
 1

Equivalence Notions and Model Minimization in
Markov Decision Processes

Robert Givan, Thomas Dean, and Matthew Greig

Robert Givan and Matthew Greig
School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907

(765) 494-9068
{givan, mgreig}@ purdue.edu

Thomas Dean
Department of Computer Science

Brown University, Providence, RI 02912
 (401) 863-7600

tld@cs.brown.edu

Abstract
Many stochastic planning problems can be represented using Markov Decision Processes (MDPs).

A difficulty with using these MDP representations is that the common algorithms for solving them run in
time polynomial in the size of the state space, where this size is extremely large for most real-world plan-
ning problems of interest. Recent AI research has addressed this problem by representing the MDP in a fac-
tored form. Factored MDPs, however, are not amenable to traditional solution methods that call for an ex-
plicit enumeration of the state space. One familiar way to solve MDP problems with very large state spaces
is to form a reduced (or aggregated) MDP with the same properties as the original MDP by combining
“equivalent” states. In this paper, we discuss applying this approach to solving factored MDP problems—
we avoid enumerating the state space by describing large blocks of “equivalent” states in factored form,
with the block descriptions being inferred directly from the original factored representation. The resulting
reduced MDP may have exponentially fewer states than the original factored MDP, and can then be solved
using traditional methods. The reduced MDP found depends on the notion of equivalence between states
used in the aggregation. The notion of equivalence chosen will be fundamental in designing and analyzing
algorithms for reducing MDPs. Optimally, these algorithms will be able to find the smallest possible re-
duced MDP for any given input MDP and notion of equivalence (i.e. find the “minimal model” for the in-
put MDP). Unfortunately, the classic notion of state equivalence from non-deterministic finite state ma-
chines generalized to MDPs does not prove useful. We present here a notion of equivalence that is based
upon the notion of bisimulation from the literature on concurrent processes. Our generalization of bisimula-
tion to stochastic processes yields a non-trivial notion of state equivalence that guarantees the optimal pol-
icy for the reduced model immediately induces a corresponding optimal policy for the original model. With
this notion of state equivalence, we design and analyze an algorithm that minimizes arbitrary factored
MDPs and compare this method analytically to previous algorithms for solving factored MDPs. We show
that previous approaches implicitly derive equivalence relations that we define here.

1 Introduction

Discrete state planning problems can be described semantically by a state-
transition graph (or model), where the vertices correspond to the states of the system, and
the edges are possible state transitions resulting from actions. These models, while often
large, can be efficiently represented, e.g. with factoring, without enumerating the states.

Well-known algorithms have been developed to operate directly on these models,
including methods for determining reachability, finding connecting paths, and computing

 2

optimal policies. Some examples are the algorithms for solving Markov decision proc-
esses (MDPs) that are polynomial in the size of the state space [Puterman, 1994]. MDPs
provide a formal basis for representing planning problems that involve actions with sto-
chastic results [Boutilier et al., 1999]. A planning problem represented as an MDP is
given by four objects: (1) a space of possible world states, (2) a space of possible actions
that can be performed, (3) a real-valued reward for each action taken in each state, and
(4) a transition probability model specifying for each action α and each state p the distri-
bution over resulting states for performing action α in state p.

Typical planning MDPs have state spaces that are astronomically large, exponen-
tial in the number of state variables. In planning the assembly of a 1000-part device, po-
tential states could allow any subset of the parts to be “in the closet”, giving at least 21000
states. In reaction, AI researchers have for decades resorted to factored state representa-
tions—rather than enumerate the states, the state space is specified with a set of finite-
domain state variables. The state space is the set of possible assignments to these vari-
ables, and, though never enumerated, is well defined. Representing action-transition dis-
tributions without enumerating states, using dynamic Bayesian networks [Dean and Ka-
nazawa, 1989], further increases representational efficiency. These networks exploit in-
dependence properties to compactly represent probability distributions.

Planning systems using these compact representations must adopt algorithms that
reason about the model at the symbolic level, and thus reason about large groups of states
that behave identically with respect to the action or properties under consideration, e.g.
[McAllester and Rosenblitt, 1991][Draper et al., 1994]. These systems incur a significant
computational cost by deriving and re-deriving these groupings repeatedly over the
course of planning. Factored MDP representations exploit similarities in state behaviors
to achieve a compact representation. Unfortunately, this increase in compactness repre-
senting the MDP provably does not always translate into a similar increase in efficiency
when computing the solution to that MDP [Littman, 1997]. In particular, states grouped
together by the problem representation may behave differently when action sequences are
applied, and thus may need to be separated during solution—leading to a need to derive
further groupings of states during solution. Traditional operations-research solution
methods do not address these issues, applying only to the explicit original MDP model.

Recent AI research has addressed this problem by giving algorithms that in each
case amount to state space aggregation algorithms [Baum and Nicholson, 1998][Boutilier
and Dearden, 1994][Lin and Dean, 1995] [Boutilier et al., 1995b] [Boutilier and Poole,
1996][Dearden and Boutilier, 1997][Dean and Givan, 1997][Dean et al., 1998]—
reasoning directly about the factored representation to find blocks of states that are
equivalent to each other. In this work, we reinterpret these approaches in terms of parti-
tioning the state space into blocks of equivalent states, and then building a smaller ex-
plicit MDP, where the states in the smaller MDP are the blocks of equivalent states from
the partition of the original MDP state space. The smaller MDP can be shown to be
equivalent to the original in a well-defined sense, and is amenable to traditional solution
techniques. Typically, an algorithm for solving an MDP that takes advantage of an im-
plicit (i.e. factored) state-space representation, such as [Boutilier et al., 2000], can be al-

 3

ternatively viewed as transforming the problem to a reduced MDP, and then applying a
standard MDP-solving algorithm to the explicit state space of the reduced MDP.

One of our contributions is to describe a useful notion of state equivalence. This
notion is a generalization of the notion of bisimulation from the literature on the seman-
tics of concurrent processes [Milner, 1989][Hennessy and Milner, 1985]. Generalized to
the stochastic case for MDP states, we call this equivalence relation stochastic bisimilar-
ity. Stochastic bisimilarity is similar to a previous notion from the probabilistic transition
systems literature [Larson and Skou, 1991], with the difference being the incorporation of
reward.

We develop an algorithm that performs the symbolic manipulations necessary to
group equivalent states under stochastic bisimilarity. Our algorithm is based on the itera-
tive methods for finding a bisimulation in the semantics of concurrent processes literature
[Milner, 1989][Hennessy and Milner, 1985]. The result of our algorithm is a model of
(possibly) reduced size whose states (called blocks or aggregates) correspond to groups
of states in the original model. The aggregates are described symbolically. We prove that
the reduced model constitutes a reformulation of the original model: any optimal policy
in the reduced MDP generalizes to an optimal policy in the original MDP.

If the operations required for manipulating the aggregates can each be done in
constant time then our algorithm runs in time polynomial in the number of states in the
reduced model. However, the aggregate manipulation problems, with general proposi-
tional logic as the representation are NP-hard, and so, generally speaking, aggregate ma-
nipulation operations do not run in constant time. One way to attempt to make the ma-
nipulation operations fast is to limit the expressiveness of the representation for the ag-
gregates—when a partition is called for that cannot be represented, we use some refine-
ment of that partition by splitting aggregates as needed to stay within the representation.
Using such representations, the manipulation operations are generally more tractable,
however the reduced MDP state space may grow in size due to the extra aggregate split-
ting required. Previous algorithms for manipulating factored models implicitly compute
reduced models under restricted representations. This issue leads to an interesting trade-
off between the strength of the representation used to define the aggregates (affecting the
size of the reduced MDP), and the cost of manipulation operations. Weak representations
lead to poor model reduction, but expressive representations lead to expensive operations
(as shown, e.g., in [Dean et al., 1997][Goldsmith and Sloan, 2000]).

The basic idea of computing equivalent reduced processes has its origins in auto-
mata theory [Hartmanis and Stearns, 1966] and stochastic processes [Kemeny and Snell,
1960], and has been applied more recently in model checking in computer-aided verifica-
tion [Burch et al., 1994][Lee and Yannakakis, 1992]. Our model minimization algorithm
can be viewed as building on the work of [Lee and Yannakakis, 1992] by generalizing
non-deterministic transitions to stochastic transitions and introducing a notion of utility.

We claim a number of contributions for this paper. First, we develop a notion of
equivalence between MDP states that relates the literatures on automata theory, concur-
rent process semantics, and decision theory. Specifically, we develop a useful variant of
the notion of bisimulation, from concurrent processes, for MDPs. Second, we show that

 4

the mechanisms for computing bisimulations from the concurrent processes literature
generalize naturally to MDPs and can be carried out on factored representations, without
enumerating the state space. Third, we show that state aggregation (in factored form), us-
ing automatically detected stochastic bisimilarity, results in a (possibly) reduced model,
and we prove that solutions to this reduced model (which can be found with traditional
methods) apply when lifted to the original model. Finally, we carefully compare previous
algorithms for solving factored MDPs to the approach of computing a minimal model
under some notion of state equivalence (stochastic bisimilarity or a refinement thereof)
and then applying a traditional MDP-solving technique to the minimal model.

Section 2 discusses the relevant background material. Section 3 presents some
candidate notions of equivalence between states in an MDP, including stochastic bisimu-
lation, and Section 4 builds an algorithm for computing the minimal model for an MDP
under stochastic bisimulation. Section 5 compares existing algorithms for working with a
factored MDP to our approach. Section 6 covers extensions to this work to handle large
action spaces and to select reduced models approximately. Section 7 shows brief empiri-
cal results, and the remaining section draws some conclusions. The proofs of our results
appear in the appendix, except where noted in the main text.

2 Background Material
2.1 Sequential Decision Problems

2.1.1 Finite Sequential Machines

A non-deterministic finite sequential machine (FSM) F (adapted from [Hartmanis
and Stearns, 1966]) is a tuple 〈Q, A, O, T, R〉 where Q is a finite set of states, A is a finite
set of inputs (actions), and O is a set of possible outputs. The transition function, T, is a
subset of Q × A × Q that identifies the allowable transitions for each input in each state.
The output function, R, is a mapping from Q to O giving for each state the output gener-
ated when transitioning into that state. We say that a state sequence q0, …, qk is possible
under inputs α1, …, αk from A when T contains all tuples of the form 〈qx-1, αx, qx〉. We
say that q0, …, qk can generate output sequence o1, …, ok when R maps each qx for x > 0
to ox. We can then say that o1, …, ok is a possible output sequence when following input
sequence α1, …, αk from start state q0 if o1, …, ok can be generated from some state se-
quence q0, …, qk possible under α1, …, αk. Finally, we denote an input sequence as ξ, an
output sequence as φ, and use →F,i to denote generation so that ξ →F,i φ means that output
sequence φ is possible in FSM F starting at state i under input sequence ξ.

2.1.2 Markov Decision Processes

 A Markov decision process (MDP) M is a quadruple 〈Q, A, T, R〉 in which Q is a
finite state space, A is a finite action space, T is a mapping from Q × A × Q to [0,1], and R
is a reward function assigning a non-negative real-numbered utility to each state in Q.1

1 More general reward function forms are often used. For example, one could have R be a mapping from Q
x A x Q to real values, in which case it is the transition that carries the reward, not being in a given state.
Our method generalizes to these more general reward functions However we adopt state based reward to

 5

Transitions are defined by T so that ∀i, j ∈ Q, and ∀α ∈ A, T(i, α, j) equals Pr(Xt+1 = j |
Xt = i, Ut = α), where the random variables Xt and Ut denote the state of the system and
the action taken at time t, respectively. Figure 1 shows an MDP represented as a directed
graph. The nodes are labeled with the states they represent along with the reward as-
signed to that state. The edges represent possible transitions labeled with the action and
probability of that transition given the action and originating state. In this paper, we refer
to this graph representation and to an MDP in general as a model for the underlying dy-
namics of a planning problem [Boutilier et al., 1999].

An MDP is essentially an FSM for which the output set O is the real numbers R,
and transition probabilities have been assigned. However, in FSMs, inputs are tradition-
ally sequences of input symbols (actions) to be verified, whereas in MDPs “inputs” are
usually specified by giving a policy to execute. A policy π for an MDP is a mapping from
the state space to the action space, π:Q→A, giving the action to select for each possible
state. The set of all possible policies is denoted Π. To compare policies, we will employ
value functions v:Q→R mapping states to real values. The set of value functions, V, is
partially ordered by domination, v1 ≤dom v2, which holds when v1(i) ≤ v2(i) at every state i.

2.1.3 Solving Markov Decision Problems

A Markov Decision Problem (also abbreviated MDP by abuse of notation) is a
Markov decision process, along with an objective function that assigns a value function to
each policy. In this paper, we restrict ourselves to one particular objective function: ex-
pected, cumulative, discounted reward, with discount rate γ where 0 < γ < 1 [Bellman,
1957][Howard, 1960][Puterman, 1994].2 This objective function assigns to each policy

simplify the presentation.

2 Other objective functions such as finite-horizon total reward or average reward can also be used and our
approach can easily be generalized to those objective functions.

Figure 1. A graph representation of a Markov decision process in which Q = {A, B, C,
D}, A = { a, b} (action a is shown with a solid line, b with a dashed line), R(A) = R(D)
=1, R(B) = R(C) = 0, and the transition probabilities (T) are given on the associated
transitions. The probability of a transition is omitted when that probability is one or
zero and deterministic self-loop edges are also omitted, to improve readability.

A,1 B,0

C,0

D,1

0.6

0.4

 6

the value function measuring the expected total reward received from each state, where
rewards are discounted by a factor of γ at each time step. The value function vπ assigned
by this objective function to policy π is the unique solution to the set of equations

vπ(i) = R(i) + γ Σj T(i, π(i), j) vπ(j).

An optimal policy π* dominates all other policies in value at all states, and it is a theorem
that an optimal policy exists. Given a Markov Decision Problem, our goal is typically to
find an optimal policy π*, or its value function vπ*. All optimal policies share the same
value function, called the optimal value function and written v*.

An optimal policy can be obtained from v* by a greedy one step look-ahead at
each state—the optimal action for a given state is the action that maximizes the weighted
sum of the optimal value at the next states, where the weights are the transition probabili-
ties. The function v* can be found by solving a system of Bellman equations

v(i) = R(i) + maxα γ Σj T(i, α, j) v(j).

Value iteration is a technique for computing v* in time polynomial in the sizes of
the state and action sets (but exponential in 1⁄γ) [Puterman, 1994][Littman et al., 1995],
and works by iterating the operator L on value functions, defined by

Lv(i) = R(i) + maxα∈A γ Σj T(i, α, j) v(j).

L is a contraction mapping, i.e., ∃(0 ≤ λ < 1) s.t. ∀ u, v ∈ V

Lu - Lv ≤ λ u - v where v = maxi |v(i)|,

and has fixed point v*. The operator L is called Bellman backup. Repeated Bellman back-
ups starting from any initial value function converge to the optimal value function.

2.2 Partitions in State Space Aggregation

A partition P of a set S = { s0, s1, …, sn} is a set of sets {B1, B2, …, Bm} such that
each Bi is a subset of S, the Bi are disjoint from one another, and the union of all the Bi
equals S. We call each member of a partition a block. A labeled partition is a partition
along with a mapping that assigns to each member Bi a label bi. Partitions define equiva-
lence relations—elements share a block of the partition if and only if they share an
equivalence class under the relation. We now extend some of the key notions associated
with FSM and MDP states to blocks of states. Given an MDP M = 〈Q, A, T, R〉, a state i ∈
Q, a set of states B ⊂ Q, and an action α ∈ A, the block transition probability from i to B
under α, written T(i, α, B), by abuse of notation, is given by: T(i, α, B) = Σj∈B T(i, α, j).
We say that a set of states B ⊂ Q has a well-defined reward if there is some real number r
such that for every j ∈ B, R(j) = r. In this case we write R(B) for the value r.

Analogously, consider FSM F = 〈Q, A, O, T, R〉, state i∈ Q, set of states B ⊂ Q,
and action α ∈ A. We say the block transition from i to B is allowed under α when T(i, α,
j) is true for some state j in B, denoted with the proposition T(i, α, B), and computed by
∨j∈B T(i ,α,j). We say a set of states has a well-defined output o ∈ O if for every j ∈ B,
R(j) = o. Let R(B) be both the value o and the proposition that the output for B is defined.

 7

Given an MDP M = 〈Q, A, T, R〉 (or FSM F = 〈Q, A, O, T, R〉), and a partition P of
the state space Q, a quotient model PM (or PF / for FSMs) is any model of the form
〈P, A, T’, R’〉 (or 〈P, A, O, T’, R’〉 for FSMs) where for any blocks B and C of P, and ac-
tion α, T’(B, α, C) = T(i, α, C) and R’(B) = R(i) for some i in B. For state i ∈ Q, we de-
note the block of P to which i belongs as Pi . In this paper, we give conditions on P that
guarantee the quotient model is unique and equivalent to the original model, and give
methods for finding such P. We also write EM / (likewise, EF / for FSMs), where E is
an equivalence relation, to denote the quotient model relative to the partition induced by
E (i.e. the set of equivalence classes under E), and Ei for the block of state i under E.

A partition P’ is a refinement of a partition P, written P’ « P if and only if each
block of P’ is a subset of some block of P. If, in addition, some block of P’ is a proper
subset of some block of P, we say that P’ is finer than P, written P’ « P. The inverse of
refinement is coarsening (») and the inverse of finer is coarser (»). The term splitting re-
fers to dividing a block B of a partition P into two or more sub-blocks that replace the
block B in partition P to form a finer partition P’. We will sometimes treat an equivalence
relation E as a partition (the one induced by E) and refer to the “blocks” of E.

2.3 Factored Representations

2.3.1 Factored Sets and Partitions

A set S is represented in factored form if the set is specified by giving a set F of
true/false3 variables, along with a Boolean formula over those variables, such that S is the
set of possible assignments to the variables that are consistent with the given formula.4
When the formula is not specified, it is implicitly “true” (true under any variable assign-
ment). When S is given in factored form, we say that S is factored. A factored partition P
of a factored set S is a partition of S whose members are each factored using the same set
of variables as are used in factoring S.5 Except where noted, partitions are represented by
default as a set of mutually inconsistent DNF Boolean formulas, where each block is the
set of truth assignments satisfying the corresponding formula.

Because we use factored sets to represent state spaces in this paper, we call the
variables used in factoring state variables or, alternately, fluents. One simple type of par-
tition is particularly useful here. This type of partition distinguishes two assignments if
and only if they differ on a variable in a selected subset F’ of the variables in F. We call
such a partition a fluentwise partition, denoted Fluentwise(F’). A fluentwise partition can
be represented by the set F’ of fluents, which is exponentially smaller than any list of the
partition blocks. E.g, if F = { X1, X2, X3} and F’ = {X1, X2} then the partition Fluentwise(F’)
has four blocks described by the formulas: X1 ∧ X2, X1 ∧ ¬X2, ¬X1 ∧ X2, and ¬X1 ∧ ¬X2.

3 For simplicity of presentation we will consider every variable to be Boolean although our approach can
easily be generalized to handle any finite-domain variable.
4 It follows that every factored set is a set of variable assignments. Any set may be trivially viewed this way
by considering a single variable ranging over that set (if non-Boolean variables are allowed). Interesting
factorings are generally exponentially smaller than enumerations of the set.
5 Various restrictions on the form of the formulas lead to various representations (e.g. decision trees).

 8

2.3.2 Factored Mappings and Probability Distributions

A mapping from a set X to a set Y can be specified in factored form by giving a
labeled partition of X, where the labels are elements of Y. A conditional probability dis-
tribution Pr(A|B) is a mapping from the domain of B to probability distributions over the
domain of A, and so can be specified by giving a labeled partition—this is a factored
conditional probability distribution. A joint probability distribution over a set of discrete
variables can be represented compactly by exploiting conditional independencies as a
Bayesian belief network [Pearl, 1988]. Here, equivalent compactness is achieved as fol-
lows. First, the joint distribution can be written as a product of conditional distributions
using the chain rule (for any total ordering of the variables). Next, each of the conditional
distributions involved can be simplified by omitting any conditioning variables that are
irrelevant due to conditionally independence. Finally, the simplified distributions are
written in factored form. A joint distribution so written is called a factored joint probabil-
ity distribution. We show an example of such a factored joint distribution in Figure 2.

2.3.3 Factored Markov Decision Processes

Factored MDPs can be represented using a variety of approaches, including Prob-
abilistic STRIPS Operators (PSOs) [Hanks, 1990][Hanks and McDermott, 1994]
[Kushmerick et al., 1995] and 2-stage Temporal Bayesian Networks (2TBNs) [Dean and
Kanazawa, 1989]. For details of these approaches, we refer to [Boutilier et al., 1999].
Here, we will use a representation, similar in spirit, but focusing on the state-space parti-
tions involved. An MDP M = 〈Q, A, T, R〉 can be given in factored form by giving a quad-
ruple 〈F, A, TF, RF〉,

6 where the state space Q is given in factored form by the set of state
variables F (with no constraining formula). The state-transition distribution of a factored
MDP is specified by giving, for each fluent f and action α, a factored conditional prob-
ability distribution TF(α, f) representing the probability that f is true after taking α, given
the state in which the action is taken—TF(α, f) is7 a partition of the state space, where
two states are in the same block if and only if they result in the same probability of set-
ting f to true when α is applied, and the block is labeled with that probability. The un-
factored transition probabilities T(i, α, j) can be extracted from this representation as

{ } { }
∏∏
¬

−=
)()(

)),,(1(),,(),,(
fjf

F
fjf

F filabelfilabeljiT ααα

where j(f) is true if and only if the fluent f is assigned true by state j, and labelF(i, α, f)
gives the label assigned to the block containing state i by TF(α, f). We note that to use
this factored representation, we must have that the post-transition fluent values are inde-
pendent of each other given the pre-transition state8, so that the probability of arriving at
a given state is the product of the probabilities associated with each fluent value for that

6 We discuss factored action spaces further in Section 6.1, and synchronic effects in Section 6.3.
7 By our definition of “factored conditional probability distribution”
8 Factored representations can also be designed that allow dependence between post-transition fluents (so-
called “synchronic effects”). For simplicity of presentation here we disallow such dependence, but we dis-
cuss the ramifications of allowing dependence later, in Section 6.3.

