
Journal of Artificial Intelligence Research ? (?) ?-? Submitted ?/?; published ?/?

Specific-to-General Learning for Temporal Events
with Application to Learning Event Definitions from Video

Alan Fern AFERN@PURDUE.EDU

Robert Givan GIVAN @PURDUE.EDU

Jeffrey Siskind QOBI@PURDUE.EDU

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA

Abstract
We develop, analyze, and evaluate a novel specific-to-general learner for a simple temporal logic, using

the resulting algorithm to learn visual event definitions from video sequences. First, we introduce a simple,
propositional, temporal, event-description language called AMA that is sufficiently expressive to represent
many events yet sufficiently restrictive to support learning. We then give algorithms along with lower and
upper complexity bounds for the subsumption and generalization problems for AMA formulas. We present
a positive-examples-only specific-to-general learning method based on these algorithms. We also present a
polynomial-time–computable “syntactic” subsumption test that implies semantic subsumption without being
equivalent to it. A generalization algorithm based on syntactic subsumption can be used in place of semantic
generalization to improve the asymptotic complexity of theresulting learning algorithm. Finally, we apply
this algorithm to the task of learning event definitions fromvideo and show that it yields definitions that are
competitive with hand-coded ones.

1. Introduction

Humans conceptualize the world in terms of objects and events. This is reflected in the fact that we talk
about the world using nouns and verbs. We perceive events taking place between objects, we interact with the
world by performing events on objects, and we reason about the effects that actual and hypothetical events
performed by us and others have on objects. We alsolearnnew object and event types from novel experience.
In this paper, we present and evaluate novel implemented techniques that allow a computer to learn new event
types from examples. We show results from an application of these techniques to learning new event types
from automatically constructed relational, force-dynamic descriptions of video sequences.

We wish the acquired knowledge of event types to support multiple modalities. Humans can observe
someonefaxing a letter for the first time and quickly be able to recognizefuture occurrences of faxing, per-
form faxing, and reason about faxing. It thus appears likelythat humans use and learn event representations
that are sufficiently general to support fast and efficient use in multiple modalities. A long-term goal of our
research is to allow similar cross-modal learning and use ofevent representations. We intend the same learned
representations to be used for vision (as described in this paper), planning (something that we are beginning
to investigate), and robotics (something left to the future).

A crucial requirement for event representations is that they capture theinvariantsof an event type. Hu-
mans classify both picking up a cup off a table and picking up adumbbell off the floor aspicking up. This
suggests that human event representations arerelational. We have an abstract relational notion ofpicking
up that is parameterized by the participant objects rather than distinct propositional notions instantiated for
specific objects. Humans also classify an event aspicking upno matter whether the hand is moving slowly or
quickly, horizontally or vertically, leftward or rightward, or along a straight path or circuitous one. It appears
that it is not the characteristics of participant-object motion that distinguishpicking upfrom other event types.
Rather, it is the fact that the object being picked up changesfrom being supported by resting on its initial
location to be supported by being grasped by the agent. This suggests that the primitive relations used to
build event representations areforce dynamic(Talmy, 1988).

Another desirable property of event representations is that they beperspicuous. Humans can introspect
and describe the defining characteristics of event types. Such introspection is what allows us to create dic-

c
? AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

FERN, GIVAN , & SISKIND

tionaries. To support such introspection, we prefer a representation language that allows such characteristics
to be explicitly manifest in event definitions and not emergent consequences of distributed parameters as in
neural networks or hidden Markov models.

We develop a learner for an event representation possessingthese desired characteristics as follows. First,
we present a simple, propositional, temporal logic called AMA that is a sublanguage of a variety of familiar
temporal languages (e.g. linear temporal logic, or LTL (Bacchus & Kabanza, 2000), temporal event logic
(Siskind, 2001)). This logic is expressive enough to describe a variety of interesting temporal events, but
restrictive enough to support an effective learner, as we demonstrate below. We proceed to develop a specific-
to-general learner for the AMA logic by giving algorithms and complexity bounds for the subsumption and
generalization problems involving AMA formulas. While we show that semantic subsumption is intractable,
we provide a weaker syntactic notion of subsumption that implies semantic subsumption but can be checked
in polynomial time. Our implemented learner is based upon this syntactic subsumption.

We next show means to adapt this (propositional) AMA learnerto learn relational concepts. We eval-
uate the resulting relational learner in a complete system for learning force-dynamic event definitions from
positive-only training examples given as real video sequences. This is not the first system to perform vi-
sual event recognition from video. We review prior work and compare it to the current work later in the
paper. In fact, two such prior systems have been built. HOWARD (Siskind & Morris, 1996) learns to classify
events from video using temporal, relational representations. But these representations are not force dynamic.
LEONARD (Siskind, 2001) classifies events from video using temporal, relational, force-dynamic representa-
tions but does not learn these representations. It uses a library of hand-code representations. This work adds
a learning component to LEONARD, essentially duplicating the performance of the hand-coded definitions
automatically.

While we have demonstrated the utility of our learner in the visual event learning domain, we note that
there are many domains where interesting concepts take the form of structured temporal sequences of events.
In machine planning, macro-actions represent useful temporal patterns of action. In computer security, typical
application behavior, represented perhaps as temporal patterns of system calls, must be differentiated from
compromised application behavior (and likewise authorized user behavior from intrusive behavior).

In what follows, Section 2 introduces our application domain of recognizing visual events. Section 3
describes the high-level construction of our learner. Section 4 introduces the AMA language, syntax and
semantics, and several concepts needed in our analysis of the language. Section 5 develops and analyzes al-
gorithms for the subsumption and generalization problems in the language, and introduces the more practical
notion of “syntactic subsumption”. Section 6 extends the basic propositional learner to handle relational data,
negation, and to control exponential run-time growth. Section 7 presents our results on visual event learning,
and Sections 8 and 9 compare to related work and conclude.

2. Recognizing Visual Events

LEONARD (Siskind, 2001) is a system for recognizing visual events from video camera input—an example of
a simple visual event is “a hand picking up a block”. This research was originally motivated by the problem
of adding a learning component to LEONARD. Below we briefly describe the system and the framework for
extending LEONARD to learn to recognize events.

LEONARD is a three-stage pipeline depicted in Figure 1. The raw inputconsists of a video-frame sequence
depicting events. First, a segmentation-and-trackingcomponent transforms this input into a polygon movie: a
sequence of frames, each frame being a set of convex polygonsplaced around the tracked objects in the video.
Figure 2a shows a “partial” video sequence of aPICKUPevent that is overlaid by the corresponding polygon
movie. Next, a model-reconstruction component transformsthe polygon movie into a force-dynamic model.
This model describes the changing support, contact, and attachment relations between the tracked objects
over time. Figure 2b shows a visual depiction of the force-dynamic model corresponding to thePICKUP
event. Finally, an event-recognition component armed witha library of event definitions determines which
events occurred in the model and, accordingly, in the video.Figure 2c shows the “text” output and input
of the event-recognizer for thePICKUP event. The first line corresponds to the output which indicates the

2

LEARNING TEMPORAL EVENTS

Reconstruction

sequence
polygon−scene

Event
Learner

learned
definitions

Segmentation Model

training

and Tracking
Event

Classification

image model
sequence

event
labelssequence

models

Figure 1: The upper boxes represent the three primary components of LEONARD’s pipeline. The lower box
depicts the event-learning component described in this paper. The input to the learning component
consists of training models of a target event (e.g., movies of PICKUP events) and the output is an
event definition (e.g., a temporal logic formula definingPICKUP).

interval(s) where aPICKUP occurred—the remaining lines are the text encoding of the event-recognizer
input (model-reconstruction output), indicating the time-intervals in which various force-dynamic relations
are true in the video.

The event-recognition component of LEONARD represents event types with event logic formulas like the
following simplified example, representingx picking upy off of z.

