picks

up a red block from a green block. Our goal is to ob-
serve the video and infer the underlying force-dynamic
states, describing the support relations among the
objects. The figure caption describes the single
state transition. States are represented as sets of
force-dynamic facts, such as Attached(hand,red).
Observations are represented as sets of low-level
numeric facts, such as Distance(green,red, 3),
that are easily derived from an object tracker’s noisy
output (shown by the polygons in the figure). The
state and observation sets are large, with roughly 235

states for a three-block scene with one hand.

3. Sequential Inference with Reliable

Observations

A simple approach to sequential inference is to assume
that each observation determines the state generating
it. We could then use training data to learn a possibly
non-trivial observation-state mapping that can recon-
struct a hidden s-sequence from a given o-sequence.
However, this assumption is quite strong, and, empir-
ically, does not hold in our video-interpretation do-
main, due to noise and natural ambiguity near force-
dynamic transitions. Instead, we make a much weaker
assumption sufficient for robust performance: we as-
sume reliable observations, as defined below.

Definition 1 (Defining Sequence). For process
P, an o-sequence O is a defining sequence for state
s if: (1) s generates O in some sequence drawn from
P, and (2) no other state generates O in any sequence
drawn from P.

Definition 2 (Reliable Observations). Process
P has reliable observations with redundancy r if, in
each sequence drawn from P, each state s generates an
observation sequence that can be divided into at least
r consecutive defining sequences for s.

LetROr denote the set of processes having reliable ob-
servations with redundancy at least r. Intuitively, for
processes in ROr, each state persists long enough so
that it can generate an o-sequence that can be divided
into r (or more) sequences that each let us identify the
state. Later we show that our inference technique is
correct for processes in RO2. In practice, processes
with rare violations of this assumption also admit our
techniques. The reliable observations assumption is
intuitively nearly met by our video-interpretation do-
main and many others, where semantic scene proper-
ties persist for enough video frames to be inferred.

Reliable observations (with redundancy at least 1) im-
ply that the maximal-length observation sequence gen-
erated by a state, any time that state occurs, cannot be

Frame 1 Frame 3 Frame 14 Frame 21

Figure 1: Key frames in a video segment showing a hand picking up a red block from a green block. The ob-

ject tracker’s output is shown by the polygons. The video segment has two distinct force-dynamic states given

by: {Grounded(hand), Grounded(green), Contacts(green,red)} (frames 1 and 3) and {Grounded(hand),

Grounded(green), Attached(hand,red)} (frames 14 and 20). The transition occurs between frames 3 and 14. See

Example 3 regarding the predicates Grounded, Contacts, and Attached.

generated by any other state. Thus, under reliable ob-
servations, there exists a mapping from “long enough”
o-sequences generated by single states to the unique
states likely to generate them. A state-inference func-
tion σ is, then, a mapping from O∗ to S∪{⊥}. We say
that σ is correct if, for each O ∈ O∗, σ(O) is a state ca-
pable of generating O under P , and σ(O) = ⊥ exactly
when no single state is capable of generating O under
P . Our inference algorithm assumes we have a nearly
correct state-inference function (particularly, correct
for “long enough” observation sequences), which we
provide for our application by machine learning (see
Section 5). A state-inference function is monotone if
it returns ⊥ for a sequence whenever it returns ⊥ for
any subsequence. It is easy to show that a correct
state-inference function is always monotone.

Given an o-sequence O, if we are somehow told which
subsequences of O were generated by single states,
then we can apply a correct state-inference function to
each such subsequence to correctly infer the underly-
ing s-sequence. However, in practice, we are not given
this information. Nevertheless, under reliable observa-
tions we are able to infer this subsequence information
with sufficient accuracy by detecting state transitions.
To see how, note that, by definition, no single state
can generate an o-sequence that contains defining se-
quences for two distinct states. This implies that a
correct state-inference function “detects transitions”
by returning ⊥ on a “long enough” o-sequence gener-
ated by consecutive states—in particular, long enough
to include a defining sequence from each state. This
property leads to a greedy algorithm for constructing
a compressed s-sequence.

