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Abstract

Many stochastic planning problems can be represemsng Markov Decision Processes (MDPs).
A difficulty with using these MDP representatiorsthat the common algorithms for solving them ran i
time polynomial in the size of the state space, kehthis size is extremely large for most real-woplién-
ning problems of interest. Recent Al research rddrassed this problem by representing the MDP fiaxca
tored form. Factored MDPs, however, are not amenéblraditional solution methods that call for ex-
plicit enumeration of the state space. One familiay to solve MDP problems with very large statasps
is to form a reduced (or aggregated) MDP with tlsame properties as the original MDP by combining
“equivalent” states. In this paper, we discuss gpp this approach to solving factored MDP problems
we avoid enumerating the state space by descrilzinge blocks of “equivalent” states in factored rigr
with the block descriptions being inferred directtpm the original factored representation. Theutéag
reduced MDP may have exponentially fewer states the original factored MDP, and can then be solved
using traditional methods. The reduced MDP foungetels on the notion of equivalence between states
used in the aggregation. The notion of equivaledisesen will be fundamental in designing and analgzi
algorithms for reducing MDPs. Optimally, these algfams will be able to find the smallest possible-r
duced MDP for any given input MDP and notion of @éealence (i.e. find the “minimal model” for the in-
put MDP). Unfortunately, the classic notion of gagquivalence from non-deterministic finite state-m
chines generalized to MDPs does not prove usefid. phesent here a notion of equivalence that is thase
upon the notion of bisimulation from the literatuva concurrent processes. Our generalization ofrhita-
tion to stochastic processes yields a non-triviaion of state equivalence that guarantees thentgdtpol-
icy for the reduced model immediately induces aresponding optimal policy for the original model.itW
this notion of state equivalence, we design andhyaaan algorithm that minimizes arbitrary factored
MDPs and compare this method analytically to pregi@lgorithms for solving factored MDPs. We show
that previous approaches implicitly derive equivede relations that we define here.

1 Introduction

Discrete state planning problems can be described semanticglly btate-
transition graph (omode), where the vertices correspond to the states of the system, and
the edges are possible state transitions resulting from actidreseTmodels, while often
large, can be efficiently represented, e.g. with factoring, without enumeraengjates.

Well-known algorithms have been developed to operate directly on thedels)
including methods for determining reachability, finding connecting pathd computing



optimal policies. Some examples are the algorithms for solvingkMadecision proc-
esses (MDPs) that are polynomial in the size of the stpéee [Puterman, 1994]. MDPs
provide a formal basis for representing planning problems that invadtierss with sto-
chastic results [Boutilieet al., 1999]. A planning problem represented as an MDP is
given by four objects: (1) a space of possible world states, €aae of possible actions
that can be performed, (3) a real-valued reward for each acikentin each state, and
(4) a transition probability model specifying for each actioand each statp the distri-
bution over resulting states for performing actiom statep.

Typical planning MDPs have state spaces that are astronoyniagdle, exponen-
tial in the number of state variables. In planning the assembdy d00-part device, po-
tential states could allow any subset of the parts to be “irctbget”, giving at least 2%
states. In reaction, Al researchers have for decades rddorfactored state representa-
tions—rather than enumerate the states, the state space iBespedth a set of finite-
domain state variables. The state space is the set of possdifgnments to these vari-
ables, and, though never enumerated, is well defined. Representiag-aemsition dis-
tributions without enumerating states, using dynamic Bayesian nigwWbiean and Ka-
nazawa, 1989], further increases representational efficiency eTinetsvorks exploit in-
dependence properties to compactly represent probability distributions.

Planning systems using these compact representations must adwphaig that
reason about the model at the symbolic level, and thus reason abauglangps of states
that behave identically with respect to the action or propertiegundnsideration, e.g.
[McAllester and Rosenblitt, 1991][Drapet al, 1994]. These systems incur a significant
computational cost by deriving and re-deriving these groupingsatedly over the
course of planning. Factored MDP representations exploit sinidarih state behaviors
to achieve a compact representation. Unfortunately, this increasenipactness repre-
senting the MDP provably does not always translate into a sinmtaease in efficiency
when computing the solution to that MORBittman, 1997]. In particular, states grouped
together by the problem representation may behave differegnvaction sequences are
applied, and thus may need to be separated during solution—leading tadl songerive
further groupings of states during solution. Traditional operatioesareh solution
methods do not address these issues, applying only to the explicit original MD&.mod

Recent Al research has addressed this problem by giving dlgmithat in each
case amount to state space aggregation algorithms [Baum and $¢inh@P98][Boutilier
and Dearden, 1994][Lin and Dean, 1995] [Boutilegral., 1995b] [Boutilier and Poole,
1996][Dearden and Boutilier, 1997][Dean and Givan, 1997][Dednal., 1998]—
reasoning directly about the factored representation to find blockstaiés that are
equivalent to each other. In this work, we reinterpret these appesdohterms of parti-
tioning the state space into blocks of equivalent states, and thenrgugdsmaller ex-
plicit MDP, where the states in the smaller MDP are the kdoaf equivalent states from
the partition of the original MDP state space. The smaller M&ia be shown to be
equivalent to the original in a well-defined sense, and is amenaliladitional solution
techniques. Typically, an algorithm for solving an MDP that takegaatage of an im-
plicit (i.e. factored) state-space representation, such as [Bouwiliak, 2000], can be al-



ternatively viewed as transforming the problem to a reduced MR ,tlaen applying a
standard MDP-solving algorithm to the explicit state space of the reduced MDP

One of our contributions is to describe a useful notion of state eqneal This
notion is a generalization of the notion bisimulationfrom the literature on the seman-
tics of concurrent processes [Milner, 1989][Hennessy and Milner, 198%jefalized to
the stochastic case for MDP states, we call this equivaleslaéionstochastic bisimilar-
ity. Stochastic bisimilarity is similar to a previous notion from grebabilistic transition
systems literature [Larson and Skou, 1991], with the differenaegatkie incorporation of
reward.

We develop an algorithm that performs the symbolic manipulations saceto
group equivalent states under stochastic bisimilarity. Our alyoris based on the itera-
tive methods for finding a bisimulation in the semantics of concumpentesses literature
[Milner, 1989][Hennessy and Milner, 1985]. The result of our algoritlmraimodel of
(possibly) reduced size whose states (called blocks or aggggadrrespond to groups
of states in the original model. The aggregates are describebatigally. We prove that
the reduced model constitutes a reformulation of the original modgl.optimal policy
in the reduced MDP generalizes to an optimal policy in the original MDP.

If the operations required for manipulating the aggregates can leaaone in
constant time then our algorithm runs in time polynomial in the nundbestates in the
reduced model. However, the aggregate manipulation problems, with genepalspr
tional logic as the representation are NP-hard, and so, genspmbking, aggregate ma-
nipulation operations do not run in constant time. One way to attempt ke ittee ma-
nipulation operations fast is to limit the expressiveness of gpeaesentation for the ag-
gregates—when a partition is called for that cannot be reptedewe use some refine-
ment of that partition by splitting aggregates as needed tovgitéyn the representation.
Using such representations, the manipulation operations are generally tractable,
however the reduced MDP state space may grow in size due extheeaggregate split-
ting required. Previous algorithms for manipulating factored modefgiaitly compute
reduced models under restricted representations. This issuetteadsnteresting trade-
off between the strength of the representation used to define tegaigs (affecting the
size of the reduced MDP), and the cost of manipulation operations. Vépagsentations
lead to poor model reduction, but expressive representations lead tosexpeperations
(as shown, e.g., in [Deaat al., 1997][Goldsmith and Sloan, 2000]).

The basic idea of computing equivalent reduced processes hagjitssan auto-
mata theory [Hartmanis and Stearns, 1966] and stochastic pred&sseaeny and Snell,
1960], and has been applied more recently in model checking in compdest-aerifica-
tion [Burchet al., 1994][Lee and Yannakakis, 1992]. Our model minimization algorithm
can be viewed as building on the work of [Lee and Yannakakis, 1992] by gézrieg
non-deterministic transitions to stochastic transitions and introducing a notiotityf ut

We claim a number of contributions for this paper. First, we devalowtion of
equivalence between MDP states that relates the literaturesitomata theory, concur-
rent process semantics, and decision theory. Specifically, we deaalspful variant of
the notion of bisimulation, from concurrent processes, for MDPs. Secoadhaw that



the mechanisms for computing bisimulations from the concurrent psesel#erature
generalize naturally to MDPs and can be carried out on fact@eesentations, without
enumerating the state space. Third, we show that state aggre@atfactored form), us-
ing automatically detected stochastic bisimilarity, resuita (possibly) reduced model,
and we prove that solutions to this reduced model (which can be foumdtraitional
methods) apply when lifted to the original model. Finally, we calfgfcompare previous
algorithms for solving factored MDPs to the approach of compuénginimal model
under some notion of state equivalence (stochastic bisimilarity i@finement thereof)
and then applying a traditional MDP-solving technique to the minimal model.

Section 2 discusses the relevant background material. Section {sresene
candidate notions of equivalence between states in an MDP, includicigastec bisimu-
lation, and Section 4 builds an algorithm for computing the minimal mémtehn MDP
under stochastic bisimulation. Section 5 compares existing alg@itbnworking with a
factored MDP to our approach. Section 6 covers extensions to this twdrindle large
action spaces and to select reduced models approximatelyois&cshows brief empiri-
cal results, and the remaining section draws some conclusions. dbfs @f our results
appear in the appendix, except where noted in the main text.

2 Background Material
2.1 Sequential Decision Problems

2.1.1 Finite Sequential Machines

A non-deterministic finite sequential machi(feSM) F (adapted from [Hartmanis
and Stearns, 1966]) is a tupl®, A, O, T, R whereQ is a finite set of stated\ is a finite
set of inputs (actions), and is a set of possible outputs. The transition functidnis a
subset ofQ x A x Q that identifies the allowable transitions for each input in estette.
The output functionR, is a mapping fronQ to O giving for each state the output gener-
ated when transitioning into that state. We say that a stedqeencey, ..., G« iS possible
under inputsoy, ..., ax from A whenT contains all tuples of the forrgy., ox, x). We
say thatqy, ..., gk can generate output sequergge..., ok whenR maps eacluy for x > 0
to o.. We can then say thak, ..., ok is a possible output sequence when following input
sequenceyy, ..., ok from start statey if 04, ..., 0x can be generated from some state se-
qguence, ..., gk possible undew, ..., ok Finally, we denote an input sequencesaan
output sequence as and use— jto denote generation so that>¢; ¢ means that output
sequence is possible in FSM starting at stateunder input sequencg

2.1.2 Markov Decision Processes

A Markov decision procesMDP) M is a quadrupléQ, A, T, Rin whichQ s a
finite state space is a finite action spacd, is a mapping fronQ x A x Q to [0,1], andR
is a reward function assigning a non-negative real-numberedyutlieach state iQ.!

! More general reward function forms are often usear. example, one could hawbe a mapping fron®
x A x Q to real values, in which case it is the transitidrat carries the reward, not being in a given state
Our method generalizes to these more general refuarctions However we adopt state based reward to



Figure 1. A graph representation of a Markov decision process inhidie {A, B, C,
D}, A={a, b} (action ais shown with a solid lineb with a dashed line)R(A) = R(D)
=1, R(B) = R(C) = 0, and the transition probabilitie3)(are given on the associated
transitions. The probability of a transition is omitted when that pbdltg is one or
zero and deterministic self-loop edges are also omitted, to improve readability

Transitions are defined by so thatVi, j € Q, andVa € A, T(i, o, j) equals P11 =] |

Xi =i, Uy = a), where the random variablé§ andU; denote the state of the system and
the action taken at timg respectively. Figure 1 shows an MDP represented as a directed
graph. The nodes are labeled with the states they represent aitnghe reward as-
signed to that state. The edges represent possible transitionsdati¢h the action and
probability of that transition given the action and originating sthtehis paper, we refer

to this graph representation and to an MDP in general m®aelfor the underlying dy-
namics of a planning problem [Boutiliet al., 1999].

An MDP is essentially an FSM for which the output §2ts the real number8g,
and transition probabilities have been assigned. However, in FSMs, iaputsadition-
ally sequences of input symbols (actions) to be verified, wisenedMDPs “inputs” are
usually specified by giving policy to executeA policy = for an MDP is a mapping from
the state space to the action spac€)—A, giving the action to select for each possible
state. The set of all possible policies is dendiedlo compare policies, we will employ
value functions \Q— R mapping states to real valué&he set of value functiony/, is
partially ordered by domination; <gomV2, Which holds whem(i) < v,(i) at every state

2.1.3 Solving Markov Decision Problems

A Markov Decision Problem (also abbreviated MDP by abuse of notat®on)
Markov decision process, along with ahjective functiorthat assigns a value function to
each policy. In this paper, we restrict ourselves to one pdaticobjective function: ex-
pected, cumulative, discounted reward, with discount yathere 0 <y < 1 [Bellman,
1957][Howard, 1960][Puterman, 1994]This objective function assigns to each policy

simplify the presentation.

2 Other objective functions such as finite-horizaal reward or average reward can also be usedoand
approach can easily be generalized to those obgftinctions.



the value function measuring the expected total reward receroed éach state, where
rewards are discounted by a factorycdit each time step. The value functiepassigned
by this objective function to policy is the unique solution to the set of equations

V(i) = R(0) +v Z;T(, m(i), j) vx()-
An optimal policyn* dominates all other policies in value at all states, andattiseorem
that an optimal policy exists. Given a Markov Decision Problem, aal g5 typically to
find an optimal policyr™ or its value functionv,-. All optimal policies share the same
value function, called theptimal value functiornd writtenv*

An optimal policy can be obtained from by a greedy one step look-ahead at
each state—the optimal action for a given state is the actidmba&imizes the weighted
sum of the optimal value at the next states, where the weigattha transition probabili-
ties. The functiorv* can be found by solving a system of Bellman equations

V(i) = R(i) + max, y 2, T(i, & j) V().
Value iteration is a technique for computingin time polynomial in the sizes of

the state and action sets (but exponential4in [Puterman, 1994][Littmaret al., 1995],
and works by iterating the operatbion value functionsgefined by

Lv(i) = R(i) + maX,eay 2, T(, a, j) V().
L is a contraction mappinge., 3(0<A<1)s.tVuveV
llLu-Lvll <& llu-vil wherellvIl = max ()],

and has fixed point*. The operatoL is calledBellman backupRepeated Bellman back-
ups starting from any initial value function converge to the optimal value function.

2.2 Partitions in State Space Aggregation

A partition P of a setS={sy, Sy, ..., S} is a set of sets By, By, ..., By} such that
eachB; is a subset of, the B; are disjoint from one another, and the union of all Bie
equalsS. We call each member of a partitiontdock A labeled partitionis a partition
along with a mapping that assigns to each mentharlabelb;. Partitions define equiva-
lence relations—elements share a block of the partition if and dntigey share an
equivalence class under the relation. We now extend some of the kepsassociated
with FSM and MDP states to blocks of states. Given an MDB (Q, A, T, R), a stata <
Q, a set of stateB — Q, and an actiom. € A, theblock transition probabilityfrom i to B
undera, written T(i, o, B), by abuse of notation, is given by(i, o, B) = X T(i, o, j).
We say that a set of statBs— Q has a well-defined reward if there is some real number
such that for every € B, R(j) =r. In this case we writ&(B) for the valuer.

Analogously, consider FSM =(Q, A, O, T, R), stateie Q, set of state® c Q,
and actiomx € A. We say thélock transition from i to B is allowed undexr whenT(i, a,
]) is true for some statein B, denoted with the propositiofi(i, a, B), and computed by
Vies T(i,a,]). We say a set of states has a well-defined outpatO if for everyj € B,
R(j) = 0. Let R(B) be both the value and the proposition that the output Bis defined.



Given an MDPM =(Q, A, T, R) (or FSMF =(Q, A, O, T, R)), and a patrtitiorP of
the state spac®, a quotient modelM /P (or F/P for FSMs) is any model of the form
(P,A T, R (or (P, A O, T", R’) for FSMs) where for any blockB andC of P, and ac-
tion a, T'(B, a, C) = T(i, a, C) andR’(B) = R(i) for somei in B. For statd € Q, we de-
note the block of to whichi belongs ag/P . In this paper, we give conditions ¢hthat
guarantee the quotient model is unique and equivalent to the original yartklgive
methods for finding sucPk. We also writeM / E (likewise, F / E for FSMs), whereE is
an equivalence relation, to denote the quotient model relative to thiigpamduced by
E (i.e. the set of equivalence classes urlgrandi/E for the block of staté underE.

A partition P’ is arefinementof a partitionP, written P’ « P if and only if each
block of P’ is a subset of some block & If, in addition, some block oP’ is a proper
subset of some block d&?, we say thaP’ is finer thanP, written P’ « P. The inverse of
refinement iscoarsening(») and the inverse of finer isoarser(»). The termsplitting re-
fers to dividing a blockB of a partitionP into two or more sub-blocks that replace the
block B in partitionP to form a finer partitiorP’. We will sometimes treat an equivalence
relationE as a partition (the one induced By and refer to the “blocks” oE.

2.3 Factored Representations

2.3.1 Factored Sets and Partitions

A setSis represented ifactored formif the set is specified by giving a sétof
true/falsé variables, along with a Boolean formula over those variables$) tatSis the
set of possible assignments to the variables that are consisitbnthe given formuld.
When the formula is not specified, it is implicitly “true” (te under any variable assign-
ment). WherSis given in factored form, we say th&is factored A factored partitionP
of a factored se$is a partition ofSwhose members are each factored using the same set
of variables as are used in factoriSg Except where noted, partitions are represented by
default as a set of mutually inconsistent DNF Boolean formuldere each block is the
set of truth assignments satisfying the corresponding formula.

Because we use factored sets to represent state spades paper, we call the
variables used in factoringtate variablesr, alternatelyfluents.One simple type of par-
tition is particularly useful here. This type of partition digjuishes two assignments if
and only if they differ on a variable in a selected suliSedf the variables ir-. We call
such a partition dluentwisepartition, denoted Fluentwigg(). A fluentwise partition can
be represented by the g€t of fluents, which is exponentially smaller than any list of the
partition blocks E.qg, if F = {X;, X;, X3} and F' = {Xy, X5} then the partitionFluentwiseF’)
has four blocks described by the formulEga Xa, Xy A =Xz, =X A X, @aNd—X; A —Xo.

% For simplicity of presentation we will consider ey variable to be Boolean although our approaah ca
easily be generalized to handle any finite-domaniable.

* It follows that every factored set is a set of iadnle assignments. Any set may be trivially viewtais way

by considering a single variable ranging over that (if non-Boolean variables are allowed). Intéires
factorings are generally exponentially smaller tieaumerations of the set.

® Various restrictions on the form of the formulasatl to various representations (e.g. decision Yrees



2.3.2 Factored Mappings and Probability Distributi®

A mapping from a seK to a setY can be specified in factored form by giving a
labeled partition ofX, where the labels are elementsYofA conditional probability dis-
tribution Pr@|B) is a mapping from the domain & to probability distributions over the
domain ofA, and so can be specified by giving a labeled partition—this factored
conditional probability distributionA joint probability distribution over a set of discrete
variables can be represented compactly by exploiting conditional indepeies as a
Bayesian belief network [Pearl, 1988]. Here, equivalent compactneshisved as fol-
lows. First, the joint distribution can be written as a product of coowl#l distributions
using the chain rule (for any total ordering of the variabl&&®xt, each of the conditional
distributions involved can be simplified by omitting any conditioningiables that are
irrelevant due to conditionally independence. Finally, the simplifiestriiutions are
written in factored form. A joint distribution so written is catl afactored joint probabil-
ity distribution We show an example of such a factored joint distribution in Figure 2.

2.3.3 Factored Markov Decision Processes

Factored MDPs can be represented using a variety of approachesljmgcProb-
abilistic STRIPS Operators (PSOs) [Hanks, 1990][Hanks and McDiyml994]
[Kushmericket al., 1995] and 2-stage Temporal Bayesian Networks (2TBNs) [Dean and
Kanazawa, 1989]. For details of these approaches, we refd@datifier et al., 1999].
Here, we will use a representation, similar in spirit, but fongson the state-space parti-
tions involved. An MDPM =(Q, A, T, R can be given in factored form by giving a quad-
ruple(F, A, T, Re),® where the state spa€gis given in factored form by the set of state
variablesF (with no constraining formula). The state-transition distributidra factored
MDP is specified by giving, for each fluefitand actiona, a factored conditional prob-
ability distributionTg (o, f) representing the probability thats true after takingx, given
the state in which the action is takeffefa., T ) is’ a partition of the state space, where
two states are in the same block if and only if they resulthie $ame probability of set-
ting f to true whena is applied, and the block is labeled with that probability. The un-
factored transition probabilitieH(i, o, j) can be extracted from this representation as

T(@,a,])= HIabeIF(i,a,f) H(l—labeIF(i,a,f))
{HiH} {f=ih}
wherej(f ) is true if and only if the fluent is assigned true by stajeandlabek(i, o, f)
gives the label assigned to the block containirgest by T (o, f ). We note that to use
this factored representation, we must have thafpib&-transition fluent values are inde-
pendent of each other given the pre-transitionéita that the probability of arriving at
a given state is the product of the probabilities@ciated with each fluent value for that

®We discuss factored action spaces further in adi1, and synchronic effects in Section 6.3.

" By our definition of “factored conditional probdly distribution”

8 Factored representations can also be designedtieat dependence between post-transition fluests (
called “synchronic effects”). For simplicity of psentation here we disallow such dependence, butige
cuss the ramifications of allowing dependence lateGection 6.3.
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Figure 2. A Bayesian network and decompositiontad joint probability distribution
over the variables in the network based on the mhale and the conditional inde
pendencies implied by the network.

state. The reward functioR: of a factored MDP is a factored mapping from stdtie real
numbers—i.e., a labeled factored partition of ti&tes space where each label gives the
reward associated with any state in that block. Tstates are in the same block &f if
and only if they yield the same immediate reward.

3 Equivalence Notions for State Space Aggregation

In this section, we discuss state equivalence matibat aim to capture when two
states behave identically for all purposes of iatr We first consider some simple defi-
nitions and their shortcomings, before defining @ppropriate notion. The definitions
here are independent of the MDP representationaaednspired by work in concurrent
processes that uses unfactored state spaces; iogipbe contribution is to connect this
work to factored state spaces, providing naturgbathms for solving factored MDPs.

3.1 Simple Equivalence Notions for Markov Decision Processes

In this section, we define two simple notions ofuégalence between states in an
MDP. We argue here that these notions both equatesthat we must treat differently,
and so are too coarse. The first of these notiena stochastic generalization aftion-
sequence equivalencea classic equivalence notion for finite sequentmachines
[Hartmanis and Stearns, 1966]. Llet=(Q, A, O, T, R andF’ =(Q’, A, O, T’, R’) be two
FSMs over the same input and output sets. The siatd F andj of F' are action-
sequence equivalent if and only if for every inm@quence, the same set of output se-
guences can be generated undefrom either state or statg, i.e.,

VE{OIE—ri0}={ 0|E—Fj 0}

This equivalence notion also naturally appliesvo states from the same FSM.

We now generalize this notion, for the stochastse, to an equivalence notion
between states in MDPs. Tlgstribution over reward sequencassociated with a given
MDP assigns to each sequence of actians..., o and starting statq a probability dis-
tribution over lengthk sequences of real values, ..., rx. This distribution gives the
probability of obtaining the sequence of rewargs..., rx when starting from statg and
performing action sequeneg, ..., ox. LetM =(Q, A, T, R and MDPM’ =(Q’, A, T,



R’ be two MDPs with the same action space. The statdsM andj of M’ areaction-
sequence equivalerftand only if for every sequence of possible aci$ oy, ..., an, for
anyn, the distributions over reward sequencesifor M andj in M’ are the same. Note
that this definition applies naturally to two stateithin the same MDP as well.

FSMs are generally used to map input sequencestjoud sequences. However,
because MDPs are typically used to represent problen which we seek an effective
policy (rather than action sequence), action-seqeesquivalence is not an adequate
equivalence notion for MDP state aggregation fa flurpose of constructing equivalent
reduced problems. This is because a policy is &bleespond to stochastic events during
execution, while a sequence of actions cannot.drtipular, two MDP states may be ac-
tion-sequence equivalent and yet have differenti@glunder some policies and even dif-
ferent optimal values. We show an example of suchM®P in Figure 3 where the states
i andi’ have the same distribution over reward sequengesvery action sequence, kbut
has a better optimal value thdn This difference in optimal value occurs becausé-p
cies are able to respond to different states witfecent actions and thus respond to sto-
chastic transitions based on the state that reddtisvever, action sequences must choose
the same sequence of actions no matter which sgtichi@ansitions occur. In the figure, a
policy can specify that action, is best in statg¢;, while actionas is best in statg¢,—the
policy thus gains an advantage when starting fréaes that is not available when start-
ing from state’. Action sequences, however, must commit to thérerstequence of ac-
tions that will be performed at once and thus fstdtes andi’ equally attractive.

The failure of action-sequence equivalence to sapastates with different opti-
mal values suggests a second method for determstaig equivalence: directly compar-
ing the optimal values of states. We call this oaotioptimal value equivalenceViDP
stated andj are optimal value equivalent if and only if theyJeathe same optimal value.

Optimal value equivalence also has substantialtsbarings. States equivalent to
each other under optimal value equivalence may leeely different dynamics with
respect to action choices. In general, an optingdicy differentiates such states. In some
sense, the fact that the states share the sammalptalue may be a “coincidence”. As a
result, we have no means to calculate equivalemzieuthis notion, short of computing
and comparing the optimal values of the states—diute an optimal policy can be found
by greedy one-step look-ahead from the optimal gaJicomputing this equivalence rela-
tion will be as hard as solving the original MDPutthermore, we are interested in aggre-
gating equivalent states in order to generate aiced MDP. While the equivalence
classes under optimal value equivalence can ses\tkeastate space for a reduced model,
it is unclear what the effects of an action fronthuan aggregate state should be—the ef-
fects of a single action on different equivalerdtsts might be entirely different. Even if
we manage to find a way to adequately define tHeat$ of the actions in this case, it is
not clear how to generalize a policy on a reducextiel to the original MDP.

Neither of these equivalence relations sufficeswideer, the desired equivalence
relation will be a refinement of both of these:to states are equivalent, they will be
both action sequence equivalent and optimal valygvalent. To see why, consider the
proposed use for the equivalence notion, namelgdgregate states defining a smaller

10



Figure 3. An MDP where action sequence equivalemorlld find i and i’ to be
equivalent even though they have different optivellies. Any edge not labeled is dé
terministic and deterministic self-loops are ontttdransitions involving actiorn,
are shown with a solid edge while those involvimgis shown with a dotted edge.
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equivalent MDP that we can then solve in order emegralize that solution to the larger
original MDP. For the reduced MDP to be well defthehe reward value for all equiva-
lent states must be equal; likewise, the transitistributions for all equivalent states and
any action must be equal (at the aggregate levdlus, the desired equivalence relation
should only equate states that are both action esecgiand optimal value equivalent (the
former is proved by induction on sequence lengttl e latter by induction on horizon).

3.2 Bisimulation for Non-deterministic Finite Sequential Machines

Bisimulation for FSM states captures more statepprties than is possible using action

sequence equivalence. Bisimulation for concurrentesses [Park, 1981] generalizes a

similar concept for deterministic FSM states froHgtmanis and Stearns, 1966].
LetF=(Q,A O, T,R andF' = (Q’, A O, T, R’) be two FSMs over the same in-

put and output spaces. A relati&z Q x Q' is a bisimulationif eachi € Q (andj € Q)

is in some pair irE, and whenevek(i, j) then the following hold for all actiona in A,

1. R()=R(),

2. fori’ inQs.t.T(i, a, i), thereis g’ in Q" s.t.E(I’, ") andT’(j, ., '), and conversely,

3. forj inQ’ s.t.T'(j, o, ) ), thereisan’ in Qs.t.E(’,j ) andT(i, a, i’).

We say two FSM statesandj arebisimilar if there is some bisimulatioB between their

FSMs in whichB(i, j) holds. Bisimilarity is an equivalence relatiotself a bisimulation.
The reflexive symmetric transitive closure of anysibulation between two

FSMs, restricted to the state space of either F®Mgan equivalence relation which par-

titions the state space of that FSM. The bisimalatcan be thought of as a one-to-one

mapping between the blocks of these two partitigmse for each FSM) where the two

blocks are related if and only if some of their mieens are related. All block members

are bisimilar to each other and to all the stateshe block related to that block by the

bisimulation. Next, an immediate consequence ofthie®ry of bisimulation [Park, 1981].

11



Theorem 1: FSM states related by a bisimulation are actionasege equivalerit.

We note that optimal-value equivalence is not defiior FSMs.

Aggregation algorithms construct a partition of thtate spac€) and aggregate
the states in each partition block into a singlast(creating one aggregate state per parti-
tion block) in order to create a smaller FSM witimdar properties. When the partition
used is due to a bisimulation, the resulting aggtegstates are action-sequence equiva-
lent to the corresponding states of the originaM=S he following theorem is a non-
deterministic generalization of a similar theoreiman in [Hartmanis and Stearns, 1966].

Theorem 2: Given an FSMF =(Q, A, O, T, R) and an equivalence relatidthc Q x Q
that is a bisimulation, there is a unique quotiemching-/ E and each statein Q is
bisimilar to the staté/E in F/E.*°

[Hennessy and Milner, 1985] show that bisimulatmaptures exactly those prop-
erties of FSM states which can be described in Hssg-Milner Modal Logic (HML)**
We briefly define this logic here as an aside—werah build on this aspect of bisimula-
tion here. The theorem below states that HML capregs exactly those properties that
can be used for state aggregation in the factor8#1Fnethods we study. Following
[Larson and Skou, 1991f the formulasy of HML are given by the syntax:

v i=True | False |d, o]y | <o, 0>y | (w1 v w2) | (W1 A y2)

The satisfaction relation |= v between a statein an FSMF and a HML formulay is
defined as usual for modal logics and Kripke mod@lsus,i |= <o, 0>y whenevejy |= vy
for somej whereT(i, «, j) andR(j) = o, and dually,i |= [o,,0]w wheneverT(i, a, j) and
R()) = oimpliesj |=y.

Theorem 3:[Hennessy and Milner, 1985] Two stateandj of an FSMF are bisimilar
just in case they satisfy exactly the same HML fotes™
3.3 Stochastic Bisimulation for Markov Decision Processes

In this section, we define stochastic bisimilarftr MDPs as a generalization of
bisimilarity for FSMs, generalizing “output” to “meard” and adding probabilities. Sto-
chastic bisimilarity differs from bisimilarity infat transition behavior similarity must be

° For space reasons, we do not repeat the prodfisfresult.

1% For space reasons, we do not repeat the prodfisfresdult.

™ We note that the semantics of concurrent processek deals with domains that are generally infinit
and possibly uncountable. Our presentation for ESMthus a specialization of that work to finiteate
spaces.

2 HML and the corresponding bisimulation notion arermally defined for sequential machines with no
outputs, where the only issue is whether an actiequence is allowed or not. We make the simplesgen
alization to having outputs in order to ease thastouction of the MDP analogy and to make the relat
ship between the literatures more apparent.

13 For space reasons, we do not repeat the prodfisfresult.
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measured at the equivalence class (or “block”) levaisimilar states must have the same
block transition probabilities to each block of fisilar” states.

The i/E notation generalizes to any relatithc Q x Q’. Define i/E be the
equivalence class afunder the reflexive, symmetric, transitive closofeE, restricted to
Q, wheni € Q (restrict toQ’ wheni € Q’). The definitions are identical whda is an
equivalence relation i@ x Q.

LetM=(Q, A T, RyandM =(Q’, A, T, R’) be two MDPs with the same action
space, and leE = Q x Q' be a relation. We say thd is a stochastic bisimulatio if
eachi € Q (andj € Q) appears in some pair i&, and, whenevekE(i, j), both of the fol-
lowing hold for all actionsx in A,

1. R(i/E)andR’( j/E) are well defined and equal to each other.
2. Forstate$ in Q, andj’ in Q' s.t.E(i",j), T(i,o,iE)=T"(j,a, j'/E).

See Section 2.2 for the definition af(i,a,B) for a block B. We say that two MDP
states andj arestochastically bisimilaif there is some stochastic bisimulation between
their MDPs which relates andj. Note that these definitions can be applied ndlyra
when the two MDPs are the same. This definitiorctligsely related to the definition of
probabilistic bisimulationfor probabilistic transition systems (MDPs with muility or
reward specified) given in [Larson and Skou, 1991].

Theorem 4: Stochastic bisimilarity restricted to the states abfsingle MDP is an
equivalence relation, and is itself a stochastgirnilation from that MDP to itselt?

A stochastic bisimulation can be viewed as a bi@ttbetween corresponding
blocks of partitions of the corresponding statecgsa So two MDPs will have a bisimula-
tion between them exactly when there exist pamisioof the two state spaces whose
blocks can be put into a one-to-one correspond@neserving block transition probabili-
ties and rewards. Stochastic bisimulations thatespaivalence relations have several de-
sirable properties as equivalence relations on Mix@es-°

Theorem 5: Any stochastic bisimulation that is an equivalemekation is a refinement
of both optimal value equivalence and action segeszquivalence.

We are interested in state space aggregation amsighimarily in equivalence re-
lations. The following theorem ensures that we camstruct an equivalence relation
from any bisimulation that is not already an equérece relation.

14 Stochastic bisimulation is also closely relatedhe substitution propertyf finite automata developed in
[Hartmanis and Stearns, 1966] and the notiotuafpabilityfor Markov chains [Kemeny and Snell, 1960].
5 We note that the proofs of all the theorems préserin this paper, except where omitted and expici
noted, are left until the appendix for sake of rahiity.

181t is possible to give a stochastic modal logic those properties of MDP states that are discrated by
stochastic bisimilarity. For an example of a clgsetlated logic that achieves this goal for probistic
transition systems, see the probabilistic modaildagven in [Larson and Skou, 1991].
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Theorem 6: The reflexive, symmetric, transitive closure of astpchastic bisimulation
from MDP M =(Q, A, T, R) to any MDP, restricted tQ x Q, is an equivalence relation
E < Q x Qthat is a stochastic bisimulation frol to M.

Any stochastic bisimulation used for aggregatioegarves the optimal value and action
sequence properties as well as the optimal policfebe model:

Theorem 7: Given an MDPM =(Q, A, T, R) and an equivalence relatidhc Q x Q
that is a stochastic bisimulation, each staite Q is stochastically bisimilar to the state
i/E in M/E. Moreover, any optimal policy oM / E induces an optimal policy in the
original MDP.

It is possible to give a stochastic modal logiengar to the Hennessy-Milner mo-
dal logic above, that captures those propertiedl8fP states that are discriminated by
stochastic bisimilarity (e.g., see [Larson and SKb201] which omits rewards).

4 Model Minimization

Any stochastic bisimulation can be used to perfonodel reduction by aggregat-
ing states that are equivalent under that bisimoatThe definitions ensure that there are
natural meanings for the actions on the aggreg&tes. The coarsest bisimulation (sto-
chastic bisimilarity) gives the smallest model, ainiwe call the “minimal model” of the
original MDP. In this section, we investigate how find bisimulations, and bisimilarity
efficiently. We first summarize previous work onraputing bisimilarity in FSM models,
and then generalize this work to our domain of MDPs

4.1 Minimizing Finite State Machines with Bisimilarity

Concurrent process theory provides methods for aging the bisimilarity rela-
tion on an FSM state space. We summarize one metnudi show how to use it to com-
pute a minimal FSM equivalent to the original [Mdn 1990]. Consider FSMB = (Q, A,
O, T,RyandF' =(Q', A, O, T', R) and binary relatiort ¢ Q x Q'. DefineH(E) to be the
set of all pairsi(, j) from Q x Q' satisfying the following two properties. Fir(i, j) must
hold. Second, for every actian € A, each of the following conditions holds:

1. R()=R(),

2. fori’ inQs.t.T(i, a,i'), thereis g’ in Q' s.t.E(I’, ") andT'(j, a, |’ ), and conversely,

3. forj inQ's.t.T'(j, o, ), thereisan’ in Qs.t.E(i’,j’) andT(i,a,i").

We note thatH(E) is formed by removing pairs frorg that violate the bisimulation con-
straints relative td. We can then define a sequence of relatigpsE;, ... by takingEy =

Q x Q andEy1 = H(Ey). SincekE(i, j) is required for {, j) to be inH(E), it is apparent that
this sequence will be monotone decreasirg, Ex+1 < Ex. It also follows that any fixed-
point of H is a bisimulation betweek and itself. Therefore, by iteratinig on an initial
(finite) E = Q x Q we eventually find a fixed-point (which is there®also a bisimula-
tion). By Theorem 2, this bisimulation can be usedtate space aggregation to produce
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a quotient model with states that are action seqa@&quivalent to the original model.
Further analysis has demonstrated that the reguliisimulation contains every
other bisimulation, and is thus the largédbisimulation betweerF and itself [Milner,
1990]. As a result, this bisimulation is the bislarity relation onQ, and produces the
smallest quotient model of any bisimulation wheedisn state space aggregation.

4.2 Minimizing Markov Decision Processes with Stochastic Bisimilarity

We show here how the direct generalization of #aehhiques described above for
computing bisimilarity yields an algorithm for comiing stochastic bisimilarity that in
turn is the basis for a model minimization algonthGiven an MDPM =(Q, A, T, R), we
define an operatadron binary relation€ c Q x Q similar toH. Let I(E) to be the set of
all pairsi, j such tha€(i, j), R(i) = R(j), andfor every actior in A and stata" in Q,

T, o i''E)=T(, o i'/E).

We can again define a decreasing sequence of eguisarelationg; > E; o ...
by takingEp = Q x Q andE,; = I(Ex). Again, the definitions immediately imply that yan
fixed point ofl is a stochastic bisimulation betwebhand itself. Therefore, by iterating
on an initial (finite)E = Q x Q, we are guaranteed to eventually find a fixed pgwhich
is therefore a stochastic bisimulation). Theoremmplies that this stochastic bisimulation
can be used in state space aggregation to prodgoetEent model containing blocks that
are both action sequence and optimal value equivatethe original model.

The resulting stochastic bisimulation contains gvather stochastic bisimulation
betweenM and itself, and is thus the largest stochastiénigation betweerM and it-
self!® the stochastic bisimilarity relation o®. Aggregation using this relation gives a
coarser (smaller) aggregate reduced model than avithother bisimulation. Use of this
technique for computing bisimilarity for state spaaggregation and model reduction
provides a straightforward motivation for and datren of a model minimization algo-
rithm: simply aggregate bisimilar states to forne tboarsest equivalent model, the quo-
tient model under bisimilarity.

4.3 Implementing Model Minimization using Block Splitting

We now describe a method for computing stochasisintilarity™® by repeatedly
splitting the state space into smaller and smdilecks, much like thé(E) operation de-
scribed above. We start by introducing a desireapprty for partition blocks that can be
checked locally (between two blocks) but that wipeasent globally (between all pairs of
blocks) ensures that a bisimulation has been found.

We say that a blocB is stablewith respect to block @f and only if every statg

" Here, by “largest”, we are viewing relations asssef pairs partially ordered by subset.

18 We can show that iE contains a bisimulatioB, thenl(E) must still contain that bisimulation—the key
step is to show thak(i, «, i'/E)=T(j,,i'/E) foranyi' in Q,anya in A, and anyi andj such thaB(i,j).

9 Our algorithm is a stochastic adaptation of an algorithrfLiee and Yannakakis, 1992] that is related to
an algorithm by [Bouajjanét al, 1992]. All of these algorithms derive naturally froimet known proper-
ties of bisimilarity in concurrent process theory [Miln&g90].
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in B has the same probabilifi(p, a, C) of being carried into bloclkC for every actiono
and the block rewar&(B) is well defined. We say thd is stable with respect to equiva-
lence relation Eif B is stable with respect to every block in the paotitinduced byE.
We say that an equivalence relatiris stableif every block in the induced partition is
stable with respect t&. These definitions immediately imply that any de@bquivalence
relation is a bisimulation.

The equivalence relatio(E) can be defined in terms of stability as the relat
induced by the coarsest partition (among thosenedl E) containing only blocks that are
stable with respect t&. This partition can be found by splitting each blook E into
maximal sub-blocks that are stable with respedE (@e. stable with respect to each block
of E). To make this concrete, we define a split openatihat enforces this stability prop-
erty for a particular pair of blocks.

Let P be a partition ofQ, B a block inP, andC a set of state€ — Q. We define a
new partition denoted SPLIB( C, P) by replacingB with the uniquely determined sub-
blocks {Bs, ..., By} such that eactB; is a maximal sub-block oB that is stable with re-
spect toC. SinceB; is stable with respect t€, for any actiona and for statep andq
from the same blocB; we have thaf(p, o, C) = T(q, a, C) andR(p)=R(q). Since theB;
are maximal, for stateg and g from different blocks, eithell(p, o, C) = T(q, a, C) or
R(p) = R(0).

The SPLIT operation can be used to compl(te) by repeated splitting of the
blocks of the partition induced l as follows:

Let P’ = P =the partition induced by E
For each block Cin P
While P’ contains a block B for which P # SPLIT( B,C P")
P’ =SPLIT( B, C, P") /* blocks added here are stable wrt. C*/
/* so need not be checked in While test */
| (E) = the equivalence relation represented by P’

We refer to this algorithm as thgartition improvemenalgorithm, and to iteratively ap-
plying partition improvement starting withd} aspartition iteration However, in parti-
tion iteration suppose a blocB has been split so th&' contains sub-blockBy, ..., B of

B. Now, splitting other block< to create stability with respect 8 is no longer neces-
sary since, we will be splittin@ to create stability with respect 8, ..., B in a later it-
eration ofl. Blocks that are stable with respectBgq ..., B are necessarily stable with re-
spect toB. This analysis leads to the following simpler alglom, which bypasses com-
putingl iteratively and computes the greatest fixed paihit more directly:

Let P={ @ /*trivial one block partition */

While P contains block B& Csu.t. P # SPLIT( B, C, P)
P=SPLIT( B,C, P)
Greatest Fixed point of | =the equivalence relation given by P

We refer to this algorithm as thmodel minimization algorithmand we refer to th® #
SPLIT(@, C, P) check as thetability checkor blocksB andC. That model minimization
computes a fixed point df follows from the fact that when all blocks of a partition are
stable with respect to that partition, the partition is a bisaetioh (and thus a fixed point
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of I). The following lemma and corollary then imply that either modehimization or
partition iteration can be used to compute the greatest fixed polnt of

Lemma 8.1: Given equivalence relatiod on Q and statep andg such thafl(p, o, C)
# T(q, a,, C) for some actiorr and blockC of E, p andq are not related by any stochas-
tic bisimulation refiningke.

Corollary 8.2: Let E be an equivalence relation @ B a block inE, andC a union of
blocks fromE. Every bisimulation orQ that refinesk is a refinement of the partition
SPLIT@®B, C, E).

Theorem 8: Partition iteration and model minimization both compute stochastic
bisimilarity.

By repeatedly finding unstable blocks and splitting them, we can timasthe
bisimilarity partition in linearly many splits relative tine final partition size (each split
increases the patrtition size, which cannot exceed that of thailasity partition, so there
are at most linearly many splits). The model minimizatiogoaithm performs at most
quadratically many stability check&simply check each pair of blocks for stability, split-
ting each unstable block as it is discovered. The cost of eadhog@ration and each sta-
bility check depends heavily on the partition representation andesissed in detail later
in this paper.

We note that this analysis implies that the partition computechbgiel minimiza-
tion is the stochastic bisimilarity partition, regardless of evhblock is selected for split-
ting at each iteration of th@/hile loop. We therefore leave this choice unspecified.

Figure 4.a shows an MDP in factored representation by giving3al vith the
conditional probability tables represented as decision trees, ustngepresentation de-
veloped in [Dean and Kanazawa, 1989] and [Boutiéeal., 2000]. Figure 4.b shows the
immediate-reward partition for this MDP, which is computedIQ}). There are two
blocks in this partition: states in which the reward is one anestat which the reward is
zero. Figure 4.c shows the quotient model for the refined partition amist by the
model minimization algorithm. Aggregate states (blocks of the partitions) are de-
scribed as formulas involving fluents,g, =S, A S; is the set of states in which; $
false and $is true. A factored SPLIT operation suitable for finding this geotimodel
without enumerating the underlying state space is described in Section 4.4.

20 Observe that the stability of a blok with respect to another blodk and any action is not affected by
splitting blocks other thaB andC, so no pair of blocks need to be checked for dighmore than once for
each action. Also the number of blocks ever congdecannot exceed twice the number of blocks infthe
nal partition, since blocks that are split can iewed as internal nodes of a tree. Here, the réthe tree is
the block of all states, the leaves of the tree e blocks of the final partition, and the childref any
node are the blocks that result from splitting thleck at the node. These facts imply the quadrhtiand
on stability checks.
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Figure 4. (a) A factored representation of an MDP with threerits (3, S, S3) and
only one action. Partitions are shown represented as decisis {8 A graph of the
immediate reward partitioh({ Q}) of the MDP with nodes representing blocks and
arcs representing possible transitions. (¢) The quotient modekatdarsest homoge
neous partition computed by the model minimization algorithm.

The model-minimization algorithm is given independently of the undeglyep-
resentation for state-space partitions. However, in order foratgerithm to guarantee
finding the target partition, we must have a partition represent sufficiently expres-
sive to represent an arbitrary partition of the state sp&aeh partition representations
may be expensive to manipulate, and may blow up in size. For thismgpartition ma-
nipulation operations that do not exactly implement the splitting dmeradescribed
above can still be of use—typically these splitting operationsantae that the resulting
partition can be represented in a more restrictive partition sgptation. Such operations
can still be adequate for our purposes if, whenever a split is requested, theapspdts
“at least as much” as requested.

Formally, we say that a block splitting operation SPLIT* &lequate if
SPLIT*(B, C, P) is always a refinement of SPLIB( C, P). Adequate split operations that
can return partitions that are strictly finer than SPLIT aeged to benon-optimal The
minimization algorithm, with SPLIT replaced by an adequate I$PLis a model reduc-
tion algorithm.Note that non-optimal SPLIT* operations may be cheaper to imphkme
than SPLIT, even though they “split more” than SPLIT. One natway to define an
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adequate but non-optimal SPLIT* opera-

a T L "
tion is to base the definition on a partition

Sy =X, n X, representation that can represent only some
fi=(X,aX,)v | Possible partitions. In this case, SPLIT* is

(X, X)) defined as a coarsest representable refine-

_ _ ment of the optimal partition computed by
Figure 5. Block formulas used to illustrate SPLIT. (For many natural representations,
splitting for factored representations. e.g., fluentwise partitions, this coarsest re-

finement is unique.) As shown by the fol-
lowing theorem, the model reduction algo-
rithm remains sound.

Theorem 9: Model reduction returns a stochastic bisimulation.

Corollary 9.1: The optimal policy for the quotient model produced by model reduc-
tion induces an optimal policy for the original MDP.

This theorem guarantees us that model reduction will still faimdequivalent re-
duced model. However, we may lose the property that the resultimigigris independ-
ent of the order in which we chose to split blocks (i.e., which blockpkt by the main
while  loop when a choice is present). This property must be proven anew d¢br ea
SPLIT* operation that is considered, if the property is desired. Ard@ and corollary
similar to Theorem 9 and Corollary 9.1 can be proven with analogous techniques-for pa
tition iteration using an adequate SPLIT* operation.

Some published techniques that operate on implicit representatisesnioée
minimization with adequate but non-optimal splitting operations. We rdessome of
these techniques and the connection to minimization later, but firsgxaeine the de-
tails of our algorithm for a particular factored representation.

4.4 Factored Block Splitting

This subsection describes a method for implementing the SPLIT opet par-
titions given a factored representation of the MDP dynamics. Thathod and factored
representation are provided to make concrete the operations involved assdrt that
either the method or the representation is particularly distitguisUsing this splitting
method, our model minimization algorithm can construct a reduced moidebwy ex-
plicitly enumerating states. The later part of this section gives alddtexample.

We now introduce notation to set up a running example for this sectiorQ lbet
the set of all states, arféla partition ofQ. For any blockB of states, lefg be the formula
used to represeid. Given blocksB andC in P, we are interested in splitting to obtain a
set of sub-blocks that are stable with respedCi®e replaceB with the resulting stable
sub-blocks to obtain a refinementfcalledP’. Figure 5 depicts the basic objects for our
example. We start by focusing on a particular, but arbitrarpae., and then generalize
to multiple actions by computing the intersection of the partitions for eacbract
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Figure 6. Partial action dynamics far:

decision trees describing the effects of
on the fluents irfc, and the induced partii
tions of the state space.

We assume that the state-
transition distribution for actior is in
factored form—for each fluent, there is
a decision tree specifying the condi-
tional probability distribution over the
value of the fluent at time, given the
state at timd—1. Figure 6 illustrates the
decision trees for our running example;
we only show the decision trees for the
three fluents irfc. In our example trees,
the distribution over values is given by a
single probability (that of “true”), be-
cause there are only two possible val-
ues. Note that these decision trees are
labeled, factored partitions of the state
space. The leaves of the tree correspond
to the blocks of the partition—each
block is specified by the values assigned
to the fluents on the path from the root
to the corresponding leaf. These blocks

are then labeled with the probability distribution at the corresponding deciserieaf.

Each fluent has a decision tree describing its behavior urateEman. Consider a
subsef’ of the fluents. We obtain a partition that we refer to asghdition determining
the transition distribution for F’ unde, as follows. The blocks of the partition are given
by the intersection of thd-]| partitions described by the decision trees for fluents’in
There is a one-to-one correspondence between blocks in the newopasitd sets of
blocks from the F’| partitions (one from each) with non-empty intersections. Wellabe
each block of this new “overlaid” partition with the product of thistribution labels on
the blocks in the corresponding set of blocks. This partition is tneefinement of the
partition underx for any of the fluents ir’. States in the same block of this overlaid par-
tition have the same probability of transitioning (under actipno any block of the parti-
tion Fluentwisef’) defined in Section 2.3. Here as elsewhere in our discussion, we si-
multaneously treat states as elementQothat can be contained in a block of a state
space partition, and as assignments of values to fluents that tsfly fae formula asso-

ciated with a given block of a partition.

We denote the labeled partition for fluetunder actioro. as P . For example,
the decision tree faxX; shown in Figure 6 gives us

P;(j = {Bl’ B, Bs}!

where the formulas associated with the bIocksPQf are

fBl :—|X1 fBz = Xl/\—|X2

20
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The probability distribution foiX; under actioru for the blocks of Py is given by

07 X,eB
Pr(X,., | XU, =a)={05 X, eB,
03 X, eB, .

Note that we can group all leaves of the decisi@etfor a given fluent that share
the same probability distribution label into a siadplock in the partition for the fluent.
For example, if the probability distribution fof; at the leaf for both blockB; andB; in
P were 0.7, then we would group all the states iodisB; andB; into a blockB’, giv-
ing

P)‘(’l: {B” B3}, fg = (—|X1) \Y4 (Xl A —|X2), fB3 = Xl A XZ’ and

07 X, eB

Pr(X XU =a)=
(1,t+1| oUy=a) {0'3 X, eB,.

For each fluenk;, the partition P groups states that behave the same under ac-
tion a with regards toX;. However, what we want is to group statesBithat behave the
same under action with respect taC. SinceC is specified using a formulk, we need
only concern ourselves with fluents mentioneddnas the other fluents do not influence
whether or not we end up i@. If we take the intersection of all the partitiofee each of
the fluents mentioned ifc, we obtain the coarsest partition that is a refiveat of all
those fluent partitions. This partition distingueshbetween states with different prob-
abilities of ending up irC. We can then restrict the partition to the bldgko obtain the
sub-blocks oB where states in the same sub-block all have timeesprobability of end-
ing up inC after taking actioru. Therefore, if Fluentd¢) is the set of all fluents appear-
ing in fc, the partition determining the transition distrttmn for Fluentsfc) undera
makes all the necessary state distinctions.

The procedure Block-split() shown in Figure 7 cortgmithe coarsest partition of
B that is a refinement of all the partitions assoethwith the fluents irfc and the action
o. It does so by first computing the coarsest pamitof Q, which we will denotePq, with
this property, and then intersecting each blockhis partition withB. (In terms of repre-
senting blocks as formulas, intersection is jugstjoaction.) Applying this to our ongoing
example gives the following partitions:

Po={Xin Xy, Xin=Xo, =X} Bo={Xs, =X} B ={Xs X3}

PQ:{ X]_/\Xz/\Xg, Xl/\XZ/\—|X3, X]_/\—|X2/\X3, Xl/\—|X2/\—|X3,
—X1 A X3, X1 A =Xz}
Intersecting each block &¥q with fg (eliminating empty blocks) computes the final part
tion of B given by
{ X A = X2 A X3 A Xy, X1 A =Xo A =Xz A Xg,
—X1 A —=Xo A Xz A Xy, —X1 A =Xo A = X3 A X}
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Block-split( B, C

return  { fg A f A fgr| f e Partition-determining(Fluents( fo, o),
f R € Reward partition,
and fg A T A fgrissatisfiable b
Partition-determining( F, o) /* the partition determining the
fluents in F*/

if F= @& thenreturn {true };

for some X eF,

reurn { f Afg | B e PY,
f e Partition-determining( F—{X}, o), and
f A fg is satisfiable h

Figure 7. Procedure for partitioning blo&kwith respect to bloclC and actior

This procedure runs, in the worst case, in timeangntial in the number of fluents men-
tioned infc.?* As with most factored MDP algorithms, in the worstse, the factoring
gains us no computational advantage.

One adequate but non-optimal splitting operatioat thvorks on the factored rep-
resentation is defined in terms of the proceduredBtsplit() as

SPLIT*(B, C, P) = (P = {B}) \U (Mgca Block-split®, C, a)).

We refer to SPLIT* defined in this manner as S-SPLabbreviation “structure-based
splitting”. Structure-based splitting the exactriséion probabilities assigned to blocks of
states. This splitting method splits two statethdre isanyway of setting the quantifying
parameters that would require splitting the staB&PLIT is non-optimal because it can-
not exploit “coincidences” in the quantifying paraters to aggregate “structurally” dif-
ferent states.

In order to implement an optimal split, we needdw a little more work. Specifi-
cally, we have to combine blocks of Block-spBt(C, o)) that have the same probability
of ending up inC. Situations where we must combine such blocksrifeo to be optimal
arise when an action, taken in different statesfi®, affects the fluents ifc differently,
but “coincidentally” has the same overall probatyilof ending up in blockC from the
different source states. For example, suppose mactidaken in state in B, has a 0.5
probability of setting flueniX;, and always sets fluen;; however, whenu is taken in
stateq in B, it has a 0.5 probability of setting flueXe, and always sets flueiy;. If block
C has formulaX; A X, both statep and stateg have a 0.5 probability of transitioning to
block C under actior. However,p andg must be in separate blocks for each of the flu-
ents in the formulaX; A X, sincea affects bothX; and X; differently atp than atq—
hence, Block-split() will partitiorp andq into different blocks, even though they behave

L The order in which the fluents are handled camaatically affect the run time of Partition-deterrinig()
if inconsistent formulas are identified and elimied on each recursive call.
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Block PX) PX) PXs) PCy PC) PG P(fc)
Bi Xin YonXenXe | 05 1.0 002 00100490 0010 0510
Br Xin-—Xon-XsaXs | 05 06 050 0.1500.150 0.150 0.450
Bs —XiA-XonXsaXs | 07 1.0 002 00140686 0.006 0.706
Bi —XuA-Xon-XsaXe| 07 06 050 02100210 0.090 0.510

Figure 8: Optimal Split Computations for the onggiexample. We show, for ead,
the probability PX;) of setting each fluenk; in fluentsC), when acting inB;. The
right four columns use these values to compute ghabability PC;) of landing in
each blockC; of FluentwiseC), and then the probability ) of landing inC itself, in
each case when acting in ea8h

the same with respect ©©. To compute the coarsening of Block-s@itC, o) required to
obtain optimal splitting, we first consider a padiar partition of the blociC.

The partition ofC that we use in computing an optimal split Bfis the fluen-
twise?® partition Fluentwise(Fluent€)), restricted toC. This partition has a block for
each assignment to the fluents in Flue@)s€onsistent withfc. We denote this partition
as Fluentwiseg). In our examplefc = (Xp A X2) v (X2 A X3) SO Fluentwisel) = {X; A Xz
AX3 XiAXoA—=Xs, —X1 A Xo A Xg} which we shall callCy, C,, andCg, respectively.

The probability of transition fronB; € Block-splitB, C, o) to Ci € FluentwiseC)
is defined as

Pr(Xt+1 (S C] |Xt € B| , Ut O(,) Pr(Xt+1 S CJ |Xt P, Ut )

wherep is an arbitrary state iB;. The choice op does not affect the value of P¢{; €
G | X € Bi, Ut = o) by the design of Block-split(). We can computesie probabilities by
multiplying the appropriate entries from the probiyp distributions for the fluents irfc
and thus induce a labeling for the blocks of thetpi@an returned by Block-split(),

PrXs1 € C|X € B, Ui=0) = ) PriX.1 € G| % € B;, U= o).

Cj eFluentwis¢C)

To compute the optimal split, we group togetherdbdlocks inM,.a Block-
split(B, C, o) that have the same block transition distributiores, B;, Bj € Myea Block-
split(B, C, o) are in the same block of SPLIB(C, P) if and only if

Pr(Xt+1 eC | Xt € Bj, Uy = (X) = Pr(><t+1 eC |Xt S BJ, Ui = (1) for all a.

Once again, we note that in the worst case, thetadel work added to compute an op-
timal split with this method is exponential in tleiginal MDP representation size be-
cause Fluentwis€)) would have to be enumerated explicitly. To compleur example,
we show these calculations in Figure 8, the finalluenn of which indicates that we can
combine the blocks labeldg andB,, since they both have the same probability of sian
tioning to blockC. As a result, we obtain the following partition of B X; A —Xo A = X3

22 5ee Section 2.3.
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A Xgy = X3 A =X A XA Xg, (Xg A =X A XA Xg) v (= X1 A =X A =X3A Xyg)

4 .5 Hardness of Model Minimization with Factored Partitions

The difficulty of optimal splitting is implied bytte following complexity result.

Definition 1: Thebounded-size model-minimization decision probigm

Given a numbek represented in unary notation and a factored M@®ith a mini-
mal model ofk or fewer states, determine whether the minimal eladf M has ex-
actly k states.

Theorem 10:The bounded-size model-minimization problem is hddd.

It is worth noting that the different non-optimaP&IT* operations make different trade-
offs between ease of computation and amount ofctdn that can be achieved in the re-
duced model. Also, some non-optimal SPLIT* defiaits guarantee that the resulting
partition can be represented compactly, as wese# in Section 4.6.

Theorem 10 shows that model minimization will bepersive in the worst case,
regardless of how it is computed, even when smaildeis exist. In addition, since our
original algorithm presentation in [Dean and Giva097] it has been shown that the fac-
tored-stability test required for the particulagatithm we present (and implicit in com-
puting SPLIT) is also quite expensive to computeing coNP~"-hard [Goldsmith and
Sloan, 2000f This result does not directly imply hardness fbe tbounded-size model
minimization problem (i.e. Theorem 10), because¢hmuld be other algorithms for ad-
dressing that problem without using SPLIT.

4.6 Non-optimal Block Splitting for Improved Effectiveness

We discuss three different non-optimal block spiftapproaches and the interac-
tion between these approaches and our choice ditiparrepresentation as well as the
consequent improvement in effectiveness. The optl@RLIT defined above requires a
general-purpose partition representation to reprefiee partitions encountered during
model reduction—e.g. the DNF representation disedsa Section 2.3. Each of the al-
ternative non-optimal SPLIT* approaches can guaarhat the resulting partition is rep-
resentable with a less expressive but more comgresentation, as discussed below.

We motivate our non-optimal splitting approachesnoying that the optimal fac-
tored SPLIT operation described in Section 4.4 tvas phases, each of which can inde-
pendently take time exponential in the input sizke first phase computes Block-spt(
C, a) for each actiorn, and uses it to refin®, defining the partition S-SPLIR, C, P).
The second phase coarsens this partition, aggregdtiocks that are “coincidentally”
alike for the particular quantifying parametersa(tsition probabilities and rewards) in the

% [Goldsmith and Sloan, 2000] also show that the pterity of performing a test for an approximate ver
sion of stability,e-stability, for an arbitrary partition is coNBcomplete. ¢-stability, is a relaxed form of
stability defined in [Dearet al., 1997]).
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model. Our non-optimal splitting methods addressheaf these exponential phases, al-
lowing polynomial-time computation of the partitisasulting from that phase.

The first non-optimal approach we discuss guarantefuentwise-representable
partition—recall from Section 2.3 that a fluentwigartition can be represented as a sub-
set of the fluents where the blocks of the partitimorrespond to the distinct truth assign-
ments to that subset of fluents. We define the éfitwise split” F-SPLITB, C, P) to be
the coarsest refinement of SPLHE;(C, P) that is fluentwise representable. F-SPLBTC,

P) is the fluentwise partition described by the sétall fluents X such that there are two
states differing only orX that fall in different blocks of SPLITR, C, P). Equivalently,
F-SPLIT@, C, P) is the fluentwise partition described by the sétll fluents X that are
present in every DNF description of SPLE;(C, P). As with SPLIT B, C,P), the func-
tion F-SPLITB,C,P) can be computed in two phases. The first phasersects parti-
tions from the action definitions, returning theazeest fluentwise refinement of the re-
sult. The second phase combines blocks in the tiegypartition (due to “coincidences”),
and again takes the coarsest fluentwise refinenentield the desired partition. The first
phase can be carried out efficiently in polynontiahe in the size of the output, but the
second phase appears to require time possibly exgai in its output size, because it
appears to require enumerating the blocks of tre-fphase output.

To avoid the exponential time required in the satqhase to detect “coincid-
ences” that depend on the quantifying parameteespaed to define a “structural” notion
of block stability—one that ignores the quantifyipgrameters. Because our factored rep-
resentation defines transition probabilities oneefit at a time, we will define structural
stability in a similar fluentwise manner.

We say that a blocB of a partitionP is fluentwise stablevith respect to fluent X
if and only if for every action, B is a subset of some block of the partitidp (o, X).
The blockB is termedfluentwise stable with respect to blockifCB is fluentwise stable
with respect to every fluent mentioned_in ev&MF formula describing block. We call
a partitionP fluentwise stabl& every block in the partition is fluentwise stabivith re-
spect to every other block in the partition. Itsgaightforward to show that the “structural
split” S-SPLITB, C, P), as defined above in Section 4.4, is the coarsefshement of
SPLIT(, C, P) for which each sub-block d is fluentwise stable with respect @

The operation S-SPLIT is adequate and is compussdguBlock-split() for each
action, as described in Section 4.4, assuming ¢laah block formula in the input parti-
tion representation is simplified (in the sensetthay fluent mentioned must be men-
tioned to represent the block). This assumptiordldbr blocks represented as conjunc-
tions of literals, as in decision-tree partitiondnder this assumption S-SPLIT can be
computed in time polynomial in the size of its inpiermulas plus the number of new
blocks introduced (which may be exponential in theut size). Analysis of S-SPLIT
guarantees that if each input block is describdiyea conjunction of literals then so are
the blocks of the output partition, ensuring thiag¢ tinputs are conjunctions of literals, if
each partition in the original factored MDP defioit is so represented (e.g. if decision
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tree partitions are used to define the Mt)Pas long as all block splitting is done with S-
SPLIT. This guarantee allows model reduction wit8BLIT to use this simpler repre-

sentation of partitions. With S-SPLIT the resultrefuction is also not order-dependent,
unlike some adequate, non-optimal splits (see Sedcti3).

Theorem 11:Given a partitiorP, there is a unique coarsest fluentwise-stable ststaha
bisimulation refiningP. Iterating S-SPLIT using model reduction or paatit iteration
starting fromP computes this bisimulation regardless of the omfdslock splitting.

To avoid exponential model-reduction time even wities resulting model is ex-
ponentially large, we can combine the above twoaspts. We call the resulting “fluen-
twise structural” split FS-SPLIR, C, P). FS-SPLITB, C, P) computes the coarsest flu-
entwise-representable refinement of SPB]TC, P) such that each sub-block Bfis flu-
entwise stable with respect @ The split operation FS-SPLIT is adequate and comp
able in time polynomial in the size ®fl, even for factoredv, and the resulting partition
is again independent of the order of splitting.

Theorem 12:Given a partitionP, there is a unique coarsest stochastic bisimulatgn
fining P even under the restriction that the partition béhbituentwise stable and fluen-
twise representable. Iterating FS-SPLIT using moaeluction or partition iteration
starting fromP computes this bisimulation regardless of the omfdslock splitting.

A variant of S-SPLIT that is closer to the optim@PLIT can be derived by ob-
serving that there is no need to split a bldgko achieve fluentwise stability relative to a
destination blockC when the blockB has a zero probability of transitioning to the tko
C. This refinement does not affect FS-SPLIT duelte bias towards splitting of the “flu-
entwise” partition representation used, but addimg refinement does change S-SPLIT.
The resulting split operation, which we call R-SFLIs significant in that it is implicit in
the previously published factored MDP algorithmgBoutilier et al., 2000].

We define theregression regiorfor a block B to be the block containing those
stated such thafl(i, a, B) is non-zero. A bloclk8 is said to baegression stable with re-
spect to block Gf B is either entirely contained in the regression oegof C andB is flu-
entwise stable with respect © or B does not overlap the regression regionfThe
“regression” splitting operation R-SPLIB( C, P) is the coarsest refinement of SPLB[(
C, P) such that each sub-block Bfis regression stable with respect@oWe say a parti-
tion P is regression stable if every block Bfis regression stable with respect to every
other block ofP. R-SPLIT can be calculated using a modificatiortlod Block-split func-
tion, given in Figure 7. For each actiony, replacing the call Partition-
determining(Fluent€), o) with the call Regression-determinirig( o), invoking the
pseudo-code shown in Figure 9. We note that R-SPUuRlike S-SPLIT, depends on the

% |t is worth noting that decisions trees as usedhis paper are less expressive than the disjaimjunc-
tions of literals representation. That is to sagréhexist sets of disjoint conjunctions of literaiet repre-
sent partitions not representable with decisioesre.g. Ar—B, BA—C, CA—A, AABAC, —AA—BA—C} .
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Regression-determining(f o )
P c={b|b e Partition-determining(Fluents(f o, a)and
Pr(f ctrue in next state | current state inb) >0}

Qo=0Q- U b /* states with zero trans. probability to C */
bePe

Return {Q of UP¢

Figure 9. Function used in computing R-SPLIT.

specific transition probabilities (i.e. whether &as zero or not), not just the partitions
used in definingl. Given a partition (and factored MDP) using onlptks described by
conjunctions of literals|g.spLiT returns another such partitioh Unlike S-SPLIT, we do
not have a method for computing R-SPLIT in worsteaolynomial-time in the number
of blocks in the output partition (similarly, theooesponding algorithms in [Boutiliezt
al., 2000], as discussed below in Section 5, arepubynomial in the output size).

Theorem 13: Given a partitionP, there exists a unique coarsest regression-sttble
chastic bisimulation refining.

It turns out that this target partition can be cargd by iterating R-SPLIT, as expected,
but that the partition found may depend on the oidenhich splitting is done unless we
restrict the starting partition representationfabws.

Theorem 14: Let M be a factored MDP with all partition blocks repessed as con-
junctions of literals. Given a starting partiti¢halso so represented, iterating R-SPLIT
using partition iteration computes the coarsestesgjon-stable stochastic bisimulation
refining P, regardless of the order in which blocks are sedddor splitting.

5 Existing Algorithms

We briefly describe several existing algorithmsttbperate on factored represen-
tations, and relate these algorithms to model rédafminimization. Our model minimi-
zation and reduction methods provide a means fdoraatically converting a factored
MDP into a familiar explicit MDP by aggregation. €hresulting explicit MDP can then
be manipulated with traditional solution algorithnend the resulting solutions induce
corresponding solutions in the original factored MDIn this process, the aggregation
analysis is completely separate from the later gaupolicy computations.

Previous work by [Boutilieret al., 2000] gives algorithms that interleave value
and policy computations with aggregation computagidoy giving factored forms of the
traditional MDP solution methods. This interleavadproach has advantages in some
cases where the minimal model is too expensivedmpuute, because exploiting value

% However, single calls to R-SPLIT can return pastiis not representable with conjunctions of litsral
Ir_spLiT CANnot—this difference is surprising and is a capsnce of the fact that every state must transition
somewhere and thus be in some regression regianttgeproof of Lemma 16.1 for more detail.
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computations based on partial minimization may miak®ssible to avoid full minimiza-
tion (e.g. sometimes value-based algorithms canprdenthe minimal model for just the
optimal policy without computing the full minimal adel).

Here we argue that two previously published methatkte space abstraction and
structured successive approximation (SSA), canltezreatively viewed as model reduc-
tion followed by traditional MDP solution [Boutilreand Dearden, 1994]. Model reduc-
tion provides an explication of the state equivaemroperties being computed by these
techniques, as well as a description of the techeggthat separates the partition manipu-
lation from the value computation (relying on tradnal techniques for the latter).

We then discuss two other previous methods [Baartidit al., 2000], structured
policy iteration (SPI) and structured value iteoati(SVI), that can obtain advantages
over direct model reduction due to the interleavofgralue computations with partition
manipulation. Finally, we discuss connections betwenodel minimization and a previ-
ously published factored POMDP solution technigared relate our work to the SPUDD
system [Hoeyet al. 1999]. There is other related work on factored RiBolution that we
do not analyze here, e.g., [Baum and Nicholson819Roller and Parr, 2000].

5.1 State-Space Abstraction

State-space abstraction [Boutilier and Dearden4] #9a means of solving a fac-
tored MDP by generating an equivalent reduced MDfnied by determining which flu-
ents values are necessarily irrelevant to the smutAs presented by [Boutilier and
Dearden, 1994] the method handles synchronic eftétt—here we address the restric-
tion of that method to factored MDPs representethaiit synchronic effects. Inclusion
of synchronous effects does not increase expresesg but may result in a polynomial
reduction in the size of the representation [Littmd997]. We discuss the extension of
our minimization technique to handle synchroniceefs in Section 6.3. Pseudo-code for
the state-aggregation portion of state-space atigtrais given in Figure 10. Throughout
the code, the inferred partition of the state spacuentwise representable and is main-
tained as a set of fluents—where every truth assignt to the set is a block of the parti-
tion. The method for selecting the fluents detenmgnthe partition is described in
[Boutilier and Dearden, 1994] as finding the “retent fluents"—this selection is per-
formed by the procedure Add-relevant.

Here we show that the method in the pseudo-coded&iermining fluent rele-
vance is effectively a fluentwise-stability checxactly the check performed by FS-
SPLIT. Fluents are added to the set of relevaneriis whenever the current partition is
not fluentwise stable (for lack of those fluent¥)e note that one difference between
Add-relevant and FS-SPLIT is that Add-relevant effeely checks the stability of all
blocks in the current partition simultaneously maththan just one block; in fact,

% gee footnote 8 on page 2.

%" The representation given in [Boutilier and Deard@d does not explicitly mention handling synchion
effects. Synchronic effects are achieved in th@iresentation when the “synchronized variables” iare
cluded in the samaspectwhen the action is described.
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State-Space-Abs() Add-relevant(F)
F r=Fluents(R)
do Return F u U Fluents(T, ;)

F rR=F Rr
F  r=Add-relevant(F R) feF, acA

while (F rR ZFR)
return F R

Figure 10. Pseudo-code for the aggregation pordibthe state space abstraction algorithm, followin
[Boutilier and Dearden, 1994]. The reward partitisrgiven by R, the action space by A, and the #ral
sition distributions by T (T;is a partition of the state space where statehénsame block have equg
probability of setting fluent f under action a). &apartition is represented using a decision t@een
such a tree t, Fluents(t) gives the set of fluesged in any test in the tree. The F variables &serf-
twise-representable state-space partitions reptedéma compact form as a set of fluents.

=S a

Add-relevant computes the same partition as theattee use of FS-SPLIT in partition
improvement. We writdgs.sp i(P) for the partition returned by the partition imme-
ment method of section 4.3, with SPLIT replaced By-SPLIT for splitting and block
stability checking—we note th&s.sp (P) refines | (P) and that by Theorem 12 we
reach a bisimulation by iteratings.spLi(P) to a fixed point.

Lemma 15.1: Given a fluentwise partitiod® and a minimal tree-represented factored
MDP M, the partition computed by Add-relevaRj(is the partitionl gs.spLi(P).

As a result, we conclude that iterating Add-relelyas in state-space abstraction,
is equivalent to iterating FS-SPLIT as in modelwetion.

Theorem 15: Given a minimal tree-represented MDP, model redurctiusing
FS-SPLIT yields the same partition that state-spacgtralstion yields, and does so in
polynomial-time in the MDP representation size.

[Boutilier and Dearden, 1994] also describe a mdthbapproximation by limit-
ing the fluents that are considered relevant toréhweard partition—this idea can also be
captured in the model reduction framework usingaisiéke those in section 6.2.

5.2 Structured Stochastic Dynamic Programming—Overview

Policy iteration is a well-known technique for fimgd) an optimal policy for an
explicitly represented MDP by evaluating the vahteeach state of a fixed policy and us-
ing those values to compute a locally better paliitgrating this process leads to an op-
timal policy [Puterman, 1994]. In explicit MDPs, dlevaluation of each fixed policy can
be done with another well-known algorithm callediccessive approximatipmwhich
computes then-step-to-go value function for the policy for eanh-converging quickly
to the infinite-horizon value function for the poyi. A related techniqueyalue iteration,
computes tha-step-to-go value function for the optimal policyrectly, for eacm. Both
successive approximation and value iteration cogedn the infinite limit to the true
value function, and a stopping criterion can beigesd to indicate when the estimated
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values are within some given tolerance [Puterm&941.

[Boutilier et al., 2000] describe variants of policy iteration, sassive approx-
imation, and value iteration designed to work owctéaed MDP representations, called
structured policy iteration(SPJ), structured successive approximati¢®SA, andstruc-
tured value iteration(SVI), respectively. As we discuss in detail below, SS#de un-
derstood as a variant of model reduction usingrégression splitting operation R-SPLIT
described in Section 4.6. Single iterations of $Bh also be understood in this manner:
the policy improvement phase can be described uaingriant of model reduction, so
that SPI can be viewed as iterating policy improwand SSA, each a model reduction.

These methods can be viewed as performing partitimemnipulation simult-
aneously with value and/or optimal policy compuvati—here we will indicate the con-
nection between model reduction and the partitiaanipulations performed by these al-
gorithms. If model reduction is used, the value /amgbolicy computations are performed
on the aggregate model after reduction, using steshaxplicit-model techniques. We
note that removing the value computations from éhedgorithms yields substantially
simpler code; however, computing value functionsl @olicies during reduction allows
their use “anytime” even if reduction is too expesmsto complete. The interleaved value
computations also allow the aggregation of stales &re not equivalent dynamically un-
der all actions. The guarantee is only that thesealill be the same for the optinfilac-
tions (which will still remain optimal) but the agggated model may not be equivalent to
the original model for other actions. Determiningpieh actions are optimal to enable this
extra aggregation requires maintaining informatdaout state values.

SVl is closely similar to model reduction when ttree simplification phase, dis-
cussed below, is omitted; tree simplification isxgeally made possible by the interleaved
value computations, and can result in significaamtiegs. Each iteration of SPI is under-
stood using model reduction restricted to the coirngolicy; however, the full iterative
procedure is quite different from model reductiaildwed by explicit policy iteration.
Informally, this is because SPI performs aggregatielative to the different specific
policies encountered, whereas model minimizationeoluction aggregates relative to all
policies (states must be separated if they diffederanypolicy).

With both policy and value iteration, model redwuetihas an advantage in cases
where the MDP parameters (but not the tree strectue., the partitions) may change
frequently, as in some machine learning settingemshthe parameters are being learned,
for example. In such cases, the reduced model dam¢schange when the parameters
changé®, so no re-aggregation needs to be done upon paearieange. This observation
suggests omitting tree simplification from SVI inch cases.

Another example where model reduction has an adgmbver SPI/SVI arises

% Here, “optimal” refers to being the optimal initiaction in a finite horizon policy, where the hadn is
extended on each iteration of the method.

2 Assuming an appropriate split operation is useeS{RLIT or S-SPLIT, for example). If R-SPLIT is bejn
used, the given “structure” must indicate which graeters are zero and which are non-zero. We nae th
exact model minimization (as opposed to reductiprduces a result that can depend heavily on thdeho
parameters, not just on the structure of parandégendency.
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with “exogenous events”. [Boutilieet al, 2000] mentions the difficulty in capturing

“exogenous events” such as external user requestee SPI/SVI approach—such re-
guests have the effect of changing the parametéthe reward function, but not the

structure, and typically require re-computing theiee solution when using SPI/SVI. In

contrast, the model reduction approach does natiregany new partition manipulation

upon changing the reward parameters, since thecemtinodel is unchanged; only the
explicit reduced-model solution needs to be re-cotaed, by traditional methods. One
contribution of our work is in explicating the SBWI methods by separating analysis of
the value computations from analysis of the patitmanipulations, as well as connect-
ing the latter to the literature on concurrent pgsses and automata theory.

Although the value computations included in SPI &4l differentiate these
methods from model reduction, our methods can btllused to explicate the partition
manipulations performed by these algorithms. Intipafar, using the model-reduction
form of SSA we construct a model-reduction prestataof SPI below. Following
[Boutilier et al., 2000], throughout this section we assume thifleatored MDPs are rep-
resented using decision trees for the partition®ived in defining the reward and action-
transition functions. Moreover, we assume that ¢hieees areninimal in the following
sense: if a fluent appears in a tree, then the ¢add not be modified by simply deleting
that fluent (and replacing it with either sub-tregjthout changing the function repre-
sented by the tree. Minimality in this sense isyemsenforce, and without minimality, the
algorithms in [Boutilieret al., 2000] may do more splitting than our methods.

5.3 Structured Stochastic Dynamic Programming—Details

Partial pseudo-code for the SSA, SPI, and SVI atgars is shown in Figure 11.
Here we show only the partition-manipulation aspeditthe algorithms, and only briefly
indicate the somewhat complex associated value coatipns. We provide pseudo-code
for these algorithms for reference and for groumdour theorems below, but a full ap-
preciation of this section requires familiarity WwifBoutilier et al., 2000].

We begin our analysis of the connection between SSASPI and model reduc-
tion by showing that the partition computed by flaaction PRegress is closely related to
the partition computed by the function Regressi@tedmining presented earlier, in
Figure 9. Regression-determining computes factbtedk splitting.

Lemma 16.1: Let V be a tree-represented value function, whByeis the partition
given by the tree. Let be an action, and for any blo¢k of Py, let @c denote the con-
junction of literals describin@. We then have the following.

The partition computed by PRegregs() is the intersection over all
blocksC of Py of Regression-determiningg, o).

The key subroutines Regress-policy and Regressracompute factored state-
space partitions identical to those computed byltbperator (see section 4.2) under the
following assumptions: first, the only actions aahile are those under consideration (ei-

31



PRegress(V, a)
If (V.Tree = single leaf)
P.Tree = single leaf (represents {Q})
P.Label = Maps Q to {}
Return P
x = Fluent-Tested-at(Root(V.Tree))
Py Tree=P ,a.Tree
Foreachx inVal(x)
V 4 =SubTree(V, x i)
P s =PRegress(V ,a)
Split each block B in P «-Tree by:
T= ~Trees{P x|Pr(x ;in
Py .Label(B))>0})

SSA(m)
\Y 0,n= R, k=0
Until (similar(V ko V okl x)
V 1 = = Regress-policy(V Koo T
k=k+1
ReturnV

SPI( ©)

While ( © # n)
n= 7
V ,=SSA( w)

For each action a

P «.Tree = Replace(B,T.Tree,P x-1ree)

Q w.a = Regress-action(V o a)

Maintain P .Label as set of distributions | ) A
over single fluent values | . Tree=
NTrees({Q vza.Tree, m'.Tree})
ReturnP n'.Label = Ab.argmax a(Qvza (b))
' = Simplify-tree( ')
Regress-action(V, a) Ret dv
P v. = PRegress(V, a) ewrn - man n
Q va.Tree=  ATrees(RP val) svI)
Label each block of Q v.a -Tree by computing | Vo=R, k=0
the Q value using P va.Label,  V,andR | Until (similar(V oV ok1)
V ka.Tree=V . Tree
ReturnQ va For each action a
Q wa = Regress-action(V a)
Regress-policy(V, ) V wi.Tree=  NTrees({Q wka.Tree,
Qv,.Tree= mn.Tree \Y k1. Tree})
For each action a V wi.Label= Ab.max(Q wa (b))
Q va = Regress-action(V, a) V 1 = Simplify-tree(V ke1)
For each block B of n.Tree k=k+l
a= mlabel(B) n.Tree=V .Tree
Q v..Tree =Replace(B,Q v..Tree,Q v .Tree) n.l_.abgl = b.argmax a(Qwa (b))
Lhbel new blocks of Q v..fromQ va.label | m = Simplify-tree( )
Return Q Return  mandV
V,n

Figure 11. Partial pseudo-code for the SSA, SPH &VI algorithms, following [Boutilieret al.,
2000]. Boxed italicized comments refer to omitteade. Mappings over the state space are ref
sented with decision trees as labeled factorecestptice partitions—if M is such a mapping the
M.Tree gives the partition description as a tree] bbel gives the labeling as a mapping from t
blocks of M.Tree to the range of the mapping, antb)Mgives the value of mapping M on any state
in block b (this value must be independentipf Examples of such mappings are Q-functions ((
value functions (V), policiesd), and factored MDP parameters (the reward fungtRpand the ef-
fects of action a on fluent x,,5). The functionTrees takes a set of trees and returns a decis@mn
representing the intersection of the correspondiagitions. The function Replace(B,P.) replaces
block B in state-space partition, Rvith the blocks of Bn Py, returning the resulting partition (eac]

=yl

partition is again represented as a tree). Simgli&e() repeatedly removes tests where all the

branches lead to identical sub-trees.

ther the single action specified for Regress-actmmthe actions specified by the policy
for Regress-policy); and second, to improve effesiess and stay within the decision-

tree representation, all block-splitting is dondtwihe structural split operation R-S
Regress-policy also forcibly splits apart stateattbelect different actions, even if
actions behave identically (see the ling QTree =n.Tree in Regress-policy).

To formalize these ideas, we need a method of @irigrthe first assumption

PLIT.
those

con-

cerning the available actions. For a fixed policgand MDPM, we define thert-restricted
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MDP M, to be the MDPM modified to have only one action that at eachestphas the
same transition behavior a$q) in M. To model the restriction to a single actiorin Re-
gress-action, we consider the poligy that maps every state to actioeny and then use
M -, to restrict to that single action everywhere.

We now definelr-spLir(P) to be the partition returned by partition imprawent
using R-SPLIT for splitting, so we can state thdldwing results describing Regress-
action and Regress-policy.

Lemma 16.2: Given actiona and value functiorV, Regress-actioM, ) on MDP M
intersected withV.tree gives the partition computed hysp 1(V.Tree) on MDPM, .

Lemma 16.3: Given policyn and value functiorV, Regress-polic\{, ©) on MDP M
intersected withV.tree gives the partition computed hysp (V. Tree) on MDPM; in-
tersected withr. Tree.

Given a policyx, structured successive approximation (SSA) remtatapplies
Regress-policy(x) starting from the reward partition, until a fixgumbint is reached. Not-
ing that Regress-policy just computksspLr, SSA is shown to compute the same parti-
tion of the state space as partition iteration be#t-restricted MDP using R-SPLIT, start-
ing from thern-induced partition of the state space.

Theorem 16: For any tree-represented MDR and policy r, SSA() produces the
same resulting partition as partition iteration by using R-SPLIT starting from the
partitionw. Tree.

We note that it follows from Theorem 11 that thesuéting partition is a bisimulation, so
that traditional value computation methods can beduon the resulting aggregate model
to compute a factored value function fig.

Policy iteration requires the computation of valuesselect the policy at each it-
eration—as a result, model reduction (which doesaumpute state values, but only ag-
gregations) cannot be viewed alone as performinticpateration. Here we analyze
structured policy iteration as a combination of mebreduction, traditional explicit-model
techniques, and tree simplification.

Each iteration of structured policy iteration impes the policyr in two steps,
analogous to explicit policy iteration: first, thmlicy = is evaluated using SSA, and then
an improved policy is found relative to using “structured policy improvement” (which
is implemented by calls tonTrees and Simplify-tree in the pseudo-code). Thst fof
these steps is equivalent to model reductiorMarfollowed by traditional value iteration,
as just discussed, yielding a factored value fuorctor .

Given this value functiorV,, policy improvement is conducted as follows. The
central “for” loop in the SPI pseudo-code intersette partitions returned by Regress-
action{/,, o) for the different actionst.. Noting we have shown that Regress-action com-
putes thdgr.spir Operation on the partition fov, in M., , we show here that this “for”
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loop computes thés_spir Operation forM itself. Once this operation is used to compute
the partition, policy improvement concludes by dpia greedy look-ahead to compute
the block labels (actions) and then simplifying tlesulting tree.

Theorem 17:The policy improvement “for” loop in SPI computésspi(Vy. Tree).

Therefore, each SPI iteration is equivalent to gsmodel reduction and explicit
value iteration to evaluate the poliayand then partition improvemer(sp.7) followed
by a greedy look-ahead and tree-simplification tonpute a new policyt. We note that
this isnot the most natural way to use model reduction tdfquen policy iteration—that
would be to reduce the entire model to a reducedi@hasing R-SPLIT, and then conduct
explicit policy iteration on the resulting reducedodel. The trade-off between SPI and
this more direct approach is discussed at the beggof section 5: SPI benefits in many
cases by doing value computations that allow tiegp$ification, but model reduction is
useful in settings where the aggregation cannoeddmn the model parameters but only
the model structure (i.e. the parameters may change

To conclude our discussion of structured stocleadfinamic programming, we
turn to structured value iteration, or SVI. Perhgihe most natural way to use model re-
duction to perform value iteration would be to comt¢ a reduced model (say using S-
SPLIT) and then perform explicit value iteration démat model. It turns out that SVI
computes exactly this reduced model (while simudtausly performing value computa-
tions) if we omit the tree simplification step (Spiify-tree). This can be seen by noting
that the “for” loop in SVI computes$g-spL, just as the “for” loop in SPI does—in this
case, SVI iterates this computation starting frdme teward function (using the “until”
loop) until the reduced model is comput@dafter which SVI is just performing standard
value iteration on that model. We conclude thathweut tree simplification, SVI is essen-
tially equivalent to model reduction using R-SPLidllowed by value iteration. Adding
tree simplification to SVI has advantages and disandages similar to the tree simplifica-
tion in SPI, as discussed above. If desired, S\Mhwree simplification can be modeled
using partition improvement with appropriate vafuaction labeling alternated with tree
simplification.

5.4 Partially Observable MDPs

The simplest way of using model-reduction techngt® solve partially observ-
able MDPs (POMDPSs) is to apply the model-minimipatialgorithm to the underlying
fully observable MDP using an initial partition thdistinguishes on the basis of both re-
ward and observation model. The reduced model t@m e solved using a standard
POMDP algorithm [Monahan, 1982][Littman, 1994][Cardraet al, 1997][Zhang and
Zhang, 2001]. We conjecture that the factored POMdIgorithm described in [Boutilier
and Poole, 1996] can be analyzed using model realuad a manner similar to the analy-
sis of SVI presented above.

30'We assume the “Similav{, V)" test in SVI returns “false” if the correspondinmrtitions are different.
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5.5 SPUDD

More recent work improving structured dynamic praggming, e.g. SPUDD

[Hoey et al. 1999], has primarily been concerned with changimg underlying represen-
tation from decision trees to decision diagrams1c8iour algorithm is developed inde-
pendently of the representation, model reductiowed defined for partitions represented
as decision diagrams—no extension is needed. Ratlaer repeating all the analytic re-
sults shown above for structured dynamic progranghagain, for decision diagrams, we
instead note that similar analytical results cardegeloped, comparing model minimiza-
tion to SPUDD. We expect that empirical comparissmailar to those shown below can
be obtained as well, but we do not yet have a denigiagram implementation.

6 Extensions and Related Work

6.1 Action Equivalence for Large Action Spaces

We have extended the notion of stochastic bisiniitao include equivalence be-
tween actions that behave identically [Deanal, 1998]. Intuitively, two actions that
have identical definitions can be collapsed inteoMore than this though, once a state
space equivalence relation has been selected, ttvona that have different definitions
may behave the same, once groups of equivalerdstat aggregated. We wish to define
the partition of the action space that results fraratochastic bisimulation using this in-
tuition. Given an MDPM = (Q, A, T, R) and a relatiorE c Q x Q, we say that two ac-
tions a; anda, aredynamically bisimilamwith respect tcE if for every two states, ] € Q
we have thafl(i, o, j/E) =T(i, ap, j/E). Given this equivalence relation on actions,
we can then define dynamic quotient MDRhat aggregates both the state and action
space. Given an MDRMI =(Q, A, T, R) and a bisimulatiorE ¢ Q x Q, the dynamic quo-
tient MDP M /(E,D), whereD is the dynamic bisimilarity relation with respeict E, is
defined to be the machin®/E, A/D, T, R’) such thafl’'(i/E,a /D, j/E) =T(, a,
j/E)andR’(i/ E) = R(i) where the choice afandj does not affecT or R because is
a bisimulation, and the choice afdoes not affecT by the definition ofD.

One approach to computing a dynamic quotient MDRoigirst compute a sto-
chastic bisimulation and then compute the dynansintilarity relation with respect to
that bisimulation. However, this approach failsexploit the possible reductions in the
action space (by equivalence) during the constauctif the stochastic bisimulation. Spe-
cifically, the iterative construction of the stocdte bisimilarity relation described in this
paper requires, at each iteration, a computatioreézh action. If the action space can be
grouped into exponentially fewer equivalence classfeactions, this “per action” compu-
tation can be replaced by a “per equivalence ctdsactions” computation, with possible
exponential time savings. All of this assumes wea cheaply compute the dynamic
bisimilarity relation D, which will depend entirely on the representatiosed for the
MDP and the relatiofie. We do not consider this issue here, but in [De&al., 1998] we
present representations for MDPs that allow the&ii7e computation of dynamic bisimi-
larity for many MDPs, and give an algorithm thatpbeits dynamic bisimilarity to
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achieve possibly exponential savings in runtimeefahat from model reduction alone).

6.2 Approximate Model Minimization

One of the foci of this paper has been to transtatme of the efficiency of repre-
senting an MDP in a compact form into efficiency @computing an optimal policy for
that MDP. The resulting computational savings canexplained in terms of finding a
bisimulation over the state space, and using thgesponding partition to induce a
smaller MDP that is equivalent to the original MOiPa well-defined sense. The reduced
MDP states correspond to groups of states fromattiginal MDP that behave the same
under all policies, and thus the original and reeldl®DP yield the same optimal policies
and state values. Despite reducing the MDP witls @gpproach, the resulting minimal
model in many cases may still be exponentially &arghan the original compact MDP
representation—implying that in some cases the agatpnal cost of solving the re-
duced MDP is still rather daunting.

One approach to overcoming this computational ¢®$b relax the definition of
equivalence on states. This relaxation can be dpnallowing the aggregation of states
into the same “equivalence” class even though thensition probabilities to other
blocks are different, so long as they are approxetyathe same (i.e., withi of each
other, for some paramete). We call the resulting partition agtstable partition—such a
partition generally induces an aggregate MDP tkaiuch smaller than the exact mini-
mal model. Use of this approach does have its demkb: the reduced model is not
equivalent to the original MDP, but only approxirabt equivalent. Solutions resulting
from approximate model minimization thus may notdyimal but will typically be ap-
proximately optimal. For further information on hote carry out approximate model
minimization/reduction see [Deast al., 1997].

6.3 Handling Synchronic Effects

We first extend our representation of a factored RIR = (F, A, Tr, R-) given in
Section 2.3 to represent synchronic effects (catrehs between the effects of an action
on different fluents). We change only the definitiof T from our factored representa-
tion without synchronic effectdAs before, the state spa€gis given by the set of state
fluentsF. Following Bayesian belief network practice, tHaentsF are now ordered as
f1, ..., f—the distribution describing the effects of an aation a fluenf; will be allowed
to depend on the post-action values of flueftsr j less than, and the compactness of
the resulting representation will in general depéedvily on the ordering chosen.

We assume that a “parent” relationship is definedthe fluents, as in a Bayesian
network, such that for each fluefit Parentsfi, o) is a set of fluents earlier in the order-
ing fy, ..., fa such that the value df after taking actioru. is independent of the post-action
value of any other fluerft, given post-action values for Parenfs@). We then define the
Ancestors(fi, ) to give the set of fluents that are transitivgdgrents off; for actiona,
along withf; itself. The state-transition distribution of a fastd MDP is now specified by
giving a factored partitiof:(a., f;) of Q for each fluent; and actiono, where each parti-
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tion block is labeled with a factored joint probéty distribution over Ancestord(, o)
giving the probability that each assignment to Astoes(f;, o)) will result when takingo
from the labeled block. The distributiofis(a, fi)) must obey a consistency constraint: for
each actioro. and fluentsf andf’ such that’ e Parentsf, o), the distributionTe(a, ')
must be the same as the distributiti{a, f ) marginalized to the fluents Ancestors().
One way to achieve this consistency is to represach factored conditional probability
distribution as a product (as in a Bayesian netyoskich that the distribution for a fluent
includes every factor used in the product of anyhat fluent’s parentt (i.e., the Bayes-
ian network for fluenf contains the Bayesian networks for the parents)of

Given this representation for a synchronous-effactored MDP, model reduc-
tion using S-SPLIT, F-SPLIT, or FS-SPLIT can bergadl out just as specified above.
This is because these split methods do not depenti® partition labels in the action de-
scriptions, but only on the partitions themselvEgact splitting with SPLIT requires us-
ing the joint probability distribution labels to otbine blocks that are “coincidentally”
alike after S-SPLIT. This combination is similar gpirit to that described for the inde-
pendent action effects case near the end of sedtibrand we leave this generalization as
an exercise for the reader. Model reduction usin§HLIT requires adding only an infer-
ence algorithm for determining whether a joint pability distribution assigns a probabil-
ity of zero to a given formula—for the key case distributions in chain-rule product
form (i.e. like Bayesian networks) and formulastthge conjunctions of literals, such al-
gorithms are generally well known (e.g., [Pearl38).

6.4 Other Related Work

The basic idea of computing reduced equivalent nsdeas its origins in auto-
mata theory [Hartmanis and Stearns, 1966] and ststoh processes [Kemeny and Snell,
1960]. Our work can also be viewed as a stochagtiteralization of recent work in com-
puter-aided verification via model checking [Bureh al, 1994][Lee and Yannakakis,
1992]. In addition, the goals of our work are siarilto goals of [Dietterich and Flann,
1995], which presents an online learning methodhgs factored representation to learn
about blocks of states, using a regression opesgataitar to our block splitting operation.

The approximation of an optimal policy discussedhe last section is just one of
many approximation approaches. [Boutilier and Deatdl996] gives approximate ver-
sions of SPI and SVI by sometimes allowing statethwimilar, but different, values to
be aggregated into the same leaf of a value-fumctiee. This additional aggregation is
achieved by pruning value trees, replacing substngbose values differ by at mosty
leaves whose label may be either an average vauéhe sub-tree or a range of values

31 Conversion to this factored MDP representationnfrthe more familiar (and very similar) dynamic
Bayesian networks with synchronous effects is gtitforward [Littman, 1997], but may involve an expo
nential growth in size in computing the requiredtstspace partitions. It is possible to designmailsir la-
beled-partition representation that avoids thisvgig but applying model minimization appears to ueq
the exponentially larger representation. The syonbuos-effect methods presented in [Boutiletr al.,
2000] also encounter exponential size growth whsimiming out post-action influences.”
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subsuming all the values of the sub-tree. [Kolladdarr, 2000] propose a very different
factored value function representation—value funrtsi are represented as a linear com-
bination of the factored value functions used hargd a policy iteration method is given
for this decomposed value function method. Note thé representation can assign ex-
ponentially many different values over the statagpwith a polynomial-size decomposi-
tion, unlike our labeled factored partitions or tivere familiar decision-tree representa-
tions for value functions. Large state spaces hage been dealt with approximately by
trajectory sampling in [Kearnst al.,, 1999], and elsewhere.

7 Empirical Investigation

We have explored the theory of model minimizatitvere we provide some data
on its performance on simple synthetic domains. Nége constructed a non-optimized
implementation using DNF formulas to represent kfse-using S-SPLIT to construct a
reduced, equivalent model. We used this implemeémati conduct experiments on the
Linear, Expon, and Coffee domains used in the mesievaluation of structured dynamic
programming [Boutilieret al., 2000], and compare the reduced-model sizes fdaynaur
technique to the size of the value-function repréaon produced by structured dynamic
programming (SVI, in particular). We use the numbgteaves in the decision-tree value
function produced by SVI as a measure of the sizthe representation.

We now briefly describe these domaiiisThe Linear domains, Linear3 through
Linear9, have between three and nine ordered $ha¢ats, respectively. For each state
fluent, the domain provides an action that setg theent to “true” while setting all flu-
ents later in the order to “false”. Reward is oloi@d only when all state fluents are “true”.
The Linear domains were designed to show the sthengf the structured—dynamic-
programming algorithms—due to our similarity to feeapproaches, we expected to see
good results on these domains. The Expon domairgoi3 through Expon9, are similar
to the Linear domains, except that the action cgponding to each state fluent sets that
fluent to “true”, if all later fluents are “true”and sets it “false” otherwise. (In either case,
as before, it sets all later fluents to “false”.p Teach reward, these actions must be used
to “count” through the binary representations oé ttates, so we expect every state to
behave uniquely. The Expon domains were designezkpdoit the weaknesses of struc-
tured dynamic programming, so, we expected litdduction in state space size.

The Coffee domain has six state fluents (has-uséfee, has-robot-coffee, wet,
raining, have-umbrella, and location) and four et (move, give-coffee, buy-coffee,
and get-umbrella). The move action has a 0.9 chahceoving the robot between the of-

32 Complete details of the Coffee domain and someehinand Expon domains can be found online at
http://www.cs.ubc.ca/spider/jhoey/spudd/spudd.hixdte that this website also contains some “factory
domains. We do not include these domains in outstegcause both our model reduction implementation
(using S-SPLIT) and the web-available SPUDD impleta¢gion are unable to solve them exactly in the
available memory. Approximation methods could bdedlito either approach in order to handle the facto
domains, however these approximation technique$ mot be discussed further here. (We note that
SPUDD has such approximation built in, and can gralthe factory domains using it.)
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Domain #Of State # Of SVI Minimal Ratio
Fluents Space Size Leaves Model Size

Linear3 3 8 4 4 0.500
Linear4 4 16 5 5 0.313
Linear5 5 32 6 6 0.188
Linear6 6 64 7 7 0.110
Linear7 7 128 8 8 0.063
Linear8 8 256 9 9 0.036
Linear9 9 512 10 10 0.020
Expon3 3 8 8 8 1.000
Expon4 4 16 16 16 1.000
Expon5 5 32 32 32 1.000
Expon6 6 64 64 64 1.000
Expon7 7 128 128 128 1.000
Expon8 8 256 256 256 1.000
Expon9 9 512 512 512 1.000
Coffee 6 64 18 21 0.329

Figure 12. Results from the experiments. For eawmain, we give the name, number
of fluents defining the state space, number ofegtah state space, number of leaves in
the value tree after running SVI, number of blodksthe reduced model, and state-
space compression ratio from aggregation usingrédsiced model, resctively.

fice and store locations, with an 0.9 chance otiggtthe robot wet if it is raining, unless
the robot has the umbrella, which reduces that chan 0.1. If the robot is in the office
with coffee, the give-coffee action has a 0.8 chan€ giving the user coffee and an (in-
dependent) 0.9 chance of the robot losing the eofféthe robot is at the store, give-
coffee has a 0.8 chance of the robot losing thdemfwith no chance of providing any to
the user. Buy-coffee has a 0.9 chance of gettirgyritbot coffee, if the robot is in the
store. Get-umbrella has a 0.9 chance of gettingthet the umbrella, when in the office.
There is a large reward if the user has coffee arsthall one if the robot is not wet.
These domains are, of course, much smaller thant wilhtypically be seen in
real applications, but they illustrate the ranggootsible results from our technique, and
allow for a comparison to other current approachearticular to structured dynamic
programming. The results obtained in our experiraare shown in Figure 12, and are as
expected—the Linear domains show a linear increashe size of the reduced model
with respect the number of variables (i.e., an engmdial amount of compression),
whereas the Expon domains show no reduction in rheide, and remain exponential in
the number of variables. Structured dynamic prograng, specifically SVI, performs
identically (on both Linear and Expon domains), sig that we are indeed factoring
that method into a model-reduction phase, follovegdany traditional solution technique.
The Coffee domain shows a substantial savingsh whe reduced MDP being
about a third the size of the original, and veryngar in size to the SVI-produced value
function, but not identical. The difference in tl@ffee domain results from model-
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reduction refusing to aggregate states when théerdin the dynamics ofany action,
even a non-optimal action. In this case, when tkerihas coffee and the robot is dry, the
robot need only avoid going outside to stay drytisat no other state variables affect the
value (just has-user-coffee and wet). However, sptimal actions need to know more of
the state to determine the chance that the robts wet, e.g., whether it is raining—this
results in four states in the reduced model thatespond to one SVI value-function leaf.

Overall, these results are comparable to thoseimmddaby structured dynamic
programming, which is expected since those algorghcan be viewed as a form of
model reduction. Further investigation into the wdenodel minimization and compara-
ble techniques in real applications is needed ueotto verify what exactly are the draw-
backs of such approaches when applied in practice.

8 Conclusion

We present the method of model minimization for M&hd its use in analyzing
and understanding existing algorithms. In orderd&velop this method of analysis we
have shown that equivalence notions used in coeotiprocess theory to compare proc-
esses for equivalence have a direct applicatiothéotheory of MDPs. In particular, the
notion of a bisimulation between two processesiffalized above in a limited way as
FSMs) directly generalizes to a useful equivalemction for MDP states. Moreover,
concurrent process theory provides theoreticalgdbht can be used to automatically
compute bisimulations between FSMs—these tools asoediately generalize to com-
pute MDP state equivalence. We also develop methodsrry out this computation for
MDPs represented in factored form. By adding aigtriorward notion of action equiva-
lence relative to a bisimulation, we can also use motion of bisimulation to aggregate a
large action space. These methods also lend theesahturally to approximation, as we
have discussed elsewhere in [Dedral., 1997].
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Appendix

Lemma 4.1: The reflexive symmetric transitive closure of adtastic bisimulation be-
tween any two MDP#1 =(Q, A, T, R andM’ =(Q’, A, T', R’) restricted taQ x Qis it-
self a stochastic bisimulation betwekhand itself.

Proof: Let E; be a stochastic bisimulation between the MDPs (Q, A, T, Ry andM’ =
(Q’, A T', R’) and letE; be the reflexive symmetric transitive closureEfrestricted to
Q x Q. We show thak; is a stochastic bisimulation.

Consider andj in Q such thatex(i, j). We note that the definition dE; as the re-
flexive symmetric transitive closure & ensures that there is a (possibly empty) path of
arcs inEy, ignoring arc direction, from to j. Likewise there must be a path of arcsin
between any two states in E, or any two states inj/E,. A simple induction on the
length of an arbitrary path dE; arcs shows that any two states related by suclath p
have the sam®& (or R’ ) values, becausE(i’, ]’ ) impliesR(i’) = R'(j"). It follows that
R(i/E,) andR(j/E,) are well defined and equal, as desired in showtmat E, is a
bisimulation.

To show the transition-model properties that imghat E; is a bisimulation, we
first note that the sets/ E andi/E, (and likewise j/ E and |/E,) are identical by defi-
nition. We must show that for anye Q andj e Q such thatex(i’, j’ ), the block transi-
tion probabilitiesT(i, ¢, i'/E,) andT(j, &, '/ E,) are equal. As just observed, it suffices
to show thafl(i, «, i'/E;) andT(j, &, j'/ E,) are equal. This follows by induction on the
sum of the length of the shortest path fromi’ to ] and the length of the shortelst path
from i toj (ignoring arc direction)—this induction iteratdsetfact that for any action,
anyx, X' € Qandy, y' € Q’, Ex(x, y) andEy (X', y’) together imply thail(x, «, X'/ E;)
andT'(y, &, y'/ E,)) are equal, sincg; is a bisimulatiorm

Lemma 4.2: The union of two stochastic bisimulations betwelea same pair of MDPs
is also a stochastic bisimulation between those MDP

Proof: Let E; and E; be two stochastic bisimulations between the samie f MDPs
M=(Q, AT, RRandM =(Q’, A T', R’) and letE be the union of those stochastic
bisimulations (i.e. the union of the sets of pafsstates related by those bisimulations).
We now show thaE is a stochastic bisimulation. We wrike for the reflexive symmetric
transitive closure oE. Considel € Q andj € Q’ such thak(i, j).

ThatR(i/E) andR’( j/E) are well definedand equal to each other is implied by
the following assertion. For any andj’ in Q U Q’ such thatE (i’, j’ ), R"(") = R"(}"),
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whereR” is defined onQ U Q' by Ron Q and byR’ on Q’. This assertion is shown by
induction on the length of thB-path betweeli andj’, iterating the fact that eithd#,(i”,
J7)orEx(i”,j ) impliesR(i” ) = R’(j” ) becausd&; andE; are both bisimulations.

We now argue thak&(i, j) and E(i’, j’) together imply thatT(i, o, i'/E) =
T(@, o, J'/E), fori, i’ € Qandj, j € Q. Without loss of generality, by symmetry, we
assume thaEa(i, j). It is easy to show that the equivalence classieE are formed by
unioning sets of the fornk/E, for differentkin Q U Q’. Thus the class / E is the dis-
joint union of setsi',/E, ..., i'y/E;, and likewise '/ E is the disjoint union of sets
I, 1E, ..., I'n,/E.. We now show how to select, for each block/E,, a corresponding
block j'.,/E, such thatl(i, o, i',/E) =T'(, a, j',,/E,), with no block j'.,/E, being
selected twice; from this we can conclude thiét o, iI'/'E) < T'(j, o, j'/E). A symmet-
ric argument then showH(, a, i'/'E) > T'(j, a, J'/E), so we can conclud&(i, o, i'/E)
=T(, o, J'/E) as desired. The block',/E, can be selected by finding any stgte
such thate(i',, j” ); it is not hard to then show that the blogkE must be j' ,/E, for
somem’ but will not be selected for any other®

Theorem 4: Stochastic bisimilarity restricted to the states afsingle MDP is an
equivalence relation, and is itself a stochastsirbulation from that MDP to itself.

Proof: First, we prove that there exists a maximal stotibadsisimulation from an MDP
M to itself—it follows that this relation is stochastisimilarity, which is thus a bisimu-
lation. Since there are only finitely many uniquiedry relations that can be defined over
the states of an MDP, we can enumerate those tieastachastic bisimulations dv as
Bi, ..., Bm. We construct the maximal stochastic bisimulatiorthe following manner,
starting withE; = B,, and takingE; = E;.; U B;, this leads us t&, which is the maximal
stochastic bisimulation. In order to prove this, meed to show thdE, contains all other
stochastic bisimulations, and that it is itself ®@chastic bisimulationE, contains all
other stochastic bisimulations, since it contaifisttee B; by its construction. We show
thatEp, is a stochastic bisimulation by induction on timeléx. As a base cask; is a sto-
chastic bisimulation, since it iB;, which is a stochastic bisimulation. For the intue
case, the uniok;.; U B; yieldsE;, which is a stochastic bisimulation by Lemma 4.2.

All that remains to prove the theorem is to showattk,, when restricted to the
states of a single MDP is an equivalence relatiohis-follows immediately from Lemma
4.1 because if the reflexive symmetric transitivestire ofEy, is a bisimulation it must be
contained irgE,, and thus must bg,, &

Theorem 5: Any stochastic bisimulation that is an equivalemektion is a refinement
of both optimal value equivalence and action segeesuivalence.

Proof: Throughout this proof we will use statesindj as stochastically bisimilar states
from an MDPM =(Q, A, T, R). We show optimal value equivalenceicéndj by show-
ing, using induction om, thati andj have the same optimal discounted value at every fi-
nite horizonm. We definem-horizon optimal discounted value function in théldaving
manner for all statesand all non-negative integens
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Vm(S) = R(S) + max, ¥ Zkeq [T(S, o, K) Vin1(K)]

wherey is the discount factor, and we talg(s) to be 0 for all states.

For the base case take= 0. In this case the value function for any stetgust
the reward for that statep(s) = R(s). Since states andj are stochastically bisimilar we
know thatR(i) = R(j), and so thati(i) = vo(j), as desired. For the inductive case, we de-
fine them-horizon Q-valu&® for any states, actiona, and non-negative integet, by

Om(S, ) = R(8) +v Zeq [T(S, @, K) Vima(K)].
Let E be stochastic bisimilarity. Using the inductiongothesis, we have for any action

Om(i, @) =R(i) + vy Zkeo [T(I, o, K) Vimna(K)]
= R(I) + 7 ZbeqiE [T(i, a, b) Vm.1(b)]
=R() +vZveoe [T}, o, b’) Vima(b')]
=R() *v Zke[T(, o, K) Vina(K)] = O, o).
Since for any stats, viy(S) = max, gm(s, o), it follows thatvy(i) = vir(j), as desired.

We now show thai and| are action-sequence equivalent by induction on the
lengthm of the action sequence—we show that for any actequenceyy, ..., am, the
distribution over sequences of rewards attaineddtlpwing oy, ..., am is the same for
andj. We takedsm(a) to be a random variable ranging over reward segas of length
m, with the distribution generated from startingtstafollowing action sequence..

For the base case, we take= 0 and consider the empty sequencef actions.
Here, the reward sequendey(e) is deterministically the empty sequence—implythgt
¢i.o(e) andd; o(e) have identical distributions as desired.

For the inductive case, consider action sequenceay, ..., am We note that for
any states, we have that P(¢Sm(a) =ry, ..., rm) is equal to

Pr(¢3,1(a1) = l’l) Zbe Q/E T(S, o, b) Pr(d)b’m_l(az, ceey Otm) =TIy ..., I’m),

wheredpn(a) is defined to bepsn(a) for some states € b, and the choice o$ does not
affect the value oty () for n < m by the induction hypothesis. We apply this equatio
for sequal toi and fors equal toj, and show that the right-hand sides are equahétivo
cases. First, we note that the probability thai(a;) equalsr; in the above equation is ei-
ther zero or one, depending on whetRés) is r1, and thatR(i) = R(j) sincei andj are sto-
chastically bisimilar. Then, the fact th&(i, o, b) = T(j, aa, b) for each blockb (because
E is a bisimulation) gives P{¢im(d) =1, ..., fm) = Pr(¢ym(@) = r1, ..., 'm), concluding
the inductive case. Thus, stochastic bisimilaréfimes action-sequence equivaleiie.

Theorem 6: The reflexive, symmetric, transitive closure of astgpchastic bisimulation
from MDPM =(Q, A, T, R) to any MDP, restricted t@ x Q, is an equivalence relation
E < Q x Qthat is a stochastic bisimulation frokh to M.

Proof: This follows directly from Lemma 4.1, along with eéhfact that restricting an

33 Our use of the standard terminology “Q-functiorsas not imply any connection to the state space
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equivalence relation to a sub-domain preserve&thevalence relation proper®.

Theorem 7: Given an MDPM = (Q, A, T, R) and an equivalence relatidhc Q x Q
that is a stochastic bisimulation, each staite Q is stochastically bisimilar to the state
i/E in M/E. Moreover, any optimal policy oM / E induces an optimal policy in the
original MDP.

Proof: Let M/E=(Q/E, A, T, R’). First we prove that any € Q is stochastically
bisimilar toi/E in M /E. Let Z be the relation ove® x Q/E that contains only the
pairs {, i/ E) for eachi € Q. We showZ is a stochastic bisimulation froM to M / E.

Selecti € Q andj € Q/E such thatZ(i, j). We note thati/Z equals bothi/ E
andj, and thatj/Z is the set {j }. It follows that the rewarddx(i/Z) andR’(j/Z) are
well defined and equal, sindgé is a stochastic bisimulation. Now select actiane A,
statei’ € Q and statej € Q/E such thatZ(i’, ). Noting thatT(i, a, i'/Z) =
T, a,1'"VE) =T(I/E, o, I''E) =T'(, o, J) = T'(j, a0, j'/Z), we concludeZ is a
bisimulation and therefore thatindi / E are stochastically bisimilar.

As above in the proof of Theorem 5, define the Queafor any states and action
o by givingq(s, o) as the sum oR(s) andy Zx.q [T(S, a, k) v'(K)]. We now show that any
optimal action for state/E in Q/E is an optimal action for statein Q. To show this,
we show that the Q-value for arbitrary actionin statei/ E is the same as the Q-value
for a in statei. We conclude

qii/E,a) =R(I/E)+yXccoe T(I/E,a, jIE)V(]J/E)
=R +vZjee e Thow JIE)V(J/E)
=R() + vy Zsco T(I, o, 9) V'(S) =q(i, o) in M.

The second line follows via the definition &fl / E, with for R’ andT’, and the third line
via the definition of block transition probabilitgnd the equality of values within a block
(implicit in the proof of Theorem 5). This Q-valiegjuivalence yields our theorem.

Lemma 8.1: Given equivalence relatiof on Q and statep andq such thafT(p, o, C)
# T(q, o, C) for some actiorr and blockC of E, p andq are not related by any stochas-
tic bisimulation refiningk.

Proof: Suppose not. LeB andC denote blocks of the partition @& induced byE, let o
be any action irA, and letp andq denote states in blodB such thafl(p, o, C) = T(q, a,
C). Let E’ be a stochastic bisimulation refinirtgsuch thaip andq are in the same block
in E’. Let {Cq, ..., C} be the set of blocks i’ that refineC. BecauseéE’ is a stochastic
bisimulation, for each block in E’, T(p, a, D) = T(q, o, D). Summing this fact over all
the blocksC; we derive the following equation, contradictiiigp, o, C) = T(q, o, C):

T(p, o, C) =< ng(p, o, Ci) =Y1<i ng(q, a, Ci) = T(q, o, C)..

Corollary 8.2: Let E be an equivalence relation &) B a block inE, andC a union of
blocks fromE. Every bisimulation orQ that refinesk is a refinement of the partition
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SPLIT®, C, E).

Proof: Let E be an equivalence relation dp, B a block inE, and C be the union of
blocks C; thru C, from E. Let E’ be a stochastic bisimulation that refinEs Note that
SPLIT(@, C, E) will only split statesi andj if either R(i) = R(j) or T(i, o, C) # T(j, a, C),
by definition. But if R(i) # R(j) theni/E' # j/E' sinceE’ is a stochastic bisimulation.
And if T(i, a, C) = T(j, a,, C), then there must be sorkesuch thafl(i, a, Cy) = T(j, o, Cy),
because for any stag T(s, a, C) = Z1<m<n T(S, o, Cy). Therefore, we can conclude by
Lemma8.1that/E'# j/E'. R

Theorem 8: Partition iteration and model minimization both nopute stochastic

bisimilarity.
Proof: Partition iteration and model minimization bothr@nate with a partitiorP for
which SPLIT@, C, P) = P for any blocksB andC in P. SPLIT®B, C, P) will split any
block B containing a pair of statesandj for which eitherR(i) = R() or T(i, o, C) #
T(j, a, C). So any partition returned by partition iterationmodel minimization must be
a stochastic bisimulation. Since both model miniatian and partition iteration start
from the trivial {Q} partition, and each only refines the partition bpplying the SPLIT
operator to blocks in the partition, we can con@uay Corollary 8.2 that each partition
encountered, including the resulting partition, masntain stochastic bisimilarity. The
resulting partition, being a stochastic bisimulationust be stochastic bisimilariti

Theorem 9: Model reduction returns a stochastic bisimulation.

Proof: Since model reduction always splits at least as imag model minimization, due

to the definition of stability, it must be the ca#ieat the partition returned by model re-
duction is a refinement of the partition returneg the model minimization algorithm,

i.e., stochastic bisimilarity according to Theor&mAny such relation has the reward pro-
perties required of stochastic bisimulations. Thensition-model properties follow im-

mediately from the stability of all blocks in theesulting partition, which is a conse-
guence of the exit test of the final “while” loop the algorithmm

Corollary 9.1: The optimal policy for the quotient model produckey model reduc-
tion induces an optimal policy for the original MDP

Proof: Follows directly from Theorem 7 and Theorenmo.
Theorem 10: The bounded-size model-minimization problem is hédd.

Proof: We proceed by reducing 3CNF satisfiabifityo the bounded-size model minimi-
zation problem. Lef be a formula in 3CNF involvingn variablesX, ..., X, andm
clauses, with;; denoting thgth literal in theith clause, for X j <3 and 1< i < m; every
literal is of the formX, or =X, for some I<p<n.

3 The 3CNF formula is a non-empty set of clausesheadisjunction of exactly three literals.
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We construct a fac-
Reward(C, ... G) Transition(C)) Transition(Z,) | tored MDP M for use in
minimization as follows. The
set of fluents factoring the
state-space is the union oX{
|1<p<nfand {Ci|1<i<
m} where the X, are called
variable fluentsandthe C; are
called clause fluentsand will
be associated by construction
Figure 13. Reward and transition functions fprwith the clauses irF. Below
3CNF reduction. Each is a real-valued labeled partiwe often refer to then X, flu-
tion, as described in Section 2.3.2, representing ants (and the correspondimg
factored MDP as discussed in Section 2.3.3. variables inF) indirectly by
referring to the & literals ;.
We now describe the reward
and state-transition functions, which are showrrigure 13. There is only one action in
M. The single action is only capable of changing theh value of theC; fluents—fluent
Ci is set to be true if one of thig; is true, otherwis€; retains its previous value. So, after
its first application, the action is a no-op, sinteeterministically sets th€; values ac-
cording to theL;; values, which do not change. There are three ptessdwards, 1, -1,
and 0, which are associated, respectively, withliloek of states where all of thg; are
true, the block where all th€; are false, and the remaining block.

Each state in the MDM® specifies values for all th¥, andC; variables. As a re-
sult, each state can be viewed as specifying d{assignment to the;; variables, i.e., a
potential model for the formul& given as input to the satisfiability problem. Easfate,
also specifies values for th& variables. It is important to note that there isecstate in
the state space for each way of setting allXjendC; variables. Suppose the formufa
is satisfiable. Consider a state setting @Gllvariables false, and setting thg variables
according to a satisfying assignment farObserve that there will be an action transition
in the MDP from this state to a state where all @ev/ariables are true. If the formuRis
not satisfiable, then there will be no state wheteh a transition is possible. We now
analyze the minimal model of the MDH, and leverage these observations to determine
the satisfiability ofF from only the number of blocks in the minimal mddespecifically,
from whether or not there is a block where @llvariables are false from which there is a
transition possible to a block where @lf variables are true.

Figure 15 shows several formulas that will be uséfudescribing the minimal
model forM. Using these formulas, the reward function cardescribed by labeling the
partition {C, U, —-C A —U}—this partition is the result of ({Q}), and is shown in square
boxes in Figure 14. Model minimization will startitlv and further refine this partition, as
discussed below. The formuRis satisfiable if and only if there is a pdthfrom some

% We note that the “path” here will always be of tgth one due to the dynamics of our action.

48



F=(LiivLloivLils) A ..o An(LimVv LomV Lam)
G=(Lisvilyiviz)v..v(LimVvLlmVvLlsm
H=(Li1vLiliv0ilzivC)A...A(LimVv LomV Lamyv Ch)
C=CiAn...AnCy
U=-CiA...A—-Cy

Figure 15. Formulas for describing the partitiorsed in the 3CNF reduction. Includ
ing the original formuleF.

ab

Gy

“CA-U

Figure 14. Initial and minimal stable partitions fine 3CNF reduction.

state in the blockJ to the blockC, which is true if and only if the sub-blocW A F is
non-empty.

The numbered oval blocks in Figure 14 shows thalfipartition resulting from
model minimization, except that some of the ovaldis shown may in fact be empty. To
check that this partition is in fact stochastic imgdarity on M, note the following: the
blocks have uniform and well-defined rewards (ske square blocks); the transitions
shown are deterministic and uniform within eachdipand any two states in different
blocks differ either on their immediate reward or their reward at the next state.

Once an appropriatk for the bounded-size model minimization problemses
lected, the problem will be answered “yes” if andlypif the block U A F (block 2) is
non-empty, and thus if and only K is satisfiable, as desired. Selecting an appropka
to achieve this property requires our reductionl&ermine which blocks in Figure 14 are
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non-empty. We note that block 1 is always non-emptyd non-emptiness for block 2
implies non-emptiness for block 3 (simply set theto satisfyF and set some but not all
C; to get a member of block 3)—therefore checking thiee all three of blocks 1 through
3 are non-empty is sufficient. Thus the appropriatie ofk is f+3 wherep is the num-
ber of non-empty blocks among blocks 4, 5, and 8einains to show that non-emptiness
of blocks 4, 5, and 6 can be determined in polynalitime, by analysis oF.

We note that the validity df can easily be checke#:is valid if and only if every
clauseC in F there exists a literdl such that both. and—L appear inC. If F is valid,
thenH is also valid, and then blocks 4, 5, and 6 aresafipty. IfF is not valid, then-F is
satisfiable, implying the existence of at least @tauser in F that is falsifiable. The as-
signment to theX fluents that makes false extended with all th€; fluents true except
C: will be a member of block 6, and thus block 6 ismempty wherf is not valid. The
formula—F A G is satisfiable if and only if~F is satisfiable and has at least two clauses
that do not share all their literals—this providas emptiness test of block 5, &kscan
always be satisfied independentlyfoindG. The formula—G is satisfiable if and only if
no variable appears iR in both positive and negative form. Sine&s implies —F, de-
termining the satisfiability of-G determines the emptiness block 4. All of these &mp
ness determinations can be made in polynomial imtbe size of~. B

Lemma 11.1:Given equivalence relatiod on Q, block B in E, block C a union of any
non-empty set of blocks ik, and statep andq in B, if p andq do not fall in the same
block of S-SPLITB, C, E) thenp andq are not related in any fluentwise-stable parti-
tion refining E.

Proof: Suppose andq are in different blocks of S-SPLIB( C, E). This implies thafp
andq fall into different blocks ofTg(a., f ) for some actioro. and fluentf, wheref is nec-
essary to describe the blo€k This implies thathere are two states that differ only on
their value off, one that is in blockC, and one that is not. Furthermore, any partitibatt
distinguishes between these states, including afigegment ofC, must also usé to do
so. Any refinement ok contains a refinement df, sinceE contains a refinement .
Thus, the fluent is necessary to describe at least one block inrafigement ofE. It fol-
lows thatp andq, being in different blocks oTg(a., f ) for some actioru, cannot belong
to the same block of any fluentwise stable refinaie E. B

Theorem 11:Given a patrtitiorP, there is a unique coarsest fluentwise-stable sttaha
bisimulation refiningP. Iterating S-SPLIT using model reduction or paatit iteration
starting fromP computes this bisimulation regardless of the omfdslock splitting.

Proof: The existence of a coarsest fluentwise-stable ststot bisimulation refinind? is
guaranteed since the partitiondf q € Q} is a fluentwise-stable stochastic bisimulation
refining P, and there are only finitely many partitions. Unaness of the coarsest such
partition is proven by contradiction. Assume twastilict partitionsE; and E, are both
coarsest fluentwise-stable stochastic bisimulatiefiming P. Construct the new partition
E refining P that equates any two states equated by eifjesr E,, as follows:E is the
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symmetric transitive closure &; union E,, where the partitions are viewed as equiva-
lence relations represented as sets of p¥s note that this partitiok is a coarsening of
both E; andE; and thus any fluent necessary to represent angkhilo E must be neces-
sary to represent at least one bldekand at least one block iB; (see proof of Lemma
11.1). This ensures that any two states relateceitiyer E; or E; must be in the same
block of Te(a, f) for any fluent required to define a block &f—since any such fluent is
required to define a block d; and a block of,, and bothE; andE; are fluentwise sta-
ble. Then a simple induction shows that since amy ttates related bl are connected
by a path made fronk,/E, arcs (i.e., a path of arcs drawn fro union E,), any two
such states must be in the same blocH gy, f ) for any fluent required to define a block
of E. SoE is fluentwise stable. Also, by Lemma 4.1 and Lem#n2, E must be a stochas-
tic bisimulation. ThereforeE is a fluentwise-stable, stochastic bisimulationttie a
coarsening of botk; andE;,, contradicting our assumption.

That iterating S-SPLIT using model reduction or tgan iteration finds the
coarsest fluentwise stable stochastic bisimulatadlows directly from Lemma 11.1

Lemma 12.1: Given equivalence relatioR on Q, block B in E, actiona, and stateg
andq in B, if p andq do not fall in the same block of FS-SPLB(C, E), whereC is
the union of any set of blocks g, thenp andq are not related in any fluentwise stable
partition refiningE that is also fluentwise representable.

Proof: First we note that S-SPLIB( C, E) is a coarsening of the unique coarskgén-
twise-stablegpartition E’ refining E (by Lemma 11.1). It follows that any fluent needied
represent S-SPLIB, C, E) is also needed to represdfit FS-SPLITB, C, E) is the flu-
entwise partition given by the set of fluents remui to represent S-SPLIB(C, E), and
thus must be a coarsening of any fluentwise partitincluding all the fluents needed to
represenk’. But any representation of any fluentwise-stabléifian refining E must use
all the fluents needed in every representatiokofsinceE’ is the coarsest such partition.
So any fluentwise representation of a fluentwisabit refinement oE must include all
the fluents used in FS-SPLIB(C, E), and thus must separgtendq, as desiredl

Theorem 12:Given a partitionP, there is a unique coarsest stochastic bisimulatén
fining P even under the restriction that the partition béhbituentwise stable and fluen-
twise representable. Iterating FS-SPLIT using maoaeluction or partition iteration
starting fromP computes this bisimulation regardless of the omfdslock splitting.

Proof: Let E be the unigue coarsest fluentwise-stable stochasimulation refiningP,
which we know exists, by Theorem 11. The fluentwispresentable partitiof’ contain-
ing just those fluents required for representiags a fluentwise-stable partition that is
fluentwise representable—this follows beca@SerefinesE without requiring any new
fluents for representation. Since our choiceEofjuarantees that every fluentwise-stable
partition refinesk, every fluent needed to represdnis needed to represent any fluen-
twise-stable partition; therefore all such fluemsist be included in any fluentwise repre-
sentation of any fluentwise-stable partition. THtigs a unique coarsest fluentwise stable
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stochastic bisimulation even under the restrictiloat it also be fluentwise representable.
That iterating FS-SPLIT, using either model redantior partition iteration, yields this
partition follows directly from Lemma 12.W.

Lemma 13.1: Suppose we are given an equivalence relakan Q, where the blocks
of both E and the partitions representing the factored MD& rapresented as conjunc-
tions of literals. Then, any statpsandq that do not fall in the same block &.sp i1(E)
are not in the same block of any regression-stahlition refiningE.

Proof: Suppose andq fall into different blocks ofir.sp.1(B, C, E). By the definition of
R-SPLIT,p andqg must fall into different blocks oT(a., f ) for some actiorx and fluentf
necessary to describe some bldClof E and eitherp or g must be in the regression re-
gion of C. Without loss of generality, lgb be in the regression region & Consider a
regression-stable refinemelgt of E—we show thap andq fall into different blocks of
E’. Sincep is in the regression region @, p must be in the regression region of some
sub-blockC’ of C in E’. Furthermore, becausgis represented as a conjunction of liter-
als, every fluent required to describe bldCknust be required to describe any sub-block
of C— in particular, the fluent is required to describe the blo€X. Now we have thap

is in the regression region &', description of which requirethe fluentf (for which p
andq fall into different blocks ofTe(a, f)). It follows thatp andq must be separated by
R-SPLIT®’, C’, E’) for any blockB’ of E’ containing botlp andq; thus, there can be no
suchB’ in the regression-stable, andp andq fall into different blocks inE’, as desired.

[ |

Theorem 13: Given a partitionP, there exists a unique coarsest regression-stible
chastic bisimulation refining.

Proof: The existence of a coarsest regression-stable astichbisimulation refinind? is
guaranteed since the partitiond}] q € Q} is a regression-stable stochastic bisimulation
refining P, and there are only finitely many partitions. Sogp for contradiction that two
distinct partitionsk; and E, are both coarsest regression-stable stochastimblistions
refining P. Construct the new partitiok refining P that equates any two states equated
by eitherE; or E;, as follows:E is the symmetric transitive closure Bf unionE,, where
the partitions are viewed as equivalence relatimmesented as sets of pai¥¥e note
that this partitiorkE is a coarsening of both; andE; and thus any fluent necessary to rep-
resent any block it must be necessary to represent at least one litpekd at least one
block in E; (see proof of Lemma 11.1). This ensures that any states related by either
E; or E; must be in the same block df(a, f ) for any fluent required to define any block
of E containing either state in its regression regiomres any such fluent is required to
define such a block dE; and such a block dE; and bothE; andE; are regression stable.
But then a simple induction shows that since ang states related bl are connected by
a path ofEy/E; arcs, any two such states must be in the samekldddr(a, f ) for any
fluent required to define any block & containing either state in its regression regiso

E is regression stable. In addition, by Lemma 4.4 &emma 4.2F must also be a sto-
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chastic bisimulation. Therefor§, is a regression-stable stochastic bisimulation that
coarsening of botk; andE,, which contradicts our assumption.

Lemma 14.1: Given a non-empty blocB represented by a conjunction of literals
each fluenf is mentioned inD if and only if f appears in every formula describiBg

Proof: (If) If f appears in every formula describing bloBkthen sinced describes3, ®
must mentiorf. (Only if) Since® describes a non-empty blo&kit follows that® is sat-
isfiable. Letv be a truth assignment to all the fluents such thsatisfies®, and letv’ be
v with the value of fluenf negated for some flueitappearing inb. Since® described
and is a conjunction of literals that mentiohsve know thatv’ is not in blockB. Fur-
thermore, since botk andv’ satisfy all the same formulas that do not contgibut B
containsv and notv’, any description oB must contairf. B

Lemma 14.2:1f every block in a partitiorP is representable with a conjunction of lit-
erals, every block ofr.sp 1(P) is also so representable, under the assumptianthe
blocks in the partitions describing the MDP areced® representable.

Proof: Let C be a block of states. We define the “required fitsf of C, Req-FluentsT),
to be the set of fluents that are mentioned in gv@NF block formula that describes
block C. We define Determine€)) to be the intersection of thE- partitions for eacl e
Reqg-Fluents). Note that any partition of the form Determingsis made up only of
blocks representable by conjunctions of literals€g our assumptions about the MDP).

Let Regres<t) to be the partition DetermingS) modified so that any blockB
such thafl(B, a, C) = 0 for every actioro. are aggregated into a single block. IS#he a
set of blocks. We use Determin&s@nd Regres§) to denote the intersection over mem-
berse of S of Determinesf) and Regress], respectively. Lets be a state. We define
Reachable]) to be the set of block€ of P such thafl(s, a, C) # 0. For any blockB, let
Reachabld) is the set of all block€ such that some stagin B hasT(s, o, C) # 0. We
prove that RegresBj intersected withP andR is the same partition as-spLr(P), and
that every blockB of Regresp) is an element of Determines(ReachaB)g( Thus, any
block of Ir.spi7(P) can be represented as a conjunction of litersitse it is the intersec-
tion of blocks fromP, R, and a Determines(-) partition, where each blackepresentable
as a conjunction of literals.

We now show that Regre$3(intersected withP andR is the same partition as
Ir-spLiT(P). Let sandt be states from the same block of RegrB$st P n R. Sinces andt
are in the same block @, to be in different blocks ofr-spii1(P) they must fall in differ-
ent blocks of some call to R-SPLIB{, C, P) for someC in P wheres andt are both in
B’. Statess andt are in different blocks of R-SPLIE’, C, P) only if eithers andt have
different reward or are in different blocks ®f for someF in Reqg-FluentsC) and eitheis
ort has a non-zero probability of transitioning@ Sinces andt are in the same block of
R they must have the same reward, and since theynatiee same block of Regre€y(
they must either both have zero probability of sdion to C or be in the same block of
Te for all F in Reg-FluentsC). So,s andt are in the same block dk-spi1(P), and thus
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that Regres®) intersected withP andR refineslg.spLir(P).

Now considers andt from the same bloclB of Ir.sp (P). Sincelr.spLr(P) al-
ways refines botlP andR, s andt must be the same blocks BfandR. We know that
block B is not split by any call of the form R-SPLIB( C, P) for any C € P, implying
that eitherT(B, a, C) = O for all o or every state i1B falls in the same block ofr for all
F in Reg-Fluents). Sinces andt are both inB, they must be in the same block of Re-
gressC) for anyC e P, and therefore in the same block of RegrE$sBeing in the same
blocks of the partitions Regre$y( P, andR meanss andt are in the same block of the
intersection of those partitions and thigssp 1(P) refines RegresB) intersected witHP
andR. Since RegresB] intersected withP? andR refineslg.spL(P) andlg-spLii(P) refines
Regres®) intersected withP andR they must be the same partition.

It remains to show that any blocB of Regresd) is an element of Deter-
mines(ReachablBj). Consider statesandt in B of Regres$®?). For all blocksC of P, s
andt are in the same block of Regre€¥(So, by definition of Regres§}, whenevefT(B,
a, C) > 0, sandt are in the same block of Determin€3( The set of block< from P
whereT(B, a, C) > 0 is just Reachabl8], sos andt are in the same block, calldgi, of
Determines(ReachabR)). So, blockB refines a block of Determines(ReachaBlg(

We now consider stat¢ € B’ and show thas’ € B, to conclude thaB’ = B,
completing our proof. We consider any staten B, and show thas ands’ fall into the
same block of RegredS) for every blockC of P. It suffices to show that Reachakbdi(
equals Reachabke] and thats ands’ fall into the same block off for any F in Reg-
FluentsC) for C in Reachableg). ConsiderC in Reachabled). Note that any suckt is a
member of ReachablB) and our choice oB’ as the block of Determines(ReachaBlg(
containingB implies thats’ and s are in the same block ofg for all fluents in Reg-
Fluents(C). It remains to show that Reachalsde¢quals Reachabl].

As just argueds ands’ fall into the same block offg for any fluentF in Reg-
FluentsC) for any C in Reachabled). This implies that Reachab®(is a subset of
Reachablef). The fact that Reachabk] is a subset of Reachab#g(can be argued as
follows. As just showns ands’ fall in the same block o for anyF in Reg-Fluents()
for anyC in Reachabldf). This implies that the transition probability fros or s’ to any
suchC is the same. But since these probabilities mush $a one (becausse canonly
reach blocksC that are reachable from, assis in B), s’ cannot transition to any block
C’ not in Reachabl®), and hence Reachal#g(is a subset of Reachalbd(as desired

Theorem 14: Let M be a factored MDP with all partition blocks repeeged as con-
junctions of literals. Given a starting partitidhalso so represented, iterating R-SPLIT
using partition iteration computes the coarsestesgjon-stable stochastic bisimulation
refining P, regardless of the order in which blocks are stdddor splitting.

Proof: Lemma 14.2 implies that every block in the partiticesulting from the applica-
tion of thelr.sp rOperation has a formula that is a conjunction térals. Lemma 13.1
then implies that iteratinér-spLir USing partition iteration returns the coarsestresgion-
stable stochastic bisimulation, which by Theoremsl@nique.®
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Lemma 15.1: Given a fluentwise partitiof? and a minimal tree-represented factored
MDP M, the partition computed by Add-relevaRj(is the partitionl gs.spLi(P).

Proof: Let P’ be the fluentwise partition returned by Add-reletapartitionP’ is fluen-
twise representable. Als®; is a refinement oP sinceP’ (as a set of fluents) contaifs
We define fluentwise stability with respect to arfiigon to mean fluentwise stability with
respect to every block of that partition. Below wlow that any fluentwise partition
omitting any fluent inP’ is not fluentwise stable with respect B and thatP’ is fluen-
twise stable with respect 8. Thus,P’ is the coarsest fluentwise-representable partition
refining P that is fluentwise stable with respectRoi.e. Irs.spi(P), as desired.

For a partition to be fluentwise stable with respex a fluent means that every
pair of states in the same block of the partitiomsthhave the same probability distribu-
tion over that fluent for every action. If a fluefitis tested in a minimal tree representa-
tion of the effect of some actiom on some fluent then any fluentwise partition omitting
' is not fluentwise stable with respect tptwo states differing only ofi must differ in
their probability of setting when takingo.. To be fluentwise stable with respectfp a
partition must be stable with respect to all thedihts inP (as a set of fluents), because
describing any block iP with a formula requires all fluents iR. It follows that Add-
relevant construct®’ by adding toP only those fluents that cannot be omitted from a
partition that is fluentwise stable with respecRpas desired.

The independence assumptions implicit in the faadarepresentation of the MDP
M ensure that any fluerft not mentioned in the tree for actianand fluentf has no ef-
fect on the probability of settingwhen takingo.. Specifically, states differing only oh
have the same probability of settihgvhen takinga. PartitionP’ contains every fluent in
any tree defining the effect of any action on ahyeht inP, so that two states in the same
block can only differ on fluents not mentioned inyasuch tree. It follows that any two
states in the same block & have the same probability of setting any fluentipand
thus thatP’ is fluentwise stable with respect ol

Theorem 15: Given a minimal tree-represented MDP, model redurctiusing
FS-SPLIT yields the same partition that state-spacgtralstion yields, and does so in
polynomial-time in the MDP representation size.

Proof: Since state space abstraction iterates Add-relestarting with the fluentwise
partition FluentsR) until convergence, it follows directly from 0 thatate-space abstrac-
tion and iterating FS-SPLIT starting with Flueri®&(find the same partition. A simple
analysis of partition iteration shows that the fiteration returns Fluent®) when using
FS-SPLIT. Theorem 12 then implies that model reductusing FS-SPLIT and state
space abstraction yield the same partition.

We now show the polynomial-time complexity claimo Bbtain this complexity,
the basic method must be optimized to make onlylitearly many FS-SPLIT calls de-
scribed below, avoiding unnecessary calls, as vadlowWhen the patrtitio® is fluentwise
represented, the partitid® = FS-SPLIT@, C, P) does not depend on the choice®br
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C from P because the same set of fluents are used in evdeck lormula. ThusP’ will

not be further split by calls of the form FS-SPLB'( C, P’), whereB’ is a block ofP’
andC is a block ofP. This observation implies that partition iteratican computds.
sput(P) with only one call to FS-SPLIR, C, P), using any block®3 andC in the parti-
tion P. We further note that each call to FS-SPLIT in@esthe number of fluents in the
partition representation, except the last call, ehdoes not change the partition. Thus
only linearly many calls to FS-SPLIT can be madeidg partition iteration. We can
conclude that partition iteration terminates inywmial time, by showing that each call
to FS-SPLIT terminates in polynomial time.

Consider the call FS-SPLIB( C, P), whereB andC are blocks ofP, andP is a
fluentwise-represented partition. Every fluent lretset definingP is present in every
DNF formula defining any block oP. So, for any choice oB andC, the resulting parti-
tion must be fluentwise partition represented by et of fluents that appear anywhere in
the trees defining the effects of the actions arefits inP, together with any fluents iR
or appearing in the tree definirig This set is computable in time polynomial in thige
of those trees plus the number of fluent$~irm

Lemma 16.1: Let V be a tree-represented value function, whByeis the partition
given by the tree. Let. be an action, and for any blo&k of Py, let @c denote the con-
junction of literals describin@. We then have the following.

The partition computed by PRegregs() is the intersection over all
blocksC of Py of Regression-determiningg, o).

Proof: We use induction on the depth of the tree YorAs the base case suppoges a
leaf node. Here, PRegress returns the partition,{&}d Regression-determining(trusg,
also returns {Q}. In the inductive case, let flueinbe the fluent tested at the root of the
tree, and assume the lemma for the sub-treesPLdte the intersection over all blocks
CePy of Regression-determiningg, o). We show thaP- is PRegres(, o).

We start by noting that the partition returned bRd¥yress{, o) is built by refin-
ing T (o, f) using Replace. Sindeis at the root oV.Tree every formula describing any
block C of Py includesf. In particular, the conjunction describing any dkoof V must
containf, since it is on every path from the root ¥fto a leaf, and sdé must be in Flu-
ents@c)fp. Thus for every blockC of Py the call to Partition-determining(Fluent&y),

o) must be fluentwise stable with respectfisince all states in the same block of Parti-
tion-determining(Fluentc), o) must be in the same block @t (a, ' ) for any fluentf’

in Fluents@c). Consider the partition variablBc in the pseudo-code for Regression-
determining@c, o), after it is assigned. Since every blockRp is a block from Partition-
determining(Fluentg®c), o), any such block must be fluentwise stable witbpect tof.
We note that the union of all blocks Fx is the regression region f@, as defined in sec-
tion 4.6. It follows that every state in the regsem region for a blockC is in a fluen-
twise-stable block (with respect fQ in the partition Regression-determinigg{, o), and
thus in any partition refining this partition. Ewestate must be carried to some state
der actiona, so every statés in the regression region for some blockRyf. So P must
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be fluentwise stable with respectfteso P refinesTg (o, f).

We now analyze the refinemeat Tr (o, f) returned by PRegress and show that
this refinement is the same as the refinementofa, f ) by P~. PRegresy(, ) is com-
puted by replacing each blo@&kof Tr (o, f) with the intersection of all the partitions re-
sulting from relevant recursive calls to PRegrasstricted to blockB. A recursive call
on an immediate sub-tree bfis relevantto block B if the value off leading to that sub-
tree has a non-zero probability after taking actiom block B (this probability is uni-
form throughoutB). By the induction hypothesis, each sub-tree piartiis the intersec-
tion of Regression-determinin@¢:, o) for all blocksC’ of the partition represented by
the sub-tree. Each such blo€k becomes a block of Py when restricted to the value of
f determiningthe branch for the sub-tree containi@3—the formula®dc will be @c: con-
joined with the appropriate literal fdr The refinement oB in PRegres$(, o) is there-
fore the intersection of Regression-determinibg( o) for all the blocksC’ of all sub-
trees relevant t®, restricted tdB.

Consider a blociB of Tg (o, f) and two statesandj from B in different blocks of
PRegresy(, o). Our analysis of PRegred4(a) just above implies thatandj must be in
different blocks of Regression-determinidgy{, o) for some blockC’ of a sub-tree oV
relevant toB. Let C be the block formed by restrictinG’ to the relevant value df Any
state inB has a non-zero block transition probability@oif and only if that state also has
a non-zero block transition probability ©—this follows from the definition of “rele-
vant”. From this, one can show thatndj are also in different blocks of Regression-
determining@c, o). It follows thatP refines PRegresg( o).

Now consider a bloclC of Py and the corresponding formutac, and any two
stated andj in the same block of PRegre¥s@). For any fluent’ in @c, we have either
that @¢ is always false after performing whether starting from or fromj, or that both
states have an equal probability of transitioniogtstate wheré€ is true after performing
o. This implies that stateisandj are either both in block), or both in block ofPc, re-
spectively, in the pseudo-code for Regression-dat@ng(@c, o). We conclude that any
two states in the same block of PRegré&ss() must also be in the same block of Regres-
sion-determiningdc, o) for any blockC of Py—thus PRegres¥( o) must refineP-.
Since PRegres¥( o) andP refine each other, they must be equal, as deshed.

Lemma 16.2: Given actiona. and value functiorV, Regress-actioM, o) on MDP M
intersected withV.tree gives the partition computed kysp (V. Tree) on MDPM ., .

Proof: We say that a partitioR’ is aregression of Hor MDP M if P’ = R-SPLIT@, C,
P’) for any blocksB of P’ andC of P, where R-SPLIT is computed relative kb. It is not
hard to show that the coarsest regressio® oéfining P for any M is Ir.spi1(P) for M.
Let P be the partitionV.Tree, and lefP’ be P n Regress-actioM, o) on MDP M. We
show thatP’ is the coarsest regressionfftefining P for M ., , to conclude thaP’ = Ig.
spuT(P) relative toM, .

SinceP’ is formed by intersection witP, P’ refinesP. We show thaf’ is a re-
gression ofP relative to M., . Leti andj be any two states in the same bldslof P’.
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Then we need to show thaaindj are in the same block of R-SPLIB(C, P’) relative to
M., for any blockC of P. We note that Regress-Action(o) uses partition intersection
with the reward partition to return a partition thafines theR partition. Thus, the states
andj must have the same reward. Statasdj must also belong to the same block of Re-
gression-determinindfc, o) for any block C of P by Lemma 16.1 since Regress-
action{, a) returns a refinement of PRegregs(). We can then see that stateand]
must belong to the same block of Block-s@itC, o) (as computed by the code of Figure
7 with Partition-determining replaced by Regressitmtermining to compute R-SPLIT,
as discussed in section 4.6)—and thus to the sdoek lof R-SPLITE, C, P’) for M.,
as desired. It follows tha’ is a regression d? for M, .

We now argue thalP’ is the coarsest regression Bffor M., . Suppose not, and
consider such coarser regressi®h and consider statesandj in the same block oP”
but in different blocks oP’. Note, based on the pseudo-code for Regress-agctibigure
11, that ifi andj are in different blocks oP’ then they must either be in different blocks
of P, have different rewards, or (using Lemma 16.1)rdifferent blocks of Regression-
determiningc, o) for some blockC of P. In each of these cases, we can show that the
block B of P” containingi andj is split to separaté and | into different blocks of
R-SPLIT@, C, P’) for some blockC of P, contradicting our assumption abdrit.l

Lemma 16.3: Given policyn and value functiorV, Regress-polic\{, =) on MDP M
intersected withV.tree gives the partition computed bysp(V.Tree) on MDPM,; in-
tersected withr. Tree.

Proof: Regress-policy{, n) returns the partition that refinesTree by intersecting each
block b of n.Tree with Regress-actiovi( o) Whereay, is the action labeling bloch, i.e.,
n.Labelp). Let M’ be the MDPM extended by adding a new actiehdefined to so that
for each stats, o’ behaves identically ta(s) in M. Then Regress-policy ) in M gives
the same partition as Regress-actibn{’) in M’ intersected withz.Tree. Applying
Lemma 16.2 gives that Regress-poli¢y) intersected withv.tree is the same patrtition
aslr-spLr(V.Tree) for MDP M., . intersected witht. Tree. To complete the proof, we note
that M. = M, by the construction o&’ and M, .=

Lemma 16.4: Given tree-represented value functiovis and V,, with corresponding
partitionsV;.Tree refiningV,.Tree, we have all of the following monotonicityqper-
ties:

1. PRegres¥, o) refines PRegressf, o) for any actiono,

2. Regress-actioN(, o) refines Regress-actiow, o) for any actiona,

3. Regress-policy,, n) refines Regress-policyg, nr) for any policyr, and

4. lr-spur(Vi.Tree) refinesr.spLi(Va. Tree).

Proof: We first show some properties of PRegress and ditfmns represented as trees
that will be useful for proving that PRegre¥s(a) refines PRegresg, o) for any action
a. It follows from Lemma 16.1 that the partition tehed by PRegresg( o) for a tree-
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represented value functiovndepends on only the blocks ®Tree and not on the struc-
ture of the tree itself. Another useful propertytiat for any value functiow’ which re-
finesV, both represented as trees, we can change thetsteuofV’ to have the same root
variable asv without changing the represented partition. Wel wibve this property by
construction. LeX be the root variable o¥ . Tree, we first note thaX must be used to de-
scribe any block oV’.Tree because of the following three facts. (1)eev block formula
for any block ofV.Tree orV' .Tree is a conjunction of literals. (2) Every blookV.Tree
mentionsX. (3) Every block ofV'.Tree is a sub-block of a block o¥.Tree. For each
valuex of X, let the treery be the tred/. Tree, with every sub-tree that has root variaKle
replaced by the immediate sub-tree of that sub-t@eesponding tx. Now construct a
treet with the root node labeled witK, and the sub-tree for each valyef X being .
Noting thatX must occur on every root-to-leaf pathVh.Tree, it is easy to show that the
T represents the same partition\Aslree, but has the same root variable\a$ree.

We now prove by induction on the height @.Tree that PRegresg{, o) refines
PRegress(,, o) for any actiona. For the base case, consider a value functignonsist-
ing of a single leaf node. In this case PRegress{) returns {Q}, which is refined by
every partition so the property is trivially truén the inductive case, first modify;.Tree
so that it has the same root variable\asTree without changing the partition represented,
as just described in the previous paragraph. Examgithe pseudo-code for PRegress,
given in Figure 11, we note that the saiXés selected by the calls PRegréss() and
PRegresa(,, o) for any actiona, and therefore the assignme®tTree =Py,.Tree as-
signs the same starting tree for both calls. We rabwerve that Subtreé{, x) refines
SubtreeY,, x) for every valuex of X, sinceV; refinesV,, and that the height of Sub-
tree{/,, X) is less than the height &f,.Tree. Therefore, by the induction hypothesis we
have that every,; in the call PRegres¥{, o) refines the correspondingy; in the call
PRegress(;, o).

Let T, be theT calculated to replace blodk of Px.Tree in the call PRegreds( o)
and letT, be theT calculated to replacB in the call PRegres¥, o). We now show that
T, refinesT,. For stategp andq to be in the same block df; they must be in the same
block of Py in the call PRegress{, a) for eachx; such that PX = x) in the distribution
Py a.Label®) is greater than zero. Therefore, sirfggin the call PRegressy, a) refines
the correspondingy; in the call PRegres¥g, o), p andg must be in the same block &%
in the call PRegressg, o)) for eachx such that PiX = X)) in the distributionPy..Label)
is greater than zero. Since theBg are intersected to obtaify, p andq must be in the
same block ofT, proving thatT; refinesT, when replacing any blocB. Part 1 of the
lemma follows. The second and third parts of thamhea follow directly from the first and
second, respectively, along with an examinationhef pseudo-code in Figure 11 and ba-
sic properties of intersection on partitions relatto the partition refinement relation.

To prove the last part of the lemma, thatsp (V1. Tree) refinedg-spui(Va. Tree),
we show that any two states in the same blocksafp.i1(V1. Tree) are in the same block
of Ir-spu(V2.Tree). Letp andq be two states from the same bloBkof Ir-spi (V1. Tree).
This means thap andq must be in the same block d;.Tree and in the same block of
R-SPLIT@Bs, By, Ir-spur(Vi.Tree)) for any blockB,’ of Vi.Tree.
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In order to show thap andq are in the same block dk.sp. (V2. Tree) we show
that they are in the same block @.Tree and in the same block of R-SPLBE( B,’, P)
for any blockB,' of V.. Tree, any blockB, containingboth p andq, and any partitiorP
containing blockB,. SinceV;.Tree refinesV,. Tree, the fact thap andq are in the same
block of V;.Tree directly implies that they are in the samedid of V,. Tree. For anyB,’ e
V,.Tree, consider the s@tof blocks {B,' | B, € V1.Tree,B;’ < B,’}. Note that sincep
andq are in the same block dk.spLir(Vi1.Tree), they must agree on the probability of
transition to any block in/1.Tree. Letp andq both be in blockB, and B, be a block of
partition P. If for every membeB;’ of 3, the probability of transitioning from bothand
g to By under an actionu is zero, therp andq are in the same block of R-SPLIB{, B,',
P) since their probabilities of transitioning 8, are both zero and thus. Now consider
for some membeB;’ of the set, the probability of transitioning froeitherp or q to By’
iSs non-zero under some actiom Then, sincep and q are in the same block of
Ir-spLT(V1. Tree), they must be in the same blocKTef(a., f ) for every fluentf needed to
describe blockB;’. Since By’ is a sub-block ofB,’ and bothB;" and By’ can be repre-
sented as a conjunction of literals every flueneded forB,’ is needed forB,’. There-
fore, p andg must be in the same block @% (o, f) for every fluentf needed to describe
block By’ and thus be in the same block of R-SPLBR( B,’, P). Using one of these two
cases for each action, we get tlpgand g are in the same block of R-SPLIB(By,’, P),
whenevelp andq are both in blockB andB is in P.®

Theorem 16: For any tree-represented MDR and policyr, SSA() produces the
same resulting partition as partition iteration by using R-SPLIT starting from the
partitionzw.Tree.

We first show that SSA{) and partition iteration oM, using R-SPLIT, starting from the
partitionn.Tree, written Pl.sp 1(m. Tree,M;), compute the same partition. We notate the
sequence of partitions produced by partition iteratas follows:Py = n.Tree, andPi.1 =
Ir-spL(Pi). The partition Pd.spi(m. Tree,M,) equalsPy, for all m greater than the num-
bertp of iterations to convergence. Likewise, denote gbquence of factored value func-
tions produced by SSA as followsy = R, andV;.; = Regress-polic\(j, n). Likewise, the
partition SSAf) equalsVp, for all m greater than the numbey of iterations to conver-
gence. By induction on the numbarof iterations of partition iteration, we show that
Vih+1.Tree refinesP, and P,.1 refines V,.Tree, for alln > 0, and conclude that
SSA@@).Tree equals MRsp 1(n. Tree,M,), as desired, by considerimg> max¢p, tv).

For the base case, consider equal to 1. Since, by inspection, Regress-
policy(- ). Tree always refines the partitiomTree, for any policyr, we know that
V1.Tree refined,. Likewise, since, by inspection, the partitibsisp 1(P) always refines
the reward partitiorR. Tree, for any patrtitior?, we know thatP; refinesVy.Tree. For the
inductive case, we first show th&,.; refinesV,.Tree. By a nested induction an we
can show thaP,.; refinesPy, using the fact thatz-spLi(P) refinesP, for anyP. Thus,

(1) Prt1=Pns1n Po= IR—SPLIT(Pn) N . Tree.
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But P, refinesV,; by the induction hypothesis, so Lemma 16.4 imphest |r-sp(Pr)
refineslr-spLin(Vn-1). Together with equation (1), this implies tHat.; refineslgr.spii(Vin-
1) N . Tree. By applying Lemma 16.3, we derive tiat, refines Regress-policy(-1, )
N Vn_1.Tree, which is jusWV, n V.1, by definition. It is straightforward to show by a
nested induction om that V, refinesV,4, using Lemma 16.4, so we conclude tiat;
refinesV,.

That V1. Tree refines, is proven similarlyfirst, Vp+1 = Va1 1V, = Regress-
policy(Vy,, ©) N V. Applying Lemma 16.3, we hawé,.1 = Ir.spLir(Vn) N ©.Tree. ButV,
refinesP,; by the induction hypothesis, so Lemma 16.4 impliest |z.spi1(Vy) refines
IR-spLT(Pn-1). With Vhi1 = Ir-spun(Vn) N w.Tree, we have thaty.; refineslg-spim(Pn-1) N
n.Tree, which is jusP, sincelr.spi 1(Pn.1) N ©.Tree=P, N Py = P,,.H

Theorem 17:The policy improvement “for” loop in SPI comput&sspLi(Vy. Tree).

Proof: Let b be a block int.Tree. We note thaV, in SPI is a factored value function
computed by SSA, and s¢, must be a fixed-point of Regress-policyf), This implies
thatV;.Tree must refiner.Tree, and, by examining the Regress-policy psecatte, that
blocksb’ in V, that refineb are also in Regress-actiaf( n(b)). Combine these to get
that Regress-actiow, n(b)) refines {~b} u {b’ | b’ € V; A b’ c b}. We also have

(2) (M Regress-actioM, o) refinesn.Treen V,.Tree,

acA

sinceb was arbitrary. Given that partition intersecti@associative and commutative, the
policy improvement “for” loop in SPI can be seeniterate over the actions to compute

n.Treen () Regress-actioM;, o). Tree.

acA

Equation (2) then implies that the computed paotitis
©) Q (Regress-actioM;, o) N V,.Tree), which isq lr-spLr(Ve.Tree) inM .,

by applying Lemma 16.2 to each of the partitionstle intersection. It is possible to
show that for value functiok' and MDPM’ with action spacé\’,

@)  lrseurV)inMDPM =Y U () Block-split®, C, o) in M,

acA’ BeV.Tree CeV.Tree
where the intersections are partition intersectigrsnd the union is a simple set union,
treating the partitions as sets of blocks (the mnc@mbines partitions of disjoint sets to
get a partition of the union of those disjoint get8pplying this to each of the terms in
the intersection in Equation (3), noting that th@yaction available inM -, is a yields

% The resulting partition has a block for each pafiblocks in the partitions being intersected, resenting
the intersection of those two blocks, with emptpdits in the result removed.
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(MM U (M) Block-split®, C, o) in M.,

acA o'e{a} BeVrTree CeVr.Tree
for the partition. Simplifying and noting Block-3f(B, C, o) is the same inM ., andM,
(5) (M U M Block-split®, C, o) in M
acA BeVnTree CeVr.Tree

is the computed partition. Finally, applying Equoati(4) givedg-spLi(Vz.Tree) inM. 1
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