 9

state. The reward function RF of a factored MDP is a factored mapping from states to real
numbers—i.e., a labeled factored partition of the state space where each label gives the
reward associated with any state in that block. Two states are in the same block of RF if
and only if they yield the same immediate reward.

3 Equivalence Notions for State Space Aggregation

In this section, we discuss state equivalence notions that aim to capture when two
states behave identically for all purposes of interest. We first consider some simple defi-
nitions and their shortcomings, before defining an appropriate notion. The definitions
here are independent of the MDP representation and are inspired by work in concurrent
processes that uses unfactored state spaces; our principle contribution is to connect this
work to factored state spaces, providing natural algorithms for solving factored MDPs.

3.1 Simple Equivalence Notions for Markov Decision Processes

In this section, we define two simple notions of equivalence between states in an
MDP. We argue here that these notions both equate states that we must treat differently,
and so are too coarse. The first of these notions is a stochastic generalization of action-
sequence equivalence, a classic equivalence notion for finite sequential machines
[Hartmanis and Stearns, 1966]. Let F = 〈Q, A, O, T, R〉 and F’ = 〈Q’, A, O, T’, R’〉 be two
FSMs over the same input and output sets. The states i of F and j of F’ are action-
sequence equivalent if and only if for every input sequence ξ, the same set of output se-
quences φ can be generated under ξ from either state i or state j, i.e.,

∀ξ { φ | ξ →F,i φ } = { φ | ξ →F’,j φ }.

This equivalence notion also naturally applies to two states from the same FSM.
We now generalize this notion, for the stochastic case, to an equivalence notion

between states in MDPs. The distribution over reward sequences associated with a given
MDP assigns to each sequence of actions α1, …, αk and starting state q a probability dis-
tribution over length k sequences of real values r1, …, rk. This distribution gives the
probability of obtaining the sequence of rewards r1, …, rk when starting from state q and
performing action sequence α1, …, αk. Let M = 〈Q, A, T, R〉 and MDP M’ = 〈Q’, A, T’,

Pr(A,B,C,D,E)

 = Pr(A) Pr(B | A) Pr(C | B,A)
 Pr(D | C,B,A) Pr(E | A,B,C,D,E)

 = Pr(A) Pr(B | A) Pr(C | A)
 Pr(D | C,B) Pr(E | C)

Figure 2. A Bayesian network and decomposition of the joint probability distribution
over the variables in the network based on the chain rule and the conditional inde-
pendencies implied by the network.

 10

R’〉 be two MDPs with the same action space. The states i of M and j of M’ are action-
sequence equivalent if and only if for every sequence of possible actions α1, …, αn, for
any n, the distributions over reward sequences for i in M and j in M’ are the same. Note
that this definition applies naturally to two states within the same MDP as well.

FSMs are generally used to map input sequences to output sequences. However,
because MDPs are typically used to represent problems in which we seek an effective
policy (rather than action sequence), action-sequence equivalence is not an adequate
equivalence notion for MDP state aggregation for the purpose of constructing equivalent
reduced problems. This is because a policy is able to respond to stochastic events during
execution, while a sequence of actions cannot. In particular, two MDP states may be ac-
tion-sequence equivalent and yet have different values under some policies and even dif-
ferent optimal values. We show an example of such an MDP in Figure 3 where the states
i and i’ have the same distribution over reward sequences for every action sequence, but i
has a better optimal value than i’ . This difference in optimal value occurs because poli-
cies are able to respond to different states with different actions and thus respond to sto-
chastic transitions based on the state that results. However, action sequences must choose
the same sequence of actions no matter which stochastic transitions occur. In the figure, a
policy can specify that action α1 is best in state j1, while action α2 is best in state j2—the
policy thus gains an advantage when starting from state i that is not available when start-
ing from state i’ . Action sequences, however, must commit to the entire sequence of ac-
tions that will be performed at once and thus find states i and i’ equally attractive.

The failure of action-sequence equivalence to separate states with different opti-
mal values suggests a second method for determining state equivalence: directly compar-
ing the optimal values of states. We call this notion optimal value equivalence. MDP
states i and j are optimal value equivalent if and only if they have the same optimal value.

Optimal value equivalence also has substantial shortcomings. States equivalent to
each other under optimal value equivalence may have entirely different dynamics with
respect to action choices. In general, an optimal policy differentiates such states. In some
sense, the fact that the states share the same optimal value may be a “coincidence”. As a
result, we have no means to calculate equivalence under this notion, short of computing
and comparing the optimal values of the states—but since an optimal policy can be found
by greedy one-step look-ahead from the optimal values, computing this equivalence rela-
tion will be as hard as solving the original MDP. Furthermore, we are interested in aggre-
gating equivalent states in order to generate a reduced MDP. While the equivalence
classes under optimal value equivalence can serve as the state space for a reduced model,
it is unclear what the effects of an action from such an aggregate state should be—the ef-
fects of a single action on different equivalent states might be entirely different. Even if
we manage to find a way to adequately define the effects of the actions in this case, it is
not clear how to generalize a policy on a reduced model to the original MDP.

Neither of these equivalence relations suffices. However, the desired equivalence
relation will be a refinement of both of these: if two states are equivalent, they will be
both action sequence equivalent and optimal value equivalent. To see why, consider the
proposed use for the equivalence notion, namely to aggregate states defining a smaller

 11

equivalent MDP that we can then solve in order to generalize that solution to the larger
original MDP. For the reduced MDP to be well defined, the reward value for all equiva-
lent states must be equal; likewise, the transition distributions for all equivalent states and
any action must be equal (at the aggregate level). Thus, the desired equivalence relation
should only equate states that are both action sequence and optimal value equivalent (the
former is proved by induction on sequence length and the latter by induction on horizon).

3.2 Bisimulation for Non-deterministic Finite Sequential Machines

Bisimulation for FSM states captures more state properties than is possible using action
sequence equivalence. Bisimulation for concurrent processes [Park, 1981] generalizes a
similar concept for deterministic FSM states from [Hartmanis and Stearns, 1966].

Let F = 〈Q, A, O, T, R〉 and F’ = 〈Q’, A, O, T’, R’〉 be two FSMs over the same in-
put and output spaces. A relation E ⊆ Q × Q’ is a bisimulation if each i ∈ Q (and j ∈ Q’)
is in some pair in E, and whenever E(i, j) then the following hold for all actions α in A,
1. R(i) = R’(j),

2. for i’ in Q s.t. T(i, α, i’), there is a j’ in Q’ s.t. E(i’ , j’) and T’(j, α, j’), and conversely,

3. for j’ in Q’ s.t. T’(j, α, j’), there is an i’ in Q s.t. E(i’ , j’) and T(i, α, i’).

We say two FSM states i and j are bisimilar if there is some bisimulation B between their
FSMs in which B(i, j) holds. Bisimilarity is an equivalence relation, itself a bisimulation.

The reflexive symmetric transitive closure of any bisimulation between two
FSMs, restricted to the state space of either FSM gives an equivalence relation which par-
titions the state space of that FSM. The bisimulation can be thought of as a one-to-one
mapping between the blocks of these two partitions (one for each FSM) where the two
blocks are related if and only if some of their members are related. All block members
are bisimilar to each other and to all the states in the block related to that block by the
bisimulation. Next, an immediate consequence of the theory of bisimulation [Park, 1981].

Figure 3. An MDP where action sequence equivalence would find i and i’ to be
equivalent even though they have different optimal values. Any edge not labeled is de-
terministic and deterministic self-loops are omitted. Transitions involving action α1
are shown with a solid edge while those involving α2 is shown with a dotted edge.

0.5

i,0

 j1,0

 j2,0

g,1

h,0

 j,0 i’ ,0

0.5 0.5

0.5

0.5

0.5

 12

Theorem 1: FSM states related by a bisimulation are action-sequence equivalent.9

We note that optimal-value equivalence is not defined for FSMs.
Aggregation algorithms construct a partition of the state space Q and aggregate

the states in each partition block into a single state (creating one aggregate state per parti-
tion block) in order to create a smaller FSM with similar properties. When the partition
used is due to a bisimulation, the resulting aggregate states are action-sequence equiva-
lent to the corresponding states of the original FSM. The following theorem is a non-
deterministic generalization of a similar theorem given in [Hartmanis and Stearns, 1966].

Theorem 2: Given an FSM F = 〈Q, A, O, T, R〉 and an equivalence relation E ⊆ Q × Q
that is a bisimulation, there is a unique quotient machine EF / and each state i in Q is
bisimilar to the state Ei in EF / .10

[Hennessy and Milner, 1985] show that bisimulation captures exactly those prop-
erties of FSM states which can be described in Hennessy-Milner Modal Logic (HML).11
We briefly define this logic here as an aside—we do not build on this aspect of bisimula-
tion here. The theorem below states that HML can express exactly those properties that
can be used for state aggregation in the factored FSM methods we study. Following
[Larson and Skou, 1991],12 the formulas ψ of HML are given by the syntax:

ψ ::= True | False | [α, o]ψ | <α, o>ψ | (ψ1 ∨ ψ2) | (ψ1 ∧ ψ2)

The satisfaction relation i |= ψ between a state i in an FSM F and a HML formula ψ is
defined as usual for modal logics and Kripke models. Thus, i |= <α,o>ψ whenever j |= ψ
for some j where T(i, α, j) and R(j) = o, and dually, i |= [α,o]ψ whenever T(i, α, j) and
R(j) = o implies j |= ψ.

Theorem 3: [Hennessy and Milner, 1985] Two states i and j of an FSM F are bisimilar
just in case they satisfy exactly the same HML formulas.13

3.3 Stochastic Bisimulation for Markov Decision Processes

In this section, we define stochastic bisimilarity for MDPs as a generalization of
bisimilarity for FSMs, generalizing “output” to “reward” and adding probabilities. Sto-
chastic bisimilarity differs from bisimilarity in that transition behavior similarity must be

9 For space reasons, we do not repeat the proof of this result.
10 For space reasons, we do not repeat the proof of this result.
11 We note that the semantics of concurrent processes work deals with domains that are generally infinite
and possibly uncountable. Our presentation for FSMs is thus a specialization of that work to finite state
spaces.
12 HML and the corresponding bisimulation notion are normally defined for sequential machines with no
outputs, where the only issue is whether an action sequence is allowed or not. We make the simple gener-
alization to having outputs in order to ease the construction of the MDP analogy and to make the relation-
ship between the literatures more apparent.
13 For space reasons, we do not repeat the proof of this result.

 13

measured at the equivalence class (or “block”) level—bisimilar states must have the same
block transition probabilities to each block of “similar” states.

The Ei notation generalizes to any relation E ⊆ Q × Q’. Define Ei be the
equivalence class of i under the reflexive, symmetric, transitive closure of E, restricted to
Q, when i ∈ Q (restrict to Q’ when i ∈ Q’). The definitions are identical when E is an
equivalence relation in Q × Q.

Let M = 〈Q, A, T, R〉 and M’ = 〈Q’, A, T’, R’〉 be two MDPs with the same action
space, and let E ⊆ Q × Q’ be a relation. We say that E is a stochastic bisimulation14 if
each i ∈ Q (and j ∈ Q’) appears in some pair in E, and, whenever E(i, j), both of the fol-
lowing hold for all actions α in A,

1. R(Ei) and R’(Ej) are well defined and equal to each other.
2. For states i’ in Q, and j’ in Q’ s.t. E(i’ , j’), T(i ,α, Ei ') = T’ (j ,α, Ej ').

See Section 2.2 for the definition of T(i ,α,B) for a block B. We say that two MDP
states i and j are stochastically bisimilar if there is some stochastic bisimulation between
their MDPs which relates i and j. Note that these definitions can be applied naturally
when the two MDPs are the same. This definition is closely related to the definition of
probabilistic bisimulation for probabilistic transition systems (MDPs with no utility or
reward specified) given in [Larson and Skou, 1991].

Theorem 4: Stochastic bisimilarity restricted to the states of a single MDP is an
equivalence relation, and is itself a stochastic bisimulation from that MDP to itself. 15

A stochastic bisimulation can be viewed as a bijection between corresponding
blocks of partitions of the corresponding state spaces. So two MDPs will have a bisimula-
tion between them exactly when there exist partitions of the two state spaces whose
blocks can be put into a one-to-one correspondence preserving block transition probabili-
ties and rewards. Stochastic bisimulations that are equivalence relations have several de-
sirable properties as equivalence relations on MDP states.16

Theorem 5: Any stochastic bisimulation that is an equivalence relation is a refinement
of both optimal value equivalence and action sequence equivalence.

We are interested in state space aggregation and thus primarily in equivalence re-
lations. The following theorem ensures that we can construct an equivalence relation
from any bisimulation that is not already an equivalence relation.

14 Stochastic bisimulation is also closely related to the substitution property of finite automata developed in
[Hartmanis and Stearns, 1966] and the notion of lumpability for Markov chains [Kemeny and Snell, 1960].
15 We note that the proofs of all the theorems presented in this paper, except where omitted and explicitly
noted, are left until the appendix for sake of readability.
16 It is possible to give a stochastic modal logic for those properties of MDP states that are discriminated by
stochastic bisimilarity. For an example of a closely related logic that achieves this goal for probabilistic
transition systems, see the probabilistic modal logic given in [Larson and Skou, 1991].

 14

Theorem 6: The reflexive, symmetric, transitive closure of any stochastic bisimulation
from MDP M = 〈Q, A, T, R〉 to any MDP, restricted to Q × Q, is an equivalence relation
E ⊆ Q × Q that is a stochastic bisimulation from M to M.

Any stochastic bisimulation used for aggregation preserves the optimal value and action
sequence properties as well as the optimal policies of the model:

Theorem 7: Given an MDP M = 〈Q, A, T, R〉 and an equivalence relation E ⊆ Q × Q
that is a stochastic bisimulation, each state i in Q is stochastically bisimilar to the state

Ei / in EM / . Moreover, any optimal policy of EM / induces an optimal policy in the
original MDP.

It is possible to give a stochastic modal logic, similar to the Hennessy-Milner mo-
dal logic above, that captures those properties of MDP states that are discriminated by
stochastic bisimilarity (e.g., see [Larson and Skou, 1991] which omits rewards).

4 Model Minimization

Any stochastic bisimulation can be used to perform model reduction by aggregat-
ing states that are equivalent under that bisimulation. The definitions ensure that there are
natural meanings for the actions on the aggregate states. The coarsest bisimulation (sto-
chastic bisimilarity) gives the smallest model, which we call the “minimal model” of the
original MDP. In this section, we investigate how to find bisimulations, and bisimilarity
efficiently. We first summarize previous work on computing bisimilarity in FSM models,
and then generalize this work to our domain of MDPs.

4.1 Minimizing Finite State Machines with Bisimilarity

Concurrent process theory provides methods for computing the bisimilarity rela-
tion on an FSM state space. We summarize one method, and show how to use it to com-
pute a minimal FSM equivalent to the original [Milner, 1990]. Consider FSMs F = 〈Q, A,
O, T, R〉 and F' = 〈Q', A, O', T', R'〉 and binary relation E ⊆ Q × Q'. Define H(E) to be the
set of all pairs (i, j) from Q × Q' satisfying the following two properties. First, E(i, j) must
hold. Second, for every action α ∈ A, each of the following conditions holds:
1. R(i) = R’(j),

2. for i’ in Q s.t. T(i, α, i’), there is a j’ in Q’ s.t. E(i’ , j’) and T’(j, α, j’), and conversely,

3. for j’ in Q’ s.t. T’(j, α, j’), there is an i’ in Q s.t. E(i ’ ,j’) and T(i ,α,i’).

We note that H(E) is formed by removing pairs from E that violate the bisimulation con-
straints relative to E. We can then define a sequence of relations E0, E1, … by taking E0 =
Q × Q and Ex+1 = H(Ex). Since E(i, j) is required for (i, j) to be in H(E), it is apparent that
this sequence will be monotone decreasing, i.e., Ex+1 ⊆ Ex. It also follows that any fixed-
point of H is a bisimulation between F and itself. Therefore, by iterating H on an initial
(finite) E = Q × Q we eventually find a fixed-point (which is therefore also a bisimula-
tion). By Theorem 2, this bisimulation can be used in state space aggregation to produce

 15

a quotient model with states that are action sequence equivalent to the original model.
Further analysis has demonstrated that the resulting bisimulation contains every

other bisimulation, and is thus the largest17 bisimulation between F and itself [Milner,
1990]. As a result, this bisimulation is the bisimilarity relation on Q, and produces the
smallest quotient model of any bisimulation when used in state space aggregation.

4.2 Minimizing Markov Decision Processes with Stochastic Bisimilarity

We show here how the direct generalization of the techniques described above for
computing bisimilarity yields an algorithm for computing stochastic bisimilarity that in
turn is the basis for a model minimization algorithm. Given an MDP M = 〈Q, A, T, R〉, we
define an operator I on binary relations E ⊆ Q × Q similar to H. Let I(E) to be the set of
all pairs i, j such that E(i, j), R(i) = R(j), and for every action α in A and state 'i in Q,

T(i, α, Ei /′) = T(j, α, Ei /′) .

We can again define a decreasing sequence of equivalence relations E0 ⊇ E1 ⊇ …
by taking E0 = Q × Q and Ex+1 = I(Ex). Again, the definitions immediately imply that any
fixed point of I is a stochastic bisimulation between M and itself. Therefore, by iterating I
on an initial (finite) E = Q × Q, we are guaranteed to eventually find a fixed point (which
is therefore a stochastic bisimulation). Theorem 7 implies that this stochastic bisimulation
can be used in state space aggregation to produce a quotient model containing blocks that
are both action sequence and optimal value equivalent to the original model.

The resulting stochastic bisimulation contains every other stochastic bisimulation
between M and itself, and is thus the largest stochastic bisimulation between M and it-
self,18 the stochastic bisimilarity relation on Q. Aggregation using this relation gives a
coarser (smaller) aggregate reduced model than with any other bisimulation. Use of this
technique for computing bisimilarity for state space aggregation and model reduction
provides a straightforward motivation for and derivation of a model minimization algo-
rithm: simply aggregate bisimilar states to form the coarsest equivalent model, the quo-
tient model under bisimilarity.

4.3 Implementing Model Minimization using Block Splitting

We now describe a method for computing stochastic bisimilarity19 by repeatedly
splitting the state space into smaller and smaller blocks, much like the I(E) operation de-
scribed above. We start by introducing a desired property for partition blocks that can be
checked locally (between two blocks) but that when present globally (between all pairs of
blocks) ensures that a bisimulation has been found.

We say that a block B is stable with respect to block C if and only if every state p

17 Here, by “largest”, we are viewing relations as sets of pairs partially ordered by subset.
18 We can show that if E contains a bisimulation B, then I(E) must still contain that bisimulation—the key
step is to show that T(i, α, Ei /')=T(j,α, Ei /') for any 'i in Q, any α in A, and any i and j such that B(i,j).
19 Our algorithm is a stochastic adaptation of an algorithm in [Lee and Yannakakis, 1992] that is related to
an algorithm by [Bouajjani et al., 1992]. All of these algorithms derive naturally from the known proper-
ties of bisimilarity in concurrent process theory [Milner, 1990].

 16

in B has the same probability T(p, α, C) of being carried into block C for every action α
and the block reward R(B) is well defined. We say that B is stable with respect to equiva-
lence relation E if B is stable with respect to every block in the partition induced by E.
We say that an equivalence relation E is stable if every block in the induced partition is
stable with respect to E. These definitions immediately imply that any stable equivalence
relation is a bisimulation.

The equivalence relation I(E) can be defined in terms of stability as the relation
induced by the coarsest partition (among those refining E) containing only blocks that are
stable with respect to E. This partition can be found by splitting each block of E into
maximal sub-blocks that are stable with respect to E (i.e. stable with respect to each block
of E). To make this concrete, we define a split operation that enforces this stability prop-
erty for a particular pair of blocks.

Let P be a partition of Q, B a block in P, and C a set of states C ⊂ Q. We define a
new partition denoted SPLIT(B, C, P) by replacing B with the uniquely determined sub-
blocks {B1, …, Bk} such that each Bi is a maximal sub-block of B that is stable with re-
spect to C. Since Bi is stable with respect to C, for any action α and for states p and q
from the same block Bi we have that T(p, α, C) = T(q, α, C) and R(p)=R(q). Since the Bi
are maximal, for states p and q from different blocks, either T(p, α, C) ≠ T(q, α, C) or
R(p) ≠ R(q).