PICKUP(x; y; z) 4= (SUPPORTS(z; y) ^ CONTACTS(z; y)); (SUPPORTS(x; y) ^ ATTACHED(x; y))
This formula asserts that an event ofx picking upy off of z is defined as a sequence of two states wherez
supportsy by way of contact in the first state andx supportsy by way of attachment in the second state.
SUPPORTS, CONTACTS, and ATTACHED are primitive force-dynamic relations. This formula is a specific
example of the more general class of AMA formulas that we use in our learning, presented later in Section 4.

Prior to the work reported in this paper, the definitions in LEONARD’s event recognition library were
hand coded. Here, we add a learning component to LEONARD so that it can learn to recognize events.
Figure 1 shows how the learning component fits into the overall system. The input to the learning com-
ponent consists of force-dynamic models from the model-reconstruction stage and its output consists of
event definitions which are used by the event-recognizer. Wetake a supervised learning approach where the
force-dynamic model-reconstruction process is applied totraining videos of a target event-type—the resulting
force-dynamic models are then given to the learner which induces a candidate definition of the event-type.
Note that our learning component does not require negative examples of the event type (i.e., movies depicting
non-occurrences).

3. Bottom-up Learning from Positive Data

In this work we present a specific-to-general positive-onlylearner for temporal events—our learning algo-
rithm is only given positive training examples (where the target event occurs) and is not given negative
examples (where the target event does not occur). The positive-only setting is of interest as it appears that
humans are able to learn many event definitions given primarily or only positive examples. From a practical
standpoint, a positive-only learner removes the often difficult task of collecting negative examples that are
“representative” of what is not the event to be learned.

A typical learning domain specifies an example space (the objects we wish to classify) and a concept
language (formulas that represent sets of examples that they cover). Generally we say a conceptC1 is more
general (less specific) thanC2 if and only ifC2 is a subset ofC1—alternatively, a generality relation that may
not be equivalent to subset may be specified, often for computational reasons. Setting the goal of finding a
concept consistent with a set of positive-only training data generally results in the trivial solution of returning

3

FERN, GIVAN , & SISKIND

(a)

Frame 0 Frame 1 Frame 2

Frame 13 Frame 14 Frame 20

(b)

Frame 0 Frame 1 Frame 2

Frame 13 Frame 14 Frame 20

(c)

(PICK-UP MOVING RED GREEN)@{[[0,1],[14,22])}

(SUPPORTED? RED)@{[[0:22])}
(SUPPORTED? MOVING)@{[[1:13]), [[24:26])}
(SUPPORTS? RED MOVING)@{[[1:13]), [[24:26])}
(SUPPORTS? MOVING RED)@{[[13:22])}
(SUPPORTS? GREEN RED)@{[[0:14])}
(SUPPORTS? GREEN MOVING)@{[[1:13])}
(CONTACTS? RED GREEN)@{[[0:2]), [[6:14])}
(ATTACHED? RED MOVING)@{[[1:26])}
(ATTACHED? RED GREEN)@{[[1:6])}

Figure 2: LEONARD recognizes aPICKUPevent. (a) Frames from the raw video input with the automatically
generated polygon movie overlaid. (b) The same frames with avisual depiction of the automat-
ically generated force-dynamic properties. (c) The text input and output of the event classifier
corresponding to the depicted movie. The top line is the output and the remaining lines make up
the input that encodes the changing force-dynamic properties over time.

4

LEARNING TEMPORAL EVENTS

the most general concept in the language. To avoid adding negative training data, it is common to specify
the learning goal as finding the least-general concept that covers all of the data1. With enough data and an
appropriate concept language, the least-general concept often converges usefully.

We take a standard specific-to-general machine-learning approach to finding the least-general concept
covering a set of positive examples. Assume we have a conceptlanguageL and an example spaceS. The
approach relies on the computation of two functions: the least-general covering formula (LGCF) of an exam-
ple and the least-general generalization (LGG) of a set of formulas. An LGCF inL of an example inS is a
formula inL that covers the example such that no other covering formula is strictly less general. Intuitively,
the LGCF of an example, if unique, is the “most representative” formula inL of that example. An LGG of
any subset ofL is a formula more general than each formula in the subset and not strictly more general than
any other such formula. Neither the LGG nor the LGCF is guaranteed to exist or be unique—these properties
must be shown for any language of interest.

Given the existence and uniqueness (up to concept equivalence) of the LGCF and LGG, the specific-
to-general approach proceeds as follows. First, use the LGCF to transform each positive training instance
into a formula ofL. Second, return the LGG of the resulting formulas. The returned formula represents
the least-general concept inL that covers all the positive training examples. This learning approach has
been pursued for a variety of concept languages including, clausal first-order logic (Plotkin, 1971), definite
clauses (Muggleton & Feng, 1992), and description logic (Cohen & Hirsh, 1994). It is important to choose
an appropriate concept language as a bias for this learning approach or the concept returned may simply be
(or resemble) one of two extremes, either the disjunction ofthe training data or the universal concept.

In this work, the concept language is the AMA temporal event logic presented below and the example
space is the set of all models of that logic. Intuitively, a training example depicts a model where a target
event occurs. (The models can be thought of as movies.) We will consider two notions of generalization for
AMA concepts (semantic generalization and a weaker syntactic counterpart) and, under both notions, study
the properties and computation of the LGCF and LGG.

4. Representing Events with AMA

We study a subset of an interval-based logic calledevent logic(Siskind, 2001) utilized by LEONARD for
event recognition in video sequences. This logic is “interval-based” in explicitly representing each of the
possible interval relationships given originally by Allen(1983) in his calculus of interval relations (e.g.,
“overlaps”, “meets”, “during”). Event logic formulas allow the definition of event-types which can specify
static properties of intervals directly and dynamic properties by hierarchically relating sub-intervals using
the Allen relations. In this paper the formal syntax and semantics of full event logic are needed only for
Proposition 4 and are given in Appendix A.

Here we restrict our attention to a much simpler subset of event logic we call AMA, defined below. We
believe that our choice of event logic rather than first-order logic, as well as our restriction to the AMA
fragment of event logic, provide a useful learning bias by ruling out a large number of ‘practically useless’
concepts while maintaining substantial expressive power.The practical utility of this bias is demonstrated
via our empirical results in the visual event recognition application. AMA can also be seen as a restriction
of LTL to conjunction and “Until”, with similar motivations. Below we present the syntax and semantics of
AMA along with some of the key technical properties of AMA that will be used throughout this paper.

4.1 AMA Syntax and Semantics

It is natural to describe temporal events by specifying a sequence of properties that must hold over consecutive
time-intervals; e.g., “a hand picking up a block” might become “the block is not supported by the hand
and then the block is supported by the hand.” We represent such sequences withMA timelines2, which are

1. In some cases, there can be more than one such least-general concept. The set of all such concepts is called the “specificboundary
of the version space” (Mitchell, 1982).

2. MA stands for “Meets/And”, an MA timeline being the “Meet”of a sequence of conjunctively restricted intervals.

5

FERN, GIVAN , & SISKIND

sequences of conjunctive state restrictions. Intuitively, an MA timeline is given by a sequence of propositional
conjunctions, separated by semi-colons, and is taken to represent the set of events that temporally match
the sequence of consecutive conjunctions. An AMA formula isthen the conjunction of a number of MA
timelines, representing events that can be simultaneouslyviewed as satisfying each of the conjoined timelines.
Formally, the syntax of AMA formulas is given by,

state ::= true j prop j prop^ state

MA ::= (state) j (state);MA // may omit parens

AMA ::= MA j MA^ AMA

whereprop is any primitive proposition (sometimes called a primitiveevent-type). We take this grammar to
formally define the terms “MA timeline”, “MA formula”, “AMA formula”, and “state”. Ak-MA formula is
an MA formula with at mostk states, and ak-AMA formula is an AMA formula all of whose MA timelines
arek-MA timelines. We often treat states as proposition sets (with true the empty set) and AMA formulas as
MA timeline sets. We may also treat MA formulas as sets of states—it is important to note, however, that MA
formulas may contain duplicate states, and the duplicationcan be significant. For this reason, when treating
MA timelines as sets, we formally intend sets ofstate-index pairs(where the index gives a states position
in the formula). We do not indicate this explicitly to avoid encumbering our notation, but the implicit index
must be remembered whenever handling duplicate states.