The forward-greedy-merge (FGM) algorithm, Fig-
ure 2, applies a state-inference function σ to increas-
ing prefixes of o-sequence O, until locating the short-
est prefix o1, . . . , ok for which σ(o1, . . . , ok) is ⊥. For
correct σ, and O drawn from P , k ≥ 2. If k = 1,
then o1 has been incorrectly labeled “impossible”, and
the algorithm returns “fail”. Otherwise, FGM adds

FGM(O, σ)
Input: Observation sequence O = (o1, . . . , on),

State-inference function σ
Output: Compressed state sequence or “fail”

if O = NULL then return NULL

if σ(o1) = ⊥ then return “fail”

k ← 2
while (σ(o1, . . . , ok) 6= ⊥) && (k ≤ n)

k ← k + 1

S′ ← FGM((ok, . . . , on), σ)

if S′ = “fail”
then return “fail”
else return σ(o1, . . . , ok−1) | S

′

Figure 2. Pseudo-code for forward-greedy-merge.“x|y” is

the list y with x at the front.

σ(o1, . . . , ok−1) to the inferred s-sequence and recur-
sively processes the remaining suffix of O. The num-
ber of calls to σ is linear in |O|. In our application, σ

runs in poly-time in its input size, and thus the overall
inference process is poly-time.

In practice, we handle the case that FGM returns
“fail” due to an incorrect σ by pre-processing the ob-
servation sequence to remove all single observations
identified incorrectly as “impossible” by σ. That is,
since each individual observation must be generated
by some state, we know that σ is incorrect for an indi-
vidual observation if it returns ⊥ given just that obser-
vation (perhaps due to extreme noise). We simply re-
move all such observations. We give empirical results
with and without this sequence-cleaning preprocess-
ing, showing that very few observations are removed,
but that such removal improves performance.

Example 2. The FGM algorithm is inspired by
imagining a viewer watching a noisy video very slowly,
analyzing each frame consciously. Any given frame
may not provide enough information to reconstruct the
scene semantics (the hidden state). Each new frame
provides more information about the scene, which the

viewer adds to the saved partial knowledge. Only when
something contradictory to the currently inferred scene
is noticed does the viewer assume that a state transi-
tion has occurred. At that point, whatever has been
inferred about the previous “current state” is taken to
completely describe that state.

FGM is not guaranteed to be correct for all processes
in RO1. However, for processes in RO2, FGM can
detect state transitions accurately enough to correctly
infer the underlying compressed state sequence.1

Proposition 1. Let process P be in RO2 and σ be
a correct state-inference function for P. For any state
and observation sequences S and O drawn together
from P, FGM(O, σ) returns Compress(S).

Proof: (Sketch) Let Compress(S) = s1, s2, . . . , sn

and Oi denote the maximal o-sequence in O that was
generated by si (assume w.l.o.g. that no two si are the
same state). Note that O = O1; O2; · · · ; On, where “;”
indicates concatenation. Since P has a redundancy of
at least two, each Oi can be written Oi = O′

i
; O′′

i
,

where O′

i
and O′′

i
are both defining sequences for

state si. To complete the proof, prove by induction
on k that, for 1 ≤ k ≤ n, FGM(O1; · · · ; Ok, σ) =
s1, s2, . . . , sk and sk was “produced” by applying σ (in
the last line of FGM in Figure 2) to a suffix of Ok that
includes O′′

k
. The key proof step notes that applying σ

to such a suffix, with O′

k+1 concatenated on the end,
yields ⊥. Thus, state transitions will be detected. 2

Without reliable observations or a correct state-
inference function, FGM is not guaranteed correct.
However, FGM does solves an intuitively appealing
optimization problem, finding a state sequence allowed
by σ with the fewest possible state transitions. More
formally, a partition of an o-sequence O is a sequence
(Q1, . . . , Qk) of non-empty subsequences of O such
that Q1; · · · ; Qk = O. We say that σ allows a state
sequence S for O if S = (σ(Q1), . . . , σ(Qk)) for some
partition (Q1, . . . , Qk) of O. We prefer fewer tran-
sitions both because we have an inertial bias and be-
cause longer o-sequences yield more reliable state infer-
ence (we assumed σ is correct for “long” o-sequences).