The SPLIT operation can be used to compute I(E) by repeated splitting of the
blocks of the partition induced by E as follows:

Let P’ = P = the partition induced by E
For each block C in P
 While P’ contains a block B for which P’ ≠ SPLIT(B, C, P’)
 P’ = SPLIT(B, C, P’) /* blocks added here are stable wrt. C */
 /* so need not be checked in While test */
I (E) = the equivalence relation represented by P’

We refer to this algorithm as the partition improvement algorithm, and to iteratively ap-
plying partition improvement starting with {Q} as partition iteration. However, in parti-
tion iteration, suppose a block B has been split so that P’ contains sub-blocks B1, …, Bk of
B. Now, splitting other blocks C to create stability with respect to B is no longer neces-
sary since, we will be splitting C to create stability with respect to B1, …, Bk in a later it-
eration of I. Blocks that are stable with respect to B1, …, Bk are necessarily stable with re-
spect to B. This analysis leads to the following simpler algorithm, which bypasses com-
puting I iteratively and computes the greatest fixed point of I more directly:

Let P = { Q} /* trivial one block partition */
While P contains block B & C s.t. P ≠ SPLIT(B, C, P)
 P = SPLIT(B, C, P)
Greatest Fixed point of I = the equivalence relation given by P

We refer to this algorithm as the model minimization algorithm, and we refer to the P ≠
SPLIT(B, C, P) check as the stability check for blocks B and C. That model minimization
computes a fixed point of I follows from the fact that when all blocks of a partition are
stable with respect to that partition, the partition is a bisimulation (and thus a fixed point

 17

of I). The following lemma and corollary then imply that either model minimization or
partition iteration can be used to compute the greatest fixed point of I.

Lemma 8.1: Given equivalence relation E on Q and states p and q such that T(p, α, C)
≠ T(q, α, C) for some action α and block C of E, p and q are not related by any stochas-
tic bisimulation refining E.

Corollary 8.2: Let E be an equivalence relation on Q, B a block in E, and C a union of
blocks from E. Every bisimulation on Q that refines E is a refinement of the partition
SPLIT(B, C, E).

Theorem 8: Partition iteration and model minimization both compute stochastic
bisimilarity.

By repeatedly finding unstable blocks and splitting them, we can thus find the
bisimilarity partition in linearly many splits relative to the final partition size (each split
increases the partition size, which cannot exceed that of the bisimilarity partition, so there
are at most linearly many splits). The model minimization algorithm performs at most
quadratically many stability checks:20 simply check each pair of blocks for stability, split-
ting each unstable block as it is discovered. The cost of each split operation and each sta-
bility check depends heavily on the partition representation and is discussed in detail later
in this paper.

We note that this analysis implies that the partition computed by model minimiza-
tion is the stochastic bisimilarity partition, regardless of which block is selected for split-
ting at each iteration of the While loop. We therefore leave this choice unspecified.

Figure 4.a shows an MDP in factored representation by giving a DBN with the
conditional probability tables represented as decision trees, using the representation de-
veloped in [Dean and Kanazawa, 1989] and [Boutilier et al., 2000]. Figure 4.b shows the
immediate-reward partition for this MDP, which is computed by I({ Q}). There are two
blocks in this partition: states in which the reward is one and states in which the reward is
zero. Figure 4.c shows the quotient model for the refined partition constructed by the
model minimization algorithm. Aggregate states (blocks of the two partitions) are de-
scribed as formulas involving fluents, e.g., ¬S1 ∧ S2 is the set of states in which S1 is
false and S2 is true. A factored SPLIT operation suitable for finding this quotient model
without enumerating the underlying state space is described in Section 4.4.

20 Observe that the stability of a block C with respect to another block B and any action is not affected by
splitting blocks other than B and C, so no pair of blocks need to be checked for stability more than once for
each action. Also the number of blocks ever considered cannot exceed twice the number of blocks in the fi-
nal partition, since blocks that are split can be viewed as internal nodes of a tree. Here, the root of the tree is
the block of all states, the leaves of the tree are the blocks of the final partition, and the children of any
node are the blocks that result from splitting the block at the node. These facts imply the quadratic bound
on stability checks.

 18

The model-minimization algorithm is given independently of the underlying rep-
resentation for state-space partitions. However, in order for the algorithm to guarantee
finding the target partition, we must have a partition representation sufficiently expres-
sive to represent an arbitrary partition of the state space. Such partition representations
may be expensive to manipulate, and may blow up in size. For this reason, partition ma-
nipulation operations that do not exactly implement the splitting operation described
above can still be of use—typically these splitting operations guarantee that the resulting
partition can be represented in a more restrictive partition representation. Such operations
can still be adequate for our purposes if, whenever a split is requested, the operation splits
“at least as much” as requested.

Formally, we say that a block splitting operation SPLIT* is adequate if
SPLIT*(B, C, P) is always a refinement of SPLIT(B, C, P). Adequate split operations that
can return partitions that are strictly finer than SPLIT are said to be non-optimal. The
minimization algorithm, with SPLIT replaced by an adequate SPLIT*, is a model reduc-
tion algorithm. Note that non-optimal SPLIT* operations may be cheaper to implement
than SPLIT, even though they “split more” than SPLIT. One natural way to define an

(a)

 (b) (c)

Figure 4. (a) A factored representation of an MDP with three fluents (S1, S2, S3) and
only one action. Partitions are shown represented as decision trees. (b) A graph of the
immediate reward partition I({ Q}) of the MDP with nodes representing blocks and
arcs representing possible transitions. (c) The quotient model of the coarsest homoge-
neous partition computed by the model minimization algorithm.

 19

adequate but non-optimal SPLIT* opera-
tion is to base the definition on a partition
representation that can represent only some
possible partitions. In this case, SPLIT* is
defined as a coarsest representable refine-
ment of the optimal partition computed by
SPLIT. (For many natural representations,
e.g., fluentwise partitions, this coarsest re-
finement is unique.) As shown by the fol-
lowing theorem, the model reduction algo-

rithm remains sound.

Theorem 9: Model reduction returns a stochastic bisimulation.

Corollary 9.1: The optimal policy for the quotient model produced by model reduc-
tion induces an optimal policy for the original MDP.

This theorem guarantees us that model reduction will still find an equivalent re-
duced model. However, we may lose the property that the resulting partition is independ-
ent of the order in which we chose to split blocks (i.e., which block is split by the main
while loop when a choice is present). This property must be proven anew for each
SPLIT* operation that is considered, if the property is desired. A theorem and corollary
similar to Theorem 9 and Corollary 9.1 can be proven with analogous techniques for par-
tition iteration using an adequate SPLIT* operation.

Some published techniques that operate on implicit representations resemble
minimization with adequate but non-optimal splitting operations. We describe some of
these techniques and the connection to minimization later, but first we examine the de-
tails of our algorithm for a particular factored representation.

4.4 Factored Block Splitting

This subsection describes a method for implementing the SPLIT operation on par-
titions given a factored representation of the MDP dynamics. The method and factored
representation are provided to make concrete the operations involved, not to assert that
either the method or the representation is particularly distinguished. Using this splitting
method, our model minimization algorithm can construct a reduced model without ex-
plicitly enumerating states. The later part of this section gives a detailed example.

We now introduce notation to set up a running example for this section. Let Q be
the set of all states, and P a partition of Q. For any block B of states, let fB be the formula
used to represent B. Given blocks B and C in P, we are interested in splitting B to obtain a
set of sub-blocks that are stable with respect to C. We replace B with the resulting stable
sub-blocks to obtain a refinement of P called P’. Figure 5 depicts the basic objects for our
example. We start by focusing on a particular, but arbitrary, action α, and then generalize
to multiple actions by computing the intersection of the partitions for each action.

Figure 5. Block formulas used to illustrate
splitting for factored representations.

 20

We assume that the state-
transition distribution for action α is in
factored form—for each fluent, there is
a decision tree specifying the condi-
tional probability distribution over the
value of the fluent at time t, given the
state at time t–1. Figure 6 illustrates the
decision trees for our running example;
we only show the decision trees for the
three fluents in fC. In our example trees,
the distribution over values is given by a
single probability (that of “true”), be-
cause there are only two possible val-
ues. Note that these decision trees are
labeled, factored partitions of the state
space. The leaves of the tree correspond
to the blocks of the partition—each
block is specified by the values assigned
to the fluents on the path from the root
to the corresponding leaf. These blocks

are then labeled with the probability distribution at the corresponding decision-tree leaf.
Each fluent has a decision tree describing its behavior under action α. Consider a

subset F’ of the fluents. We obtain a partition that we refer to as the partition determining
the transition distribution for F’ under α, as follows. The blocks of the partition are given
by the intersection of the |F’ | partitions described by the decision trees for fluents in F’ .
There is a one-to-one correspondence between blocks in the new partition and sets of
blocks from the |F’ | partitions (one from each) with non-empty intersections. We label
each block of this new “overlaid” partition with the product of the distribution labels on
the blocks in the corresponding set of blocks. This partition is then a refinement of the
partition under α for any of the fluents in F’ . States in the same block of this overlaid par-
tition have the same probability of transitioning (under action α) to any block of the parti-
tion Fluentwise(F’) defined in Section 2.3. Here as elsewhere in our discussion, we si-
multaneously treat states as elements of Q that can be contained in a block of a state
space partition, and as assignments of values to fluents that can satisfy the formula asso-
ciated with a given block of a partition.

We denote the labeled partition for fluent Xi under action α as α

1XP . For example,
the decision tree for X1 shown in Figure 6 gives us

{ }321 ,,
1

BBBPX =α ,

where the formulas associated with the blocks of α

1XP are

11
XfB ¬= 212

XXfB ¬∧= 213
XXfB ∧=

Figure 6. Partial action dynamics for α:
decision trees describing the effects of α
on the fluents in fC, and the induced parti-
tions of the state space.

 21

The probability distribution for X1 under action α for the blocks of α

1XP is given by









∈

∈

∈

==+

3

2

1

1,1

3.0

5.0

7.0

),|Pr(

BX

BX

BX

UXX

t

t

t

ttt α

.

Note that we can group all leaves of the decision tree for a given fluent that share

the same probability distribution label into a single block in the partition for the fluent.
For example, if the probability distribution for X1 at the leaf for both blocks B1 and B2 in

α

1XP were 0.7, then we would group all the states in blocks B1 and B2 into a block B’, giv-
ing

α

1XP = {B’, B3}, fB’ = (¬X1) ∨ (X1 ∧ ¬X2), 213
XXfB ∧= , and





∈

′∈
==+

3
1,1 3.0

7.0
),|Pr(

BX

BX
UXX

t

t
ttt α

.

For each fluent Xi, the partition α
iXP groups states that behave the same under ac-

tion α with regards to Xi. However, what we want is to group states in B that behave the
same under action α with respect to C. Since C is specified using a formula fC, we need
only concern ourselves with fluents mentioned in fC, as the other fluents do not influence
whether or not we end up in C. If we take the intersection of all the partitions for each of
the fluents mentioned in fC, we obtain the coarsest partition that is a refinement of all
those fluent partitions. This partition distinguishes between states with different prob-
abilities of ending up in C. We can then restrict the partition to the block B to obtain the
sub-blocks of B where states in the same sub-block all have the same probability of end-
ing up in C after taking action α. Therefore, if Fluents(fC) is the set of all fluents appear-
ing in fC, the partition determining the transition distribution for Fluents(fC) under α
makes all the necessary state distinctions.

The procedure Block-split() shown in Figure 7 computes the coarsest partition of
B that is a refinement of all the partitions associated with the fluents in fC and the action
α. It does so by first computing the coarsest partition of Q, which we will denote PQ, with
this property, and then intersecting each block in this partition with B. (In terms of repre-
senting blocks as formulas, intersection is just conjunction.) Applying this to our ongoing
example gives the following partitions:

α

1XP = { X1 ∧ X2, X1 ∧ ¬X2, ¬X1 }
α

2XP = { X3, ¬X3}
α

3XP = { X3, ¬X3}

PQ = { X1 ∧ X2 ∧ X3, X1 ∧ X2 ∧ ¬X3, X1 ∧ ¬X2 ∧ X3, X1 ∧ ¬X2 ∧ ¬X3,
 ¬X1 ∧ X3, ¬X1 ∧ ¬X3 }

Intersecting each block of PQ with fB (eliminating empty blocks) computes the final parti-
tion of B given by

{ X1 ∧ ¬X2 ∧ X3 ∧ X4, X1 ∧ ¬X2 ∧ ¬X3 ∧ X4,
 ¬X1 ∧ ¬X2 ∧ X3 ∧ X4, ¬X1 ∧ ¬X2 ∧ ¬X3 ∧ X4}.

 22

This procedure runs, in the worst case, in time exponential in the number of fluents men-
tioned in fC.21 As with most factored MDP algorithms, in the worst case, the factoring
gains us no computational advantage.

One adequate but non-optimal splitting operation that works on the factored rep-
resentation is defined in terms of the procedure Block-split() as

SPLIT*(B, C, P) = (P – {B}) ∪ (∩α∈A Block-split(B, C, α)).

We refer to SPLIT* defined in this manner as S-SPLIT, abbreviation “structure-based
splitting”. Structure-based splitting the exact transition probabilities assigned to blocks of
states. This splitting method splits two states if there is any way of setting the quantifying
parameters that would require splitting the states. S-SPLIT is non-optimal because it can-
not exploit “coincidences” in the quantifying parameters to aggregate “structurally” dif-
ferent states.

In order to implement an optimal split, we need to do a little more work. Specifi-
cally, we have to combine blocks of Block-split(B, C, α) that have the same probability
of ending up in C. Situations where we must combine such blocks in order to be optimal
arise when an action, taken in different states from B, affects the fluents in fC differently,
but “coincidentally” has the same overall probability of ending up in block C from the
different source states. For example, suppose action α, taken in state p in B, has a 0.5
probability of setting fluent X1, and always sets fluent X2; however, when α is taken in
state q in B, it has a 0.5 probability of setting fluent X2, and always sets fluent X1. If block
C has formula X1 ∧ X2 both state p and state q have a 0.5 probability of transitioning to
block C under action α. However, p and q must be in separate blocks for each of the flu-
ents in the formula X1 ∧ X2, since α affects both X1 and X2 differently at p than at q—
hence, Block-split() will partition p and q into different blocks, even though they behave

21 The order in which the fluents are handled can dramatically affect the run time of Partition-determining()
if inconsistent formulas are identified and eliminated on each recursive call.

Block-split(B, C, α)

 return { f B ∧ f ∧ f R | f ∈ Partition-determining(Fluents(f C), α),
 f R ∈ Reward partition,
 and f B ∧ f ∧ f R is satisfiable };

Partition-determining(F, α) /* the partition determining the
 fluents in F */

 if F = ∅ then return { true };

 for some X ∈ F ,

 return { f ∧ f B’ | B’ ∈ α
XP ,

 f ∈ Partition-determining(F–{ X}, α), and
 f ∧ f B’ is satisfiable };

Figure 7. Procedure for partitioning block B with respect to block C and action α

 23

the same with respect to C. To compute the coarsening of Block-split(B, C, α) required to
obtain optimal splitting, we first consider a particular partition of the block C.

The partition of C that we use in computing an optimal split of B is the fluen-
twise22 partition Fluentwise(Fluents(C)), restricted to C. This partition has a block for
each assignment to the fluents in Fluents(C) consistent with fC. We denote this partition
as Fluentwise(C). In our example, fC = (X1 ∧ X2) ∨ (X2 ∧ X3) so Fluentwise(C) = { X1 ∧ X2
∧ X3, X1 ∧ X2 ∧ ¬X3, ¬X1 ∧ X2 ∧ X3} which we shall call C1, C2, and C3, respectively.

The probability of transition from Bj ∈ Block-split(B, C, α) to Ci ∈ Fluentwise(C)
is defined as

Pr(Xt+1 ∈ Cj | Xt ∈ Bi , Ut = α) = Pr(Xt+1 ∈ Cj | Xt = p, Ut = α),

where p is an arbitrary state in Bi. The choice of p does not affect the value of Pr(Xt+1 ∈
Cj | Xt ∈ Bi, Ut = α) by the design of Block-split(). We can compute these probabilities by
multiplying the appropriate entries from the probability distributions for the fluents in fC
and thus induce a labeling for the blocks of the partition returned by Block-split(),

Pr(Xt+1 ∈ C | Xt ∈ Bi, Ut = α) = Σ
Cj∈Fluentwise(C)

 Pr(Xt+1 ∈ Cj | Xt ∈ Bj, Ut = α).

To compute the optimal split, we group together those blocks in ∩α∈A Block-
split(B, C, α) that have the same block transition distributions, i.e., Bi, Bj ∈ ∩α∈A Block-
split(B, C, α) are in the same block of SPLIT(B, C, P) if and only if

Pr(Xt+1 ∈ C | Xt ∈ Bi, Ut = α) = Pr(Xt+1 ∈ C | Xt ∈ Bj, Ut = α), for all α.

Once again, we note that in the worst case, the additional work added to compute an op-
timal split with this method is exponential in the original MDP representation size be-
cause Fluentwise(C) would have to be enumerated explicitly. To complete our example,
we show these calculations in Figure 8, the final column of which indicates that we can
combine the blocks labeled B1 and B4, since they both have the same probability of transi-
tioning to block C. As a result, we obtain the following partition of B: { X1 ∧ ¬X2 ∧ ¬X3

22 See Section 2.3.

Block P(X1) P(X2) P(X3) P(C1) P(C2) P(C3) P(fC)

B1 X1 ∧ ¬X2 ∧ X3 ∧ X4 0.5 1.0 0.02 0.010 0.490 0.010 0.510

B2 X1 ∧ ¬X2 ∧ ¬X3 ∧ X4 0.5 0.6 0.50 0.150 0.150 0.150 0.450

B3 ¬X1 ∧ ¬X2 ∧ X3 ∧ X4 0.7 1.0 0.02 0.014 0.686 0.006 0.706

B4 ¬X1 ∧ ¬X2 ∧ ¬X3 ∧ X4 0.7 0.6 0.50 0.210 0.210 0.090 0.510

Figure 8: Optimal Split Computations for the ongoing example. We show, for each Bi ,
the probability P(Xi) of setting each fluent Xi in fluents(C), when acting in Bi. The
right four columns use these values to compute the probability P(Ci) of landing in
each block Ci of Fluentwise(C), and then the probability P(fC) of landing in C itself, in
each case when acting in each Bi..

 24

∧ X4, ¬X1 ∧ ¬X2 ∧ X3 ∧ X4, (X1 ∧ ¬X2 ∧ X3 ∧ X4) ∨ (¬X1 ∧ ¬X2 ∧ ¬X3 ∧ X4) }.

4.5 Hardness of Model Minimization with Factored Partitions

The difficulty of optimal splitting is implied by the following complexity result.

Definition 1: The bounded-size model-minimization decision problem is:

Given a number k represented in unary notation and a factored MDP M with a mini-
mal model of k or fewer states, determine whether the minimal model of M has ex-
actly k states.

Theorem 10: The bounded-size model-minimization problem is NP-hard.

It is worth noting that the different non-optimal SPLIT* operations make different trade-
offs between ease of computation and amount of reduction that can be achieved in the re-
duced model. Also, some non-optimal SPLIT* definitions guarantee that the resulting
partition can be represented compactly, as we will see in Section 4.6.

Theorem 10 shows that model minimization will be expensive in the worst case,
regardless of how it is computed, even when small models exist. In addition, since our
original algorithm presentation in [Dean and Givan, 1997] it has been shown that the fac-
tored-stability test required for the particular algorithm we present (and implicit in com-
puting SPLIT) is also quite expensive to compute, being coNPC=P-hard [Goldsmith and
Sloan, 2000].23 This result does not directly imply hardness for the bounded-size model
minimization problem (i.e. Theorem 10), because there could be other algorithms for ad-
dressing that problem without using SPLIT.

4.6 Non-optimal Block Splitting for Improved Effectiveness

We discuss three different non-optimal block splitting approaches and the interac-
tion between these approaches and our choice of partition representation as well as the
consequent improvement in effectiveness. The optimal SPLIT defined above requires a
general-purpose partition representation to represent the partitions encountered during
model reduction—e.g. the DNF representation discussed in Section 2.3. Each of the al-
ternative non-optimal SPLIT* approaches can guarantee that the resulting partition is rep-
resentable with a less expressive but more compact representation, as discussed below.

We motivate our non-optimal splitting approaches by noting that the optimal fac-
tored SPLIT operation described in Section 4.4 has two phases, each of which can inde-
pendently take time exponential in the input size. The first phase computes Block-split(B,
C, α) for each action α, and uses it to refine B, defining the partition S-SPLIT(B, C, P).
The second phase coarsens this partition, aggregating blocks that are “coincidentally”
alike for the particular quantifying parameters (transition probabilities and rewards) in the

23 [Goldsmith and Sloan, 2000] also show that the complexity of performing a test for an approximate ver-
sion of stability, ε-stability, for an arbitrary partition is coNPPP-complete. (ε-stability, is a relaxed form of
stability defined in [Dean et al., 1997]).

 25

model. Our non-optimal splitting methods address each of these exponential phases, al-
lowing polynomial-time computation of the partition resulting from that phase.

The first non-optimal approach we discuss guarantees a fluentwise-representable
partition—recall from Section 2.3 that a fluentwise partition can be represented as a sub-
set of the fluents where the blocks of the partition correspond to the distinct truth assign-
ments to that subset of fluents. We define the “fluentwise split” F-SPLIT(B, C, P) to be
the coarsest refinement of SPLIT(B, C, P) that is fluentwise representable. F-SPLIT(B, C,
P) is the fluentwise partition described by the set of all fluents X such that there are two
states differing only on X that fall in different blocks of SPLIT(B, C, P). Equivalently,
F-SPLIT(B, C, P) is the fluentwise partition described by the set of all fluents X that are
present in every DNF description of SPLIT(B, C, P). As with SPLIT(B,C,P), the func-
tion F-SPLIT(B,C,P) can be computed in two phases. The first phase intersects parti-
tions from the action definitions, returning the coarsest fluentwise refinement of the re-
sult. The second phase combines blocks in the resulting partition (due to “coincidences”),
and again takes the coarsest fluentwise refinement, to yield the desired partition. The first
phase can be carried out efficiently in polynomial time in the size of the output, but the
second phase appears to require time possibly exponential in its output size, because it
appears to require enumerating the blocks of the first-phase output.