The semantics of AMA formulas is defined in terms of temporal models. A temporal modelM = hM; Ii
over the set of propositions PROP is a pair of a mappingM from the natural numbers (representing time)
to the truth assignments over PROP, and a closed natural number intervalI . We note that Siskind (2001)
gives a continuous-time semantics for event logic where themodels are defined in terms of real-valued time-
intervals. The temporal models defined here use discrete natural-number time-indices; however, our results
here still apply under the continuous-time semantics (thatsemantics bounds the number of state changes in
the continuous timeline to a countable number). It is important to note that the natural numbers in the domain
of M are representing time discretely, but that there is no prescribed unit of continuous time represented by
each natural number. Instead, each number represents an arbitrarily long period of continuous time during
which nothing changed. Similarly, the “states” in our MA timelines represent arbitrarily long periods of time
during which the conjunctive restriction given by the stateholds. The satisfiability relation for AMA formulas
is given as follows:� A states is satisfied by modelhM; Ii iff M [x℄ assignsP true for everyx 2 I andP 2 s.� An MA timeline s1; s2; � � � ; sn is satisfied by a modelhM; [t; t0℄i iff there exists somet00 in [t; t0℄ such

thathM; [t; t00℄i satisfiess1 and eitherhM; [t00; t0℄i or hM; [t00 + 1; t0℄i satisfiess2; � � � ; sn.� An AMA formula �1 ^ �2 ^ : : : ^ �n is satisfied byM iff each�i is satisfied byM.

The condition defining satisfaction for MA timelines may appear unintuitive at first due to the fact that
there are two ways thats2; � � � ; sn can be satisfied. The reason for this becomes clear by recalling that
we are using the natural numbers to represent continuous time intervals. Intuitively, from a continuous-
time perspective, an MA timeline is satisfied if there are consecutive continuous-time intervals satisfying the
sequence of consecutive states of the MA timeline. The transition between consecutive statessi andsi+1 can
occur either within an interval of constant truth assignment (that happens to satisfy both states) or exactly at
the boundary of two time intervals of constant truth value. In the above definition, these cases correspond tos2; � � � ; sn being satisfied during the time intervals[t00; t0℄ and[t00 + 1; t0℄, respectively.

WhenM satisfies� we sayM is a model of�. We say AMA	1 subsumesAMA 	2 iff every model of	2 is a model of	1, written	2 � 	1, and we say	1 properly subsumes	2, written	2 < 	1, when we
also have	1 6� 	2. Alternatively, we may state	2 � 	1 by saying that	1 is more general (or less specific)
than	2 or that	1 covers	2. Siskind (2001) provides a method to determine whether a given model satisfies
a given AMA formula.

6

LEARNING TEMPORAL EVENTS

Finally, it will be useful to associate a distinguished MA timeline to a model. TheMA-projectionof a
modelM = hM; [i; j℄i (written as MAP(M)) is an MA timelines0; s1; � � � ; sj�i where statesk gives the
true propositions inM(i+ k) for 0 � k � j � i. Later we show that the MA-projection of a model can be
viewed as “representing” that model in a precise sense.

The following two examples illustrate some basic behaviorsof AMA formulas.

Example 1 (Stretchability) The MA timelinesS1;S2;S3, S1;S2;S2; � � � ;S2;S3, andS1;S1;S2;S3;S3;S3
are all equivalent. In general, MA timelines have the property that duplicating any state results in a formula
equivalent to the original formula. Recall that, given a model hM; Ii, we view each truth assignmentM [x℄ as
representing a continuous time-interval—this interval can conceptually be divided into an arbitrary number
of subintervals. Thus if stateS is satisfied byhM; [x; x℄i, then so is the state sequenceS;S; � � � ;S.

Example 2 (Infinite Descending Chains) Given propositionsA andB, the MA timeline� = (A ^ B) is
subsumed by each of the formulasA;B, A;B;A;B, A;B;A;B;A;B, This is intuitively clear when
our semantics are viewed from a continuous-time perspective—any interval in which bothA and B are
true can be broken up into an arbitrary number of subintervals where bothA andB hold. This example
illustrates that there can be infinite descending chains of AMA formulas where the entire chain subsumes a
given formula (but no member is equivalent to the given formula). In general, any AMA formula involving
only the propositionsA andB will subsume�.

4.2 Motivation for AMA

MA timelines are a very natural way to capture “stretchable”sequences of state constraints. But why consider
the conjunction of such sequences, i.e., AMA? We have several reasons for this language enrichment. First
of all, we show below that the AMA least-general generalization (LGG) is unique; this is not true for MA.
Second, and more informally, we argue that parallel conjunctive constraints can be important to learning
efficiency. In particular, the space of MA formulas of lengthk grows in size exponentially withk, making it
difficult to induce long MA formulas. However, finding several shorter MA timelines that each characterize
part of a long sequence of changes is exponentially easier. (At least, the space to search is exponentially
smaller.) The AMA conjunction of these timelines places these shorter constraints simultaneously and often
captures a great deal of the concept structure. For this reason, we analyze AMA as well as MA and, in our
empirical work we consider k-AMA.

The AMA language is propositional. But our intended applications are relational, or first-order, including
visual event recognition. Later in this paper we show that the propositional AMA learning algorithms we
develop can be effectively applied in relational domains. Our approach to first-order learning is distinctive
in automatically constructing an object correspondence across examples (e.g., compare (Lavrac, Dzeroski, &
Grobelnik, 1991; Roth & Yih, 2001)). Similarly, though AMA does not allow for negative state constraints
we show how to obtain the practical advantages of negation, which is crucial in visual event recognition.

4.3 Conversion to First-Order Clauses

We note that AMA formulas can be translated in various ways into to first-order clauses. It is not straight-
forward, however, to then use existing clausal generalization techniques for learning. In particular, to capture
the AMA semantics in clauses, it appears necessary to define subsumption and generalization relative to a
background theory that restricts us to a “continuous-time”first-order–model space. For example, consider the
AMA formulas�1 = (A ^ B) and�2 = A;B whereA andB are propositions—from example 2 we know
that�1 � �2. Now, consider a straightforward clausal translation of these formulas givingC1 = A(I)^B(I)
andC2 = A(I1)^B(I2)^MEETS(I1; I2)^SPAN(I1; I2; I), where theI andIj are variables that represent
time intervals,MEETSindicates that two time intervals meet each other, andSPANindicates that the union of
the first two time-interval arguments equals the third time-interval argument. The intention is for satisfying
assignments forI in C1 andC2 to indicated intervals over which�1 and�2 are satisfied, respectively. It
should be clear that, contrary to what we want,C1 6� C2 (i.e.,C1 6! C2), since it is easy to find “unintended”

7

FERN, GIVAN , & SISKIND

first-order models that satisfyC1, but notC2. Thus such a translation, and other similar translations, do not
capture the continuous-time nature of the AMA semantics.

In order to capture the AMA semantics in a clausal setting, one might define a first-order theory that
restricts us to “continuous-time” models—for example, allowing for the derivation “if propertyB holds
over an interval, then that property also holds over all sub-intervals”. Given such a theory�, we have that� j= C1 ! C2, as desired. However, it is well known that least-general generalizations relative to such
background theories need not exist (Plotkin, 1971), so prior work on clausal generalization does not simply
subsume our results for the AMA language.

We note that for a particular training set, it may be possibleto compile a “continuous-time” background
theory,�, into a finite but “adequate” set of ground facts. Relative tosuch ground theories, clausal LGGs
are known to always exist and thus could be used for our application. However, the only such compiling
approaches that look promising to us require exploiting an analysis similar to the one given in this paper—i.e.,
understanding the AMA generalization and subsumption problem separately from clausal generalization, and
exploiting that understanding in compiling the backgroundtheory. We have not pursued such compilations
further.