Proposition 2. When σ is monotone, FGM(O, σ)
is a minimal-length state sequence allowed by σ for O,
or there is no allowed state sequence.

Proof: (Sketch) Prove, by induction on |O|, that for
any observation sequence O′, with suffix O, any state
sequence allowed by σ for O′ is at least as long as
FGM(O, σ). 2

1While our algorithm outputs only Compress(S), FGM
does infer state transition points (k after the while loop)
that can be used to construct an estimate of S, if desired.

Table 1: Force-dynamic state predicates Rs (top) and ob-
servation predicates Ro (bottom) for our application.

Attached(x, y) x supports y by attachment
Grounded(x) support of x is unknown
Contacts(x, y) x supports y by contact

Direction(x,d) x is moving in direction d
Speed(x,s) x’s speed is s
Elevation(x,e) x’s elevation is e
Morph(x,c) x’s shape-change factor is c
Distance(x,y,d) distance between x and y is d
∆Dist(x,y,dd) change in distance is dd
Compass(x,y,c) compass direction of y to x is c
Angle(x,y,a) angle between x and y is a

Finally, we note that our technique does not yet reason
about connections between distinct, adjacent states,
beyond detecting transitions. Proposition 1 tells us
that such reasoning is not necessary in the presence
of reliable observations and a correct state-inference
function. We also show, empirically, that such rea-
soning is not needed in our domain. Reasoning about
likely transitions is a possible extension to our tech-
nique that may be required in other domains.

4. Relational States and Observations

We say that a process (O,S,P) is relational when O
and S are given by specifying a domain set of objects
D, a set of observation predicates Ro, and a set of state
predicates Rs. An observation fact (state fact) is a
predicate symbol in Ro (Rs) applied to the appropriate
number of objects from D. For example, a state fact
might be ON(a, b) where “on” is in Rs and a and b

are objects in D. Observations are taken to be finite
sets of observation facts and O contains all such sets,
likewise the states are taken to be finite sets of state
facts with S containing all such sets.

Example 3. Our video-interpretation application
involves inferring the sequence of force-dynamic states
in videos of a hand playing with blocks. The do-
main of objects D, contains all hands and blocks that
may eventually enter the visual field, along with the
real numbers. To describe the state and observation
spaces, there are three force-dynamic state predicates2

and eight observation predicates, shown in Table 1.
The movie in Figure 1 contains two distinct force-
dynamic states given by the state-fact sets shown in
the caption.3 The object tracker places convex polygons
around each object in the visual field, and the observa-

2Our predicates vary somewhat from Siskind (Siskind,
to appear), e.g. “attached” implies support.

3Notice that Grounded(green) is in both states, even
though it seems to be supported by the table. This is
because the object tracker does not recognize the table as
an object, and thus the table is an “unknown” source of
support for the the green block.

tions are low-level numeric features of these polygons
and polygon pairs. For each video frame, an observa-
tion is the set of observation facts calculated by com-
puting the numeric argument of each predicate for all
objects and object pairs.

5. Learning a Relational State

Inference Function

For relational processes, a state-inference function
maps relational o-sequences to relational states (or
⊥). Learning such a function corresponds to the diffi-
cult problem of multiple-predicate learning (De Raedt
et al., 1993) from the area of inductive logic program-
ming (ILP) (Muggleton & De Raedt, 1994). In or-
der to achieve robust and “example efficient” learn-
ing, below we introduce a representation for relational
state-inference functions, based on DATALOG (Ull-
man, 1988), that leverages problem structure found in
our application domain and others like it. Given this
novel representation, we then use an off-the-shelf ILP
system, Claudien (De Raedt & Dehaspe, 1997), to
learn the required DATALOG program.

Representation. A DATALOG program consists of
a set of “if <body> then <head>” rules, built up from
logical atoms over available predicates. Here, the avail-
able predicates are the observation and state predi-
cates along with the comparison predicates ≤ and 6=.
A logical atom is a predicate applied to the appro-
priate number of variables and/or numeric constants.
The rule <body> is a conjunction of logical atoms, and
the <head> is either ⊥ or a logical atom whose vari-
ables appear in the body.