To avoid the exponential time required in the second phase to detect “coincid-
ences” that depend on the quantifying parameters, we need to define a “structural” notion
of block stability—one that ignores the quantifying parameters. Because our factored rep-
resentation defines transition probabilities one fluent at a time, we will define structural
stability in a similar fluentwise manner.

We say that a block B of a partition P is fluentwise stable with respect to fluent X
if and only if for every action α, B is a subset of some block of the partition TF (α, X).
The block B is termed fluentwise stable with respect to block C if B is fluentwise stable
with respect to every fluent mentioned in every DNF formula describing block C. We call
a partition P fluentwise stable if every block in the partition is fluentwise stable with re-
spect to every other block in the partition. It is straightforward to show that the “structural
split” S-SPLIT(B, C, P), as defined above in Section 4.4, is the coarsest refinement of
SPLIT(B, C, P) for which each sub-block of B is fluentwise stable with respect to C.

The operation S-SPLIT is adequate and is computed using Block-split() for each
action, as described in Section 4.4, assuming that each block formula in the input parti-
tion representation is simplified (in the sense that any fluent mentioned must be men-
tioned to represent the block). This assumption holds for blocks represented as conjunc-
tions of literals, as in decision-tree partitions. Under this assumption S-SPLIT can be
computed in time polynomial in the size of its input formulas plus the number of new
blocks introduced (which may be exponential in the input size). Analysis of S-SPLIT
guarantees that if each input block is describable by a conjunction of literals then so are
the blocks of the output partition, ensuring that the inputs are conjunctions of literals, if
each partition in the original factored MDP definition is so represented (e.g. if decision

 26

tree partitions are used to define the MDP24), as long as all block splitting is done with S-
SPLIT. This guarantee allows model reduction with S-SPLIT to use this simpler repre-
sentation of partitions. With S-SPLIT the result of reduction is also not order-dependent,
unlike some adequate, non-optimal splits (see Section 4.3).

Theorem 11: Given a partition P, there is a unique coarsest fluentwise-stable stochastic
bisimulation refining P. Iterating S-SPLIT using model reduction or partition iteration
starting from P computes this bisimulation regardless of the order of block splitting.

To avoid exponential model-reduction time even when the resulting model is ex-
ponentially large, we can combine the above two concepts. We call the resulting “fluen-
twise structural” split FS-SPLIT(B, C, P). FS-SPLIT(B, C, P) computes the coarsest flu-
entwise-representable refinement of SPLIT(B, C, P) such that each sub-block of B is flu-
entwise stable with respect to C. The split operation FS-SPLIT is adequate and comput-
able in time polynomial in the size of M, even for factored M, and the resulting partition
is again independent of the order of splitting.

Theorem 12: Given a partition P, there is a unique coarsest stochastic bisimulation re-
fining P even under the restriction that the partition be both fluentwise stable and fluen-
twise representable. Iterating FS-SPLIT using model reduction or partition iteration
starting from P computes this bisimulation regardless of the order of block splitting.

A variant of S-SPLIT that is closer to the optimal SPLIT can be derived by ob-
serving that there is no need to split a block B to achieve fluentwise stability relative to a
destination block C when the block B has a zero probability of transitioning to the block
C. This refinement does not affect FS-SPLIT due to the bias towards splitting of the “flu-
entwise” partition representation used, but adding this refinement does change S-SPLIT.
The resulting split operation, which we call R-SPLIT, is significant in that it is implicit in
the previously published factored MDP algorithms in [Boutilier et al., 2000].

We define the regression region for a block B to be the block containing those
states i such that T(i, α, B) is non-zero. A block B is said to be regression stable with re-
spect to block C if B is either entirely contained in the regression region of C and B is flu-
entwise stable with respect to C or B does not overlap the regression region of C. The
“regression” splitting operation R-SPLIT(B, C, P) is the coarsest refinement of SPLIT(B,
C, P) such that each sub-block of B is regression stable with respect to C. We say a parti-
tion P is regression stable if every block of P is regression stable with respect to every
other block of P. R-SPLIT can be calculated using a modification of the Block-split func-
tion, given in Figure 7. For each action α, replacing the call Partition-
determining(Fluents(C), α) with the call Regression-determining(fC, α), invoking the
pseudo-code shown in Figure 9. We note that R-SPLIT, unlike S-SPLIT, depends on the

24 It is worth noting that decisions trees as used in this paper are less expressive than the disjoint conjunc-
tions of literals representation. That is to say there exist sets of disjoint conjunctions of literals that repre-
sent partitions not representable with decision trees, e.g. {A∧¬B, B∧¬C, C∧¬A, A∧B∧C, ¬A∧¬B∧¬C} .

 27

specific transition probabilities (i.e. whether each is zero or not), not just the partitions
used in defining T. Given a partition (and factored MDP) using only blocks described by
conjunctions of literals, IR-SPLIT returns another such partition25. Unlike S-SPLIT, we do
not have a method for computing R-SPLIT in worst-case polynomial-time in the number
of blocks in the output partition (similarly, the corresponding algorithms in [Boutilier et
al., 2000], as discussed below in Section 5, are not polynomial in the output size).

Theorem 13: Given a partition P, there exists a unique coarsest regression-stable sto-
chastic bisimulation refining P.

It turns out that this target partition can be computed by iterating R-SPLIT, as expected,
but that the partition found may depend on the order in which splitting is done unless we
restrict the starting partition representation, as follows.

Theorem 14: Let M be a factored MDP with all partition blocks represented as con-
junctions of literals. Given a starting partition P also so represented, iterating R-SPLIT
using partition iteration computes the coarsest regression-stable stochastic bisimulation
refining P, regardless of the order in which blocks are selected for splitting.

5 Existing Algorithms

We briefly describe several existing algorithms that operate on factored represen-
tations, and relate these algorithms to model reduction/minimization. Our model minimi-
zation and reduction methods provide a means for automatically converting a factored
MDP into a familiar explicit MDP by aggregation. The resulting explicit MDP can then
be manipulated with traditional solution algorithms, and the resulting solutions induce
corresponding solutions in the original factored MDP. In this process, the aggregation
analysis is completely separate from the later value or policy computations.

Previous work by [Boutilier et al., 2000] gives algorithms that interleave value
and policy computations with aggregation computations, by giving factored forms of the
traditional MDP solution methods. This interleaved approach has advantages in some
cases where the minimal model is too expensive to compute, because exploiting value

25 However, single calls to R-SPLIT can return partitions not representable with conjunctions of literals.
IR−SPLIT cannot—this difference is surprising and is a consequence of the fact that every state must transition
somewhere and thus be in some regression region. See the proof of Lemma 16.1 for more detail.

Regression-determining(f C, α)
 P C = { b | b ∈ Partition-determining(Fluents(f C), α) and
 Pr(f C true in next state | current state in b) > 0 }

 Q 0 = Q - U
CPb

b
∈

 /* states with zero trans. probability to C */

 Return {Q 0} ∪ P C

Figure 9. Function used in computing R-SPLIT.

 28

computations based on partial minimization may make it possible to avoid full minimiza-
tion (e.g. sometimes value-based algorithms can compute the minimal model for just the
optimal policy without computing the full minimal model).

Here we argue that two previously published methods, state space abstraction and
structured successive approximation (SSA), can be alternatively viewed as model reduc-
tion followed by traditional MDP solution [Boutilier and Dearden, 1994]. Model reduc-
tion provides an explication of the state equivalence properties being computed by these
techniques, as well as a description of the techniques that separates the partition manipu-
lation from the value computation (relying on traditional techniques for the latter).

We then discuss two other previous methods [Boutilier et al., 2000], structured
policy iteration (SPI) and structured value iteration (SVI), that can obtain advantages
over direct model reduction due to the interleaving of value computations with partition
manipulation. Finally, we discuss connections between model minimization and a previ-
ously published factored POMDP solution technique, and relate our work to the SPUDD
system [Hoey et al. 1999]. There is other related work on factored MDP solution that we
do not analyze here, e.g., [Baum and Nicholson, 1998] [Koller and Parr, 2000].

5.1 State-Space Abstraction

State-space abstraction [Boutilier and Dearden, 1994] is a means of solving a fac-
tored MDP by generating an equivalent reduced MDP formed by determining which flu-
ents values are necessarily irrelevant to the solution. As presented by [Boutilier and
Dearden, 1994] the method handles synchronic effects26,27—here we address the restric-
tion of that method to factored MDPs represented without synchronic effects. Inclusion
of synchronous effects does not increase expressiveness, but may result in a polynomial
reduction in the size of the representation [Littman, 1997]. We discuss the extension of
our minimization technique to handle synchronic effects in Section 6.3. Pseudo-code for
the state-aggregation portion of state-space abstraction is given in Figure 10. Throughout
the code, the inferred partition of the state space is fluentwise representable and is main-
tained as a set of fluents—where every truth assignment to the set is a block of the parti-
tion. The method for selecting the fluents determining the partition is described in
[Boutilier and Dearden, 1994] as finding the “relevant fluents”—this selection is per-
formed by the procedure Add-relevant.

Here we show that the method in the pseudo-code for determining fluent rele-
vance is effectively a fluentwise-stability check; exactly the check performed by FS-
SPLIT. Fluents are added to the set of relevant fluents whenever the current partition is
not fluentwise stable (for lack of those fluents). We note that one difference between
Add-relevant and FS-SPLIT is that Add-relevant effectively checks the stability of all
blocks in the current partition simultaneously rather than just one block; in fact,

26 See footnote 8 on page 2.
27 The representation given in [Boutilier and Dearden '94] does not explicitly mention handling synchronic
effects. Synchronic effects are achieved in that representation when the “synchronized variables” are in-
cluded in the same aspect when the action is described.

 29

Add-relevant computes the same partition as the iterative use of FS-SPLIT in partition
improvement. We write IFS-SPLIT(P) for the partition returned by the partition improve-
ment method of section 4.3, with SPLIT replaced by FS-SPLIT for splitting and block
stability checking—we note the IFS-SPLIT(P) refines)(PI and that by Theorem 12 we
reach a bisimulation by iterating IFS-SPLIT(P) to a fixed point.

Lemma 15.1: Given a fluentwise partition P and a minimal tree-represented factored
MDP M, the partition computed by Add-relevant(P) is the partition IFS-SPLIT(P).

As a result, we conclude that iterating Add-relevant, as in state-space abstraction,
is equivalent to iterating FS-SPLIT as in model reduction.

Theorem 15: Given a minimal tree-represented MDP, model reduction using
FS−SPLIT yields the same partition that state-space abstraction yields, and does so in
polynomial-time in the MDP representation size.

[Boutilier and Dearden, 1994] also describe a method of approximation by limit-
ing the fluents that are considered relevant to the reward partition—this idea can also be
captured in the model reduction framework using ideas like those in section 6.2.

5.2 Structured Stochastic Dynamic Programming—Overview

Policy iteration is a well-known technique for finding an optimal policy for an
explicitly represented MDP by evaluating the value at each state of a fixed policy and us-
ing those values to compute a locally better policy. Iterating this process leads to an op-
timal policy [Puterman, 1994]. In explicit MDPs, the evaluation of each fixed policy can
be done with another well-known algorithm called successive approximation, which
computes the n-step-to-go value function for the policy for each n—converging quickly
to the infinite-horizon value function for the policy. A related technique, value iteration,
computes the n-step-to-go value function for the optimal policy directly, for each n. Both
successive approximation and value iteration converge in the infinite limit to the true
value function, and a stopping criterion can be designed to indicate when the estimated

State-Space-Abs()
 F R = Fluents(R)

 do
 F IR = F R
 F R = Add-relevant(F IR)
 while (F IR ≠ F R)

 return F R

Add-relevant(F)

 Return F ∪ U
AaF,f

)Fluents(T fa,

∈∈

Figure 10. Pseudo-code for the aggregation portion of the state space abstraction algorithm, following
[Boutilier and Dearden, 1994]. The reward partition is given by R, the action space by A, and the tran-
sition distributions by T (Ta,f is a partition of the state space where states in the same block have equal
probability of setting fluent f under action a). Each partition is represented using a decision tree. Given
such a tree t, Fluents(t) gives the set of fluents used in any test in the tree. The F variables are fluen-
twise-representable state-space partitions represented in a compact form as a set of fluents.

 30

values are within some given tolerance [Puterman, 1994].
[Boutilier et al., 2000] describe variants of policy iteration, successive approx-

imation, and value iteration designed to work on factored MDP representations, called
structured policy iteration (SPI), structured successive approximation (SSA), and struc-
tured value iteration (SVI), respectively. As we discuss in detail below, SSA can be un-
derstood as a variant of model reduction using the regression splitting operation R-SPLIT
described in Section 4.6. Single iterations of SPI can also be understood in this manner:
the policy improvement phase can be described using a variant of model reduction, so
that SPI can be viewed as iterating policy improvement and SSA, each a model reduction.

These methods can be viewed as performing partition manipulation simult-
aneously with value and/or optimal policy computation—here we will indicate the con-
nection between model reduction and the partition manipulations performed by these al-
gorithms. If model reduction is used, the value and/or policy computations are performed
on the aggregate model after reduction, using standard explicit-model techniques. We
note that removing the value computations from these algorithms yields substantially
simpler code; however, computing value functions and policies during reduction allows
their use “anytime” even if reduction is too expensive to complete. The interleaved value
computations also allow the aggregation of states that are not equivalent dynamically un-
der all actions. The guarantee is only that the value will be the same for the optimal28 ac-
tions (which will still remain optimal) but the aggregated model may not be equivalent to
the original model for other actions. Determining which actions are optimal to enable this
extra aggregation requires maintaining information about state values.

SVI is closely similar to model reduction when the tree simplification phase, dis-
cussed below, is omitted; tree simplification is generally made possible by the interleaved
value computations, and can result in significant savings. Each iteration of SPI is under-
stood using model reduction restricted to the current policy; however, the full iterative
procedure is quite different from model reduction followed by explicit policy iteration.
Informally, this is because SPI performs aggregation relative to the different specific
policies encountered, whereas model minimization or reduction aggregates relative to all
policies (states must be separated if they differ under any policy).

With both policy and value iteration, model reduction has an advantage in cases
where the MDP parameters (but not the tree structure, i.e., the partitions) may change
frequently, as in some machine learning settings where the parameters are being learned,
for example. In such cases, the reduced model does not change when the parameters
change29, so no re-aggregation needs to be done upon parameter change. This observation
suggests omitting tree simplification from SVI in such cases.

Another example where model reduction has an advantage over SPI/SVI arises

28 Here, “optimal” refers to being the optimal initial action in a finite horizon policy, where the horizon is
extended on each iteration of the method.
29 Assuming an appropriate split operation is used (R-SPLIT or S-SPLIT, for example). If R-SPLIT is being
used, the given “structure” must indicate which parameters are zero and which are non-zero. We note that
exact model minimization (as opposed to reduction) produces a result that can depend heavily on the model
parameters, not just on the structure of parameter dependency.

 31

with “exogenous events”. [Boutilier et al., 2000] mentions the difficulty in capturing
“exogenous events” such as external user requests in the SPI/SVI approach—such re-
quests have the effect of changing the parameters of the reward function, but not the
structure, and typically require re-computing the entire solution when using SPI/SVI. In
contrast, the model reduction approach does not require any new partition manipulation
upon changing the reward parameters, since the reduced model is unchanged; only the
explicit reduced-model solution needs to be re-computed, by traditional methods. One
contribution of our work is in explicating the SPI/SVI methods by separating analysis of
the value computations from analysis of the partition manipulations, as well as connect-
ing the latter to the literature on concurrent processes and automata theory.

Although the value computations included in SPI and SVI differentiate these
methods from model reduction, our methods can still be used to explicate the partition
manipulations performed by these algorithms. In particular, using the model-reduction
form of SSA we construct a model-reduction presentation of SPI below. Following
[Boutilier et al., 2000], throughout this section we assume that all factored MDPs are rep-
resented using decision trees for the partitions involved in defining the reward and action-
transition functions. Moreover, we assume that these trees are minimal in the following
sense: if a fluent appears in a tree, then the tree could not be modified by simply deleting
that fluent (and replacing it with either sub-tree) without changing the function repre-
sented by the tree. Minimality in this sense is easy to enforce, and without minimality, the
algorithms in [Boutilier et al., 2000] may do more splitting than our methods.

5.3 Structured Stochastic Dynamic Programming—Details

Partial pseudo-code for the SSA, SPI, and SVI algorithms is shown in Figure 11.
Here we show only the partition-manipulation aspects of the algorithms, and only briefly
indicate the somewhat complex associated value computations. We provide pseudo-code
for these algorithms for reference and for grounding our theorems below, but a full ap-
preciation of this section requires familiarity with [Boutilier et al., 2000].

We begin our analysis of the connection between SSA/SVI/SPI and model reduc-
tion by showing that the partition computed by the function PRegress is closely related to
the partition computed by the function Regression-determining presented earlier, in
Figure 9. Regression-determining computes factored block splitting.

Lemma 16.1: Let V be a tree-represented value function, where PV is the partition
given by the tree. Let α be an action, and for any block C of PV, let ΦC denote the con-
junction of literals describing C. We then have the following.

The partition computed by PRegress(V, α) is the intersection over all
blocks C of PV of Regression-determining(ΦC, α).

The key subroutines Regress-policy and Regress-action compute factored state-
space partitions identical to those computed by the I operator (see section 4.2) under the
following assumptions: first, the only actions available are those under consideration (ei-

 32

ther the single action specified for Regress-action, or the actions specified by the policy
for Regress-policy); and second, to improve effectiveness and stay within the decision-
tree representation, all block-splitting is done with the structural split operation R-SPLIT.
Regress-policy also forcibly splits apart states that select different actions, even if those
actions behave identically (see the line QV,π.Tree = π.Tree in Regress-policy).

To formalize these ideas, we need a method of enforcing the first assumption con-
cerning the available actions. For a fixed policy π and MDP M, we define the π-restricted

PRegress(V, a)
 If (V.Tree = single leaf)
 P.Tree = single leaf (represents {Q})
 P.Label = Maps Q to {}
 Return P

 x = Fluent-Tested-at(Root(V.Tree))
 P x.Tree = P x |a .Tree

 For each x i in Val(x)
 V xi = SubTree(V, x i)
 P xi = PRegress(V xi , a)

 Split each block B in P x.Tree by:
 T = ∩Trees({P xi |Pr(x i in
Px|a .Label(B))>0})
 P x.Tree = Replace(B,T.Tree,P x.Tree)

Maintain P x.Label as set of distributions
over single fluent values

 Return P x

Regress-action(V, a)
 P V,a = PRegress(V, a)
 Q V,a .Tree = ∩Trees({R,P V,a })

Label each block of Q V,a .Tree by computing
the Q value using P V,a .Label, V, and R

 Return Q V,a

Regress-policy(V, π)
 Q V, π.Tree = π.Tree

 For each action a
 Q V,a = Regress-action(V, a)

 For each block B of π.Tree
 a = π.Label(B)
 Q V, π.Tree = Replace(B, Q V,a .Tree, Q V, π.Tree)

 Label new blocks of Q V, π from Q V,a .Label

 Return Q V, π

SSA(π)
 V 0, π = R, k = 0

 Until (similar(V k, π, V k-1, π))
 V k+1, π = Regress-policy(V k, π, π)
 k = k+1

 Return V k, π

SPI(π’)

 While (π’ ≠ π)
 π = π’
 V π = SSA(π)

 For each action a
 Q Vπ,a = Regress-action(V π, a)
 π’.Tree=
∩Trees({Q Vπ,a .Tree, π’.Tree})

 π’.Label = λb.argmax a(QVπ,a (b))

 π’ = Simplify-tree(π’)

 Return π and V π

SVI()
 V 0 = R, k = 0

 Until (similar(V k, V k-1)
 V k+1 .Tree = V k.Tree

 For each action a
 Q Vk,a = Regress-action(V k,a)
 V k+1 .Tree = ∩Trees({Q Vk,a .Tree,
 V k+1 .Tree})
 V k+1 .Label = λb.max(Q Vk,a (b))

 V k+1 = Simplify-tree(V k+1)
 k = k+1
 π.Tree = V k.Tree
 π.Label = λb.argmax a(QVk,a (b))
 π = Simplify-tree(π)

 Return π and V k

Figure 11. Partial pseudo-code for the SSA, SPI, and SVI algorithms, following [Boutilier et al.,
2000]. Boxed italicized comments refer to omitted code. Mappings over the state space are repre-
sented with decision trees as labeled factored state-space partitions—if M is such a mapping then
M.Tree gives the partition description as a tree, M.Label gives the labeling as a mapping from the
blocks of M.Tree to the range of the mapping, and M(b) gives the value of mapping M on any state i
in block b (this value must be independent of i). Examples of such mappings are Q-functions (Q),
value functions (V), policies (π), and factored MDP parameters (the reward function, R, and the ef-
fects of action a on fluent x, Px|a). The function ∩Trees takes a set of trees and returns a decision tree
representing the intersection of the corresponding partitions. The function Replace(B,P1,P2) replaces
block B in state-space partition P2 with the blocks of B ∩ P1, returning the resulting partition (each
partition is again represented as a tree). Simplify-tree() repeatedly removes tests where all the
branches lead to identical sub-trees.

 33

MDP Mπ to be the MDP M modified to have only one action that at each state q has the
same transition behavior as π(q) in M. To model the restriction to a single action α in Re-
gress-action, we consider the policy πα that maps every state to action α, and then use

απM to restrict to that single action everywhere.
We now define IR-SPLIT(P) to be the partition returned by partition improvement

using R-SPLIT for splitting, so we can state the following results describing Regress-
action and Regress-policy.