Even if we are given such a compilation procedure, there are other problems with using existing clausal
generalization techniques for learn AMA formulas. For the clausal translations of AMA we have found, the
resulting generalizations typically fall outside of the (clausal translations of formulas in the) AMA language,
so that the language bias of AMA is lost. In preliminary empirical work in our video-event recognition
domain using clausal inductive logic programming (ILP) systems, we found that the learner appeared to lack
the necessary language bias to find effective event definitions. While we believe it would be possible to find
ways to build this language bias into ILP systems, we chose instead to define and learn within the desired
language bias directly, by defining the class of AMA formulas, and studying the generalization operation on
that class.

4.4 Basic Concepts and Properties of AMA

We use the following convention in naming our results: “propositions” and “theorems” are the key results
of our work, with theorems being those results of the most technical difficulty, and “lemmas” are technical
results needed for the later proofs of propositions or theorems. We number all the results in one sequence,
regardless of type. Proofs of theorems and propositions areprovided in the main text—omitted proofs of
lemmas are provided in the appendix.

We give pseudo-code for our methods in a non-deterministic style. In a non-deterministic language func-
tions can return more than one value “non-deterministically”, either because they contain non-deterministic
choice points, or because they call other non-deterministic functions. Since a non-deterministic function can
return more than one possible value, depending on the choices made at the choice-points encountered, spec-
ifying such a function is a natural way to specify a richly structured set (if the function has no arguments)
or relation (if the function has arguments). To actually enumerate the values of the set (or the relation, once
arguments are provided) one simply has to add a standard backtracking search over the different possible
computations corresponding to different choices at the choice points.

4.4.1 SUBSUMPTION AND GENERALIZATION FOR STATES

The most basic formulas we deal with are states (conjunctions of propositions)—in our propositional setting
computing subsumption and generalization at the state level is straightforward. A stateS1 subsumesS2
(S2 � S1) iff S1 is a subset ofS2, viewing states as sets of propositions. From this we derivethat the
intersection of states is the least-general subsumer of those states and that the union of states is likewise the
most general subsumee.

8

LEARNING TEMPORAL EVENTS

4.4.2 INTERDIGITATIONS

Given a set of MA timelines, we need to consider the differentways in which a model could simultaneously
satisfy the timelines in the set. At the start of such a model (i.e., the first time point), the initial state from
each timeline must be satisfied. At some time point in the model, one or more of the timelines can transition
so that the second state in those timelines must be satisfied in place of the initial state, while the initial state
of the other timelines remains satisfied. After a sequence ofsuch transitions in subsets of the timelines,
the final state of each timeline holds. Each way of choosing the transition sequence constitutes a different
“interdigitation” of the timelines.

Alternatively viewed, each model simultaneously satisfying the timelines induces aco-occurrence rela-
tion on tuples of timeline states, one from each timeline, identifying which tuples co-occur at some point in
the model. We represent this concept formally as a set of tuples of co-occurring states, i.e., a co-occurrence
relation. We sometimes think of this set of tuples as orderedby the sequence of transitions. Intuitively, the
tuples in an interdigitation represent the maximal time intervals over which no MA timeline has a transition,
giving the co-occurring states for each such time interval.

A relationR on X1 � � � � � Xn is simultaneously consistentwith orderings�1,. . . ,�n, if, wheneverR(x1; : : : ; xn) andR(x01; : : : ; x0n), eitherxi�ix0i, for all i, or x0i�ixi, for all i. We sayR is piecewise total
if the projection ofR onto each component is total—i.e., every state in anyXi appears inR.

Definition 1 An interdigitationI of a set of MA timelinesf�1; : : : ;�ng is a co-occurrencerelation over�1 � � � � � �n (viewing timelines as sets of states3) that is piecewise total, and simultaneously consistent
with the state orderings of the�i. We say that two statess 2 �i ands0 2 �j for i 6= j co-occur inI iff some
tuple ofI contains boths ands0. We sometimes refer toI as a sequence of tuples, meaning the sequence
lexicographically ordered by the�i state orderings.

We note that there are exponentially many interdigitationsof even two MA timelines (relative to the total
number of states in the timelines). Example 3 below shows an interdigitation of two MA timelines, and
pseudo-code for non-deterministically generating an arbitrary interdigitation for a set of MA timelines can be
found in Figure 3. Given an interdigitationI of the timeliness1; s2; � � � ; sm andt1; t2; � � � ; tn (and possibly
others, the following basic properties of interdigitations are easily verifiable:

1. Fori < j, if si andtk co-occur in I then for allk0 < k, sj does not co-occur withtk0 in I , and

2. I(s1; t1) andI(sm; tn).
We first use interdigitations to syntactically characterize subsumption between MA timelines. An inter-

digitationI of two MA timelines�1 and�2 is awitnessto �1 � �2 if, for every pair of co-occurring statess1 2 �1 ands2 2 �2, we haves1 � s2. The following lemma and proposition establish the equivalence
between witnessing interdigitations and MA subsumption.

Lemma 1 For any MA timeline� and any modelM, ifM satisfies� then there is a witnessing interdigitation
for MAP(M) � �.

Proposition 2For MA timelines�1 and�2, �1 � �2 iff there is an interdigitation that witnesses�1 � �2.
Proof: We show the backward direction by induction on the number of statesn in timeline�1. If n = 1,
then the existence of a witnessing interdigitation for�1 � �2 implies that every state in�2 is a subset of
the single state in�1, and thus that any model of�1 is a model of�2 so that�1 � �2. Now, suppose for
induction that the backward direction of the theorem holds whenever�1 hasn or fewer states. Given an
arbitrary modelM of ann+1 state�1 and an interdigitationW that witnesses�1 � �2, we must show thatM is also a model of�2 to conclude�1 � �2, as desired.

3. Recall, that, formally, MA timelines are viewed as sets ofstate-index pairs, rather than just sets of states. We ignore this distinction
in our notation, for readability purposes, treating MA timelines as though no state is duplicated.

9

FERN, GIVAN , & SISKIND

1: an-interdigitation(f�1;�2; : : : ;�ng)

2: // The�i are MA timelines.
3: // Outputs an interdigitation of the�i.
4: S0 = hhead(�1); : : : ; head(�n)i;
5: IF for all 1 � i � n; j�ij = 1
6: THEN RETURNhS0i;
7: T 0 = f�i such thatj�ij > 1g;

8: T 00 = a-non-empty-subset-of(T 0);
9: FOR i = 1 to n

10: IF �i 2 T 00
12: THEN�0i = rest(�i);
12: ELSE�0i = �i;
13: RETURN extend-tuple(S0; an-interdigitation(f�01; : : : ;�0ng));

Figure 3: Pseudo-code for an-interdigitation(), which non-deterministically computes an interdigitation for
a setf�1; : : : ;�ng of MA timelines. The functions head(�) and rest(�) return the first state in the
timeline� and� with the first state removed, respectively, and extend-tuple(x,I) extends a tupleI by adding a new first elementx to form a longer tuple. The function a-non-empty-subset-of(S)
non-deterministically returns an arbitrary non-empty subset ofS.

Write �1 ass1; � � � ; sn+1 and�2 ast1; � � � ; tm. As a witnessing interdigitation,W must identify some
maximal prefixt1; � � � ; tm0 of �2 made up of states that co-occur withs1 and thus that are subsets ofs1. SinceM = hM; [t; t0℄i satisfies�1, by definition there must exist at00 2 [t; t0℄ such thathM; [t; t00℄i satisfiess1
(and thust1; � � � ; tm0) andhM; I 0i satisfiess2; � � � ; sn+1 for I 0 equal to either[t00; t0℄ or [t00 + 1; t0℄. In either
case, it is straightforward to construct fromW a witnessing interdigitation fors2; � � � ; sn+1 � tm0+1; � � � ; tm
and use the induction hypothesis to then show thathM; I 0i must satisfytm0+1; � � � ; tm. It follows thatM
satisfies�2 as desired.