We define state-inference functions using two types of
rules. First, o-rules allow only observation predicates
in the body and state predicates in the head, and can
derive state facts from observations. For example,

if Distance(x, y, d) ∧ (d ≤ 5) ∧ Speed(y, s) ∧ (6 ≤
s) then Attached(x, y)

is an o-rule. Second, s-constraints are rules that do
not involve observation predicates (the head may in-
volve ⊥). These rules place logical constraints on
sets of state facts and can detect sets of facts that
do not belong to any state (i.e. sets that violate
some constraint). For example, (if Attached(x, y) ∧
Contacts(x, y) then ⊥) is an s-constraint that says
x cannot support y by both contact and attachment.4

Any way of replacing the variables in a rule with ob-
jects and/or numbers gives an instance of that rule.

4We could also consider rules with both observation and
state predicates in the body, resulting in more expensive
learning. Such rules were not needed for our application.

Applying a rule to a set of state and observation facts
produces new assertions, in the usual way: for each in-
stance of the rule with the instance body true, relative
to the premise set, the instance head is produced as an
assertion. For example, if we are given the observation
{Distance(green,red, 3), . . . ,Speed(red, 10)}, the
above o-rule will assert Attached(green,red).
Given a rule set R and premise set Q, the one step
consequence operator τR(Q) computes the union of all
rule assertions for Q. We inductively define τ i

R
(Q) =

τR(τ i−1
R

(Q)), where τ0
R
(Q) = Q, and let τ∗

R
(Q) denote

the union over all i of τ i

R
(Q).

A DATALOG program Σ = Σo ∪ Σs, with o-rules Σo

and s-constraints Σs, defines a state inference function
σ as follows. The result set Σ(O) for an o-sequence
O = (o1, . . . , on) is calculated by computing the o-rule
assertions for each oi and then iteratively applying the
s-constraints to the union of the assertions. Formally
we have Σ(O) = τ∗

Σs

(
⋃

i
τΣo

(oi)).
5 Finally, we define

σ(O) to be ⊥ if ⊥ ∈ Σ(O), and to be Σ(O), otherwise.

This DATALOG representation for state-inference
functions is motivated by two observations about our
application. First, although we are unable to learn
o-rules that accurately map single observations to all
underlying state facts (due to noise/ambiguity), we are
able to learn nearly sound o-rules (i.e. rules that rarely
produce false assertions) that assert some of the under-
lying state facts for single observations. Intuitively, the
rules only assert the “most obviously true” state facts
for a given observation. Typically, for states in our
application, each state fact is “obviously true” in at
least one of the observations a state generates. Thus,
unioning o-rule assertions across observations (as done
above) typically yields exactly the true state facts.

The second observation about our application domain
is that the union of facts from distinct consecutive
states do not correspond to any actual state, i.e. the
state facts are inconsistent. Given s-constraints to de-
tect such inconsistent fact sets, the above computation
can detect when an input observation sequence was
(most likely) not generated by a single state.

Example 4. As an example of when σ will re-
turn ⊥, assume that Σ includes (if Attached(x, y) ∧
Contacts(z, y) then ⊥), representing the constraint
that no object is supported via both contact and attach-
ment. Let O be the o-sequence from the video in Fig-
ure 1, which is generated by two distinct force-dynamic
states. We expect that, for some frame during the
first force-dynamic state (e.g. frame 1), the rules will
be able to assert Contacts(green,red), and that,

5Iteration of Σs is needed for recursive s-constraints.

Prune-Ruleset(Σs, Σo, ∆)
Input: s-constraints Σs, o-rules Σo

training o-sequences ∆
Output: pruned ruleset Σ′

Σ′ ← Σs

while Σs ∪ Σo 6=∆ Σ′

r ← arg maxr∈Σo

C(Σ′ ∪ {r}, ∆)

Σ′ ← Σ ∪ {r}

return Σ′

Figure 3. Pruning routine for Claudien discovered rules.

for some frame in the second state (e.g. frame 20),
the rules will assert Attached(hand,red). Given
these assertions, the above rule will assert ⊥ and thus
σ(O) = ⊥, which signals that O did not arise from a
single state according to σ.