Lemma 16.2: Given action α and value function V, Regress-action(V, α) on MDP M
intersected with V.tree gives the partition computed by IR-SPLIT(V.Tree) on MDP

απM .

Lemma 16.3: Given policy π and value function V, Regress-policy(V, π) on MDP M
intersected with V.tree gives the partition computed by IR-SPLIT(V.Tree) on MDP Mπ in-
tersected with π.Tree.

Given a policy π, structured successive approximation (SSA) repeatedly applies
Regress-policy(·,π) starting from the reward partition, until a fixed point is reached. Not-
ing that Regress-policy just computes IR-SPLIT, SSA is shown to compute the same parti-
tion of the state space as partition iteration on the π-restricted MDP using R-SPLIT, start-
ing from the π-induced partition of the state space.

Theorem 16: For any tree-represented MDP M and policy π, SSA(π) produces the
same resulting partition as partition iteration on Mπ using R-SPLIT starting from the
partition π.Tree.

We note that it follows from Theorem 11 that the resulting partition is a bisimulation, so
that traditional value computation methods can be used on the resulting aggregate model
to compute a factored value function for M.

Policy iteration requires the computation of values to select the policy at each it-
eration—as a result, model reduction (which does not compute state values, but only ag-
gregations) cannot be viewed alone as performing policy iteration. Here we analyze
structured policy iteration as a combination of model reduction, traditional explicit-model
techniques, and tree simplification.

Each iteration of structured policy iteration improves the policy π in two steps,
analogous to explicit policy iteration: first, the policy π is evaluated using SSA, and then
an improved policy is found relative to π using “structured policy improvement” (which
is implemented by calls to ∩Trees and Simplify-tree in the pseudo-code). The first of
these steps is equivalent to model reduction on Mπ followed by traditional value iteration,
as just discussed, yielding a factored value function for π.

Given this value function Vπ, policy improvement is conducted as follows. The
central “for” loop in the SPI pseudo-code intersects the partitions returned by Regress-
action(Vπ, α) for the different actions α. Noting we have shown that Regress-action com-
putes the IR-SPLIT operation on the partition for Vπ in

απM , we show here that this “for”

 34

loop computes the IR-SPLIT operation for M itself. Once this operation is used to compute
the partition, policy improvement concludes by doing a greedy look-ahead to compute
the block labels (actions) and then simplifying the resulting tree.

Theorem 17: The policy improvement “for” loop in SPI computes IR-SPLIT(Vπ.Tree).

Therefore, each SPI iteration is equivalent to using model reduction and explicit
value iteration to evaluate the policy π, and then partition improvement (IR-SPLIT) followed
by a greedy look-ahead and tree-simplification to compute a new policy π. We note that
this is not the most natural way to use model reduction to perform policy iteration—that
would be to reduce the entire model to a reduced model using R-SPLIT, and then conduct
explicit policy iteration on the resulting reduced model. The trade-off between SPI and
this more direct approach is discussed at the beginning of section 5: SPI benefits in many
cases by doing value computations that allow tree simplification, but model reduction is
useful in settings where the aggregation cannot depend on the model parameters but only
the model structure (i.e. the parameters may change).
 To conclude our discussion of structured stochastic dynamic programming, we
turn to structured value iteration, or SVI. Perhaps, the most natural way to use model re-
duction to perform value iteration would be to compute a reduced model (say using S-
SPLIT) and then perform explicit value iteration on that model. It turns out that SVI
computes exactly this reduced model (while simultaneously performing value computa-
tions) if we omit the tree simplification step (Simplify-tree). This can be seen by noting
that the “for” loop in SVI computes IR-SPLIT, just as the “for” loop in SPI does—in this
case, SVI iterates this computation starting from the reward function (using the “until”
loop) until the reduced model is computed30, after which SVI is just performing standard
value iteration on that model. We conclude that, without tree simplification, SVI is essen-
tially equivalent to model reduction using R-SPLIT followed by value iteration. Adding
tree simplification to SVI has advantages and disadvantages similar to the tree simplifica-
tion in SPI, as discussed above. If desired, SVI with tree simplification can be modeled
using partition improvement with appropriate value function labeling alternated with tree
simplification.

5.4 Partially Observable MDPs

The simplest way of using model-reduction techniques to solve partially observ-
able MDPs (POMDPs) is to apply the model-minimization algorithm to the underlying
fully observable MDP using an initial partition that distinguishes on the basis of both re-
ward and observation model. The reduced model can then be solved using a standard
POMDP algorithm [Monahan, 1982][Littman, 1994][Cassandra et al., 1997][Zhang and
Zhang, 2001]. We conjecture that the factored POMDP algorithm described in [Boutilier
and Poole, 1996] can be analyzed using model reduction in a manner similar to the analy-
sis of SVI presented above.

30 We assume the “Similar(V, V’)” test in SVI returns “false” if the corresponding partitions are different.

 35

5.5 SPUDD

More recent work improving structured dynamic programming, e.g. SPUDD
[Hoey et al. 1999], has primarily been concerned with changing the underlying represen-
tation from decision trees to decision diagrams. Since our algorithm is developed inde-
pendently of the representation, model reduction is well defined for partitions represented
as decision diagrams—no extension is needed. Rather than repeating all the analytic re-
sults shown above for structured dynamic programming again, for decision diagrams, we
instead note that similar analytical results can be developed, comparing model minimiza-
tion to SPUDD. We expect that empirical comparisons similar to those shown below can
be obtained as well, but we do not yet have a decision diagram implementation.

6 Extensions and Related Work

6.1 Action Equivalence for Large Action Spaces

We have extended the notion of stochastic bisimilarity to include equivalence be-
tween actions that behave identically [Dean et al., 1998]. Intuitively, two actions that
have identical definitions can be collapsed into one. More than this though, once a state
space equivalence relation has been selected, two actions that have different definitions
may behave the same, once groups of equivalent states are aggregated. We wish to define
the partition of the action space that results from a stochastic bisimulation using this in-
tuition. Given an MDP M = 〈Q, A, T, R〉 and a relation E ⊆ Q × Q, we say that two ac-
tions α1 and α2 are dynamically bisimilar with respect to E if for every two states i, j ∈ Q
we have that T(i, α1, Ej /) = T(i, α2, Ej /). Given this equivalence relation on actions,
we can then define a dynamic quotient MDP that aggregates both the state and action
space. Given an MDP M = 〈Q, A, T, R〉 and a bisimulation E ⊆ Q × Q, the dynamic quo-
tient MDP),/(DEM , where D is the dynamic bisimilarity relation with respect to E, is
defined to be the machine 〈 EQ / , DA/ , T’, R’〉 such that T’(Ei / , D/α , Ej /) = T(i, α,

Ej /) and R’(Ei /) = R(i) where the choice of i and j does not affect T or R because E is
a bisimulation, and the choice of α does not affect T by the definition of D.

One approach to computing a dynamic quotient MDP is to first compute a sto-
chastic bisimulation and then compute the dynamic bisimilarity relation with respect to
that bisimulation. However, this approach fails to exploit the possible reductions in the
action space (by equivalence) during the construction of the stochastic bisimulation. Spe-
cifically, the iterative construction of the stochastic bisimilarity relation described in this
paper requires, at each iteration, a computation for each action. If the action space can be
grouped into exponentially fewer equivalence classes of actions, this “per action” compu-
tation can be replaced by a “per equivalence class of actions” computation, with possible
exponential time savings. All of this assumes we can cheaply compute the dynamic
bisimilarity relation D, which will depend entirely on the representation used for the
MDP and the relation E. We do not consider this issue here, but in [Dean et al., 1998] we
present representations for MDPs that allow the effective computation of dynamic bisimi-
larity for many MDPs, and give an algorithm that exploits dynamic bisimilarity to

 36

achieve possibly exponential savings in runtime (over that from model reduction alone).

6.2 Approximate Model Minimization

One of the foci of this paper has been to translate some of the efficiency of repre-
senting an MDP in a compact form into efficiency in computing an optimal policy for
that MDP. The resulting computational savings can be explained in terms of finding a
bisimulation over the state space, and using the corresponding partition to induce a
smaller MDP that is equivalent to the original MDP in a well-defined sense. The reduced
MDP states correspond to groups of states from the original MDP that behave the same
under all policies, and thus the original and reduced MDP yield the same optimal policies
and state values. Despite reducing the MDP with this approach, the resulting minimal
model in many cases may still be exponentially larger than the original compact MDP
representation—implying that in some cases the computational cost of solving the re-
duced MDP is still rather daunting.

One approach to overcoming this computational cost is to relax the definition of
equivalence on states. This relaxation can be done by allowing the aggregation of states
into the same “equivalence” class even though their transition probabilities to other
blocks are different, so long as they are approximately the same (i.e., within ε of each
other, for some parameter ε). We call the resulting partition an ε-stable partition—such a
partition generally induces an aggregate MDP that is much smaller than the exact mini-
mal model. Use of this approach does have its drawbacks: the reduced model is not
equivalent to the original MDP, but only approximately equivalent. Solutions resulting
from approximate model minimization thus may not be optimal but will typically be ap-
proximately optimal. For further information on how to carry out approximate model
minimization/reduction see [Dean et al., 1997].

6.3 Handling Synchronic Effects

We first extend our representation of a factored MDP M = 〈F, A, TF, RF〉 given in
Section 2.3 to represent synchronic effects (correlations between the effects of an action
on different fluents). We change only the definition of TF from our factored representa-
tion without synchronic effects. As before, the state space Q is given by the set of state
fluents F. Following Bayesian belief network practice, the fluents F are now ordered as
f1, …, fn—the distribution describing the effects of an action on a fluent fi will be allowed
to depend on the post-action values of fluents fj for j less than i, and the compactness of
the resulting representation will in general depend heavily on the ordering chosen.

We assume that a “parent” relationship is defined for the fluents, as in a Bayesian
network, such that for each fluent fi, Parents(fi, α) is a set of fluents earlier in the order-
ing f1, …, fn such that the value of fi after taking action α is independent of the post-action
value of any other fluent fj, given post-action values for Parents(fi, α). We then define the
Ancestors(fi, α) to give the set of fluents that are transitively parents of fi for action α,
along with fi itself. The state-transition distribution of a factored MDP is now specified by
giving a factored partition TF(α, fi) of Q for each fluent fi and action α, where each parti-

 37

tion block is labeled with a factored joint probability distribution over Ancestors(fi, α)
giving the probability that each assignment to Ancestors(fi, α) will result when taking α
from the labeled block. The distributions TF(α, fi) must obey a consistency constraint: for
each action α and fluents f and f’ such that f’ ∈ Parents(f, α), the distribution TF(α, f’)
must be the same as the distribution TF(α, f) marginalized to the fluents Ancestors(f’).
One way to achieve this consistency is to represent each factored conditional probability
distribution as a product (as in a Bayesian network), such that the distribution for a fluent
includes every factor used in the product of any of that fluent’s parents31 (i.e., the Bayes-
ian network for fluent f contains the Bayesian networks for the parents of f).

Given this representation for a synchronous-effect factored MDP, model reduc-
tion using S-SPLIT, F-SPLIT, or FS-SPLIT can be carried out just as specified above.
This is because these split methods do not depend on the partition labels in the action de-
scriptions, but only on the partitions themselves. Exact splitting with SPLIT requires us-
ing the joint probability distribution labels to combine blocks that are “coincidentally”
alike after S-SPLIT. This combination is similar in spirit to that described for the inde-
pendent action effects case near the end of section 4.4, and we leave this generalization as
an exercise for the reader. Model reduction using R-SPLIT requires adding only an infer-
ence algorithm for determining whether a joint probability distribution assigns a probabil-
ity of zero to a given formula—for the key case of distributions in chain-rule product
form (i.e. like Bayesian networks) and formulas that are conjunctions of literals, such al-
gorithms are generally well known (e.g., [Pearl, 1988]).

6.4 Other Related Work

The basic idea of computing reduced equivalent models has its origins in auto-
mata theory [Hartmanis and Stearns, 1966] and stochastic processes [Kemeny and Snell,
1960]. Our work can also be viewed as a stochastic generalization of recent work in com-
puter-aided verification via model checking [Burch et al., 1994][Lee and Yannakakis,
1992]. In addition, the goals of our work are similar to goals of [Dietterich and Flann,
1995], which presents an online learning method using a factored representation to learn
about blocks of states, using a regression operator similar to our block splitting operation.

The approximation of an optimal policy discussed in the last section is just one of
many approximation approaches. [Boutilier and Dearden, 1996] gives approximate ver-
sions of SPI and SVI by sometimes allowing states with similar, but different, values to
be aggregated into the same leaf of a value-function tree. This additional aggregation is
achieved by pruning value trees, replacing sub-trees whose values differ by at most ε by
leaves whose label may be either an average value for the sub-tree or a range of values

31 Conversion to this factored MDP representation from the more familiar (and very similar) dynamic
Bayesian networks with synchronous effects is straightforward [Littman, 1997], but may involve an expo-
nential growth in size in computing the required state-space partitions. It is possible to design a similar la-
beled-partition representation that avoids this growth, but applying model minimization appears to require
the exponentially larger representation. The synchronous-effect methods presented in [Boutilier et al.,
2000] also encounter exponential size growth when “summing out post-action influences.”

 38

subsuming all the values of the sub-tree. [Koller and Parr, 2000] propose a very different
factored value function representation—value functions are represented as a linear com-
bination of the factored value functions used here, and a policy iteration method is given
for this decomposed value function method. Note that this representation can assign ex-
ponentially many different values over the state space with a polynomial-size decomposi-
tion, unlike our labeled factored partitions or the more familiar decision-tree representa-
tions for value functions. Large state spaces have also been dealt with approximately by
trajectory sampling in [Kearns et al., 1999], and elsewhere.

7 Empirical Investigation

We have explored the theory of model minimization; here we provide some data
on its performance on simple synthetic domains. We have constructed a non-optimized
implementation using DNF formulas to represent blocks—using S-SPLIT to construct a
reduced, equivalent model. We used this implementation to conduct experiments on the
Linear, Expon, and Coffee domains used in the previous evaluation of structured dynamic
programming [Boutilier et al., 2000], and compare the reduced-model sizes found by our
technique to the size of the value-function representation produced by structured dynamic
programming (SVI, in particular). We use the number of leaves in the decision-tree value
function produced by SVI as a measure of the size of the representation.

We now briefly describe these domains.32 The Linear domains, Linear3 through
Linear9, have between three and nine ordered state fluents, respectively. For each state
fluent, the domain provides an action that sets that fluent to “true” while setting all flu-
ents later in the order to “false”. Reward is obtained only when all state fluents are “true”.
The Linear domains were designed to show the strengths of the structured–dynamic-
programming algorithms—due to our similarity to these approaches, we expected to see
good results on these domains. The Expon domains, Expon3 through Expon9, are similar
to the Linear domains, except that the action corresponding to each state fluent sets that
fluent to “true”, if all later fluents are “true”, and sets it “false” otherwise. (In either case,
as before, it sets all later fluents to “false”.) To reach reward, these actions must be used
to “count” through the binary representations of the states, so we expect every state to
behave uniquely. The Expon domains were designed to exploit the weaknesses of struc-
tured dynamic programming, so, we expected little reduction in state space size.

The Coffee domain has six state fluents (has-user-coffee, has-robot-coffee, wet,
raining, have-umbrella, and location) and four actions (move, give-coffee, buy-coffee,
and get-umbrella). The move action has a 0.9 chance of moving the robot between the of-

32 Complete details of the Coffee domain and some Linear and Expon domains can be found online at
http://www.cs.ubc.ca/spider/jhoey/spudd/spudd.html. Note that this website also contains some “factory”
domains. We do not include these domains in our tests because both our model reduction implementation
(using S-SPLIT) and the web-available SPUDD implementation are unable to solve them exactly in the
available memory. Approximation methods could be added to either approach in order to handle the factory
domains, however these approximation techniques will not be discussed further here. (We note that
SPUDD has such approximation built in, and can analyze the factory domains using it.)

 39

fice and store locations, with an 0.9 chance of getting the robot wet if it is raining, unless
the robot has the umbrella, which reduces that chance to 0.1. If the robot is in the office
with coffee, the give-coffee action has a 0.8 chance of giving the user coffee and an (in-
dependent) 0.9 chance of the robot losing the coffee. If the robot is at the store, give-
coffee has a 0.8 chance of the robot losing the coffee, with no chance of providing any to
the user. Buy-coffee has a 0.9 chance of getting the robot coffee, if the robot is in the
store. Get-umbrella has a 0.9 chance of getting the robot the umbrella, when in the office.
There is a large reward if the user has coffee and a small one if the robot is not wet.

These domains are, of course, much smaller than what will typically be seen in
real applications, but they illustrate the range of possible results from our technique, and
allow for a comparison to other current approaches, in particular to structured dynamic
programming. The results obtained in our experiments are shown in Figure 12, and are as
expected—the Linear domains show a linear increase in the size of the reduced model
with respect the number of variables (i.e., an exponential amount of compression),
whereas the Expon domains show no reduction in model size, and remain exponential in
the number of variables. Structured dynamic programming, specifically SVI, performs
identically (on both Linear and Expon domains), showing that we are indeed factoring
that method into a model-reduction phase, followed by any traditional solution technique.

 The Coffee domain shows a substantial savings, with the reduced MDP being
about a third the size of the original, and very similar in size to the SVI-produced value
function, but not identical. The difference in the Coffee domain results from model-

 Domain #Of
Fluents

State
Space Size

Of SVI
Leaves

Minimal
Model Size

Ratio

 Linear3 3 8 4 4 0.500
 Linear4 4 16 5 5 0.313
 Linear5 5 32 6 6 0.188
 Linear6 6 64 7 7 0.110
 Linear7 7 128 8 8 0.063
 Linear8 8 256 9 9 0.036
 Linear9 9 512 10 10 0.020
 Expon3 3 8 8 8 1.000
 Expon4 4 16 16 16 1.000
 Expon5 5 32 32 32 1.000
 Expon6 6 64 64 64 1.000
 Expon7 7 128 128 128 1.000
 Expon8 8 256 256 256 1.000
 Expon9 9 512 512 512 1.000
 Coffee 6 64 18 21 0.329

Figure 12. Results from the experiments. For each domain, we give the name, number
of fluents defining the state space, number of states in state space, number of leaves in
the value tree after running SVI, number of blocks in the reduced model, and state-
space compression ratio from aggregation using this reduced model, respectively.

 40

reduction refusing to aggregate states when they differ in the dynamics of any action,
even a non-optimal action. In this case, when the user has coffee and the robot is dry, the
robot need only avoid going outside to stay dry, so that no other state variables affect the
value (just has-user-coffee and wet). However, sub-optimal actions need to know more of
the state to determine the chance that the robot gets wet, e.g., whether it is raining—this
results in four states in the reduced model that correspond to one SVI value-function leaf.

Overall, these results are comparable to those obtained by structured dynamic
programming, which is expected since those algorithms can be viewed as a form of
model reduction. Further investigation into the use of model minimization and compara-
ble techniques in real applications is needed in order to verify what exactly are the draw-
backs of such approaches when applied in practice.

8 Conclusion

We present the method of model minimization for MDPs and its use in analyzing
and understanding existing algorithms. In order to develop this method of analysis we
have shown that equivalence notions used in concurrent process theory to compare proc-
esses for equivalence have a direct application to the theory of MDPs. In particular, the
notion of a bisimulation between two processes (formalized above in a limited way as
FSMs) directly generalizes to a useful equivalence notion for MDP states. Moreover,
concurrent process theory provides theoretical tools that can be used to automatically
compute bisimulations between FSMs—these tools also immediately generalize to com-
pute MDP state equivalence. We also develop methods to carry out this computation for
MDPs represented in factored form. By adding a straightforward notion of action equiva-
lence relative to a bisimulation, we can also use the notion of bisimulation to aggregate a
large action space. These methods also lend themselves naturally to approximation, as we
have discussed elsewhere in [Dean et al., 1997].

9 References
[Baum and Nicholson, 1998] Baum, J. and Nicholson, A. E. 1998. Dynamic non-uniform

abstractions for approximate planning in large structured stochastic domains. In Pa-
cific Rim International Conference on Artificial Intelligence 1998. 570-598.

[Bellman, 1957] Bellman, R. 1957. Dynamic Programming. Princeton University Press,
Princeton, NJ.

[Bouajjani et al., 1992] Bouajjani, A.; Fernandez, J.-C.; Halbwachs, N.; Raymond, P.;
and Ratel, C. 1992. Minimal state graph generation. Science of Computer Program-
ming 18:247-269.

[Boutilier and Poole, 1996] Boutilier, C. and Poole, D. 1996. Computing optimal policies
for partially observable decision processes using compact representations. In Pro-
ceedings of the Third European Workshop on Planning. 1168-1175.

[Boutilier and Dearden, 1994] Boutilier, Craig and Dearden, Richard 1994. Using ab-
stractions for decision-theoretic planning with time constraints. In Proceedings of the
Eleventh National Conference on Artificial Intelligence. AAAI. 1016-1022.

[Boutilier and Dearden, 1996] Boutilier, Craig and Dearden, Richard 1996. Approximat-

 41

ing value trees in structured dynamic programming. In Proceedings of the Thirteenth
International Conference on Machine Learning. 54-62. Bari, Italy.

 [Boutilier et al., 1995b] Boutilier, Craig; Dearden, Richard; and Goldszmidt, Moises
1995b. Exploiting structure in policy construction. In Proceedings International Joint
Conference on Artificial Intelligence 14. IJCAII. 1104-1111.

[Boutilier et al., 1999] Boutilier, Craig; Dean, Thomas; and Hanks, Steve 1999. Decision
theoretic planning: Structural assumptions and computation leverage. Journal of Arti-
ficial Intelligence Research 11:1-94.