For the forward direction, assume that�1 � �2, and letM be any model such that�1 = MAP(M). It
is clear that suchM exists and satisfies�1. It follows thatM satisfies�2, and Lemma 1 then implies that
there is a witnessing interdigitation for MAP(M) � �2 and thus for�1 � �2. 2
4.4.3 LEAST-GENERAL COVERING FORMULA

A logic can discriminate two models if it contains a formula that satisfies one but not the other. It turns
out that AMA formulas can discriminate two models exactly when much richerinternal positiveevent logic
(IPEL) formulas can do so. Internal formulas are those that define event occurrence only in terms of prop-
erties within the defining interval (i.e., satisfaction byhM; Ii depends only on the proposition truth values
given byM inside the intervalI)—positive formulas are those that do not contain negation.Appendix A
gives the full syntax and semantics of IPEL (which are used only to state and prove Lemma 3). The fact that
AMA can discriminate models as well as IPEL indicates that our restriction to AMA formulas retains sub-
stantial expressive power and leads to the following resultwhich serves as the least-general covering formula
(LGCF) component of our specific-to-general learning procedure. First, we introduce the concept ofmodel
embedding. We say that modelM embeds modelM0 iff MAP (M) � MAP(M0).
Lemma 3 For anyE 2 IPEL, if modelM embeds any model that satisfiesE, thenM satisfiesE.

Proposition 4The MA-projection of a model is its LGCF for internal positive event logic (and hence for
AMA), up to semantic equivalence.

10

LEARNING TEMPORAL EVENTS

Proof: Consider modelM. We know that MAP(M) coversM, so it remains to show that MAP(M) is the
least general formula to do so, up to semantic equivalence.

Let E be any IPEL formula that coversM. Let M0 be any model that is covered by MAP(M)—we
want to show thatE also coversM0. We know from Lemma 1 that there is a witnessing interdigitation for
MAP(M0) � MAP(M)—thus, by Proposition 2, MAP(M0) � MAP(M) showing thatM0 embedsM.
Combining these facts with Lemma 3 it follows thatE also coversM0 and hence MAP(M) � E. 2

Proposition 4 tells us that for IPEL the LGCF of a model exists, is unique, and is an MA timeline. Given
this property, when an AMA formula	 covers all the MA timelines covered by another AMA formula	0, we
have	0 � 	. Thus, for the remainder of this paper when considering subsumption between formulas we can
abstract away from temporal models and deal rather with MA timelines. Proposition 4 also tells us that we
can compute the LGCF of a model by constructing the MA-projection of that model. Based on the definition
of MA-projection, it is straightforward to derive an LGCF algorithm which runs in time polynomial in the
size of the model4. We note that the MA-projection may contain repeated states—in practice we remove
repeated states which does not change the meaning of the resulting formula (as demonstrated in Example 1).

4.4.4 COMBINING INTERDIGITATION WITH GENERALIZATION OR SPECIALIZATION

Interdigitations are useful in analyzing both conjunctions and disjunctions of MA timelines. When conjoining
a set of timelines, any model of the conjunction induces an interdigitation of the timelines such that co-
occurring states simultaneously hold in the model at some point (viewing states as sets, the union of the
co-occurring states must hold). By constructing an interdigitation and taking the union of each tuple of
co-occurring states to get a sequence of states, we get an MA timeline that forces the conjunction of the
timelines to hold. We call such a sequence an “interdigitation specialization” of the timelines. Dually, an
“interdigitation generalization” involving intersections of states gives an MA timeline that holds whenever
the disjunction of a set of timelines holds.

Definition 2 An interdigitation generalization (specialization) of a set� of MA timelines is an MA timelines1; : : : ; sm, such that, for some interdigitationI of� withm tuples,sj is the intersection (respectively, union)
of the components of the j’th tuple of the sequenceI . The set of interdigitation generalizations (respectively,
specializations) of� is calledIG(�) (respectively,IS(�)).
Example 3Supposes1; s2; s3; t1; t2; andt3 are each sets of propositions (i.e., states). Consider the timelinesS = s1; s2; s3 andT = t1; t2; t3. The relationf hs1; t1i ; hs2; t1i ; hs3; t2i ; hs3; t3i g
is an interdigitation ofS andT in which statess1 ands2 co-occur witht1, ands3 co-occurs witht2 andt3.
The correspondingIG andIS members ares1 \ t1; s2 \ t1; s3 \ t2; s3 \ t3 2 IG(fS; Tg)s1 [t1; s2 [t1; s3 [t2; s3 [t3 2 IS(fS; Tg):
If t1�s1; t1�s2; t2�s3; andt3�s3, then the interdigitationwitnessesS � T .

Each timeline in IG(�) (dually, IS(�)) subsumes (is subsumed by) each timeline in�—this is easily
verified using Proposition 2. For our complexity analyses, we note that the number of states in any member
of IG(�) or IS(�) is lower-bounded by the number of states in any of the MA timelines in� and is upper-
bounded by the total number of states in all the MA timelines in �. The number of interdigitations of�,
and thus of members of IG(�) or IS(�), is exponential in that same total number of states. The algorithms
we present later for computing LGGs require the computationof both IG(�) and IS(�). Here we give
pseudo-code to compute these quantities—figure 4 gives pseudo-code for the function an-IG-member that

4. We take the size of a modelM = hM; Ii to be the sum overx 2 I of the number of true propositions inM(x)
11

FERN, GIVAN , & SISKIND

an-IG-member(f�1;�2; : : : ;�ng)

// The�i are MA timelines.
// Outputs a member ofIG(f�1;�2; : : : ;�ng).
RETURN map(intersect-tuple; an-interdigitation(f�1; : : : ;�ng));

Figure 4: Pseudo-code for an-IG-member, which non-deterministically computes a member of IG(T) whereT is a sequence of MA timelines. The function intersect-tuple(I) takes a tupleI of sets as its
argument and returns their intersection. The higher-orderfunction map(f; I) takes a functionf
and a tupleI as arguments and returns a tuple of the same length asI obtained by applyingf to
each element ofI and making a tuple of the results.

non-deterministically computes an arbitrary member of IG(�) (an-IS-member is identical only we replace
intersection by union). Given a set of MA timelines� we can compute IG(�) by executing all possible
deterministic computation paths of the function call an-IG-member(�), i.e., computing the set of results
obtainable from the non-deterministic function for all possible decisions at non-deterministic choice-points.

We now give a useful lemma and a proposition concerning the relationships between conjunctions and
disjunctions of MA concepts (the former being AMA concepts). For convenience here, we use disjunction
on MA concepts, producing formulas outside of AMA with the obvious interpretation.

Lemma 5 Given an MA formula� that subsumes each member of a set� of MA formulas,� also subsumes
some member�0 of IG(�). Dually, when� is subsumed by each member of�, we have that� is also
subsumed by some member�0 of IS(�). In each case, the length of�0 is bounded by the size of�.

Proposition 6The following hold:

1. (and-to-or) The conjunction of a set� of MA timelines equals the disjunction of the timelines inIS(�).
2. (or-to-and) The disjunction of a set� of MA timelines is subsumed by the conjunction of the timelines

in IG(�).
Proof: To prove part 2 recall that for any� 2 � and any�0 2 IG(�) we have that� � �0. From this it is
immediate that(W�) � (V IG(�)). Using a dual argument we can show that(W IS(�)) � (V�). It remains
to show that(V�) � (W IS(�)), which is equivalent to showing that any timeline subsumed by (V�) is
also subsumed by(W IS(�)) (by Proposition 4). Consider any MA timeline� such that� � (V�)—this
implies that each member of� subsumes�. Lemma 5 then implies that there is some�0 2 IS(�) such that� � �0. From this we get that� � (W IS(�)), as desired. 2

Using “and-to-or”, we can now reduce AMA subsumption to MA subsumption, with an exponential
increase in the problem size.

Proposition 7For AMA	1 and	2, (1 � 	2) if and only if for all�1 2 IS(1) and�2 2 	2;�1 � �2
Proof: For the forward direction we show the contrapositive. Assume there is a�1 2 IS(1) and a�2 2 	2
such that�1 6� �2. Thus, there is an MA timeline� such that� � �1 but � 6� �2. This tells us that� � (W IS(1)) and that� 6� 	2, thus(W IS(1)) 6� 	2 and by “and-to-or” we get that	1 6� 	2.