Learning. We use Claudien to search for the most
general o-rules and s-constraints that agree with all of
the state-observation pairs in the training set.6 Here,
a rule r1 is more general than r2 if any assertion pro-
duced by r2 can also be produced by r1, for all premise
sets. For our domain, Claudien typically produces a
large, redundant ruleset (with 300-400 rules).

Motivated by Occam’s Razor and the fact that small
rulesets are cheaper to apply, we prune to find a
smaller, but “practically equivalent”, subset of the
Claudien-generated o-rules. Let ∆ be a set of o-
sequences (typically from the training data). We con-
sider two rulesets Σ and Σ′ to be FGM-equivalent on
∆ (written Σ =∆ Σ′) if for any O in ∆, we have
FGM(O, σ) = FGM(O, σ′), where σ and σ′ are the
state-inference functions defined by Σ and Σ′.

Given the Claudien ruleset Σ = Σo∪Σs, with o-rules
Σo and s-constraints Σs, we use a heuristic method to
find a smaller Σ′ that is FGM-equivalent. Let the cov-
erage C(Σ, ∆) of Σ be the sum, over all individual ob-
servations o in ∆, of |Σ(o)|. This measure rewards rule
sets that assert true state facts more frequently. We
start with Σ′ = Σs and add o-rules greedily, according
to coverage, until FGM equivalence is achieved. We
show pseudo-code for our pruning method in Figure 3.
In our application, pruning reduces error by over 50%,
indicating significant pre-pruning overfitting.

6. Experimental Results

We evaluate our techniques by applying them to
force-dynamic state inference. The Leonard system

6A rule agrees with a state-observation pair when the
rule produces no new assertions on the premise set given
by the union of the state and observation fact sets.

(Siskind, 2001) uses inferred force-dynamic states to
recognize visual events from video-camera input—a
simple example of an event is “a hand picking up a
block”, as depicted in Figure 1. Leonard is distinc-
tive in its use of force-dynamic properties for event
recognition, which Siskind argues is more semanti-
cally grounded (and thus more generally accurate)
for many event types than motion profile analysis.
Leonard uses a hand-crafted force-dynamic inference
technique (details in (Siskind, to appear)), based on
kinematic physics that was shown to correctly infer
force-dynamic relations for approximately 80% of the

˜
10,000 video frames in a test corpus. A large part of

the inaccuracy stems from noise in the object tracker’s
output, including, for example, variable strength “jit-
ter” and more serious errors such as “object teleporta-
tion”. Our original motivation for this work was to de-
velop a robust trainable system to replace and improve
the accuracy and speed of Leonard’s reconstruction
of force-dynamic state. We note that, in improving
these features, we have dropped the kinematic-physics
approach to the problem (among other things), which
may have ramifications yet to be explored in either
system by evaluation on a much wider variety of data.

Procedure7. We use the same 210 videos (and the
same object tracker output) that were used to demon-
strate Leonard (Siskind, to appear). The videos de-
pict a hand playing with up to 3 blocks and are divided
into 7 different event types (30 movies each), which
vary in complexity from a simple pick-up to assem-
bling towers. From the tracker output of each video,
we can construct the corresponding relational obser-
vation sequence as described in Example 3.

We hand-labeled 3 randomly selected videos from
each event type with the human-judged force-dynamic
state, yielding 21 training videos in total. We labeled
the other 189 videos with their compressed s-sequence
only (the output of Compress), as that is the label-
ing our algorithm produces. This compressed label, in
fact, depends only on the event type.

We drew three training sets of 7, 14, and 21 videos
from the training instances, drawing equally from each
event type in each set, and learn state-inference func-
tions σ7, σ14, and σ21. For each state-inference func-
tion and each test-video observation sequence, we in-
ferred a force-dynamic state sequence using the FGM
inference algorithm, both with and without the pre-
processing sequence cleaning described in Section 3.

We compare our results with Leonard. We note,

7All data, including the Claudien inputs and learned
rulesets, are available at the first author’s web site.

Table 2: Test error. Parentheses indicate results with
no sequence cleaning preprocessing.