[Boutilier et al., 2000] Boutilier, Craig; Dearden, Richard; and Goldszmidt, Moisés 2000.
Stochastic dynamic programming with factored representations. Artificial Intelligence
121(1-2): 49-107.

[Burch et al., 1994] Burch, Jerry; Clarke, Edmond M.; Long, David; McMillan, Kenneth
L.; and Dill, David L. 1994. Symbolic model checking for sequential circuit verifica-
tion. IEEE Transactions on Computer Aided Design 13(4):401-424.

[Cassandra et al., 1997] Cassandra, Anthony; Littman, Michael L. and Zhang, Nevin L.
1997. Incremental pruning: A simple, fast, exact algorithm for partially observable
Markov Decision Processes. In 13th Conference on Uncertainty in Artificial Intelli-
gence. 54-61.

[Dean and Givan, 1997] Dean, Thomas and Givan, Robert 1997. Model minimization in
Markov decision processes. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence. AAAI. 106-111.

[Dean and Kanazawa, 1989] Dean, T. and Kanazawa, K. 1989. A model for reasoning
about persistence and causation. Computer Intelligence 5(3):142-150.

[Dean et al., 1997] Dean, Thomas ; Givan, Robert ; and Leach, Sonia. Model reduction
techniques for computing approximately optimal solutions for Markov decision proc-
esses. In 13th Conference on Uncertainty in Artificial Intelligence. 106-111.

[Dean et al., 1998] Dean, Thomas; Givan, Robert; and Kim, Kee-Eung 1998. Solving
planning problems with large state and action spaces. In The Fourth International
Conference on Artificial Intelligence Planning Systems. 102-110.

[Dearden and Boutilier, 1997] Dearden, Richard and Boutilier, Craig 1997. Abstraction
and approximate decision theroretic planning. Artificial Intelligence 89(1):219-283.

[Dietterich and Flann, 1995] Dietterich, T. G., and Flann, N. S. 1995. Explanation-based
learning and reinforcement learning: A unified view. In Proceedings Twelfth Interna-
tional Conference on Machine Learning, 176-184.

[Draper et al., 1994] Draper, Denise; Hanks, Steve; and Weld Daniel S. 1994. Probabilis-
tic planning with information gathering and contingent execution. In Artificial Intelli-
gence Planning Systems 1994. 31-36.

[Goldsmith and Sloan, 2000] Goldsmith, Judy and Sloan, Robert 2000. The complexity
of model aggregation. In Proc. AI and Planning Systems, April, 2000. 122-129.

[Hanks, 1990] Hanks, Steve 1990. Projecting plans for uncertain worlds. Ph.D. thesis
756, Yale University, Department of Computer Science, New Haven, CT.

[Hanks and McDermott, 1994] Hanks, S and McDermott, D. V. 1994. Modeling a dy-
namic and uncertain world I: Symbolic and probabilistic reasoning about change. Ar-
tificial Intelligence, 66(1), 1-55.

[Hartmanis and Stearns, 1966] Hartmanis, J. and Stearns, R. E. 1966. Algebraic Structure
Theory of Sequential Machines. Prentice-Hall, Englewood Cliffs, N.J.

 42

[Hennessy and Milner, 1985] Hennessy, M. and Milner, R. 1985. Algebraic laws for nondeter-
minism and concurrency. In Journal of the Association for Computing Machinery 137.

[Hoey et al. 1999] Hoey, Jesse; Aubin, Robert St.; Hu, Alan J.; and Boutilier, Craig 1999.
SPUDD: Stochastic Planning using Decision Diagrams, In 15th Conference on Un-
certainty in Artificial Intelligence. 279--28.

 [Howard, 1960] Howard, R. A. 1960. Dynamic Programming and Markov Processes.
Cambridge, Mass. The MIT Press.

[Kearns et al., 1999] Kearns, Michael; Mansour, Yishay; and Ng, Andrew 1999. A sparse sam-
pling algorithm for near-optimal planning in large Markov decision processes. In 16th Con-
ference on Uncertainty in Artificial Intelligence. 21-30.

[Kemeny and Snell, 1960] Kemeny, J. G. and Snell, J. L. 1960. Finite Markov Chains. D.
Van Nostrand, New York.

[Koller and Parr, 2000] Koller, Daphne and Ron, Parr 2000. Policy iteration for factored
MDPs. In 16th Conference on Uncertainty in Artificial Intelligence. 326--334.

[Kushmerick et al., 1995] Kushmerick, Nicholas; Hanks, Steve; and Weld, Daniel 1995.
An algorithm for probabilistic planning. Artificial Intelligence 76(1-2).

[Larson and Skou, 1991] Larsen, K. G. and Skou, A. 1991. Bisimulation through prob-
abilistic testing. In Information and Computation 94(1):128.

[Lee and Yannakakis, 1992] Lee, David and Yannakakis, Mihalis 1992. Online minimi-
zation of transition systems. In Proceedings of 24th Annual ACM Symposium on the
Theory of Computing.

[Lin and Dean, 1995] Lin, Shieu-Hong and Dean, Thomas 1995. Generating optimal
policies for high-level plans with conditional branches and loops. In Proceedings of
the Third European Workshop on Planning. 205-218.

[Littman, 1994] Littman, Michael 1994. The Witness algorithm: Solving partially ob-
servable Markov descision processes. Brown University Department of Computer
Science Technical Report CS-94-40.

[Littman et al., 1995] Littman, Michael; Dean, Thomas; and Kaelbling, Leslie 1995. On
the complexity of solving Markov decision problems. In Eleventh Conference on Un-
certainty in Artificial Intelligence. 394-402.

[Littman, 1997] Littman, Michael 1997. Probabilistic propositional planning: Reoresenta-
tions and complexity. In Proceedings of the Fourteenth National Conference on Arti-
ficial Intelligence. 748-754.

[McAllester and Rosenblitt, 1991] McAllester, David and Rosenblitt, David 1991. Sys-
tematic nonlinear planning. In In Proceedings of the Eighth National Conference on
Artificial Intelligence. 634-639.

[Milner, 1989] Milner, R. 1989. Communication and Concurrency. Series in Computer
Science. Prentice-Hall International.

[Milner, 1990] Milner, R. 1990. Operational and Algebraic Semantics of Concurrent Pro-
cesses. In Leeuwen J. van (Ed.), Handbook on Theoretical Computer Science 1201-
1242. Amsterdam: Elsevier Science Publishers B. V.

[Monahan, 1982] Monahan, G. E. 1982. A survey of partially observable Markov deci-
sion processes: Theory, models, and algorithms. Management Science 28(1):1-16.

[Park, 1981] Park, D.M. 1981. Concurrency on automata and infinite sequences. In P.
Deussen, ed. Conference on Theoretical Computer Science, volume 104 of Lecture
Notes in Computer Science. Springer Verlag.

 43

[Pearl, 1988] Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, California.

[Puterman, 1994] Puterman, Martin L. 1994. Markov Decision Processes. John Wiley &
Sons, New York.

[Zhang and Zhang, 2001] Zhang, Nevin L. and Zhang, Weihong 2001. Speeding up the conver-
gence of value iteration in partially observable Markov decision processes. In Journal of Arti-
ficial Intelligence Research . Vol. 14.

Appendix

Lemma 4.1: The reflexive symmetric transitive closure of a stochastic bisimulation be-
tween any two MDPs M = 〈Q, A, T, R〉 and M’ = 〈Q’, A, T’, R’〉 restricted to Q × Q is it-
self a stochastic bisimulation between M and itself.

Proof: Let E1 be a stochastic bisimulation between the MDPs M = 〈Q, A, T, R〉 and M’ =
〈Q’, A, T’, R’〉 and let E2 be the reflexive symmetric transitive closure of E1 restricted to
Q × Q. We show that E2 is a stochastic bisimulation.

Consider i and j in Q such that E2(i, j). We note that the definition of E2 as the re-
flexive symmetric transitive closure of E1 ensures that there is a (possibly empty) path of
arcs in E1, ignoring arc direction, from i to j. Likewise there must be a path of arcs in E1
between any two states in 2/ Ei or any two states in 2/ Ej . A simple induction on the
length of an arbitrary path of E1 arcs shows that any two states related by such a path
have the same R (or R’) values, because E1(i’, j’) implies R(i’) = R’(j’). It follows that
R(2/ Ei) and R(2/ Ej) are well defined and equal, as desired in showing that E2 is a
bisimulation.

To show the transition-model properties that imply that E2 is a bisimulation, we
first note that the sets 1/ Ei and 2/ Ei (and likewise 1/ Ej and 2/ Ej) are identical by defi-
nition. We must show that for any i’∈ Q and j’ ∈ Q such that E2(i’, j’), the block transi-
tion probabilities T(i, α, 2/ Ei ′) and T(j, α, 2/ Ej ′) are equal. As just observed, it suffices
to show that T(i, α, 1/ Ei ′) and T(j, α, 1/ Ej ′) are equal. This follows by induction on the
sum of the length of the shortest E1 path from i’ to j’ and the length of the shortest E1 path
from i to j (ignoring arc direction)—this induction iterates the fact that for any action α,
any x, x’ ∈ Q and y, y’ ∈ Q’, E1(x, y) and E1(x’, y’) together imply that T(x, α, 1/ Ex′)
and T’(y, α, 1/ Ey′) are equal, since E1 is a bisimulation.�

Lemma 4.2: The union of two stochastic bisimulations between the same pair of MDPs
is also a stochastic bisimulation between those MDPs.

Proof: Let E1 and E2 be two stochastic bisimulations between the same pair of MDPs
M = 〈Q, A, T, R〉 and M’ = 〈Q’, A, T’, R’〉 and let E be the union of those stochastic
bisimulations (i.e. the union of the sets of pairs of states related by those bisimulations).
We now show that E is a stochastic bisimulation. We write E* for the reflexive symmetric
transitive closure of E. Consider i ∈ Q and j ∈ Q’ such that E(i, j).

That R(Ei /) and R’(Ej /) are well defined and equal to each other is implied by
the following assertion. For any i’ and j’ in Q ∪ Q’ such that E*(i’, j’), R” (i’) = R” (j’),

 44

where R” is defined on Q ∪ Q’ by R on Q and by R’ on Q’. This assertion is shown by
induction on the length of the B-path between i’ and j’, iterating the fact that either E1(i”,
j”) or E2(i”, j”) implies R(i”) = R’(j”) because E1 and E2 are both bisimulations.
 We now argue that E(i, j) and E(i’, j’) together imply that T(i, α, Ei /') =
T’(j, α, Ej /'), for i, i’ ∈ Q and j, j’ ∈ Q’. Without loss of generality, by symmetry, we
assume that E1(i, j). It is easy to show that the equivalence classes of E* are formed by
unioning sets of the form 1/ Ek for different k in Q ∪ Q’. Thus the class E'i / is the dis-
joint union of sets 11 / E'i , …, 1/1 E'i n , and likewise E'j / is the disjoint union of sets

11 / E'j , …, 1/2 E'j n . We now show how to select, for each block 1/ E'i m , a corresponding
block 1/ E'j 'm such that T(i, α, 1/ E'i m) = T’(j, α, 1/ E'j 'm), with no block 1/ E'j 'm being
selected twice; from this we can conclude that T(i, α, Ei /') ≤ T’(j, α, Ej /'). A symmet-
ric argument then shows T(i, α, Ei /') ≥ T’(j, α, Ej /'), so we can conclude T(i, α, Ei /')
= T’(j, α, Ej /') as desired. The block 1/ E'j 'm can be selected by finding any state j”
such that E1(m'i , j”); it is not hard to then show that the block j” /E must be 1/ E'j 'm for
some m’ but will not be selected for any other m.�

Theorem 4: Stochastic bisimilarity restricted to the states of a single MDP is an
equivalence relation, and is itself a stochastic bisimulation from that MDP to itself.

Proof: First, we prove that there exists a maximal stochastic bisimulation from an MDP
M to itself—it follows that this relation is stochastic bisimilarity, which is thus a bisimu-
lation. Since there are only finitely many unique binary relations that can be defined over
the states of an MDP, we can enumerate those that are stochastic bisimulations on M as
B1, …, Bm. We construct the maximal stochastic bisimulation in the following manner,
starting with E1 = B1, and taking Ei = Ei-1 ∪ Bi, this leads us to Em which is the maximal
stochastic bisimulation. In order to prove this, we need to show that Em contains all other
stochastic bisimulations, and that it is itself a stochastic bisimulation. Em contains all
other stochastic bisimulations, since it contains all the Bi by its construction. We show
that Em is a stochastic bisimulation by induction on the index. As a base case, E1 is a sto-
chastic bisimulation, since it is B1, which is a stochastic bisimulation. For the inductive
case, the union Ei-1 ∪ Bi yields Ei, which is a stochastic bisimulation by Lemma 4.2.

All that remains to prove the theorem is to show that Em when restricted to the
states of a single MDP is an equivalence relation—this follows immediately from Lemma
4.1 because if the reflexive symmetric transitive closure of Em is a bisimulation it must be
contained in Em and thus must be Em. �

Theorem 5: Any stochastic bisimulation that is an equivalence relation is a refinement
of both optimal value equivalence and action sequence equivalence.

Proof: Throughout this proof we will use states i and j as stochastically bisimilar states
from an MDP M = 〈Q, A, T, R〉. We show optimal value equivalence of i and j by show-
ing, using induction on m, that i and j have the same optimal discounted value at every fi-
nite horizon m. We define m-horizon optimal discounted value function in the following
manner for all states s and all non-negative integers m,

 45

vm(s) = R(s) + maxα γ Σk∈Q [T(s, α, k) vm-1(k)]

where γ is the discount factor, and we take v-1(s) to be 0 for all states s.
For the base case take m = 0. In this case the value function for any state is just

the reward for that state, v0(s) = R(s). Since states i and j are stochastically bisimilar we
know that R(i) = R(j), and so that v0(i) = v0(j), as desired. For the inductive case, we de-
fine the m-horizon Q-value33 for any state s, action α, and non-negative integer m, by

qm(s, α) = R(s) + γ Σk∈Q [T(s, α, k) vm-1(k)].

Let E be stochastic bisimilarity. Using the induction hypothesis, we have for any action α,

qm(i, α) = R(i) + γ Σk∈Q [T(i, α, k) vm-1(k)]
 = R(i) + γ Σb∈ EQ / [T(i, α, b) vm-1(b)]
 = R(j) + γ Σb’∈ EQ / [T(j, α, b’) vm-1(b’)]
 = R(j) + γ Σk∈Q [T(j, α, k) vm-1(k)] = qm(j, α).

Since for any state s, vm(s) = maxα qm(s, α), it follows that vm(i) = vm(j), as desired.
We now show that i and j are action-sequence equivalent by induction on the

length m of the action sequence—we show that for any action sequence α1, …, αm, the
distribution over sequences of rewards attained by following α1, …, αm is the same for i
and j. We take φs,m(α

r
) to be a random variable ranging over reward sequences of length

m, with the distribution generated from starting state s following action sequence α
r

.
For the base case, we take m = 0 and consider the empty sequence ε of actions.

Here, the reward sequence φs,0(ε) is deterministically the empty sequence—implying that
φi,0(ε) and φj,0(ε) have identical distributions as desired.

For the inductive case, consider action sequence α
r

 = α1, …, αm. We note that for
any state s, we have that Pr (φs,m(α

r
) = r1, …, rm) is equal to

Pr (φs,1(α1) = r1) Σb∈ EQ / T(s, α1, b) Pr (φb,m–1(α2, …, αm) = r2, …, rm),

where φb,n(α
r

) is defined to be φs,n(α
r

) for some state s ∈ b, and the choice of s does not
affect the value of φb,n(α

r
) for n < m by the induction hypothesis. We apply this equation

for s equal to i and for s equal to j, and show that the right-hand sides are equal in the two
cases. First, we note that the probability that φs,1(α1) equals r1 in the above equation is ei-
ther zero or one, depending on whether R(s) is r1, and that R(i) = R(j) since i and j are sto-
chastically bisimilar. Then, the fact that T(i, α1, b) = T(j, α1, b) for each block b (because
E is a bisimulation) gives Pr (φi,m(α

r
) = r1, …, rm) = Pr (φj,m(α

r
) = r1, …, rm), concluding

the inductive case. Thus, stochastic bisimilarity refines action-sequence equivalence.�

Theorem 6: The reflexive, symmetric, transitive closure of any stochastic bisimulation
from MDP M = 〈Q, A, T, R〉 to any MDP, restricted to Q × Q, is an equivalence relation
E ⊆ Q × Q that is a stochastic bisimulation from M to M.

Proof: This follows directly from Lemma 4.1, along with the fact that restricting an

33 Our use of the standard terminology “Q-function” does not imply any connection to the state space Q.

 46

equivalence relation to a sub-domain preserves the equivalence relation property.�

Theorem 7: Given an MDP M = 〈Q, A, T, R〉 and an equivalence relation E ⊆ Q × Q
that is a stochastic bisimulation, each state i in Q is stochastically bisimilar to the state

Ei / in EM / . Moreover, any optimal policy of EM / induces an optimal policy in the
original MDP.

Proof: Let EM / = 〈 EQ / , A, T’, R’〉. First we prove that any i ∈ Q is stochastically
bisimilar to Ei / in EM / . Let Z be the relation over Q × EQ / that contains only the
pairs (i, Ei /) for each i ∈ Q. We show Z is a stochastic bisimulation from M to EM / .

Select i ∈ Q and j ∈ EQ / such that Z(i, j). We note that Zi / equals both Ei /
and j, and that Zj / is the set { j }. It follows that the rewards R(Zi /) and R’(Zj /) are
well defined and equal, since E is a stochastic bisimulation. Now select action α ∈ A,
state i’ ∈ Q and state j’ ∈ EQ / such that Z(i’ , j’). Noting that T(i, α, Zi /') =
T(i, α, Ei /') = T’(Ei / , α, Ei /') = T’(j, α, j’) = T’(j, α, Zj /'), we conclude Z is a
bisimulation and therefore that i and Ei / are stochastically bisimilar.

As above in the proof of Theorem 5, define the Q-value for any state s and action
α by giving q(s, α) as the sum of R(s) and γ Σk∈Q [T(s, α, k) v*(k)]. We now show that any
optimal action for state Ei / in EQ / is an optimal action for state i in Q. To show this,
we show that the Q-value for arbitrary action α in state Ei / is the same as the Q-value
for α in state i. We conclude

q(Ei / , α) = R’(Ei /) + γ Σ Ej / ∈ EQ / T’(Ei / , α, Ej /) v*(Ej /)

 = R(i) + γ Σ Ej / ∈ EQ / T(i, α, Ej /) v*(Ej /)

 = R(i) + γ Σs∈Q T(i, α, s) v*(s) = q(i, α) in M.

The second line follows via the definition of EM / , with for R’ and T’, and the third line
via the definition of block transition probability and the equality of values within a block
(implicit in the proof of Theorem 5). This Q-value equivalence yields our theorem. �

Lemma 8.1: Given equivalence relation E on Q and states p and q such that T(p, α, C)
≠ T(q, α, C) for some action α and block C of E, p and q are not related by any stochas-
tic bisimulation refining E.

Proof: Suppose not. Let B and C denote blocks of the partition of Q induced by E, let α
be any action in A, and let p and q denote states in block B such that T(p, α, C) ≠ T(q, α,
C). Let E’ be a stochastic bisimulation refining E such that p and q are in the same block
in E’. Let {C1, …, Ck} be the set of blocks in E’ that refine C. Because E’ is a stochastic
bisimulation, for each block D in E’, T(p, α, D) = T(q, α, D). Summing this fact over all
the blocks Ci we derive the following equation, contradicting T(p, α, C) ≠ T(q, α, C):

T(p, α, C) = Σ1≤ i ≤ k T(p, α, Ci) = Σ1≤ i ≤ k T(q, α, Ci) = T(q, α, C).�

Corollary 8.2: Let E be an equivalence relation on Q, B a block in E, and C a union of
blocks from E. Every bisimulation on Q that refines E is a refinement of the partition

 47

SPLIT(B, C, E).

Proof: Let E be an equivalence relation on Q, B a block in E, and C be the union of
blocks C1 thru Cn from E. Let E’ be a stochastic bisimulation that refines E. Note that
SPLIT(B, C, E) will only split states i and j if either R(i) ≠ R(j) or T(i, α, C) ≠ T(j, α, C),
by definition. But if R(i) ≠ R(j) then '/ Ei ≠ '/ Ej since E’ is a stochastic bisimulation.
And if T(i, α, C) ≠ T(j, α, C), then there must be some k such that T(i, α, Ck) ≠ T(j, α, Ck),
because for any state s, T(s, α, C) = Σ1≤ m ≤ n T(s, α, Cm). Therefore, we can conclude by
Lemma 8.1 that '/ Ei ≠ '/ Ej . �

Theorem 8: Partition iteration and model minimization both compute stochastic
bisimilarity.

Proof: Partition iteration and model minimization both terminate with a partition P for
which SPLIT(B, C, P) = P for any blocks B and C in P. SPLIT(B, C, P) will split any
block B containing a pair of states i and j for which either R(i) ≠ R(j) or T(i, α, C) ≠
T(j, α, C). So any partition returned by partition iteration or model minimization must be
a stochastic bisimulation. Since both model minimization and partition iteration start
from the trivial {Q} partition, and each only refines the partition by applying the SPLIT
operator to blocks in the partition, we can conclude by Corollary 8.2 that each partition
encountered, including the resulting partition, must contain stochastic bisimilarity. The
resulting partition, being a stochastic bisimulation, must be stochastic bisimilarity. �

Theorem 9: Model reduction returns a stochastic bisimulation.