For the backward direction assume that for all�1 2 IS(1) and�2 2 	2 that�1 � �2. This tells us
that for each�1 2 IS(1) that�1 � 	2—thus,	1 = (W IS(1)) � 	2. 2

12

LEARNING TEMPORAL EVENTS

MA-subsumes(�1;�2)
// Input: �1 = s1; � � � ; sm and�2 = t1; � � � ; tn
// Output:�1 � �2
1. IF there is a path fromv1;1 to vm;n in SG(�1;�2) THEN RETURN TRUE. For example,

(a) Create an array Reachable(i,j) of boolean values, all FALSE, for0 � i � m and0 � j � n.

(b) FORi = 1 tom, Reachable(i; 0) = TRUE;
FORj = 1 to n, Reachable(0; j) = TRUE;
FORi = 1 tom

FORj = 1 to n
Reachable(i; j) = (ti � sj ^ (Reachable(i� 1; j) _

Reachable(i; j � 1) _
Reachable(i� 1; j � 1));

(c) IF Reachable(m;n) THEN RETURN TRUE;

2. Otherwise, RETURN FALSE;

Figure 5: Pseudo-code for the MA subsumption algorithm.SG(�1;�2) is the subsumption graph defined in
the main text.

5. Subsumption and Generalization

In this section we study subsumption and generalization of AMA formulas. First, we give a polynomial-time
algorithm for deciding subsumption between MA formulas andthen show that deciding subsumption for
AMA formulas is coNP-complete. Second we give algorithms and complexity bounds for the construction
of least-general generalization (LGG) formulas based on our analysis of subsumption, including existence,
uniqueness, lower/upper bounds, and an algorithm for the LGG on AMA formulas. Third, we introduce
a polynomial-time–computable syntactic notion of subsumption and an algorithm that computes the corre-
sponding syntactic LGG that is exponentially faster than our semantic LGG algorithm. Fourth, in Section 5.4,
we give a detailed example showing the steps performed by ourLGG algorithms to compute the semantic
and syntactic LGGs of two AMA formulas.

5.1 Subsumption

All our methods rely critically on a novel algorithm for deciding the subsumption question�1 � �2 between
MA formulas�1 and�2 in polynomial-time. We note that merely searching the possible interdigitations
of �1 and�2 for a witnessing interdigitation provides an obvious decision procedure for the subsumption
question—however, there are, in general, exponentially many such interdigitations. We reduce the MA sub-
sumption problem to finding a path in a graph on pairs of statesin �1 � �2, a polynomial-time operation.
Pseudo-code for the resulting MA subsumption algorithm is shown in Figure 5. The main data structure used
by the MA subsumption algorithm is the subsumption graph.

Definition 3 The subsumption graph of two MA timelines�1 = s1; � � � ; sm and�2 = t1; � � � ; tn (writtenSG(�1;�2)) is a directed graphG = hV;Ei with vertex setV equal tofvi;j j 1 � i � m; 1 � j � ng. The
(directed) edge setE equalsfhvi;j ; vi0;j0 i j si � tj ; si0 � tj0 ; i � i0 � i+ 1; j � j0 � j + 1g.

To achieve a polynomial-time bound one can simply use any polynomial-time pathfinding algorithm. In
our case the special structure of the subsumption graph can be exploited to determine if the desired path exists
in O(mn) time, as the example method shown in the pseudo-code illustrates. The following theorem asserts
the correctness of the algorithm assuming a correct polynomial-time path-finding method is used.

13

FERN, GIVAN , & SISKIND

Lemma 8 Given MA timelines�1 = s1; � � � ; sm and�2 = t1; � � � ; tn, there is a witnessing interdigitation
for �1 � �2 iff there is a path in the subsumption graphSG(�1;�2) fromv1;1 to vm;n.

Theorem 9Given MA timelines�1 and�2, MA-subsumes(�1;�2) decides�1 � �2 in polynomial time.

Proof: The algorithm clearly runs in polynomial time. Lemma8 tells us that line 2 of the algorithm will return
TRUE iff there is a witnessing interdigitation. Combining this with Proposition 2 shows that the algorithm
returns TRUE iff�1 � �2. 2

Given this polynomial-time algorithm for MA subsumption, Proposition 7 immediately suggests an
exponential-time algorithm for deciding AMA subsumption—by computing MA subsumption between the
exponentially many IS timelines of one formula and the timelines of the other formula. Our next theo-
rem suggests that we cannot do any better than this in the worst case—we argue that AMA subsumption is
coNP-complete by reduction from boolean satisfiability. Readers uninterested in the technical details of this
argument may skip directly to Section 5.2.

To develop a correspondence between boolean satisfiabilityproblems and AMA formulas, which lack
negation, we imagine that each boolean variable has two AMA propositions, one for “true” and one for
“false”. In particular, given a boolean satisfiability problem overn variablesp1; : : : ; pn, we take the set
PROPn to be the set containing2n AMA propositions Truek and Falsek for eachk between1 andn. We can
now represent a truth assignmentA to thepi variables with an AMA statesA given as follows:sA = fTruei j 1 � i � n; A(pi) = trueg [fFalsei j 1 � i � n; A(pi) = falseg

As Proposition 7 suggests, checking AMA subsumption critically involves the exponentially many inter-
digitation specializations of the timelines of one of the AMA formulas. In our proof, we design an AMA
formula whose interdigitation specializations can be seento correspond to truth assignments5 to boolean
variables, as shown in the following lemma.

Lemma 10Given somen, let	 be the conjunction of the timelinesn[i=1f(PROPn;Truei;Falsei;PROPn); (PROPn;Falsei;Truei;PROPn)g:
We have the following facts about truth assignments to the Boolean variablesp1; : : : ; pn:

1. For any truth assignmentA, PROPn; sA;PROPn is semantically equivalent to some member ofIS().
2. For each� 2 IS() there is a truth assignmentA such that� � PROPn; sA;PROPn.

With this lemma in hand, we can now tackle the complexity of AMA subsumption.

Theorem 11Deciding AMA subsumption is coNP-complete.

Proof: We first show that deciding the AMA-subsumption of	1 by	2 is in coNP by providing a polynomial-
length certificate for any “no” answer. This certificate for non-subsumption is an interdigitation of the time-
lines of	1 that yields a member of IS(1) not subsumed by	2. Such a certificate can be checked in poly-
nomial time: given such an interdigitation, the corresponding member of IS(1) can be computed in time
polynomial in the size of	1, and we can then test whether the resulting timeline is subsumed by each time-
line in 	2 using the polynomial-time MA-subsumption algorithm. Proposition 7 guarantees that	1 6� 	2
iff there is a timeline in IS(1) that is not subsumed by every timeline in	2, so that such a certificate will
exist exactly when the answer to a subsumption query is “no”.

To show coNP-hardness we reduce the problem of deciding the satisfiability of a 3-SAT formulaS =C1 ^ � � � ^ Cm to the problem of recognizing non-subsumption between AMA formulas. Here, eachCi is

5. A truth assignment is a function mapping boolean variables to true or false.

14

LEARNING TEMPORAL EVENTS(li;1 _ li;2 _ li;3) and eachli;j either a propositionp chosen fromP = fp1; : : : ; png or its negation:p. The
idea of the reduction is to construct an AMA formula	 for which we view the exponentially many members
of IS() as representing truth assignments. We then construct an MA timeline� that we view as representing:S and show thatS is satisfiable iff	 6� �.