Percent Error
Frame Video

σ7 0.8 15 (23)
σ14 0.1 6 (16)
σ21 5e–4 3 (13)

Leonard 16.4 100
Hack1 –– 33
Hack2 –– 9

however, that the goals of the Leonard project and
our work are quite different. Leonard is an attempt
to create a general, force-dynamic interpretation sys-
tem, whereas our approach represents a trainable se-
quential inference technique that can be tuned to the
class of videos exibited by the training data. This
comparison is analagous to work showing that learned
domain-specific language parsers (Tang & Mooney,
2000) outperform general-purpose language parsers
within the trained domain.

We hand-designed programs for force-dynamic infer-
ence aimed at the class of movies in our corpus.
Hack1 was designed after examining the size-14 train-
ing videos. Hack2 was designed by examining the er-
rors of Hack1 on the test data—a form of cheating.

Whole-Movie Performance. The second column
of Table 2 shows the percentage of test videos labeled
incorrectly. The first three rows are for FGM with the
learned state-inference functions, both with and with-
out sequence cleaning (the latter in parentheses). The
final three rows show Leonard and our hand-coded
programs. We see that, the peformance of FGM im-
proves with more training data. With only a relatively
small set of training data, FGM achieves a 3% error
rate with sequence cleaning. Sequence cleaning signif-
icantly improves the FGM performance, though less
than 0.5% of the observations were removed. Com-
paring to our hand-coded systems, FGM always out-
performs Hack1 and is comparable to Hack2 for the
larger training sets. So, our system is able to learn an
inference system that is on par with a significant, even
cheating, attempt to hand-code a solution.

Per-Frame Performance. The poor performance
of Leonard relative to whole-movie error does not
properly reflect its ability. Although Leonard rarely
computes the exact true compressed state sequence, it
does correctly label most individual observations with
the correct force-dynamic state. The evaluation mea-
sure used in (Siskind, to appear) considered the in-
ferred state sequence as a multi-set, and then calcu-
lated the percentage of the multi-set members that
did not appear in the correct state labeling (so state

order does not affect the error). The first column of
Table 2 shows this error measure for Leonard and
FGM. Under this measure, Leonard labels over 80%
of the frames correctly. FGM, however, significantly
outperforms Leonard.

We also compare inference time on the 210 videos for
each method, all implemented in Scheme and running
on the same machine. Frame rates were 1 per sec-
ond for Leonard, 3.8 per second for FGM (with σ7,
σ14, or σ21), and 5.3 per second for either Hack1

or Hack2. So, FGM is about 4 times faster than
Leonard, but 28% slower than our hand-constructed
domain-specific programs. Importantly, 90% of FGM’s
runtime was spent computing the observation predi-
cates from the tracker output. FGM runs at frame
rate (30 frames/second) when given the observation
predicates. We believe these predicates can also be
computed at frame rate with a C implementation.

7. Related Work

Sliding-window techniques (Dietterich, 2002) label
each observation using a fixed-size local window of ob-
servations and possibly previous classifications. These
techniques leverage a stronger assumption than reli-
able observations due to the fixed window size. Find-
ing a good state-inference function is problematic here
because of the ambiguity at transitions—FGM can be
viewed as varying the window size to avoid the ambi-
guities at transition points.

Other work, e.g. (LeCun et al., 1998; Punyakanok &
Roth, 2000), uses observation-subsequence classifiers
to construct optimization problems. Each classifica-
tion assigns a measure of “good fit” (with the classified
subsequence) to each state, and then an optimization
problem is solved to select a state sequence. These
methods have assumed a small explicit state space,
and generalization to our problem is unclear.

Probabilistic modeling is a widely preferred approach
to achieving robustness to noise, but is not straight-
forward to apply to our problem. In particular, most
probabilistic models used for temporal data, such as
hidden Markov models (Rabiner, 1989), conditional
random fields (Lafferty et al., 2001), and segment mod-
els (Ostendorf et al., 1996) have traditionally assumed
small “explicit” state spaces. Extensions such as dy-
namic Bayesian networks (Dean & Kanazawa, 1989)
assume a fixed number of state variables. In our prob-
lem, this number varies with the number of objects.