Proof: Since model reduction always splits at least as much as model minimization, due
to the definition of stability, it must be the case that the partition returned by model re-
duction is a refinement of the partition returned by the model minimization algorithm,
i.e., stochastic bisimilarity according to Theorem 8. Any such relation has the reward pro-
perties required of stochastic bisimulations. The transition-model properties follow im-
mediately from the stability of all blocks in the resulting partition, which is a conse-
quence of the exit test of the final “while” loop in the algorithm. �

Corollary 9.1: The optimal policy for the quotient model produced by model reduc-
tion induces an optimal policy for the original MDP.

Proof: Follows directly from Theorem 7 and Theorem 9.�

Theorem 10: The bounded-size model-minimization problem is NP-hard.

Proof: We proceed by reducing 3CNF satisfiability34 to the bounded-size model minimi-
zation problem. Let F be a formula in 3CNF involving n variables X1, …, Xn and m
clauses, with Lj,i denoting the jth literal in the ith clause, for 1 ≤ j ≤ 3 and 1 ≤ i ≤ m; every
literal is of the form Xp or ¬Xp for some 1 ≤ p ≤ n.

34 The 3CNF formula is a non-empty set of clauses, each a disjunction of exactly three literals.

 48

We construct a fac-
tored MDP M for use in
minimization as follows. The
set of fluents factoring the
state-space is the union of {Xp
| 1 ≤ p ≤ n} and {Ci | 1 ≤ i ≤
m} where the Xp are called
variable fluents, and the Ci are
called clause fluents and will
be associated by construction
with the clauses in F. Below
we often refer to the n Xp flu-
ents (and the corresponding n
variables in F) indirectly by
referring to the 3m literals Lj,i.
We now describe the reward

and state-transition functions, which are shown in Figure 13. There is only one action in
M. The single action is only capable of changing the truth value of the Ci fluents—fluent
Ci is set to be true if one of the Lj,i is true, otherwise Ci retains its previous value. So, after
its first application, the action is a no-op, since it deterministically sets the Ci values ac-
cording to the Lj,i values, which do not change. There are three possible rewards, 1, -1,
and 0, which are associated, respectively, with the block of states where all of the Ci are
true, the block where all the Ci are false, and the remaining block.

Each state in the MDP M specifies values for all the Xp and Ci variables. As a re-
sult, each state can be viewed as specifying a truth-assignment to the Lj,i variables, i.e., a
potential model for the formula F given as input to the satisfiability problem. Each state,
also specifies values for the Ci variables. It is important to note that there is one state in
the state space for each way of setting all the Xp and Ci variables. Suppose the formula F
is satisfiable. Consider a state setting all Ci variables false, and setting the Xp variables
according to a satisfying assignment for F. Observe that there will be an action transition
in the MDP from this state to a state where all the Ci variables are true. If the formula F is
not satisfiable, then there will be no state where such a transition is possible. We now
analyze the minimal model of the MDP M, and leverage these observations to determine
the satisfiability of F from only the number of blocks in the minimal model—specifically,
from whether or not there is a block where all Ci variables are false from which there is a
transition possible to a block where all Ci variables are true.

Figure 15 shows several formulas that will be useful in describing the minimal
model for M. Using these formulas, the reward function can be described by labeling the
partition {C, U, ¬C ∧ ¬U}—this partition is the result of I ({ Q}), and is shown in square
boxes in Figure 14. Model minimization will start with and further refine this partition, as
discussed below. The formula F is satisfiable if and only if there is a path35 from some

35 We note that the “path” here will always be of length one due to the dynamics of our action.

Figure 13. Reward and transition functions for
3CNF reduction. Each is a real-valued labeled parti-
tion, as described in Section 2.3.2, representing a
factored MDP as discussed in Section 2.3.3.

 49

state in the block U to the block C, which is true if and only if the sub-block U ∧ F is
non-empty.

The numbered oval blocks in Figure 14 shows the final partition resulting from
model minimization, except that some of the oval blocks shown may in fact be empty. To
check that this partition is in fact stochastic bisimilarity on M, note the following: the
blocks have uniform and well-defined rewards (see the square blocks); the transitions
shown are deterministic and uniform within each block; and any two states in different
blocks differ either on their immediate reward or on their reward at the next state.

Once an appropriate k for the bounded-size model minimization problem is se-
lected, the problem will be answered “yes” if and only if the block U ∧ F (block 2) is
non-empty, and thus if and only if F is satisfiable, as desired. Selecting an appropriate k
to achieve this property requires our reduction to determine which blocks in Figure 14 are

Figure 14. Initial and minimal stable partitions for the 3CNF reduction.

F = (L1,1 ∨ L2,1 ∨ L3,1) ∧ … ∧ (L1,m ∨ L2,m ∨ L3,m)

G = (L1,1 ∨ L2,1 ∨ L3,1) ∨ … ∨ (L1,m ∨ L2,m ∨ L3,m)

H = (L1,1 ∨ L2,1 ∨ L3,1 ∨ C1) ∧ … ∧ (L1,m ∨ L2,m ∨ L3,m ∨ Cm)

C = C1 ∧ … ∧ Cm

U = ¬C1 ∧ … ∧ ¬Cm

Figure 15. Formulas for describing the partitions used in the 3CNF reduction. Includ-
ing the original formula F.

 50

non-empty. We note that block 1 is always non-empty, and non-emptiness for block 2
implies non-emptiness for block 3 (simply set the Lj,i to satisfy F and set some but not all
Cj to get a member of block 3)—therefore checking whether all three of blocks 1 through
3 are non-empty is sufficient. Thus the appropriate value of k is β+3 where β is the num-
ber of non-empty blocks among blocks 4, 5, and 6. It remains to show that non-emptiness
of blocks 4, 5, and 6 can be determined in polynomial time, by analysis of F.

We note that the validity of F can easily be checked: F is valid if and only if every
clause C in F there exists a literal L such that both L and ¬L appear in C. If F is valid,
then H is also valid, and then blocks 4, 5, and 6 are all empty. If F is not valid, then ¬F is
satisfiable, implying the existence of at least one clause r in F that is falsifiable. The as-
signment to the Xi fluents that makes r false extended with all the Ci fluents true except
Cr will be a member of block 6, and thus block 6 is non-empty when F is not valid. The
formula ¬F ∧ G is satisfiable if and only if ¬F is satisfiable and has at least two clauses
that do not share all their literals—this provides an emptiness test of block 5, as U can
always be satisfied independently of F and G. The formula ¬G is satisfiable if and only if
no variable appears in F in both positive and negative form. Since ¬G implies ¬F, de-
termining the satisfiability of ¬G determines the emptiness block 4. All of these empti-
ness determinations can be made in polynomial time in the size of F. �

Lemma 11.1: Given equivalence relation E on Q, block B in E, block C a union of any
non-empty set of blocks in E, and states p and q in B, if p and q do not fall in the same
block of S-SPLIT(B, C, E) then p and q are not related in any fluentwise-stable parti-
tion refining E.

Proof: Suppose p and q are in different blocks of S-SPLIT(B, C, E). This implies that p
and q fall into different blocks of TF(α, f) for some action α and fluent f, where f is nec-
essary to describe the block C. This implies that there are two states that differ only on
their value of f, one that is in block C, and one that is not. Furthermore, any partition that
distinguishes between these states, including any refinement of C, must also use f to do
so. Any refinement of E contains a refinement of C, since E contains a refinement of C.
Thus, the fluent f is necessary to describe at least one block in any refinement of E. It fol-
lows that p and q, being in different blocks of TF(α, f) for some action α, cannot belong
to the same block of any fluentwise stable refinement of E. �

Theorem 11: Given a partition P, there is a unique coarsest fluentwise-stable stochastic
bisimulation refining P. Iterating S-SPLIT using model reduction or partition iteration
starting from P computes this bisimulation regardless of the order of block splitting.

Proof: The existence of a coarsest fluentwise-stable stochastic bisimulation refining P is
guaranteed since the partition {{q}| q ∈ Q} is a fluentwise-stable stochastic bisimulation
refining P, and there are only finitely many partitions. Uniqueness of the coarsest such
partition is proven by contradiction. Assume two distinct partitions E1 and E2 are both
coarsest fluentwise-stable stochastic bisimulations refining P. Construct the new partition
E refining P that equates any two states equated by either E1 or E2, as follows: E is the

 51

symmetric transitive closure of E1 union E2, where the partitions are viewed as equiva-
lence relations represented as sets of pairs. We note that this partition E is a coarsening of
both E1 and E2 and thus any fluent necessary to represent any block in E must be neces-
sary to represent at least one block E1 and at least one block in E2 (see proof of Lemma
11.1). This ensures that any two states related by either E1 or E2 must be in the same
block of TF(α, f) for any fluent required to define a block of E—since any such fluent is
required to define a block of E1 and a block of E2, and both E1 and E2 are fluentwise sta-
ble. Then a simple induction shows that since any two states related by E are connected
by a path made from E1/E2 arcs (i.e., a path of arcs drawn from E1 union E2), any two
such states must be in the same block of TF(α, f) for any fluent required to define a block
of E. So E is fluentwise stable. Also, by Lemma 4.1 and Lemma 4.2, E must be a stochas-
tic bisimulation. Therefore, E is a fluentwise-stable, stochastic bisimulation that is a
coarsening of both E1 and E2, contradicting our assumption.

That iterating S-SPLIT using model reduction or partition iteration finds the
coarsest fluentwise stable stochastic bisimulation follows directly from Lemma 11.1.�

Lemma 12.1: Given equivalence relation E on Q, block B in E, action α, and states p
and q in B, if p and q do not fall in the same block of FS-SPLIT(B, C, E), where C is
the union of any set of blocks in E, then p and q are not related in any fluentwise stable
partition refining E that is also fluentwise representable.

Proof: First we note that S-SPLIT(B, C, E) is a coarsening of the unique coarsest fluen-
twise-stable partition E’ refining E (by Lemma 11.1). It follows that any fluent needed to
represent S-SPLIT(B, C, E) is also needed to represent E’. FS-SPLIT(B, C, E) is the flu-
entwise partition given by the set of fluents required to represent S-SPLIT(B, C, E), and
thus must be a coarsening of any fluentwise partition including all the fluents needed to
represent E’. But any representation of any fluentwise-stable partition refining E must use
all the fluents needed in every representation of E’, since E’ is the coarsest such partition.
So any fluentwise representation of a fluentwise-stable refinement of E must include all
the fluents used in FS-SPLIT(B, C, E), and thus must separate p and q, as desired. �

Theorem 12: Given a partition P, there is a unique coarsest stochastic bisimulation re-
fining P even under the restriction that the partition be both fluentwise stable and fluen-
twise representable. Iterating FS-SPLIT using model reduction or partition iteration
starting from P computes this bisimulation regardless of the order of block splitting.

Proof: Let E be the unique coarsest fluentwise-stable stochastic bisimulation refining P,
which we know exists, by Theorem 11. The fluentwise-representable partition E’ contain-
ing just those fluents required for representing E is a fluentwise-stable partition that is
fluentwise representable—this follows because E’ refines E without requiring any new
fluents for representation. Since our choice of E guarantees that every fluentwise-stable
partition refines E, every fluent needed to represent E is needed to represent any fluen-
twise-stable partition; therefore all such fluents must be included in any fluentwise repre-
sentation of any fluentwise-stable partition. Thus E’ is a unique coarsest fluentwise stable

 52

stochastic bisimulation even under the restriction that it also be fluentwise representable.
That iterating FS-SPLIT, using either model reduction or partition iteration, yields this
partition follows directly from Lemma 12.1.�

Lemma 13.1: Suppose we are given an equivalence relation E on Q, where the blocks
of both E and the partitions representing the factored MDP are represented as conjunc-
tions of literals. Then, any states p and q that do not fall in the same block of IR-SPLIT(E)
are not in the same block of any regression-stable partition refining E.

Proof: Suppose p and q fall into different blocks of IR-SPLIT(B, C, E). By the definition of
R-SPLIT, p and q must fall into different blocks of TF(α, f) for some action α and fluent f
necessary to describe some block C of E and either p or q must be in the regression re-
gion of C. Without loss of generality, let p be in the regression region of C. Consider a
regression-stable refinement E’ of E—we show that p and q fall into different blocks of
E’. Since p is in the regression region of C, p must be in the regression region of some
sub-block C’ of C in E’. Furthermore, because C is represented as a conjunction of liter-
als, every fluent required to describe block C must be required to describe any sub-block
of C— in particular, the fluent f is required to describe the block C’. Now we have that p
is in the regression region of C’, description of which requires the fluent f (for which p
and q fall into different blocks of TF(α, f)). It follows that p and q must be separated by
R-SPLIT(B’, C’, E’) for any block B’ of E’ containing both p and q; thus, there can be no
such B’ in the regression-stable E’, and p and q fall into different blocks in E’, as desired.
�

Theorem 13: Given a partition P, there exists a unique coarsest regression-stable sto-
chastic bisimulation refining P.

Proof: The existence of a coarsest regression-stable stochastic bisimulation refining P is
guaranteed since the partition {{q}| q ∈ Q} is a regression-stable stochastic bisimulation
refining P, and there are only finitely many partitions. Suppose for contradiction that two
distinct partitions E1 and E2 are both coarsest regression-stable stochastic bisimulations
refining P. Construct the new partition E refining P that equates any two states equated
by either E1 or E2, as follows: E is the symmetric transitive closure of E1 union E2, where
the partitions are viewed as equivalence relations represented as sets of pairs. We note
that this partition E is a coarsening of both E1 and E2 and thus any fluent necessary to rep-
resent any block in E must be necessary to represent at least one block E1 and at least one
block in E2 (see proof of Lemma 11.1). This ensures that any two states related by either
E1 or E2 must be in the same block of TF(α, f) for any fluent required to define any block
of E containing either state in its regression region—since any such fluent is required to
define such a block of E1 and such a block of E2 and both E1 and E2 are regression stable.
But then a simple induction shows that since any two states related by E are connected by
a path of E1/E2 arcs, any two such states must be in the same block of TF(α, f) for any
fluent required to define any block of E containing either state in its regression region. So
E is regression stable. In addition, by Lemma 4.1 and Lemma 4.2, E must also be a sto-

 53

chastic bisimulation. Therefore, E is a regression-stable stochastic bisimulation that is a
coarsening of both E1 and E2, which contradicts our assumption. �

Lemma 14.1: Given a non-empty block B represented by a conjunction of literals Φ,
each fluent f is mentioned in Φ if and only if f appears in every formula describing B.

Proof: (If) If f appears in every formula describing block B, then since Φ describes B, Φ
must mention f. (Only if) Since Φ describes a non-empty block B it follows that Φ is sat-
isfiable. Let v be a truth assignment to all the fluents such that v satisfies Φ, and let v’ be
v with the value of fluent f negated for some fluent f appearing in Φ. Since Φ describes B
and is a conjunction of literals that mentions f, we know that v’ is not in block B. Fur-
thermore, since both v and v’ satisfy all the same formulas that do not contain f, but B
contains v and not v’, any description of B must contain f. �

Lemma 14.2: If every block in a partition P is representable with a conjunction of lit-
erals, every block of IR-SPLIT(P) is also so representable, under the assumption that the
blocks in the partitions describing the MDP are also so representable.

Proof: Let C be a block of states. We define the “required fluents” of C, Req-Fluents(C),
to be the set of fluents that are mentioned in every DNF block formula that describes
block C. We define Determines(C) to be the intersection of the TF partitions for each F ∈
Req-Fluents(C). Note that any partition of the form Determines(·) is made up only of
blocks representable by conjunctions of literals (given our assumptions about the MDP).

Let Regress(C) to be the partition Determines(C) modified so that any blocks B
such that T(B, α, C) = 0 for every action α are aggregated into a single block. Let S be a
set of blocks. We use Determines(S) and Regress(S) to denote the intersection over mem-
bers e of S of Determines(e) and Regress(e), respectively. Let s be a state. We define
Reachable(s) to be the set of blocks C of P such that T(s, α, C) ≠ 0. For any block B, let
Reachable(B) is the set of all blocks C such that some state s in B has T(s, α, C) ≠ 0. We
prove that Regress(P) intersected with P and R is the same partition as IR-SPLIT(P), and
that every block B of Regress(P) is an element of Determines(Reachable(B)). Thus, any
block of IR-SPLIT(P) can be represented as a conjunction of literals, since it is the intersec-
tion of blocks from P, R, and a Determines(·) partition, where each block is representable
as a conjunction of literals.

We now show that Regress(P) intersected with P and R is the same partition as
IR-SPLIT(P). Let s and t be states from the same block of Regress(P) ∩ P ∩ R. Since s and t
are in the same block of P, to be in different blocks of IR-SPLIT(P) they must fall in differ-
ent blocks of some call to R-SPLIT(B’, C, P) for some C in P where s and t are both in
B’. States s and t are in different blocks of R-SPLIT(B’, C, P) only if either s and t have
different reward or are in different blocks of TF for some F in Req-Fluents(C) and either s
or t has a non-zero probability of transitioning to C. Since s and t are in the same block of
R they must have the same reward, and since they are in the same block of Regress(C)
they must either both have zero probability of transition to C or be in the same block of
TF for all F in Req-Fluents(C). So, s and t are in the same block of IR-SPLIT(P), and thus

 54

that Regress(P) intersected with P and R refines IR-SPLIT(P).
Now consider s and t from the same block B of IR-SPLIT(P). Since IR-SPLIT(P) al-

ways refines both P and R, s and t must be the same blocks of P and R. We know that
block B is not split by any call of the form R-SPLIT(B, C, P) for any C ∈ P, implying
that either T(B, α, C) = 0 for all α or every state in B falls in the same block of TF for all
F in Req-Fluents(C). Since s and t are both in B, they must be in the same block of Re-
gress(C) for any C ∈ P, and therefore in the same block of Regress(P), Being in the same
blocks of the partitions Regress(P), P, and R means s and t are in the same block of the
intersection of those partitions and thus IR-SPLIT(P) refines Regress(P) intersected with P
and R. Since Regress(P) intersected with P and R refines IR-SPLIT(P) and IR-SPLIT(P) refines
Regress(P) intersected with P and R they must be the same partition.

It remains to show that any block B of Regress(P) is an element of Deter-
mines(Reachable(B)). Consider states s and t in B of Regress(P). For all blocks C of P, s
and t are in the same block of Regress(C). So, by definition of Regress(C), whenever T(B,
α, C) > 0, s and t are in the same block of Determines(C). The set of blocks C from P
where T(B, α, C) > 0 is just Reachable(B), so s and t are in the same block, called B’, of
Determines(Reachable(B)). So, block B refines a block of Determines(Reachable(B)).

We now consider state s’ ∈ B’ and show that s’ ∈ B, to conclude that B’ = B,
completing our proof. We consider any state s in B, and show that s and s’ fall into the
same block of Regress(C) for every block C of P. It suffices to show that Reachable(s)
equals Reachable(s’) and that s and s’ fall into the same block of TF for any F in Req-
Fluents(C) for C in Reachable(s). Consider C in Reachable(s). Note that any such C is a
member of Reachable(B) and our choice of B’ as the block of Determines(Reachable(B))
containing B implies that s’ and s are in the same block of TF for all fluents in Req-
Fluents(C). It remains to show that Reachable(s) equals Reachable(s’).

As just argued, s and s’ fall into the same block of TF for any fluent F in Req-
Fluents(C) for any C in Reachable(s). This implies that Reachable(s) is a subset of
Reachable(s’). The fact that Reachable(s’) is a subset of Reachable(s) can be argued as
follows. As just shown, s and s’ fall in the same block of TF for any F in Req-Fluents(C)
for any C in Reachable(B). This implies that the transition probability from s or s’ to any
such C is the same. But since these probabilities must sum to one (because s can only
reach blocks C that are reachable from B, as s is in B), s’ cannot transition to any block
C’ not in Reachable(B), and hence Reachable(s’) is a subset of Reachable(s), as desired.�

Theorem 14: Let M be a factored MDP with all partition blocks represented as con-
junctions of literals. Given a starting partition P also so represented, iterating R-SPLIT
using partition iteration computes the coarsest regression-stable stochastic bisimulation
refining P, regardless of the order in which blocks are selected for splitting.

Proof: Lemma 14.2 implies that every block in the partition resulting from the applica-
tion of the IR-SPLIT operation has a formula that is a conjunction of literals. Lemma 13.1
then implies that iterating IR-SPLIT using partition iteration returns the coarsest regression-
stable stochastic bisimulation, which by Theorem 13 is unique. �

 55

Lemma 15.1: Given a fluentwise partition P and a minimal tree-represented factored
MDP M, the partition computed by Add-relevant(P) is the partition IFS-SPLIT(P).

Proof: Let P’ be the fluentwise partition returned by Add-relevant. Partition P’ is fluen-
twise representable. Also, P’ is a refinement of P since P’ (as a set of fluents) contains P.
We define fluentwise stability with respect to a partition to mean fluentwise stability with
respect to every block of that partition. Below we show that any fluentwise partition
omitting any fluent in P’ is not fluentwise stable with respect to P, and that P’ is fluen-
twise stable with respect to P. Thus, P’ is the coarsest fluentwise-representable partition
refining P that is fluentwise stable with respect to P, i.e. IFS-SPLIT(P), as desired.

For a partition to be fluentwise stable with respect to a fluent means that every
pair of states in the same block of the partition must have the same probability distribu-
tion over that fluent for every action. If a fluent f’ is tested in a minimal tree representa-
tion of the effect of some action α on some fluent f then any fluentwise partition omitting
f’ is not fluentwise stable with respect to f ; two states differing only on f’ must differ in
their probability of setting f when taking α. To be fluentwise stable with respect to P, a
partition must be stable with respect to all the fluents in P (as a set of fluents), because
describing any block in P with a formula requires all fluents in P. It follows that Add-
relevant constructs P’ by adding to P only those fluents that cannot be omitted from a
partition that is fluentwise stable with respect to P, as desired.