Let	 be as defined in Lemma 10. Let� be the formulas1; : : : ; sm, wheresi = fFalsej j li;k = pj for somekg [fTruej j li;k = :pj for somekg:
Eachsi can be thought of as asserting “notCi”. We start by showing that ifS is satisfiable then	 6� �.
Assume thatS is satisfied via a truth assignmentA—we know from Lemma 10 that there is a�0 2 IS()
that is semantically equivalent to PROPn; sA;PROPn. We show that PROPn; sA;PROPn is not subsumed by�, to conclude	 6� � using Proposition 7, as desired. Suppose for contradictionthat PROPn; sA;PROPn
is subsumed by�—then the statesA must be subsumed by some statesi in �. Consider the corresponding
clauseCi of S. SinceA satisfiesS we have thatCi is satisfied and at least one of its literalsli;k must be true.
Assume thatli;k = pj (a dual argument holds forli;k = :pj), then we have thatsi contains Falsej while sA
contains Truej but not Falsej—thus, we have thatsA 6� si (sincesi 6� sA), contradicting our choice ofi.

To complete the proof, we now assume thatS is unsatisfiable and show that	 � �. Using Proposition 7,
we consider arbitrary�0 in IS()—we will show that�0 � �. From Lemma 10 we know there is some
truth assignmentA such that�0 � PROPn; sA;PROPn. SinceS is unsatisfiable we know that someCi is not
satisfied byA and hence:Ci is satisfied byA. This implies that each primitive proposition insi is in sA. LetW be the following interdigitation betweenT = PROPn; sA;PROPn and� = s1; � � � ; sm:W = fhPROPn; s1i hPROPn; s2i � � � hPROPn; sii hsA; sii hPROPn; sii hPROPn; si+1i � � � hPROPn; smig
We see that in each tuple of co-occurring states given above that the state fromT is subsumed by the state from�. ThusW is a witnessing interdigitation to PROPn; sA;PROPn � �, which then holds by Proposition 2—
combining this with�0 � PROPn; sA;PROPn we get that�0 � �, as desired. 2

Given this hardness result we later define a weaker polynomial-time–computable subsumption notion for
use in our learning algorithms.

5.2 Least-General Generalization.

The existence of an AMA LGG is nontrivial as there can be infinite chains of increasingly specific for-
mulas all of which generalize given formulas. Example 2 demonstrated such chains for an MA subsumee
and can be extended for AMA subsumees. For example, each member of the chainP ;Q, P ;Q;P ;Q,P ;Q;P ;Q;P ;Q; : : : covers	1 = (P ^ Q);Q and	2 = P ; (P ^ Q). Despite such complications, the
AMA LGG does exist.

Theorem 12There is an LGG for any finite set� of AMA formulas that is subsumed by all other generaliza-
tions of�.

Proof: Let� be the set
S	02� IS(0). Let 	 be the conjunction of all the MA timelines that generalize�

while having size no larger than�. Since there are only a finite number of primitive propositions, there are
only a finite number of such timelines, so	 is well defined6. We show that	 is a least-general generalization
of �. First, note that each timeline in	 generalizes� and thus� (by Proposition 6), so	 must generalize�.
Now, consider arbitrary generalization	0 of �. Proposition 7 implies that	0 must generalize each formula
in �. Lemma 5 then implies that each timeline of	0 must subsume a timeline� that is no longer than the
size of� and that also subsumes the timelines of�. But then� must be a timeline of	, by our choice of	,

6. There must be at least one such timeline, the timeline withone state containing all propositions

15

FERN, GIVAN , & SISKIND

1: semantic-LGG(f	1;	2; : : : ;	mg)

2: // The	i are AMA formulas.
3: // Outputs an LGG of the	i.
4: S = fg;

5: For i = 1 tom
6: For each� in all-values(an-IS-member(i))
7: IF (8�0 2 S : � 6� �0)
8: THEN S0 = f�00 2 S j �00 � �g;
9: S = (S � S0) [f�g;

10: G = fg;

11: For each� in all-values(an-IG-member(S))
12: IF (8�0 2 G : �0 6� �)
13: THEN G0 = f�00 2 G j � � �00g;
14: G = (G�G0) [f�g;

15: RETURN (
VG)

Figure 6: Pseudo-code for computing the semantic AMA LGG of aset of AMA formulas.

so that every timeline of	0 subsumes a timeline of	. It follows that	0 subsumes	, and that	 is an LGG
of � subsumed by all other LGGs of�, as desired. 2
Given that the AMA LGG exists and is unique we now show how to compute it. Our first step is to strengthen
“or-to-and” from Proposition 6 to get an LGG for the MA sublanguage.

Theorem 13For a set� of MA formulas, the conjunction of all MA timelines inIG(�) is an AMA LGG of�.

Proof: Let	 be the specified conjunction. Since each timeline of IG(�) subsumes all timelines in�, 	
subsumes each member of�. To show	 is a least-general such formula, consider an AMA formula	0
that also subsumes all members of�. Since each timeline of	0 must subsume all members of�, Lemma 5
implies that each timeline of	0 subsumes a member of IG(�) and thus each timeline of	0 subsumes	.
This implies	 � 	0. 2
We can now characterize the AMA LGG using IS and IG.

Theorem 14 IG(S	2� IS()) is an AMA LGG of the set� of AMA formulas.

Proof: Let� = f	1; : : : ;	ng andE = 	1 _ � � � _ 	n. We know that the AMA LGG of� must subsumeE, or it would fail to subsume one of the	i. Using “and-to-or” we can representE as a disjunction of MA
timelines given byE = (W IS(1)) _ � � � _ (W IS(n)). Any AMA LGG must be a least-general formula
that subsumesE—i.e., an AMA LGG of the set of MA timelines

SfIS()j	 2 �g. Theorem 13 tells us that
an LGG of these timelines is given by IG(SfIS()j	 2 �g). 2

Theorem 14 leads directly to an algorithm for computing the AMA LGG—figure 6 gives pseudo-code for
the computation. Lines 4-9 of the pseudo-code correspond tothe computation of

SfIS()j	 2 �g, where
timelines are not included in the set if they are subsumed by timelines already in the set (which can be checked
with the polynomial time MA subsumption algorithm). This pruning, accomplished by the IF test in line 7,
often drastically reduces the size of the timeline set for which we perform the subsequent IG computation—
the final result is not affected by the pruning since the subsequent IG computation is a generalization step.
The remainder of the pseudo-code corresponds to the computation of IG(SfIS()j	 2 �g) where we do

16

LEARNING TEMPORAL EVENTS

not include timelines in the final result that subsume some other timeline in the set. This pruning step (the
IF test in line 12) is sound since when one timeline subsumes another, the conjunction of those timelines is
equivalent to the most specific one. Section 5.4.1 traces thecomputations of this algorithm for an example
LGG calculation.

Since the sizes of both IS(�) and IG(�) are exponential in the sizes of their inputs, the code in Figure 6 is
doubly exponential in the input size. We conjecture that we cannot do better than this, but we have not yet
proven a doubly exponential lower bound for the AMA case. When the input formulas are MA timelines the
algorithm takes singly exponential time, since IS(f�g) = � when� is in MA. We now prove an exponential
lower bound when the input formulas are in MA. Again, readersuninterested in the technical details of this
proof can safely skip forward to Section 5.3.

For this argument, we take the available primitive propositions to be those in the setfpi;j j 1 � i �n; 1 � j � ng, and consider the MA timelines�1 = s1;�; s2;�; : : : ; sn;�
and �2 = s�;1; s�;2; : : : ; s�;n; wheresi;� = pi;1 ^ � � � ^ pi;n

and s�;j = p1;j ^ � � � ^ pn;j :
We will show that any AMA LGG of�1 and�2 must contain an exponential number of timelines. In
particular, we will show that any AMA LGG is equivalent to theconjunction of a subset of IG(f�1;�2g),
and that certain timelines may not be omitted from such a subset.

Lemma 15Any AMA LGG	 of a set� of MA timelines is equivalent to a conjunction	0 of timelines from
IG(�) with j	0j � j	j
Proof: Lemma 5 implies that any timeline� in 	 must subsume some timeline�0 2 IG(�). But then the
conjunction	0 of such�0 must be equivalent to	, since it clearly covers� and is covered by the LGG	.
Since	0 was formed by taking one timeline from IG(�) for each timeline in	, we havej	0j � j	j. 2
We can complete our argument then by showing that exponentially many timelines in IG(f�1;�2g) cannot
be omitted from such a conjunction while it remains an LGG.