A recent approach to overcoming these issues is to rep-
resent probabilistic models for relational domains via
“model schemas” with “shared parameters”—e.g. dy-

namic probabilistic relational models (Sanghai et al.,
2003) and relational Markov networks (Taskar et al.,
2002). Learning and utilizing such models relies on the
ability to perform inference that is typically computa-
tionally hard. This problem generally requires the use
of heuristic or approximate inference techniques (e.g.
loopy belief propogation and particle filtering) that
have unclear semantic characterizations and unclear
practical implications.

However, it is not our intention to argue against the
use of probabilistic models for problems such as ours.
Rather, we first explore what can be accomplished
without probabilities, by exploiting nearly sound hard
constraints and redundant information provided by
reliable observations. We give a simple logic-based
approach, providing both a learning and inference
method, along with a semantic characterization of the
inferred state sequence which the inference method is
guaranteed to find quickly. This approach achieves
good robustness to noise in our application.

8. Conclusion and Future Work

We presented a new, trainable approach to relational
sequential inference. The key novelties of our approach
are: 1) the introduction of the reliable observations
assumption; 2) the use of a state-inference function
for representing process knowledge; 3) the forward-
greedy-merge algorithm for utilizing that function; 4)
a representation for relational state-inference functions
that facilitates effective learning and inference. Our
empirical results for the problem of constructing force-
dynamic models of video show that the approach out-
performs recent, human-coded solutions.

In future work, we plan to explore new application
domains. In particular, many video-interpretation
domains appear to approximately have reliable
observations—e.g. tracking the location of a wearable
camera (Torralba et al., 2003) (many frames are gen-
erated at each location) or infering semantic prop-
erties of sports video (a basketball player dribbles a
ball for many video frames). However, one weakness
of our current approach is the assumption of access
to a nearly correct state-inference function for “long
enough” observation sequences. Here, we were able to
leverage structure of our domain to learn a robust func-
tion and, in large part, correct for its small number of
errors via sequence-cleaning preprocessing. However,
in general this will not always be possible. Thus, we
are currently pursuing integrations of our framework
(exploiting nearly sound hard constraints) with softer
probabilistic modeling techniques in order to improve
robustness while retaining efficient exact inference.

Acknowledgements

We thank the reviewers for helping to improve this
paper. This work was supported in part by NSF grants
9977981-IIS and 0093100-IIS.

References

De Raedt, L., & Dehaspe, L. (1997). Clausal discovery.
Machine Learning, 26, 99–146.

De Raedt, L., Lavrač, N., & Džeroski, S. (1993). Multiple
predicate learning. IJCAI.

Dean, T., & Kanazawa, K. (1989). A model for reasoning
about persistence and causation. Computational Intelli-
gence, 5, 142–150.

Dietterich, T. G. (2002). Machine learning for sequential
data: A review. Fourth International Workshop on Sta-
tistical Techniques in Pattern Recognition.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. ICML.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86.

Muggleton, S., & De Raedt, L. (1994). Inductive logic
programming: Theory and methods. Journal of Logic
Programming, 19/20, 629–679.

Ostendorf, M., Digalakis, V., & Kimball, O. (1996). From
HMMs to segment models: a unified view of stochastic
modeling for speech recognition. IEEE Transaction on
Speech and Audio Processing, 4.

Punyakanok, V., & Roth, D. (2000). The use of classifiers
in sequential inference. NIPS.

Rabiner, L. R. (1989). A tutorial on hidden Markov models
and selected applications in speech recognition. Proceed-
ings of the IEEE, 77, 257–286.

Sanghai, S., Domingos, P., & Weld, D. (2003). Dynamic
probabilistic relational models. IJCAI’03.

Siskind, J. (2001). Grounding lexical semantics of verbs in
visual perception using force dynamics and event logic.
JAIR, 15, 31–90.

Siskind, J. (to appear). Reconstructing force-dynamic
models from video sequences. AIJ.

Tang, L. R., & Mooney, R. J. (2000). Automated con-
struction of database interfaces: Integrating statistical
and relational learning for semantic parsing. Joint Con-
ference on Empirical Methods in Natural Language Pro-
cessing and Very Large Corpora.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative
probabilistic models for relational data. UAI.

Torralba, A., Murphy, K., Freeman, W., & Rubin, M.
(2003). Context-based vision system for place and object
recognition. ICCV.

Ullman, J. (1988). Principles of database and knowledge-
base systems. CS Press.