The independence assumptions implicit in the factored representation of the MDP
M ensure that any fluent f’ not mentioned in the tree for action α and fluent f has no ef-
fect on the probability of setting f when taking α. Specifically, states differing only on f’
have the same probability of setting f when taking α. Partition P’ contains every fluent in
any tree defining the effect of any action on any fluent in P, so that two states in the same
block can only differ on fluents not mentioned in any such tree. It follows that any two
states in the same block of P’ have the same probability of setting any fluent in P, and
thus that P’ is fluentwise stable with respect to P.�

Theorem 15: Given a minimal tree-represented MDP, model reduction using
FS−SPLIT yields the same partition that state-space abstraction yields, and does so in
polynomial-time in the MDP representation size.

Proof: Since state space abstraction iterates Add-relevant starting with the fluentwise
partition Fluents(R) until convergence, it follows directly from 0 that state-space abstrac-
tion and iterating FS-SPLIT starting with Fluents(R) find the same partition. A simple
analysis of partition iteration shows that the first iteration returns Fluents(R) when using
FS-SPLIT. Theorem 12 then implies that model reduction using FS-SPLIT and state
space abstraction yield the same partition.

We now show the polynomial-time complexity claim. To obtain this complexity,
the basic method must be optimized to make only the linearly many FS-SPLIT calls de-
scribed below, avoiding unnecessary calls, as follows. When the partition P is fluentwise
represented, the partition P’ = FS-SPLIT(B, C, P) does not depend on the choice of B or

 56

C from P because the same set of fluents are used in every block formula. Thus, P’ will
not be further split by calls of the form FS-SPLIT(B’, C, P’), where B’ is a block of P’
and C is a block of P. This observation implies that partition iteration can compute IFS-

SPLIT(P) with only one call to FS-SPLIT(B, C, P), using any blocks B and C in the parti-
tion P. We further note that each call to FS-SPLIT increases the number of fluents in the
partition representation, except the last call, which does not change the partition. Thus
only linearly many calls to FS-SPLIT can be made during partition iteration. We can
conclude that partition iteration terminates in polynomial time, by showing that each call
to FS-SPLIT terminates in polynomial time.

Consider the call FS-SPLIT(B, C, P), where B and C are blocks of P, and P is a
fluentwise-represented partition. Every fluent in the set defining P is present in every
DNF formula defining any block of P. So, for any choice of B and C, the resulting parti-
tion must be fluentwise partition represented by the set of fluents that appear anywhere in
the trees defining the effects of the actions on fluents in P, together with any fluents in P
or appearing in the tree defining R. This set is computable in time polynomial in the size
of those trees plus the number of fluents in P. �

Lemma 16.1: Let V be a tree-represented value function, where PV is the partition
given by the tree. Let α be an action, and for any block C of PV, let ΦC denote the con-
junction of literals describing C. We then have the following.

The partition computed by PRegress(V, α) is the intersection over all
blocks C of PV of Regression-determining(ΦC, α).

Proof: We use induction on the depth of the tree for V. As the base case suppose V is a
leaf node. Here, PRegress returns the partition {Q}, and Regression-determining(true, α)
also returns {Q}. In the inductive case, let fluent f be the fluent tested at the root of the
tree, and assume the lemma for the sub-trees. Let P∩ be the intersection over all blocks
C∈PV of Regression-determining(ΦC, α). We show that P∩ is PRegress(V, α).

We start by noting that the partition returned by PRegress(V, α) is built by refin-
ing TF (α, f) using Replace. Since f is at the root of V.Tree every formula describing any
block C of PV includes f. In particular, the conjunction describing any block of V must
contain f, since it is on every path from the root of V to a leaf, and so f must be in Flu-
ents(ΦC)fp. Thus for every block C of PV the call to Partition-determining(Fluents(ΦC),
α) must be fluentwise stable with respect to f, since all states in the same block of Parti-
tion-determining(Fluents(ΦC), α) must be in the same block of TF (α, f’) for any fluent f’
in Fluents(ΦC). Consider the partition variable PC in the pseudo-code for Regression-
determining(ΦC, α), after it is assigned. Since every block in PC is a block from Partition-
determining(Fluents(ΦC), α), any such block must be fluentwise stable with respect to f.
We note that the union of all blocks in PC is the regression region for C, as defined in sec-
tion 4.6. It follows that every state in the regression region for a block C is in a fluen-
twise-stable block (with respect to f) in the partition Regression-determining(ΦC, α), and
thus in any partition refining this partition. Every state must be carried to some state un-
der action α, so every state is in the regression region for some block of PV. So P∩ must

 57

be fluentwise stable with respect to f; so P∩ refines TF (α, f).
We now analyze the refinement of TF (α, f) returned by PRegress and show that

this refinement is the same as the refinement of TF (α, f) by P∩. PRegress(V, α) is com-
puted by replacing each block B of TF (α, f) with the intersection of all the partitions re-
sulting from relevant recursive calls to PRegress, restricted to block B. A recursive call
on an immediate sub-tree of V is relevant to block B if the value of f leading to that sub-
tree has a non-zero probability after taking action α in block B (this probability is uni-
form throughout B). By the induction hypothesis, each sub-tree partition is the intersec-
tion of Regression-determining(ΦC’, α) for all blocks C’ of the partition represented by
the sub-tree. Each such block C’ becomes a block C of PV when restricted to the value of
f determining the branch for the sub-tree containing C’—the formula ΦC will be ΦC’ con-
joined with the appropriate literal for f. The refinement of B in PRegress(V, α) is there-
fore the intersection of Regression-determining(ΦC’, α) for all the blocks C’ of all sub-
trees relevant to B, restricted to B.

Consider a block B of TF (α, f) and two states i and j from B in different blocks of
PRegress(V, α). Our analysis of PRegress(V, α) just above implies that i and j must be in
different blocks of Regression-determining(ΦC’, α) for some block C’ of a sub-tree of V
relevant to B. Let C be the block formed by restricting C’ to the relevant value of f. Any
state in B has a non-zero block transition probability to C’ if and only if that state also has
a non-zero block transition probability to C—this follows from the definition of “rele-
vant”. From this, one can show that i and j are also in different blocks of Regression-
determining(ΦC, α). It follows that P∩ refines PRegress(V, α).

Now consider a block C of PV and the corresponding formula ΦC, and any two
states i and j in the same block of PRegress(V, α). For any fluent f’ in ΦC, we have either
that ΦC is always false after performing α whether starting from i or from j, or that both
states have an equal probability of transitioning to a state where f’ is true after performing
α. This implies that states i and j are either both in block Q0 or both in block of PC, re-
spectively, in the pseudo-code for Regression-determining(ΦC, α). We conclude that any
two states in the same block of PRegress(V, α) must also be in the same block of Regres-
sion-determining(ΦC, α) for any block C of PV—thus PRegress(V, α) must refine P∩.
Since PRegress(V, α) and P∩ refine each other, they must be equal, as desired. �

Lemma 16.2: Given action α and value function V, Regress-action(V, α) on MDP M
intersected with V.tree gives the partition computed by IR-SPLIT(V.Tree) on MDP

απM .

Proof: We say that a partition P’ is a regression of P for MDP M if P’ = R-SPLIT(B, C,
P’) for any blocks B of P’ and C of P, where R-SPLIT is computed relative to M. It is not
hard to show that the coarsest regression of P refining P for any M is IR-SPLIT(P) for M.
Let P be the partition V.Tree, and let P’ be P ∩ Regress-action(V, α) on MDP M. We
show that P’ is the coarsest regression of P refining P for

απM , to conclude that P’ = IR-

SPLIT(P) relative to
απM .

Since P’ is formed by intersection with P, P’ refines P. We show that P’ is a re-
gression of P relative to

απM . Let i and j be any two states in the same block B of P’.

 58

Then we need to show that i and j are in the same block of R-SPLIT(B, C, P’) relative to

απM for any block C of P. We note that Regress-Action(V, α) uses partition intersection
with the reward partition to return a partition that refines the R partition. Thus, the states i
and j must have the same reward. States i and j must also belong to the same block of Re-
gression-determining(ΦC, α) for any block C of P by Lemma 16.1 since Regress-
action(V, α) returns a refinement of PRegress(V, α). We can then see that states i and j
must belong to the same block of Block-split(B, C, α) (as computed by the code of Figure
7 with Partition-determining replaced by Regression-determining to compute R-SPLIT,
as discussed in section 4.6)—and thus to the same block of R-SPLIT(B, C, P’) for

απM ,
as desired. It follows that P’ is a regression of P for

απM .
We now argue that P’ is the coarsest regression of P for

απM . Suppose not, and
consider such coarser regression P” , and consider states i and j in the same block of P”
but in different blocks of P’. Note, based on the pseudo-code for Regress-action in Figure
11, that if i and j are in different blocks of P’ then they must either be in different blocks
of P, have different rewards, or (using Lemma 16.1) be in different blocks of Regression-
determining(ΦC, α) for some block C of P. In each of these cases, we can show that the
block B of P” containing i and j is split to separate i and j into different blocks of
R-SPLIT(B, C, P’) for some block C of P, contradicting our assumption about P” .�

Lemma 16.3: Given policy π and value function V, Regress-policy(V, π) on MDP M
intersected with V.tree gives the partition computed by IR-SPLIT(V.Tree) on MDP Mπ in-
tersected with π.Tree.

Proof: Regress-policy(V, π) returns the partition that refines π.Tree by intersecting each
block b of π.Tree with Regress-action(V, αb) where αb is the action labeling block b, i.e.,
π.Label(b). Let M’ be the MDP M extended by adding a new action α’ defined to so that
for each state s, α’ behaves identically to π(s) in M. Then Regress-policy(V, π) in M gives
the same partition as Regress-action(V, α’) in M’ intersected with π.Tree. Applying
Lemma 16.2 gives that Regress-policy(V, π) intersected with V.tree is the same partition
as IR-SPLIT(V.Tree) for MDP

α'πM ′ intersected with π.Tree. To complete the proof, we note
that

α'πM ′ = Mπ by the construction of α’ and Mπ .�

Lemma 16.4: Given tree-represented value functions V1 and V2, with corresponding
partitions V1.Tree refining V2.Tree, we have all of the following monotonicity proper-
ties:

1. PRegress(V1, α) refines PRegress(V2, α) for any action α,
2. Regress-action(V1, α) refines Regress-action(V2, α) for any action α,
3. Regress-policy(V1, π) refines Regress-policy(V2, π) for any policy π, and
4. IR-SPLIT(V1.Tree) refines IR-SPLIT(V2.Tree).

Proof: We first show some properties of PRegress and of partitions represented as trees
that will be useful for proving that PRegress(V1, α) refines PRegress(V2, α) for any action
α. It follows from Lemma 16.1 that the partition returned by PRegress(V, α) for a tree-

 59

represented value function V depends on only the blocks of V.Tree and not on the struc-
ture of the tree itself. Another useful property is that for any value function V’ which re-
fines V, both represented as trees, we can change the structure of V’ to have the same root
variable as V without changing the represented partition. We will prove this property by
construction. Let X be the root variable of V.Tree, we first note that X must be used to de-
scribe any block of V’.Tree because of the following three facts. (1) Every block formula
for any block of V.Tree or V’ .Tree is a conjunction of literals. (2) Every block of V.Tree
mentions X. (3) Every block of V’.Tree is a sub-block of a block of V.Tree. For each
value x of X, let the tree τx be the tree V’.Tree, with every sub-tree that has root variable X
replaced by the immediate sub-tree of that sub-tree corresponding to x. Now construct a
tree τ with the root node labeled with X, and the sub-tree for each value x of X being τx.
Noting that X must occur on every root-to-leaf path in V’.Tree, it is easy to show that the
τ represents the same partition as V’.Tree, but has the same root variable as V.Tree.

We now prove by induction on the height of V2.Tree that PRegress(V1, α) refines
PRegress(V2, α) for any action α. For the base case, consider a value function V2 consist-
ing of a single leaf node. In this case PRegress(V2, α) returns {Q}, which is refined by
every partition so the property is trivially true. In the inductive case, first modify V1.Tree
so that it has the same root variable as V2.Tree without changing the partition represented,
as just described in the previous paragraph. Examining the pseudo-code for PRegress,
given in Figure 11, we note that the same X is selected by the calls PRegress(V1, α) and
PRegress(V2, α) for any action α, and therefore the assignment Px.Tree = Px|α.Tree as-
signs the same starting tree for both calls. We now observe that Subtree(V1, x) refines
Subtree(V2, x) for every value x of X, since V1 refines V2, and that the height of Sub-
tree(V2, x) is less than the height of V2.Tree. Therefore, by the induction hypothesis we
have that every Pxi in the call PRegress(V1, α) refines the corresponding Pxi in the call
PRegress(V2, α).

Let T1 be the T calculated to replace block B of Px.Tree in the call PRegress(V1, α)
and let T2 be the T calculated to replace B in the call PRegress(V2, α). We now show that
T1 refines T2. For states p and q to be in the same block of T1 they must be in the same
block of Pxi in the call PRegress(V1, α) for each xi such that Pr(X = xi) in the distribution
Px| a.Label(B) is greater than zero. Therefore, since Pxi in the call PRegress(V1, α) refines
the corresponding Pxi in the call PRegress(V2, α), p and q must be in the same block of Pxi
in the call PRegress(V2, α) for each xi such that Pr(X = xi) in the distribution Px| a.Label(B)
is greater than zero. Since these Pxi are intersected to obtain T2, p and q must be in the
same block of T2 proving that T1 refines T2 when replacing any block B. Part 1 of the
lemma follows. The second and third parts of the lemma follow directly from the first and
second, respectively, along with an examination of the pseudo-code in Figure 11 and ba-
sic properties of intersection on partitions relative to the partition refinement relation.

To prove the last part of the lemma, that IR-SPLIT(V1.Tree) refines IR-SPLIT(V2.Tree),
we show that any two states in the same block of IR-SPLIT(V1.Tree) are in the same block
of IR-SPLIT(V2.Tree). Let p and q be two states from the same block B1 of IR-SPLIT(V1.Tree).
This means that p and q must be in the same block of V1.Tree and in the same block of
R-SPLIT(B1, B1’, IR-SPLIT(V1.Tree)) for any block B1’ of V1.Tree.

 60

In order to show that p and q are in the same block of IR-SPLIT(V2.Tree) we show
that they are in the same block of V2.Tree and in the same block of R-SPLIT(B2, B2’, P)
for any block B2’ of V2.Tree, any block B2 containing both p and q, and any partition P
containing block B2. Since V1.Tree refines V2.Tree, the fact that p and q are in the same
block of V1.Tree directly implies that they are in the same block of V2.Tree. For any B2’ ∈
V2.Tree, consider the set β of blocks {B1’ | B1’ ∈ V1.Tree, B1’ ⊆ B2’}. Note that since p
and q are in the same block of IR-SPLIT(V1.Tree), they must agree on the probability of
transition to any block in V1.Tree. Let p and q both be in block B2 and B2 be a block of
partition P. If for every member B1’ of β, the probability of transitioning from both p and
q to B1’ under an action α is zero, then p and q are in the same block of R-SPLIT(B2, B2’,
P) since their probabilities of transitioning to B2’ are both zero and thus. Now consider
for some member B1’ of the set, the probability of transitioning from either p or q to B1’
is non-zero under some action α. Then, since p and q are in the same block of
IR-SPLIT(V1.Tree), they must be in the same block of TF (α, f) for every fluent f needed to
describe block B1’. Since B1’ is a sub-block of B2’ and both B1’ and B2’ can be repre-
sented as a conjunction of literals every fluent needed for B2’ is needed for B1’. There-
fore, p and q must be in the same block of TF (α, f) for every fluent f needed to describe
block B2’ and thus be in the same block of R-SPLIT(B2, B2’, P). Using one of these two
cases for each action, we get that p and q are in the same block of R-SPLIT(B, B2’, P),
whenever p and q are both in block B and B is in P.�

Theorem 16: For any tree-represented MDP M and policy π, SSA(π) produces the
same resulting partition as partition iteration on Mπ using R-SPLIT starting from the
partition π.Tree.

We first show that SSA(π) and partition iteration of Mπ using R-SPLIT, starting from the
partition π.Tree, written PIR-SPLIT(π.Tree, Mπ), compute the same partition. We notate the
sequence of partitions produced by partition iteration as follows: P0 = π.Tree, and Pi+ 1 =
IR-SPLIT(Pi). The partition PIR-SPLIT(π.Tree, Mπ) equals Pm, for all m greater than the num-
ber tP of iterations to convergence. Likewise, denote the sequence of factored value func-
tions produced by SSA as follows: V0 = R, and Vi+ 1 = Regress-policy(Vi, π). Likewise, the
partition SSA(π) equals Vm, for all m greater than the number tV of iterations to conver-
gence. By induction on the number n of iterations of partition iteration, we show that
Vn+1.Tree refines Pn and Pn+1 refines Vn.Tree, for all n > 0, and conclude that
SSA(π).Tree equals MRR-SPLIT(π.Tree, Mπ), as desired, by considering n > max(tP, tV).
 For the base case, consider n equal to 1. Since, by inspection, Regress-
policy(·,π).Tree always refines the partition π.Tree, for any policy π, we know that
V1.Tree refines P0. Likewise, since, by inspection, the partition IR-SPLIT(P) always refines
the reward partition R.Tree, for any partition P, we know that P1 refines V0.Tree. For the
inductive case, we first show that Pn+1 refines Vn.Tree. By a nested induction on n, we
can show that Pn+1 refines P0, using the fact that IR-SPLIT(P) refines P, for any P. Thus,

(1) Pn+1 = Pn+1 ∩ P0 = IR-SPLIT(Pn) ∩ π.Tree.

 61

But Pn refines Vn–1 by the induction hypothesis, so Lemma 16.4 implies that IR-SPLIT(Pn)
refines IR-SPLIT(Vn–1). Together with equation (1), this implies that Pn+1 refines IR-SPLIT(Vn–

1) ∩ π.Tree. By applying Lemma 16.3, we derive that Pn+1 refines Regress-policy(Vn–1, π)
∩ Vn–1.Tree, which is just Vn ∩ Vn–1, by definition. It is straightforward to show by a
nested induction on n that Vn refines Vn–1, using Lemma 16.4, so we conclude that Pn+1
refines Vn.

That Vn+1.Tree refines Pn is proven similarly: first, Vn+1 = Vn+1 ∩ Vn = Regress-
policy(Vn, π) ∩ Vn. Applying Lemma 16.3, we have Vn+1 = IR-SPLIT(Vn) ∩ π.Tree. But Vn
refines Pn-1 by the induction hypothesis, so Lemma 16.4 implies that IR-SPLIT(Vn) refines
IR-SPLIT(Pn–1). With Vn+1 = IR-SPLIT(Vn) ∩ π.Tree, we have that Vn+1 refines IR-SPLIT(Pn-1) ∩
π.Tree, which is just Pn since IR-SPLIT(Pn-1) ∩ π.Tree = Pn ∩ P0 = Pn.�

Theorem 17: The policy improvement “for” loop in SPI computes IR-SPLIT(Vπ.Tree).

Proof: Let b be a block in π.Tree. We note that Vπ in SPI is a factored value function
computed by SSA, and so Vπ must be a fixed-point of Regress-policy(·, π). This implies
that Vπ.Tree must refine π.Tree, and, by examining the Regress-policy pseudo-code, that
blocks b’ in Vπ that refine b are also in Regress-action(Vπ, π(b)). Combine these to get
that Regress-action(Vπ, π(b)) refines {¬b} ∪ { b’ | b’ ∈ Vπ ∧ b’ ⊆ b}. We also have

(2) ∩∩∩∩
α∈A

 Regress-action(Vπ, α) refines π.Tree ∩ Vπ.Tree,

since b was arbitrary. Given that partition intersection is associative and commutative, the
policy improvement “for” loop in SPI can be seen to iterate over the actions to compute

 π.Tree ∩ ∩∩∩∩
α∈A

 Regress-action(Vπ, α).Tree.

Equation (2) then implies that the computed partition is

(3) ∩∩∩∩
α∈A

 (Regress-action(Vπ, α) ∩ Vπ.Tree), which is ∩∩∩∩
α∈A

 IR-SPLIT(Vπ.Tree) in
απM ,

by applying Lemma 16.2 to each of the partitions in the intersection. It is possible to
show that for value function V and MDP M’ with action space A’,

(4) IR-SPLIT(V) in MDP M’ = ∩∩∩∩
α∈A’

B
∪∪∪∪
∈V.Tree

C
∩∩∩∩
∈V.Tree

 Block-split(B, C, α) in M’ ,

where the intersections are partition intersections36, and the union is a simple set union,
treating the partitions as sets of blocks (the union combines partitions of disjoint sets to
get a partition of the union of those disjoint sets). Applying this to each of the terms in
the intersection in Equation (3), noting that the only action available in

απM is α yields

36 The resulting partition has a block for each pair of blocks in the partitions being intersected, representing
the intersection of those two blocks, with empty blocks in the result removed.

 62

 ∩∩∩∩
α∈A

 ∩∩∩∩
α’∈{α}

B
∪∪∪∪
∈Vπ.Tree

C
∩∩∩∩
∈Vπ .Tree

 Block-split(B, C, α’) in
απM

for the partition. Simplifying and noting Block-split(B, C, α) is the same in
απM and M,

(5) ∩∩∩∩
α∈A

B
∪∪∪∪
∈Vπ.Tree

C
∩∩∩∩
∈Vπ .Tree

 Block-split(B, C, α) in M

is the computed partition. Finally, applying Equation (4) gives IR-SPLIT(Vπ.Tree) in M.�

