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tWe 
onsider de
entralized 
ontrol of Markov de
ision pro
esses and give 
omplexity bounds on theworst-
ase running time for algorithms that �nd optimal solutions. Generalizations of both the fully-observable 
ase and the partially-observable 
ase that allow for de
entralized 
ontrol are des
ribed. Foreven two agents, the �nite-horizon problems 
orresponding to both of these models are hard for non-deterministi
 exponential time. These 
omplexity results illustrate a fundamental di�eren
e between
entralized and de
entralized 
ontrol of Markov de
ision pro
esses. In 
ontrast to the problems involving
entralized 
ontrol, the problems we 
onsider provably do not admit polynomial-time algorithms. Fur-thermore, assuming EXP 6= NEXP, the problems require super-exponential time to solve in the worst
ase.1 Introdu
tionMarkov de
ision pro
esses (MDPs) have re
eived 
onsiderable attention, and there exist well-known algo-rithms for �nding optimal 
ontrol strategies in the 
ase where a pro
ess is 
entrally 
ontrolled and the
ontroller (or agent) has a

ess to 
omplete state information (Puterman, 1994). Less well understood is the
ase in whi
h a pro
ess is 
ontrolled by multiple 
ooperating distributed agents, ea
h with possibly di�erentinformation about the state.We are interested in studying how hard these de
entralized 
ontrol problems are relative to analogous
entralized 
ontrol problems, from the point of view of 
omputational 
omplexity. In parti
ular, we 
onsidertwo di�erent models of de
entralized 
ontrol of MDPs. One is a generalization of a partially-observableMarkov de
ision pro
ess (POMDP), whi
h we 
all a de
entralized partially-observable Markov de
isionpro
ess (DEC-POMDP). In a DEC-POMDP, the pro
ess is 
ontrolled by multiple distributed agents, ea
h1
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Figure 1: The relationships among the models.with possibly di�erent information about the state. The other is a generalization of an MDP, 
alled ade
entralized Markov de
ision pro
ess (DEC-MDP). A DEC-MDP is a DEC-POMDP with the restri
tionthat at ea
h time step the agents' observations together uniquely determine the state. The MDP, POMDP,and DEC-MDP 
an all be viewed as spe
ial 
ases of the DEC-POMDP. The relationships among the modelsare shown in Figure 1.A number of di�erent problems 
an be viewed as de
entralized 
ontrol of a Markov pro
ess. For example,
onsider problems involving the 
ontrol of multiple distributed robots, su
h as roboti
 so

er (Corades
hi etal., 2000). In these domains, it is ne
essary to develop a strategy for ea
h robot under the assumption thatthe robots will have limited ability to 
ommuni
ate when they exe
ute their strategies. Another problemthat �ts naturally within this framework is the distributed 
ontrol of a power grid (S
hneider et al., 1999).Finally, several types of networking problems 
an be viewed within this framework (Altman, 2001).It would be bene�
ial to have general-purpose algorithms for solving these de
entralized 
ontrol problems.An algorithm for similar problems was proposed by Ooi et al. (1996). Under the assumption that all agentsshare state information every K time steps, the authors developed a dynami
 programming algorithm toderive optimal poli
ies. A downside of this approa
h is that the state spa
e for the dynami
 programmingalgorithm grows doubly exponentially with K. The only known tra
table algorithms for these types ofproblems rely on even more assumptions. One su
h algorithm was developed by Hsu and Mar
us (1982)and works under the assumption that the agents share state information every time step (although it 
antake one time step for the information to propagate). Approximation algorithms have also been developedfor these problems, although they 
an at best give guarantees of lo
al optimality. For instan
e, Peshkin etal. (2000) studied algorithms that perform gradient des
ent in a spa
e of parameterized poli
ies.Is there something inherent in these problems that for
es us to add assumptions and/or use approximationalgorithms? Papadimitriou and Tsitsiklis (1982) presented some results aimed at answering this question.The authors proved that a simple de
entralized de
ision-making problem is NP-
omplete, even with just twode
ision makers. They later noted that this implies that de
entralized 
ontrol of MDPs must be NP-hard(Papadimitriou & Tsitsiklis, 1986). We strengthen this result by showing that both the DEC-POMDP andDEC-MDP problems are NEXP-hard, even when the horizon is limited to be less than the number of states(and they are NEXP-
omplete in the latter 
ase). Although it is not known whether the 
lasses P, NP,and PSPACE are distin
t, it is known that P 6= NEXP, and thus the problems we 
onsider are provablyintra
table. Furthermore, assuming EXP 6= NEXP, the problems take super-exponential time to solve in theworst 
ase. This result is in 
ontrast to the best known bounds for MDPs (P-hard) and POMDPs (PSPACE-hard) (Papadimitriou & Tsitsiklis, 1987; Mundhenk, Goldsmith, Lusena & Allender, 2000). Thus, we havegained insight into the possibility of a fundamental di�eren
e between 
entralized and de
entralized 
ontrolof Markov de
ision pro
esses.In Se
tion 2, we give a brief review of the 
on
epts we will need from 
omplexity theory. In Se
tion 3,we de�ne the MDP and POMDP models. Se
tion 4 
ontains the de�nitions of the DEC-MDP and DEC-POMDP models, and a proof that the short-horizon versions of these problems fall within the 
omplexity2




lass NEXP. In Se
tion 5, we present our main 
omplexity result | a proof that these de
entralized problemsare NEXP-hard. Finally, Se
tion 6 
ontains our 
on
lusions.2 Computational ComplexityIn this se
tion, we give a brief introdu
tion to the theory of 
omputational 
omplexity. More detail 
anbe found in (Papadimitriou, 1994). A 
omplexity 
lass is a set of problems, where a problem is an in�niteset of problem instan
es, ea
h of whi
h has a \yes" or \no" answer. In order to dis
uss the 
omplexity ofoptimization problems, we must have a way of 
onverting them to \yes/no" problems. The typi
al way thisis done is to set a threshold and ask whether or not the optimal solution yields a reward that is no less thanthis threshold. The problem of a
tually �nding the optimal solution 
an of 
ourse be no easier than thethreshold problem.The �rst 
omplexity 
lass we 
onsider is P, the set of problems that 
an be solved in polynomial time (inthe size of the problem instan
e) on a sequential 
omputer. NP is the set of problems that 
an be solvednondeterministi
ally in polynomial time. A nondeterministi
 ma
hine automati
ally knows the 
orre
t pathto take any time there is a 
hoi
e as to how the 
omputation should pro
eed. An example of a problem that
an be solved nondeterministi
ally in polynomial time is de
iding whether a senten
e of propositional logi
is satis�able. The ma
hine 
an guess an assignment of truth values to variables and evaluate the resultingexpression in polynomial time. Of 
ourse, nondeterministi
 ma
hines do not really exist, and the mosteÆ
ient known algorithms for simulating them take exponential time in the worst 
ase. In fa
t, it is stronglybelieved by most 
omplexity theorists that P 6= NP (but this has not been proven formally).Complexity 
an also be measured in terms of the amount of spa
e a 
omputation requires. One 
lass,PSPACE, in
ludes all problems that 
an be solved in polynomial spa
e. Any problem that 
an be solvedin polynomial time or nondeterministi
 polynomial time 
an be solved in polynomial spa
e (i.e., P � NP �PSPACE) | that P � PSPACE 
an be seen informally by observing that only polynomially mu
h spa
e
an be a

essed in polynomially many time steps.Moving up the 
omplexity hierar
hy, we have exponential time (EXP) and nondeterministi
 exponentialtime (NEXP). By exponential time, we mean time bounded by 2nk , where n is the input size and k > 0 is a
onstant. It is known that PSPACE � EXP � NEXP, and it is believed that EXP 6= NEXP (but again thishas not been proven). It has been proven that the 
lasses P and EXP are distin
t, however.The notion of a redu
tion is important in 
omplexity theory. We say that a problem A is redu
ible to aproblem B if any instan
e x of A 
an be 
onverted into an instan
e f(x) of B su
h that the answer to x is\yes" if and only if the answer to f(x) is \yes." A problem A is said to be hard for a 
omplexity 
lass C (orC-hard) if any problem in C is eÆ
iently redu
ible to A. If the 
omplexity 
lass in question is P, eÆ
ientmeans that f(x) 
an be 
omputed using at most logarithmi
 spa
e, while for the 
lasses above P, eÆ
ientmeans that f(x) 
an be 
omputed using at most polynomial time. A problem A is said to be 
omplete fora 
omplexity 
lass C (or C-
omplete) if (a) A is 
ontained in C, and (b) A is hard for C. For instan
e, thesatis�ability problem mentioned above is NP-
omplete and P-hard. However, unless P = NP, satis�abilityis not P-
omplete.
3



3 Centralized ModelsIn this paper, we 
onsider dis
rete-time �nite sequential de
ision pro
esses under the undis
ounted �nite-horizon optimality 
riterion. We build into our problem de�nitions the (unusual) assumption that the horizonis less than the number of states. Note that this assumption a
tually strengthens the hardness results; thegeneral problems must be at least as hard as their short-horizon 
ounterparts. Unfortunately, the assumptionis needed for ea
h of the upper bounds given below. Finding tight upper bounds for problems with arbitraryhorizons remains an open problem (Blondel & Tsitsiklis, 1999, Se
tion 5).Below we des
ribe the partially-observable Markov de
ision pro
ess and its asso
iated de
ision problem. TheMarkov de
ision pro
ess is viewed as a restri
ted version of this model.A partially-observable Markov de
ision pro
ess (POMDP) is de�ned as follows. We are given a tuplehS;A; P;R;
; O; T;Ki, where� S is a �nite set of states, with distinguished initial state s0.� A is a �nite a
tion set.� P is a transition probability table. P (s; a; s0) is a rational representing the probability of transitioningfrom s to s0 on taking a
tion a. Here s; s0 2 S and a 2 A.� R is a reward fun
tion. R(s; a; s0) is a rational representing the reward obtained from taking a
tion afrom state s and transitioning to state s0. Again, s; s0 2 S and a 2 A.� 
 is a �nite set of observations.� O is a table of observation probabilities. O(s; a; s0; o) is a rational representing the probability ofobserving o when taking a
tion a in state s and transitioning to state s0 as a result. Here s; s0 2 S,a 2 A, and o 2 
.� T is a positive integer representing the horizon (and T < jSj).� K is a rational representing the threshold value.A POMDP is fully observable if there exists a mapping J : 
! S su
h that whenever O(s; a; s0; o) is nonzero,J(o) = s0. A Markov de
ision pro
ess (MDP) is de�ned to be a POMDP that is fully observable.A poli
y Æ is de�ned to be a mapping from sequen
es of observations o = o1 � � � ot over 
 to a
tions in A.We wish to �nd a poli
y that maximizes the expe
ted total return over the �nite horizon. The de�nitionsbelow are used to formalize this notion. We use the symbol � to denote the empty observation sequen
e. Foran observation sequen
e o = o1 � � � ot, oo is taken to represent the sequen
e o1 � � � ; oto.De�nition: The probability of transitioning from a state s to a state s0 following poli
y Æ while the agentsees observation sequen
e o, written P Æ(s; o; s0), 
an be de�ned re
ursively as follows:P Æ(s; �; s) = 1;P Æ(s; oo; s0) =Xq2S P Æ(s; o; q)P (q; Æ(o); s0)O(q; Æ(o); s0; o);where � is the empty sequen
e. 4



De�nition: The value V TÆ (s) of following poli
y Æ from state s for T steps is given by the following equation:V TÆ (s) =Xo Xq2S Xs02S P Æ(s; o; q)P (q; Æ(o); s0)R(q; Æ(o); s0);where the observation sequen
es have length at most T � 1.The de
ision problem 
orresponding to a �nite-horizon POMDP is as follows: Given a POMDP D =hS;A; P;R;
; O; T;Ki, is there a poli
y for whi
h V TÆ (s0) equals or ex
eeds K? It was shown in (Papadim-itriou & Tsitsiklis, 1987) that the de
ision problem for POMDPs is PSPACE-
omplete and that the de
isionproblem for MDPs is P-
omplete.4 De
entralized ModelsWe now des
ribe extensions to the aforementioned models that allow for de
entralized 
ontrol. In thesemodels, at ea
h step, ea
h agent re
eives a lo
al observation and subsequently 
hooses an a
tion. The statetransitions and rewards re
eived depend on the ve
tor of a
tions of all the agents.A de
entralized partially-observable Markov de
ision pro
ess (DEC-POMDP) is de�ned formally as follows(for ease of exposition, we des
ribe the two-agent 
ase). We are given hS;A1; A2; P;R;
1;
2; O; T;Ki, where� S is a �nite set of states, with distinguished initial state s0.� A1 and A2 are �nite a
tion sets.� P is a transition probability table. P (s; a1; a2; s0) is a rational representing the probability of transi-tioning from s to s0 on taking a
tions a1; a2. Here s; s0 2 S, a1 2 A1, and a2 2 A2.� R is a reward fun
tion. R(s; a1; a2; s0) is a rational representing the reward obtained from takinga
tions a1; a2 from state s and transitioning to state s0. Again s; s0 2 S, a1 2 A1, and a2 2 A2.� 
1 and 
2 are �nite sets of observations.� O is a table of observation probabilities. O(s; a1; a2; s0; o1; o2) is a rational representing the probabilityof observing o1; o2 when taking a
tions a1; a2 in state s and transitioning to state s0 as a result. Heres; s0 2 S, a1 2 A1, a2 2 A2, o1 2 
1, and o2 2 
2.� T is a positive integer representing the horizon (and T < jSj).� K is a rational representing the threshold value.A DEC-POMDP generalizes a POMDP by allowing for 
ontrol by multiple distributed agents that togethermay not fully observe the system state (so we have only partial observability). We also de�ne a generalizationof MDP problems by requiring joint observability. We say that a DEC-POMDP is jointly observable if thereexists a mapping J : 
1 � 
2 ! S su
h that whenever O(s; a1; a2; s0; o1; o2) is nonzero, J(o1; o2) = s0. Wede�ne a de
entralized Markov de
ision pro
ess (DEC-MDP) to be a DEC-POMDP that is jointly observable.We de�ne a lo
al poli
y for agent i, Æi, to be a mapping from lo
al histories of observations oi = oi1 � � � oitover 
i, to a
tions in Ai. A joint poli
y, Æ = hÆ1; Æ2i, is de�ned to be a pair of lo
al poli
ies, one for ea
hagent. We wish to �nd a joint poli
y that maximizes the expe
ted total return over the �nite horizon. Asin the 
entralized 
ase, we need some de�nitions to make this notion more formal.5



De�nition: The probability of transitioning from a state s to a state s0 following joint poli
y Æ = hÆ1; Æ2iwhile agent 1 sees observation sequen
e o1 and agent 2 sees o2 of the same length, written P Æ(s; o1; o2; s0),
an be de�ned re
ursively as follows: P Æ(s; �; �; s) = 1;P Æ(s; o1o1; o2o2; s0) =Xq2S P Æ(s; o1; o2; q)P (q; Æ1(o1); Æ2(o2); s0)O(q; Æ1(o1); Æ2(o2); s0; o1; o2);where � is the empty sequen
e.De�nition: The value V TÆ (s) of following poli
y Æ = hÆ1; Æ2i from state s for T steps is given by the followingequation: V TÆ (s) = Xho1;o2i Xq2S Xs02S PÆ(s; o1; o2; q)P (q; Æ1(o1); Æ2(o2); s0)R(q; Æ1(o1); Æ2(o2); s0);where the observation sequen
es are of length at most T � 1, and both sequen
es in any pair are of the samelength.The de
ision problem is stated as follows: Given a DEC-POMDP D = hS;A1; A2; P;R;
1;
2; O; T;Ki, isthere a joint poli
y for whi
h V TÆ (s0) equals or ex
eeds K? We let DEC-POMDPm and DEC-MDPm denotethe de
ision problems for the m-agent DEC-POMDP and the m-agent DEC-MDP, respe
tively.We 
on
lude this se
tion by showing a straightforward upper bound on the worst-
ase time 
omplexity ofDEC-POMDPm for any m � 2. Be
ause any DEC-MDP is trivially a DEC-POMDP, this upper bound alsoapplies to DEC-MDPm.Theorem 1 For all m � 2, DEC-POMDPm 2 NEXP.Proof: We must show that a nondeterministi
 ma
hine 
an solve any instan
e of DEC-POMDPm usingat most exponential time. First, a joint poli
y Æ 
an be \guessed" and written down in exponential time.This is be
ause a joint poli
y 
onsists of m mappings from lo
al histories to a
tions, and sin
e T < jSj, allhistories have length less than jSj. A DEC-POMDP together with a joint poli
y 
an be viewed as a POMDPtogether with a poli
y, where the observations in the POMDP 
orrespond to the observation m-tuples in theDEC-POMDP (one from ea
h agent), and the POMDP a
tions 
orrespond to m-tuples of DEC-POMDPa
tions (again, one from ea
h agent). In exponential time, ea
h of the exponentially many possible sequen
esof observations 
an be 
onverted into a belief state (i.e., a probability distribution over the state set givingthe probability of being in ea
h state after seeing the given observation sequen
e). We note that everyPOMDP (Kaelbling, Littman & Cassandra, 1998) is equivalent to a \belief-state MDP" whose state set isthe set of rea
hable belief states of the POMDP. The transition probabilities and expe
ted rewards for the
orresponding exponential-sized belief-state MDP 
an be 
omputed in exponential time. Using standardMDP solution te
hniques (Puterman, 1994), it is possible to determine whether the guessed poli
y yieldsexpe
ted reward at least K in this belief-state MDP in time that is at most polynomial in the size of thebelief-state MDP, whi
h is exponential in the size of the original DEC-POMDP problem. Therefore, thereexists an a

epting 
omputation path if and only if there is a poli
y that 
an a
hieve reward K. 25 De
entralized Control of MDPs is NEXP-HardWe now turn our attention to proving that the upper bound just shown in Theorem 1 is tight | spe
i�
ally,we show that NEXP is also a lower bound for the worst-
ase time 
omplexity of de
entralized problems by6
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e.showing that any problem in the 
lass NEXP 
an be redu
ed in polynomial time to a DEC-MDP2 problem.It then follows that both DEC-MDPm and DEC-POMDPm are NEXP-
omplete for any m � 2.The proof of this lower bound is quite involved and will o

upy most of the remainder of this paper. Ea
hsubse
tion of this se
tion 
ontains a pie
e of the development, and at the end of the se
tion the main theoremis asserted. We begin by introdu
ing the known NEXP-
omplete problem TILING used in the proof. Wethen present an overview of the proof and its major 
onstituents. Next we present the redu
tion fromTILING formally, and �nally we prove that the redu
tion is 
orre
t.5.1 The TILING ProblemWe 
an show this lower bound by redu
ing any NEXP-
omplete problem to DEC-MDP2 using a polynomial-time algorithm. For our redu
tion, we use an NEXP-
omplete problem 
alled TILING (Lewis, 1978; Pa-padimitriou, 1994, p. 501), whi
h is des
ribed as follows. We are given a board size n (represented 
ompa
tlyin binary), a set of tile types L = ftile-0; : : : ; tile-kg, and a set of binary horizontal and verti
al 
ompatibilityrelations H;V � L�L. A tiling is a mapping f : f0; : : : ; n�1g�f0; : : : ; n�1g ! L. A tiling f is 
onsistentif and only if (a) f(0; 0) = tile-0, and (b) for all x; y hf(x; y); f(x+1; y)i 2 H , and hf(x; y); f(x; y+1)i 2 V .The de
ision problem is to determine, given L, H , V , and n, whether a 
onsistent tiling exists. An exampleof a tiling instan
e and a 
orresponding 
onsistent tiling is shown in Figure 2.In the remainder of this se
tion, we assume that we have �xed an arbitrarily 
hosen instan
e of the tilingproblem, so that L, H , V , and n are �xed. We then 
onstru
t an instan
e of DEC-MDP that is solvable if andonly if the sele
ted tiling instan
e is solvable. We note that the DEC-MDP instan
e must be 
onstru
tiblein time polynomial in the size of the tiling instan
e (whi
h in parti
ular is logarithmi
 in the value of n),whi
h will require the DEC-MDP instan
e to be at most polynomially larger than the tiling instan
e.5.2 Overview of the Redu
tionThe basi
 idea of our redu
tion is to 
reate a two-agent DEC-MDP that randomly sele
ts two tiling lo
ationsbit by bit, informing one agent of the �rst lo
ation and the other agent of the se
ond lo
ation. The agents'7



lo
al poli
ies are observation-history based, so the agents 
an base their future a
tions on the tiling lo
ationsgiven to them. After generating the lo
ations, the agents are simultaneously \queried" (i.e., a state is rea
hedin whi
h their a
tions are interpreted as answers to a query) for a tile type to pla
e at the lo
ation given.We design the DEC-MDP problem so that the only way the agents 
an a
hieve nonnegative expe
ted rewardis to base their answers to the query on a single jointly-understood tiling that meets the 
onstraints of thetiling problem.This design is 
ompli
ated be
ause the DEC-MDP state set itself 
annot remember whi
h tiling lo
ationswere sele
ted (this would 
ause exponential blowup in the size of the state set, but our redu
tion mustexpand the problem size at most polynomially | we note that the tiling grid itself is not part of the tilingproblem size, only the 
ompa
tly represented grid size n is in the problem spe
i�
ation); the state will only
ontain 
ertain limited information about the relative lo
ations of the two tile positions. The diÆ
ulty ofthe design is also in
reased by the fa
t that any information remembered about the spe
i�ed tiling lo
ationsmust be shared with at least one of the agents to satisfy the joint observability requirement. To deal withthese two issues, we have designed the DEC-MDP to pass through the following phases (a formal des
riptionfollows later):Sele
t Phase Sele
t two bit indi
es and values, ea
h identifying a bit position and the valueat that position in the lo
ation given to one of the agents. These are the only bitsthat are remembered in the state set from the lo
ations given to the agents in the nextphase | the other lo
ation bits are generated and forgotten by the pro
ess.The bit values remembered are 
alled value-1 and value-2, and the indi
es to whi
h thesevalues 
orrespond are 
alled index-1 and index-2. Bit index-1 of the address given to agent1 will have the value value-1, and likewise for index-2, value-2, and agent 2.Generate Phase Generate two tile lo
ations at random, revealing one to ea
h agent. The bitssele
ted in the above sele
t phase are used, and the other lo
ation bits are generated atrandom and immediately \forgotten" by the DEC-MDP state set.Query Phase Query ea
h agent for a tile type to pla
e in the lo
ation that was spe
i�ed tothat agent. These tile types are remembered in the state.E
ho Phase Require the agents to e
ho the tile lo
ations they re
eived in the generatephase bit by bit. In order to enfor
e the a

ura
y of these lo
ation e
hoes, the DEC-MDP is designed to yield a negative reward if the bit remembered from the original lo
ationgeneration is not 
orre
tly e
hoed (the DEC-MDP is designed to ensure that ea
h agent
annot know whi
h bit is being 
he
ked in its e
hoes). As the agents e
ho the bits, thepro
ess 
omputes state information representing whether the lo
ations are equal or adja
enthorizontally or verti
ally, and whether the agents' lo
ations are both (0; 0) (again, we 
annotjust remember the lo
ation bits be
ause it would for
e an exponential state set). The e
hophase allows us to 
ompute state information about adja
en
y/equality of the lo
ationsafter the tile types have been 
hosen, so that the agents' tile 
hoi
es 
annot depend on thisinformation. This is 
riti
al in making the redu
tion 
orre
t.Test Phase Che
k whether the tile types provided in the query phase 
ome from a single
onsistent tiling. In other words, 
he
k that if the agents were asked for the same lo
ationthey gave the same tile types during query, if they were asked for adja
ent lo
ations theygave types that satisfy the relevant adja
en
y 
onstraints, and if the agents were bothqueried for lo
ation (0; 0) they both gave tile type tile-0. The pro
ess gives a zero rewardonly if the tile types sele
ted during the query phase meet any appli
able 
onstraints asdetermined by the e
hoed lo
ation bits. Otherwise, a negative reward is obtained.Note that be
ause we are designing a DEC-MDP, we are required to maintain joint observability: the8



observations given to the agents at ea
h time step must be suÆ
ient to re
onstru
t all aspe
ts of the DEC-MDP state at that time step. In parti
ular, the bit indi
es and values sele
ted in the sele
t phase must beknown to the agents (jointly), as well as the information 
omputed in the e
ho phase regarding the relativeposition of the two lo
ations.We a
hieve this joint observability by making all aspe
ts of the DEC-MDP state observable to both agents,ex
ept for the indi
es and values sele
ted in the sele
t phase and the tile types that are given by the agents(and stored by the pro
ess) during the query phase. Ea
h agent 
an observe whi
h bit index and value arebeing remembered from the other agent's lo
ation, and ea
h agent 
an observe the stored tile type it gave(but not the tile type given by the other agent). Be
ause ea
h agent 
an see what bit is saved from the otheragent's lo
ation, we say that one lo
ation bit of ea
h agent's lo
ation is visible to the other agent.We 
all the �ve phases just des
ribed \sele
t," \generate," \query," \e
ho," and \test" in the developmentbelow. A formal presentation of the DEC-MDP just sket
hed follows below, but �rst we outline the proofthat this approa
h represents a 
orre
t redu
tion.5.3 Overview of the Corre
tness ProofHere we give an overview of our argument that the redu
tion sket
hed above is 
orre
t in the sense that thereexists a poli
y that a
hieves expe
ted total reward zero at the start state if and only if there is a solution tothe tiling problem we started with.It is straightforward to show that if there exists a 
onsistent tiling there must exist a poli
y a
hieving zeroreward. The agents need only \agree on" a 
onsistent tiling ahead of time, and base their a
tions on theagreed upon tiling (waiting during sele
tion and generation, giving the tile type present at the generatedlo
ation during query, faithfully e
hoing the generated lo
ation during e
ho, and then waiting during test |at ea
h point being guaranteed a zero reward by the stru
ture of the problem). Note that it does not matterhow expensive it might be to �nd and represent a 
onsistent tiling or to 
arry out the poli
y just des
ribedbe
ause we are merely arguing for the existen
e of su
h a poli
y.We now outline the proof of the harder dire
tion, that if there is no 
onsistent tiling then there is no poli
ya
hieving expe
ted reward zero. Note that sin
e all rewards are nonpositive, any 
han
e of re
eiving anynegative reward for
es the expe
ted total reward to be negative.Consider an arbitrary poli
y that yields expe
ted reward zero. Our argument rests on the following 
laims,whi
h will be proved as lemmas in Se
tion 5.5:Claim 1. The poli
y must repeat the two lo
ations 
orre
tly during the e
ho phase.Claim 2. When exe
uting the poli
y, the agents' sele
ted a
tions during the query phase determine a singletiling, as follows. We de�ne a query situation to be dangerous to an agent if and only if theobservable bit value of the other agent's lo
ation (in the observation history) agrees with the bitvalue at the same index in the agent's own lo
ation (so that as far as the agent in danger knows,the other agent is being queried about the same lo
ation). During dangerous queries, the tile typesele
ted by the agent in danger must depend only on the lo
ation queried (and not on the index orvalue of the bit observed from the other agent, on any other observable information, or on whi
hagent is sele
ting the tile type). The agents' sele
ted a
tions for dangerous queries thus determinea single tiling.Claim 3. The single tiling from Claim 2 is a 
onsistent tiling.9



Claim 3 dire
tly implies that if there is no 
onsistent tiling, then all poli
ies have negative expe
ted reward,as desired.5.4 Formal Presentation of the Redu
tionNow we give the two-agent DEC-MDP D = hS;A1; A2; P;R;
1;
2; O; T;Ki that is 
onstru
ted from thesele
ted tiling instan
e hL;H; V; ni. We assume throughout that n is a power of two. It is straightforward tomodify the proof to deal with the more general 
ase | one way to do so is summarized brie
y in Appendix A.5.4.1 The State SetWe des
ribe the state set S of D below by giving a sequen
e of �nite-domain \state variables," and thentaking the state set to be the set of all possible assignments of values to the state variables.The Finite-State Automaton One of the state variables will be maintained by a �nite-state automaton(FSA) des
ribed in Appendix A. This variable, 
alled rel-pos be
ause it maintains a re
ord of the relativeposition of the two lo
ation addresses e
hoed by the agents in the e
ho phase, 
an take on values from thestate set of the FSA. Appendix A des
ribes that state set, Q, and also de�nes two fun
tions (FSANEXTand FSA) based on the underlying FSA. These fun
tions allow us to refer to the 
riti
al FSA behaviors herein our redu
tion while deferring most other details of the FSA to Appendix A. The fun
tion FSANEXTupdates the state variable rel-pos based on one more bit of e
hoed lo
ation from ea
h agent. The fun
tionFSA updates the state variable rel-pos based on a sequen
e of e
hoed lo
ation bits from ea
h agent | soFSA is de�ned as a repeated appli
ation of the fun
tion FSANEXT.Appendix A also des
ribes distinguished subsets of the FSA state set Q 
alled apart, equal, hor, and verrepresenting possible relative positions for pairs of lo
ations (not adja
ent or equal, equal, horizontallyadja
ent, and verti
ally adja
ent, respe
tively). These subsets are used below in de�ning the transition andreward behavior of the DEC-MDP D. Appendix A also de�nes the initial state q0 of the FSA.The State Variables We now list the state variables de�ning the state set for D. We list the variables inthree groups: the �rst group is observable to both agents, the se
ond group only to agent 1, and the thirdgroup only to agent 2. These restri
tions on observability are des
ribed below in se
tion 5.4.4
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Observable to both agents:phase 2 fsele
t; gen; query; e
ho; testg 
urrent phase of the pro
essindex 2 f0; : : : ; 2 logng index of next lo
ation bit to be generated/e
hoedorigin 2 fyes; nog eventually true if both tile lo
ations are (0; 0)rel-pos 2 Q relative tile positions during e
ho | 
ontrolled by the FSAObservable only to agent 1:index-2 2 f0; : : : ; 2 logn� 1g index of bit remembered for agent 2value-2 2 f0; 1g value of bit remembered for agent 2pos-bit-1 2 f0; 1g bit for transmitting tile position to agent 1tile-sel-1 2 L tile type sele
ted by agent 1 in queryObservable only to agent 2:index-1 2 f0; : : : ; 2 logn� 1g index of bit remembered for agent 1value-1 2 f0; 1g value of bit remembered for agent 1pos-bit-2 2 f0; 1g bit for transmitting tile position to agent 2tile-sel-2 2 L tile type sele
ted by agent 2 in queryWe write a state by enumerating its variable values, e.g., as follows: hgen; 3; yes; q0; 4; 0; 1; tile-1; 5; 1; 0; tile-3i 2S. Semi
olons are used to group together variables that have the same observability properties. We 
anrepresent sets of states by writing sets of values in some of the 
omponents of the tuple rather than justvalues. The \*" symbol is used to represent the set of all possible values for a 
omponent. We sometimesuse a state variable as a fun
tion from states to domain values for that variable. For instan
e, if q mat
heshgen; �; �; �; �; �; �; �; �; �; �; �i, then we will say phase(q) = gen.The initial state s0 is as follows: hsele
t; 0; yes; q0; 0; 0; 0; tile-0; 0; 0; 0; tile-0i.5.4.2 The A
tion Sets and Table of Transition ProbabilitiesWe must allow \wait" a
tions, \zero" and \one" a
tions for e
hoing lo
ation address bits, and tile typea
tions from the set of tile types L for answering during the query phase. We therefore take the a
tion setsA1 = A2 to be fwait; 0; 1g [ L.We give the transition distribution P (s; a1; a2; s0) for 
ertain a
tion pairs a1; a2 for 
ertain sour
e statess. For any sour
e-state/a
tion-pair 
ombination not 
overed by the des
ription below, the a
tion pair istaken to 
ause a probability 1.0 self-transition ba
k to the sour
e state. The 
ombinations not 
overed arenot rea
hable from the initial state under any joint poli
y. Also, we note that the FSA-
ontrolled state
omponent rel-pos does not 
hange from its initial state q0 until the e
ho phase.Sele
t Phase. This is the �rst step of the pro
ess. In this step, the pro
ess 
hooses, for ea
h agent, whi
hof that agent's bits it will be 
he
king in the e
ho phase. The value of that bit is also determined in thisstep. Transition probabilities when phase = sele
t are given as follows.P (s; a1; a2; s0) = 1(4 log n)2 in the following situations:s = s0 = hsele
t; 0; yes; q0; 0; 0; 0; tile-0; 0; 0; 0; tile-0i,s0 = hgen; 0; yes; q0; i2; v2; 0; tile-0; i1; v1; 0; tile-0i,i1; i2 2 f0; : : : ; 2 logn� 1g, andv1; v2 2 f0; 1g. 11



Generate Phase. During these steps, the two tile positions are 
hosen bit by bit. Note that we have to
he
k for whether we are at one of the bits sele
ted during the sele
t phase, so that the value of the bit isthe same as the value 
hosen during sele
tion. Transition probabilities when phase = generate are given asfollows. The se
ond 
ase des
ribes the deterministi
 transition from the generate phase to the query phase.P (s; a1; a2; s0) = 1h in the following situations:s = hgen; k; yes; q0; i2; v2; �; tile-0; i1; v1; �; tile-0i where 0 � k � 2 logn� 1,s0 = hgen; k + 1; yes; q0; i2; v2; b1; tile-0; i1; v1; b2; tile-0i, whereb1 = v1 if k = i1, else b1 is either 0 or 1,b2 = v2 if k = i2, else b2 is either 0 or 1, andh is the number of allowed settings of b1; b2 from the previous two lines.P (s; a1; a2; s0) = 1 in the following situations:s = hgen; 2 logn; yes; q0; i2; v2; �; tile-0; i1; v1; �; tile-0i, ands0 = hquery; 0; yes; q0; i2; v2; 0; tile-0; i1; v1; 0; tile-0i.Query Phase. The query phase 
onsists of just one step, during whi
h ea
h agent 
hooses a tile type.Transition probabilities when phase = query are given as follows.P (s; a1; a2; s0) = 1 in the following situations:s = hquery; 0; yes; q0; i2; v2; 0; tile-0; i1; v1; 0; tile-0i,t1 = � a1 if a1 2 Ltile-0 otherwise ; t2 = � a2 if a2 2 Ltile-0 otherwise , ands0 = he
ho; 0; yes; q0; i2; v2; 0; t1; i1; v1; 0; t2i.E
ho Phase. During the e
ho phase the agents are asked to repeat ba
k the addresses seen in the generatephase, and information about the relative position of the addresses is 
al
ulated by the FSA des
ribed inAppendix A and re
orded in the state. The FSA is a

essed here using the fun
tion FSANEXT des
ribedin Appendix A. Transition probabilities when phase = e
ho are given as follows.P (s; a1; a2; s0) = 1 in the following situations:s = he
ho; k; o; q; i2; v2; 0; t1; i1; v1; 0; t2i,b1 = � a1 if a1 2 f0; 1g0 otherwise ; b2 = � a2 if a2 2 f0; 1g0 otherwise ,s0 = hp; k0; o0;FSANEXT(q; b1; b2); i2; v2; 0; t1; i1; v1; 0; t2i,where p; k0 = � e
ho; k + 1 for 0 � k < 2 logn� 1test; 0 for k = 2 logn� 1 , ando0 = yes if and only if (o = yes and a1 = a2 = 0).Test Phase. The test phase 
onsists of just one step terminating the pro
ess in a zero-reward absorbingstate.P (s; a1; a2; s0) = 1 in the following situations:s = htest; 0; �; �; �; �; 0; �; �; �; 0; �i, ands0 = htest; 0; yes; q0; 0; 0; 0; tile-0; 0; 0; 0; tile-0i.12



5.4.3 The Reward Fun
tionWe now des
ribe the reward fun
tion for D. The reward R(s; a1; a2; s0) given when transitioning from states to state s0 taking a
tion pair a1; a2 is �1 in any situation ex
ept those situations mat
hing one of thefollowing patterns. Roughly, we give zero reward for waiting during sele
t and generate, for answering witha tile type during query, for e
hoing a bit 
onsistent with any remembered information during e
ho, and forhaving given tile types satisfying the relevant 
onstraints during test. The relevant 
onstraints during testare determined by the rel-pos state 
omponent 
omputed by the FSA during the e
ho phase.R(s; a1; a2; s0) = 0 if and only if one of the following holds:Sele
t phase: s = hsele
t; �; �; �; �; �; �; �; �; �; �; �i and a1 = a2 = wait.Generate phase: s = hgen; �; �; �; �; �; �; �; �; �; �; �i and a1 = a2 = wait.Query phase: s = hquery; �; �; �; �; �; �; �; �; �; �; �i and both a1 2 L and a2 2 L.E
ho phase: s = he
ho; k; �; �; i2; v2; �; �; i1; v1; �; �i and a1; a2 2 f0; 1g,where (a1 = v1 or k 6= i1) and (a2 = v2 or k 6= i2).Test Phase (i): s = htest; �; o; equal; �; �; �; t1; �; �; �; t1i and a1 = a2 = wait,where (o = no or t1 = tile-0).Test Phase (ii): s = htest; �; �; hor; �; �; �; t1; �; �; �; t2i and a1 = a2 = wait,where ht1; t2i 2 H .Test Phase (iii): s = htest; �; �; ver; �; �; �; t1; �; �; �; t2i and a1 = a2 = wait,where ht1; t2i 2 V .Test Phase (iv): s = htest; �; �; apart; �; �; �; �; �; �; �; �i and a1 = a2 = wait.5.4.4 Observations, Threshold, and HorizonThe �rst four 
omponent �elds of ea
h state des
ription are fully visible to both agents. The last eightstate 
omponent �elds are split into two groups of four, ea
h group visible only to one agent. We thereforetake the agent 1 observations 
1 to be partial assignments to the following state variables: phase, index,origin, rel-pos, index-2, value-2, pos-bit-1, and tile-sel-1. Similarly, the observations 
2 are partial assignmentsto the following state variables: phase, index, origin, rel-pos, index-1, value-1, pos-bit-2, and tile-sel-2. Theobservation distribution O(s; a1; a2; s0; o1; o2) simply reveals the indi
ated portion of the just-rea
hed states0 to ea
h agent deterministi
ally.We say that an observation sequen
e is p-phase if the sequen
e mat
hes the pattern �hp; �; �; �; �; �; �; �i,where the �rst \*" stands for any observation sequen
e. Here, p 
an be any of gen, query, e
ho, or test.We take the horizon T to be 4 logn + 4, be
ause the pro
ess spends one step in ea
h of the sele
t, query,and test phases, 2 logn + 1 steps in the generate phase, and 2 logn steps in the e
ho phase. We take thethreshold value K to be 0. This 
ompletes the 
onstru
tion of the DEC-MDP by polynomial-time redu
tionfrom the sele
ted tiling instan
e. An example of a zero-reward traje
tory of the pro
ess is shown in Figure 3.We now turn to 
orre
tness. 13
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Figure 3: An example of a zero-reward traje
tory of the pro
ess 
onstru
ted from the tiling example given inFigure 2. The total reward is zero be
ause the agents e
ho the \
he
ked" bits 
orre
tly and 
hoose tiles thatdo not violate any 
onstraints, given the two addresses that are e
hoed. (For 
larity, some state 
omponentsare not shown.)
14



5.5 Formal Corre
tness ArgumentNext we show that the redu
tion presented above is indeed 
orre
t. Our main 
laim is that there exists apoli
y that a
hieves expe
ted total reward zero at the start state if and only if there is a solution to thetiling problem we started with.To make our notation easier to read, we de�ne the following abbreviations.De�nition: Given an observation sequen
e o1 over 
1, we write lo
1(o1) for the lo
ation value representedby the bits transmitted to agent 1 in the generate phase of the pro
ess. We note that during the sele
t andgenerate phases this value may be only partially spe
i�ed (be
ause not all of the bits have been generated).More pre
isely, lo
1(o1) = bk � � � b0, where the bi values are 
hosen by the �rst mat
h of the following sequen
ein o1 (with k as large as possible while allowing a mat
h):hgen; 1; �; �; �; �; b0; �i � � � hgen; k + 1; �; �; �; �; bk; �i:We de�ne lo
2(o2) similarly. In addition, we de�ne bit(i; l) to be bi, where bk; : : : ; b0 is the binary 
oding ofthe (possibly only partially spe
i�ed) lo
ation l | we take bit(i; l) to be unde�ned if the bit i is not spe
i�edin lo
ation l.By abuse of notation we treat lo
1(o1) (or lo
2(o2)) as a tiling lo
ation (x; y) sometimes (but only when itis fully spe
i�ed) and as a bit string at other times.The easier dire
tion of 
orre
tness is stated in the following lemma, whi
h is formally proven in Appendix B.Lemma 1 If there exists a 
onsistent tiling, then there must exist a poli
y a
hieving zero expe
ted totalreward.We now dis
uss the more diÆ
ult reverse dire
tion of the 
orre
tness proof. In the following subse
tions, weprove Claims 1 to 3 from Se
tion 5.3 to show that if there is a poli
y whi
h a
hieves nonnegative expe
tedreward for horizon T , then there is also a 
onsistent tiling. Throughout the remainder of the proof, we fo
uson a �xed, arbitrary poli
y Æ that a
hieves zero expe
ted reward. Given this poli
y, we must show that thereis a 
onsistent tiling.5.5.1 Proof of Claim 1Before proving the �rst 
laim, we need to formalize the notion of \faithfulness during e
ho."De�nition: A pair of observation sequen
es ho1; o2i over 
1 and 
2, respe
tively, is said to be rea
hableif P Æ(s0; o1; o2; s) is nonzero for some state s. An observation sequen
e o1 over 
1 is said to be rea
hableif there exists an observation sequen
e o2 over 
2 su
h that the pair of observation sequen
es ho1; o2i isrea
hable. Likewise o2 over 
2 is rea
hable if there is some o1 over 
1 su
h that ho1; o2i is rea
hable.De�nition: The poli
y Æ = hÆ1; Æ2i is faithful during e
ho if it satis�es both of the following 
onditions forall indi
es k in [0; 2 logn� 1℄, and all rea
hable observation sequen
e pairs ho1; o2i:1. Æ1(o1) = bit(k; lo
1(o1)) when o1 = h�; �; �; �; �; �; �; �i � � � he
ho; k; �; �; �; �; �; �i.2. Æ2(o2) = bit(k; lo
2(o2)) when o2 = h�; �; �; �; �; �; �; �i � � � he
ho; k; �; �; �; �; �; �i.15



We say the poli
y Æ lies during e
ho otherwise. If the two 
onditions listed above are satis�ed for all indi
esk in [0; d� 1℄, where 0 � d � 2 logn, we say that the poli
y faithfully e
hoes the �rst d bits.Mu
h of our proof revolves around showing that the rea
hability of a pair of observation sequen
es is nota�e
ted by making 
ertain 
hanges to the sequen
es. We fo
us without loss of generality on 
hanges to theobservations of agent 2, but similar results hold for agent 1. The 
hanges of parti
ular interest are 
hangesto the (randomly sele
ted) value of the index-1 state 
omponent | this is the 
omponent that rememberswhi
h bit of agent 1's queried lo
ation will be 
he
ked during e
ho. It is important to show that agent 1
annot determine whi
h bit is being 
he
ked before that bit has to be e
hoed. To show this, we de�ne a wayto vary the observation sequen
es seen by agent 2 (preserving rea
hability) su
h that without 
hanging theobservations seen by agent 1 we have 
hanged whi
h agent 1 address bit is being 
he
ked. We now presentthis approa
h formally.De�nition: We say that an observation sequen
e o1 over 
1 is super�
ially 
onsistent if the values of theindex-2 
omponent and the value-2 
omponent do not 
hange throughout the sequen
e, and the value of thetile-sel-1 
omponent is tile-0 for generate-phase and query-phase observations and some �xed tile type in Lfor e
ho-phase and test-phase observations. Given a super�
ially 
onsistent observation sequen
e o1, we 
anwrite index-2(o1) and value-2(o1) to denote the value of the indi
ated 
omponent throughout the sequen
e.In addition, we 
an write tile-sel-1(o1) to denote the �xed tile type for e
ho-phase and test-phase observations(we take tile-sel-1(o1) to be tile-0 if the sequen
e 
ontains no e
ho- or test-phase observations). Correspondingde�nitions hold for observation sequen
es over 
2, repla
ing \1" by \2" and \2" by \1" throughout.Note that any rea
hable observation sequen
e must be super�
ially 
onsistent, but the 
onverse is notne
essarily true. The following te
hni
al de�nition is ne
essary so that we 
an dis
uss the relationshipsbetween observation sequen
es without assuming rea
hability.De�nition: We say that two super�
ially 
onsistent observation sequen
es o1 over 
1 and o2 over 
2 are
ompatible if bit(index-1(o2); lo
1(o1)) = value-1(o2) or this bit of lo
1(o1) is not de�ned,andbit(index-2(o1); lo
2(o2)) = value-2(o1) or this bit of lo
2(o2) is not de�ned.De�nition: Given an index i in [0; 2 logn � 1℄, a rea
hable pair of observation sequen
es ho1; o2i, and anobservation sequen
e o 02 over 
2, we say that o 02 is an i-index variant of o2 relative to o1 when o 02 is anysequen
e 
ompatible with o1 that varies from o2 only as follows:1. index-1 has been set to i throughout the sequen
e,2. value-1 has been set to the same value v throughout the sequen
e,3. pos-bit-2 
an vary arbitrarily from o2, and4. for any e
ho- or test-phase observations, tile-sel-2 has been set to the tile type sele
ted by Æ on thequery-phase pre�x of o 02 , or to tile-0 if Æ sele
ts a non-tile-type a
tion on that query.If the pos-bit-2 
omponents of o2 and o 02 are identi
al, we say that o 02 is a same-address index variant of o2.We note that, given a rea
hable pair of observation sequen
es ho1; o2i, there exists an i-index variant of o2relative to o1, for any i in [0; 2 logn�1℄. This remains true even if we allow only same-address index variants.The following te
hni
al lemma asserts that index variation as just de�ned preserves rea
hability under verygeneral 
onditions. Its proof is deferred to Appendix C.16



Lemma 2 Suppose Æ is faithful during e
ho for the �rst k bits of the e
ho phase, for some k. Let ho1; o2i bea rea
hable pair of observation sequen
es that end no later than the kth bit of e
ho (i.e., the last observationin the sequen
e has index no greater than k if it is an e
ho-phase observation), and let o 02 be an i-indexvariant of o2 relative to o1, for some i. If the observation sequen
es are e
ho-phase or test-phase, then werequire that the index variation be a same-address variation. We 
an then 
on
lude that ho1; o 02 i is rea
hable.We are now ready to assert and prove Claim 1 from Se
tion 5.3.Lemma 3 (Claim 1) Æ is faithful during e
ho.Proof: We argue by indu
tion that Æ faithfully e
hoes all 2 logn address bits. As an indu
tive hypothesis,we assume that Æ faithfully e
hoes the �rst k bits, where 0 � k < 2 logn. Note that if k equals zero, this is anull assumption, providing an impli
it base 
ase to our indu
tion. Now suppose for 
ontradi
tion that Æ liesduring the k+1st step of the e
ho phase. Then one of the agents' poli
ies must in
orre
tly e
ho bit k+1; weassume without loss of generality that this is so for agent 1, i.e., under some rea
hable observation sequen
epair ho1; o2i of length 2 logn+ k+2, the poli
y Æ1 di
tates that the agent 
hoose a
tion 1� bit(k; lo
1(o1)).Lemma 2 implies that the observation sequen
e pair ho1; o 02 i is also rea
hable, where o 02 is any same-addressk + 1-index variant of o2 relative to o1.Sin
e all of the agent 1 observations are the same for both ho1; o2i and ho1; o 02 i, when the latter sequen
eo

urs, agent 1 
hooses the same a
tion 1 � bit(k; lo
1(o1)) as given above for the former sequen
e, and areward of �1 is obtained (be
ause in this 
ase it is bit k + 1 that is 
he
ked). Therefore, the expe
ted totalreward is not zero, yielding a 
ontradi
tion. 25.5.2 Proof of Claim 2Now we move on to prove Claim 2 from Se
tion 5.3. We show that Æ 
an be used to de�ne a parti
ularmapping from tile lo
ations to tile types based on \dangerous queries." In Se
tion 5.3, we de�ned an agent1 observation sequen
e to be \dangerous" if it reveals a bit of agent 2's queried lo
ation that agrees withthe 
orresponding bit of agent 1's queried lo
ation (and vi
e versa for agent 2 observation sequen
es). Wenow present this de�nition more formally.De�nition: A query-phase observation sequen
e o1 over 
1 is dangerous if it is rea
hable andbit(index-2(o1); lo
1(o1)) = value-2(o1):Likewise, a query-phase sequen
e o2 over 
2 is dangerous if it is rea
hable and bit(index-1(o2); lo
2(o2)) =value-1(o2).Dangerous query-phase sequen
es are those for whi
h the agent's observations are 
onsistent with the possi-bility that the other agent has been queried on the same lo
ation. We note that for any desired query lo
ationl, and for either agent, there exist dangerous observation sequen
es o su
h that lo
k(o) = l. Moreover, su
hsequen
es still exist when we also require that the value of index-k(o) be any parti
ular desired value (wherek is the number of the non-observing agent).Lemma 4 Two same-length query-phase observation sequen
es, o1 over 
1 and o2 over 
2, are rea
habletogether as a pair if and only if they are 
ompatible and ea
h is individually rea
hable.17



Proof: The \only if" dire
tion of the theorem follows easily | the rea
hability part follows from thede�nition of rea
hability, and the 
ompatibility of jointly rea
hable sequen
es follows by a simple indu
tionon sequen
e length given the design of D.The \if" dire
tion 
an be shown based on the following assertions. First, a generate-phase observationsequen
e (for either agent) is rea
hable if and only if it mat
hes the following pattern:hgen; 0; yes; q0; i; v; �; tile-0i � � � hgen; k; yes; q0; i; v; �; tile-0i;for some k; i, and v | this 
an be established by a simple indu
tion on sequen
e length based on the designof D. A similar pattern applies to the query phase.Given two 
ompatible rea
hable sequen
es of the same length, o1 and o2, we know by the de�nition ofrea
hability that there must be some sequen
e o 02 su
h that ho1; o 02 i is rea
hable. But given the patternsjust shown for rea
hable sequen
es, o2 and o 02 
an di�er only in their 
hoi
e of i, v, and in the address givento agent 2 via the pos-bit-2 
omponent. It follows that o2 is an i-index variant of o 02 relative to o1, for somei. Lemma 2 then implies that the pair ho1; o2i is rea
hable as desired. 2Lemma 5 (Claim 2) There exists a mapping f from tiling lo
ations to tile types su
h that f(lo
i(o)) = Æi(o)on all dangerous queries o over 
i for both agents (i 2 f1; 2g).Proof: To prove the lemma, we prove that for any two dangerous query sequen
es oi and oj over 
i and
j respe
tively for arbitrary i; j 2 f1; 2g, if lo
i(oi) = lo
j(oj) = l then Æi(oi) = Æj(oj). This implies that forany su
h oi we 
an take f(l) = Æi(lo
i(oi)) to 
onstru
t f satisfying the lemma. Suppose not. Then theremust be a 
ounterexample for whi
h i 6= j | be
ause given a 
ounterexample for whi
h i = j, either oi oroj must form a 
ounterexample with any dangerous query ok over 
1�i su
h that lo
1�i(ok) = l.We 
an now 
onsider a 
ounterexample where i 6= j. Let o1 and o2 be dangerous (and thus rea
hable)sequen
es over 
1 and 
2, respe
tively, su
h that lo
1(o1) = lo
2(o2) but Æ1(o1) 6= Æ2(o2). Note thatlo
1(o1) = lo
2(o2) together with the fa
t that o1 and o2 are dangerous implies that o1 and o2 are 
ompatibleand thus rea
hable together (using Lemma 4).The faithfulness of e
ho under Æ (proven in Claim 1, Lemma 3) then ensures that the extension (there is asingle extension be
ause D is deterministi
 in the e
ho and test phases) of these observation sequen
es byfollowing Æ to the test phase involves a faithful e
ho. The 
orre
tness of the FSA 
onstru
tion in Appendix Athen ensures that the rel-pos state 
omponent after this extension will have the value equal. The rewardstru
ture of D during the test phase then ensures that to avoid a negative reward the tile types given duringquery, Æ1(o1) and Æ2(o2), must be the same, 
ontradi
ting our 
hoi
e of o1 and o2 above and thus entailingthe lemma. 25.5.3 Proof of Claim 3 and our Main Hardness TheoremWe now �nish the proof of our main theorem by proving Claim 3 from Se
tion 5.3. We start by showing theexisten
e of a useful 
lass of pairs of dangerous observation sequen
es that are rea
hable together.Lemma 6 Given any two lo
ations l1 and l2 sharing a single bit in their binary representations, there are18



dangerous observation sequen
es o1 over 
1 and o2 over 
2 su
h that:lo
1(o1) = l1;lo
2(o2) = l2; andho1; o2i is rea
hable:Proof: It is straightforward to show that there exist dangerous observation sequen
es o1 over 
1 and o2over 
2 su
h that lo
1(o1) = l1 and lo
2(o2) = l2 as desired. In these sequen
es, both index-1 and index-2 areset throughout to the index of a single bit shared by l1 and l2. Sin
e this bit is in 
ommon, these sequen
esare 
ompatible, so by Lemma 4 they are rea
hable together. 2Lemma 7 (Claim 3) The mapping f de�ned in Lemma 5 is a 
onsistent tiling.Proof: We prove the 
ontrapositive. If the mapping f is not a 
onsistent tiling, then there must be someparti
ular 
onstraint violated by f . It is easy to show that any su
h 
onstraint is tested during the testphase if lo
1(o1) and lo
2(o2) have the appropriate values. (The faithfulness during e
ho 
laim proven inLemma 3 implies that the origin and rel-pos 
omponents on entry to the test phase will have the 
orre
tvalues for 
omparing the two lo
ations). For example, if a horizontal 
onstraint fails for f , then there mustbe lo
ations (i; j) and (i+ 1; j) su
h that the tile types hf(i; j); f(i+ 1; j)i are not in H | sin
e these twolo
ations share a bit (in fa
t, all the bits in j, at least) Lemma 6 implies that there are dangerous o1 ando2 with lo
1(o1) = (i; j) and lo
2(o2) = (i + 1; j) that are rea
hable together. During the test phase, thetile-sel-1 and tile-sel-2 state 
omponents are easily shown to be f(i; j) and f(i+1; j), and then the de�nitionof the reward fun
tion for D ensures a rea
hable negative reward. The arguments for the other 
onstraintsare similar. 2Claim 3 immediately implies that there exists a 
onsistent tiling whenever there exists a poli
y a
hievingzero expe
ted total reward. This 
ompletes the proof of the other dire
tion of our main 
omplexity result.We have thus shown that there exists a poli
y that a
hieves expe
ted reward zero if and only if there existsa 
onsistent tiling, demonstrating that DEC-MDP2 is NEXP-hard.Theorem 2 DEC-MDP2 is NEXP-hard.Corollary 1 For all m � 2, both DEC-POMDPm and DEC-MDPm are NEXP-
omplete.6 Dis
ussionUsing the tools of worst-
ase 
omplexity analysis, we analyzed two variants of de
entralized 
ontrol of Markovde
ision pro
esses. Spe
i�
ally, we proved that the �nite-horizon m-agent DEC-POMDP problem is NEXP-hard for m � 2 and the �nite-horizon m-agent DEC-MDP problem is also NEXP-hard for m � 2. Whenthe horizon is limited to be less than the number of states, the problems are NEXP-
omplete.The results have some theoreti
al impli
ations. First, unlike the MDP and POMDP problems, the problemswe studied provably do not admit polynomial-time algorithms, sin
e P 6= NEXP. Se
ond, we have drawn a
onne
tion between work on Markov de
ision pro
esses and the body of work in 
omplexity theory that dealswith the exponential jump in 
omplexity due to de
entralization (Peterson & Reif, 1979; Babai, Fortnow &Lund, 1991). 19



There are also more dire
t impli
ations for resear
hers trying to solve problems of this nature. Considerthe growing body of work on algorithms for obtaining exa
t or approximate solutions for POMDPs (e.g.,Jaakkola, Singh & Jordan, 1995; Cassandra, Littman & Zhang, 1997; Hansen, 1998; Meuleau, Kim, Kaelbling& Cassandra, 1999; Lusena, Goldsmith, Li, Sittinger & Wells, 1999; Zhang, 2001). For the �nite-horizon
ase, we now have stronger eviden
e that there is no way to eÆ
iently 
onvert a DEC-MDP or DEC-POMDPinto an equivalent POMDP and solve it using established te
hniques. This knowledge 
an provide dire
tionfor resear
h on the development of algorithms for these problems.Finally, 
onsider the in�nite-horizon versions of the aforementioned problems. It has re
ently been shownthat the in�nite-horizon POMDP problem is unde
idable (Madani, Hanks & Condon, 1999) under severaldi�erent optimality 
riteria. Sin
e a POMDP is a spe
ial 
ase of a DEC-POMDP, the 
orresponding in�nite-horizon DEC-POMDP problems are also unde
idable. In addition, be
ause it is possible to redu
e a POMDPto a two-agent DEC-MDP (simply add a se
ond \dummy" agent that observes the state but 
annot a�e
tthe state transitions and rewards obtained), the in�nite-horizon DEC-MDP problems are also unde
idable.A Des
ription of the Finite-State Automaton UsedHere we des
ribe the domain of the rel-pos state 
omponent and how the 
omponent's value evolves duringthe e
ho phase based on the bit pairs 
hosen by the agents (re
all that it remains �xed during the otherphases). The 
omponent is 
ontrolled by a deterministi
 �nite state automaton (FSA) with a state set Qof size polylogarithmi
 in n. The state set is assumed to in
lude four distinguished subsets of states: apart,equal, hor, and ver. Ea
h subset 
orresponds to a possible relation between the two agents' e
hoed tilepositions. The automaton takes as input the string of bit pairs (the alphabet for the automaton 
onsists ofthe four symbols [00℄; [01℄; [10℄; [11℄, with the �rst 
omponent of ea
h symbol representing the bit produ
edby agent 1 and the se
ond 
omponent representing the bit produ
ed by agent 2). This automaton is the 
rossprodu
t of three individual automata, ea
h of whi
h keeps tra
k of a di�erent pie
e of information about thetwo tile positions represented by the sequen
e of bit pairs. These automata are des
ribed as follows:1. Equal Tile PositionsThis automaton 
omputes whether the two tile positions produ
ed are equal or not. Consider thefollowing regular expression: ([00℄ + [11℄)�:There is a 
onstant-sized FSA 
orresponding to the above expression that, on inputs of length 2 logn,ends in an a

ept state if and only if (x1; y1) = (x2; y2), where (x1; y1) is the tile position representedby the sequen
e of bits given by agent 1, and (x2; y2) is the tile position represented by the sequen
eof bits given by agent 2.2. Horizontally Adja
ent Tile PositionsThis automaton 
omputes whether the se
ond tile position is horizontally adja
ent to the �rst tileposition by a single in
rement in the x 
oordinate. Its regular expression is as follows:[10℄�[01℄([00℄ + [11℄)� ([00℄ + [11℄) � � � ([00℄ + [11℄)| {z }log n :There is an O(log n)-sized FSA 
orresponding to the above expression that, on inputs of length 2 logn,ends in an a

ept state if and only if (x1 + 1; y1) = (x2; y2), where x1; y1; x2, and y2 are as in thedes
ription of the �rst automaton. (We note that it is not always the 
ase that a regular expressionhas a 
orresponding FSA that is only polynomially bigger. However, for all the regular expressions we
onsider this property does hold.) 20



3. Verti
ally Adja
ent Tile PositionsThis automaton 
omputes whether the se
ond tile position is verti
ally adja
ent to the �rst tile positionby a single in
rement in the y 
oordinate. Its regular expression is as follows:([00℄ + [11℄) � � � ([00℄ + [11℄)| {z }log n [10℄�[01℄([00℄ + [11℄)�:There is an O(log n)-sized FSA 
orresponding to the above expression that, on inputs of length 2 logn,ends in an a

ept state if and only if (x1; y1 + 1) = (x2; y2) where x1; y1; x2, and y2 are as in thedes
riptions of the previous two automata.We 
an take the 
ross produ
t of these three automata to get a new automaton with size O((logn)2). Leta

ept1, a

ept2, and a

ept3 be the sets of a

ept states from the three 
omponent automata, respe
tively,and let reje
t1, reje
t2, and reje
t3 be the 
orresponding sets of reje
t states. From these sets we 
onstru
tdistinguished sets apart, equal, hor, and ver of 
ross-produ
t automaton states as follows.apart = reje
t1 � reje
t2 � reje
t3.equal = a

ept1 � reje
t2 � reje
t3.hor = reje
t1 � a

ept2 � reje
t3.ver = reje
t1 � reje
t2 � a

ept3.The rest of the automaton's states 
omprise the set Q0. Let q1;0, q2;0, and q3;0 denote the start states ofthe three 
omponent automata. We de�ne the start state of the 
ross-produ
t automaton to be the stateq0 = hq1;0; q2;0; q3;0i.We now de�ne two fun
tions based on this automaton that are needed in the main body of the proof.One fun
tion takes as input the state of the automaton and a bit pair, and returns the next state of theautomaton. The se
ond fun
tion takes as input a pair of bit strings of the same length and returns the statethat the automaton will be in starting from its initial state and reading symbols formed by the 
orrespondingbits in the two strings in sequen
e.De�nition: For q 2 Q and a1; a2 2 f0; 1g, FSANEXT(q; a1; a2) = q0, where q0 2 Q is the resulting state ifthe automaton starts in state q and reads the input symbol [a1a2℄.De�nition: The fun
tion FSA is de�ned indu
tively as follows:FSA(�; �) = q0:FSA(b0 � � � bk+1; 
0 � � � 
k+1) = FSANEXT(FSA(b0 � � � bk; 
0 � � � 
k)); bk+1; 
k+1):Note that the range of FSA for inputs of length 2 logn is apart [ equal [ hor [ ver.In the proof given in Se
tion 5 we assumed that the TILING grid size n was an exa
t power of two. We notethat the proof 
an be adapted by adding two 
omponents to the 
ross-produ
t FSA des
ribed here, wherethe two new 
omponents are both FSAs over the same alphabet. The �rst new 
omponent a

epts a stringonly when both x1 and y1 (as des
ribed above) are less than n (so that the tiling lo
ation represented by(x1; y1) is in the tiling grid). The se
ond new 
omponent behaves similarly for (x2; y2). The DEC-MDP 
anthen be 
onstru
ted using the smallest power of two larger than n, but modi�ed so that whenever eithernew 
omponent of the FSA reje
ts the (faithfully) e
hoed bit sequen
es, then the pro
ess gives a zero rewardregardless of the tile types returned during query. 21



Ea
h new 
omponent 
an be viewed as an FSA over a f0,1g alphabet, be
ause ea
h fo
uses either on justthe agent 1 e
hoes or on just the agent 2 e
hoes. We des
ribe the FSA for 
he
king that x1 is less than n| 
onstru
ting the two 
omponents is then straightforward. Suppose that k = dlogne is the number of bitsin the binary representation of n, and that the bits themselves are given from least to most signi�
ant asb1 � � � bk. Suppose also that there are j di�erent bits equal to 1 among b1 � � � bk, and that these bits are atindi
es i1; : : : ; ij . We 
an then write a regular expression for dete
ting that its input of k bits from least tomost signi�
ant represents a number in binary that is stri
tly less than n:�(0 + 1)i1�10 bi1+1 � � � bk�+ �(0 + 1)i2�10 bi2+1 � � � bk�+ � � �+ �(0 + 1)ij�10 bij+1 � � � bk� :It 
an be shown that this regular expression has an equivalent FSA of size O((logn)2).B Proof of Lemma 1We assume there exists at least one 
onsistent tiling, and we sele
t a parti
ular su
h mapping f . We des
ribea poli
y Æ = hÆ1; Æ2i that a
hieves zero expe
ted reward at the initial state. Æ1 is a mapping from sequen
esof observations in 
1 to a
tions in A1, and Æ2 from sequen
es over 
2 to a
tions in A2. Only the rea
hablepart of the mapping Æ1 is spe
i�ed below | any unspe
i�ed observation sequen
e maps to the a
tion wait.We note that Æ1 and Æ2 are symmetri
.Æ1(o1) = a1 when one of the following holds:Sele
t phase: o1 = hsele
t; �; �; �; �; �; �; �i and a1 = wait.Generate phase: o1 = �hgen; �; �; �; �; �; �; �i and a1 = wait.Query phase: o1 = �hquery; �; �; �; �; �; �; �i and a1 = f(lo
1(o1)).E
ho phase: o1 = �he
ho; k; �; �; �; �; �; �i and a1 = bit(k; lo
1(o1)).Test phase: o1 = �htest; �; �; �; �; �; �; �i and a1 = wait.The lo
al poli
y Æ2 is de�ned identi
ally to Æ1 ex
ept that lo
1 is repla
ed by lo
2.We �rst 
hara
terize the set of all rea
hable states from s0 under the poli
y Æ. We then note that taking thea
tion pres
ribed by Æ from any of these states yields a reward of zero. Thus, V TÆ (s0) = 0.It is straightforward to show by indu
tion that P Æ(s0; o1; o2; s) is zero ex
ept where one of the followingpatterns applies:� s = s0 = hsele
t; 0; yes; q0; 0; 0; 0; tile-0; 0; 0; 0; tile-0i.� s = hgen; k; yes; q0; i2; v2; �; tile-0; i1; v1; �; tile-0i, where0 � k � 2 logn,(k � i1 or v1 = bit(i1; lo
1(o1))), and(k � i2 or v2 = bit(i2; lo
2(o2))).� s = hquery; 0; yes; q0; i2; v2; �; tile-0; i1; v1; �; tile-0i, where22



v1 = bit(i1; lo
1(o1)), andv2 = bit(i2; lo
2(o2)).� s = he
ho; k; o; q; i2; v2; �; t1; i1; v1; �; t2i, where0 � k � 2 logn� 1,v1 = bit(i1; lo
1(o1)),v2 = bit(i2; lo
2(o2)),t1 = f(lo
1(o1)),t2 = f(lo
2(o2)),o = yes if and only if bj = 
j = 0 for 0 � j � k � 1, with bj and 
j as in the next item, andq = FSA(b0 � � � bk�1; 
0 � � � 
k�1),with b0 � � � bk�1 and 
0 � � � 
k�1 the least signi�
ant bits of lo
1(o1) and lo
2(o2), respe
tively.� s = htest; �; o; r; �; �; �; t1; �; �; �; t2i, whereo = yes if and only if lo
1(o1) = (0; 0) and lo
2(o2) = (0; 0),r = FSA(lo
1(o1); lo
2(o2)),t1 = f(lo
1(o1)), andt2 = f(lo
2(o2)).It 
an then be shown that the reward for any a
tion pres
ribed by the poli
y Æ given any of these rea
hablestate/observation sequen
e 
ombinations is zero given that f is a 
onsistent tiling. 2C Proof of Lemma 2We need some new notation to 
arry out this proof. Given a state s, a state 
omponent 
 and 
orrespondingvalue v from the domain of 
, we de�ne the state \s with 
 set to v" (written s[
 := v℄) to be the state s0that agrees with s at all state 
omponents ex
ept possibly 
 and has value v for state 
omponent 
. We alsowrite o1;j for the �rst j observations in the sequen
e o1, and likewise o2;j and o 02;j .For any state sj rea
hable while observing ho1;j ; o2;ji, we de�ne a state s0j that we will show is rea
hablewhile observing ho1;j ; o 02;j i, as follows:s0j = sj [index-1 := index-1(o 02;j )℄[value-1 := value-1(o 02;j )℄[tile-sel-2 := tile-sel-2(o 02;j )℄:We 
an now show by an indu
tion on sequen
e length j that for any state sj su
h that P Æ(s0; o1;j ; o2;j ; sj)is nonzero, then P Æ(s0; o1;j ; o 02;j ; s0j) is also nonzero. From this we 
an 
on
lude that ho1; o 02 i is rea
hable,as desired.For the base 
ase of this indu
tion, we take j to be 1, so that the observation sequen
es involved all havelength 1, ending in the generate phase with index equal to zero. Inspe
tion of the de�nition of the transitionprobabilities P shows that 
hanging index-1 and value-1 arbitrarily has no e�e
t on rea
hability.For the indu
tive 
ase, we suppose some state sj is rea
hable by ho1;j ; o2;ji, and that state s0j is rea
hableby ho1;j ; o 02;j i. Let a1 be Æ(o1;j), a2 be Æ(o2;j), and a02 be Æ(o 02;j ). We must show that for any state sj+1su
h that P (sj ; a1; a2; sj+1) is nonzero, P (s0j ; a1; a02; s0j+1) is also nonzero, for s0j+1. This follows from thefollowing observations: 23



� When phase(sj) is sele
t or generate, neither agent 2's a
tion a2 nor the values of index-1(sj) orvalue-1(sj) have any a�e
t on P (sj ; a1; a2; sj+1) being nonzero, as long as either index-1 is not equalto j or pos-bit-1(sj+1) equals value-1(sj). However, this last 
ondition is ensured to hold of the index-1and value-1 
omponents of sj and s0j by the 
ompatibility of o 02 with o1.� When phase(sj) is query, the a
tion a02 must equal the tile-sel-2 state 
omponent of s0j+1 by the de�ni-tions of s0j+1 and \index variant," and 
hanges to the index-1 and value-1 
omponents have no e�e
ton P (sj ; a1; a2; sj+1) being nonzero during the query phase.� When phase(sj) is e
ho, the a
tions a2 and a02 must be a faithful e
ho of the lo
ation address bitindi
ated by the index state 
omponent (sin
e we have assumed as part of out indu
tive hypothesisthat Æ is faithful during e
ho for at least j bits), and this bit's value does not vary between o2 and o 02be
ause if the observation sequen
es rea
h the e
ho phase we have the assumption that these are same-address variants. Thus a2 = a02 during e
ho. Again, 
hanges to the index-1 and value-1 
omponentshave no e�e
t on P (sj ; a1; a2; sj+1) being nonzero during the e
ho phase.2A
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