Notice that for anyi; j we have thatsi;� \ s�;j = pi;j . This implies that any state in IG(f�1;�2g)
contains exactly one proposition, since each such state is formed by intersecting a state from�1 and�2.
Furthermore, the definition of interdigitation, applied here, implies the following two facts for any timelineq1; q2; � � � ; qm in IG(f�1;�2g):

1. q1 = p1;1 andqm = pn;n.

2. For consecutive statesqk = pi;j andqk+1 = pi0;j0 , i0 is eitheri or i+ 1, j0 is eitherj or j + 1, and not
bothi = i0 andj = j0.

Together these facts imply that any timeline in IG(f�1;�2g) is a sequence of propositions starting withp1;1
and ending withpn;n such that any consecutive propositionspi;j ; pi0;j0 are different withi0 equal toi or i+1
andj0 equal toj or j+1. We call a timeline in IG(f�1;�2g) squareif and only if for each pair of consecutive
propositionspi;j andpi0;j0 have eitheri0 = i or j0 = j. The following lemma implies that no square timeline
can be omitted from the conjunction of timelines in IG(�1;�2) if it is to remain an LGG of�1 and�2.
Lemma 16Let�1 and�2 be as given above and let	 = V IG(f�1;�2g). For any	0 whose timelines are
a subset of those in	 that omits some square timeline, we have	 < 	0.
The number of square timelines in IG(f�1;�2g) is equal to (2n�2)!(n�1)!(n�1)! and hence is exponential in the size
of �1 and�2. We have now completed the proof of the following result.

Theorem 17The smallest LGG of two MA formulas can be exponentially large.

17

FERN, GIVAN , & SISKIND

Proof: By Lemma 15, any AMA LGG	0 of �1 and�2 is equivalent to a conjunction of the same number
of timelines chosen from IG(f�1;�2g). However, by Lemma 16, any such conjunction must have at least(2n�2)!(n�1)!(n�1)! timelines, and then so must	0, which must then be exponentially large.2
Conjecture 18The smallest LGG of two AMA formulas can be doubly-exponentially large.

We now show that our lower-bound on AMA LGG complexity is not merely a consequence of the existence
of large AMA LGGs. Even when there is a small LGG, it can be expensive to compute due to the difficulty
of testing AMA subsumption:

Theorem 19Determining whether a formula	 is an AMA LGG for two given AMA formulas	1 and	2 is
co-NP-hard, and is in co-NEXP, in the size of all three formulas together.

Proof: To show co-BP-hardness we use a straightforward reduction from AMA subsumption. Given two
AMA formulas 	1 and	2 we decide	1 � 	2 by asking whether	2 is an AMA LGG of 	1 and	2.
Clearly	1 � 	2 iff 	2 is an LGG of the two formulas.

To show the co-NEAP upper bound, note that we can check in exponential time whether	1 � 	 and	2 � 	 using Proposition 7 and the polynomial-time MA subsumptionalgorithm. It remains to show that
we can check whether	 is not the “least” subsumer. Since Theorem 14 shows that the LGG of	1 and	2
is IG(IS(1) [IS(2)), if 	 is not the LGG then	 6� IG(IS(1) [IS(2)). Thus, by Proposition 7, if	 is not a least subsumer, there must be timelines�1 2 IS() and�2 2 IG(IS(1) [IS(2)) such that�1 6� �2. We can then use exponentially long certificates for “No” answers: each certificate is a pair of an
interdigitationI1 of 	 and an interdigitationI2 of IS(1) [IS(2), such that the corresponding members�1 2 IS() and�2 2 IG(IS(1) [IS(2)) have�1 6� �2. Given the pair of certificatesI1 andI2, �1
can be computed in polynomial time,�2 can be computed in exponential time, and the subsumption between
them can be checked in polynomial time (relative to their size, which can be exponential). If	 is the LGG
then	 � IG(IS(1) [IS(2)), so that no such certificates will exist.2
5.3 Syntactic Subsumption and Syntactic Least-General Generalization.

Given the intractability results for semantic AMA subsumption, we now introduce a tractable generality no-
tion, syntactic subsumption, and discuss the corresponding LGG problem. The use of syntactic forms of gen-
erality for efficiency is familiar in ILP (Muggleton & De Raedt, 1994)—where, for example,�-subsumption
is often used in place of the entailment generality relation. Unlike AMA semantic subsumption, syntactic
subsumption requires checking only polynomially many MA subsumptions, each in polynomial time (via
Theorem 9).

Definition 4 AMA	1 is syntactically subsumed by AMA	2 (written	1 �syn 	2) iff for each MA timeline�2 2 	2, there is an MA timeline�1 2 	1 such that�1 � �2.
Proposition 20AMA syntactic subsumption can be decided in polynomial time.

Syntactic subsumption trivially implies semantic subsumption—however, the converse does not hold in
general. Consider the AMA formulas(A;B)^(B;A), andA;B;AwhereA andB are primitive propositions.
We have(A;B)^ (B;A) � A;B;A; however, we have neitherA;B � A;B;A norB;A � A;B;A, so thatA;B;A does not syntactically subsume(A;B)^(B;A). Syntactic subsumption fails to recognize constraints
that are only derived from the interaction of timelines within a formula.

Syntactic Least-General Generalization. Thesyntactic AMA LGGis the syntactically least-general AMA
formula that syntactically subsumes the input AMA formulas. Here, “least” means that no formula properly
syntactically subsumed by a syntactic LGG can syntactically subsume the input formulas. Based on the
hardness gap between syntactic and semantic AMA subsumption, one might conjecture that a similar gap

18

LEARNING TEMPORAL EVENTS

exists between the syntactic and semantic LGG problems. Proving such a gap exists requires closing the
gap between the lower and upper bounds on AMA LGG shown in Theorem 14 in favor of the upper bound,
as suggested by Conjecture 18. While we cannot yet show a hardness gap between semantic and syntactic
LGG, we do give a syntactic LGG algorithm that is exponentially more efficient than the best semantic LGG
algorithm we have found (that of Theorem 14). First, we show that syntactic LGG’s exist and are unique up
to mutual syntactic subsumption (and hence up to semantic equivalence).

Theorem 21There exists a syntactic LGG for any AMA formula set� that is syntactically subsumed by all
syntactic generalizations of�.

Proof: Let	 be the conjunction of all the MA timelines that syntactically generalize� while having size
no larger than�. As in the proof of Theorem 12,	 is well defined. We show that	 is a syntactic LGG
for �. First, note that	 syntactically generalizes� because each timeline of	 generalizes a timeline in
every member of�, by the choice of	. Now consider an arbitrary syntactic generalization	0 of �. By the
definition of syntactic subsumption, each timeline� in 	0 must subsume some timeline�� in each member� of �. Lemma 5 then implies that there is a timeline�0 of size no larger than� that subsumes all the��
while being subsumed by�. By our choice of	, the timeline�0 must be a timeline of	. It follows then that	0 syntactically subsumes	, and that	 is a syntactic LGG of� subsumed by all other generalizations of&2

In general, we know that semantic and syntactic LGGs are different, though clearly the syntactic LGG is a
semantic generalization and so must subsume the semantic LGG. For example,(A;B)^ (B;A), andA;B;A
have a semantic LGG ofA;B;A, as discussed above; but their syntactic LGG is(A;B; true)^(true;B;A),
which subsumesA;B;A but is not subsumed byA;B;A. Even so, for MA formulas:

Proposition 22For MA� and AMA	, � �syn	 is equivalent to� � 	.

Proof: The forward direction is immediate since we already know syntactic subsumption implies semantic
subsumption. For the reverse direction, note that� � 	 implies that each timeline of	 subsumes�—thus
since� is a single timeline each timeline in	 subsumes “some timeline” in� which is the definition of
syntactic subsumption. 2
Proposition 23Any syntactic AMA LGG for an MA formula set� is also a semantic LGG for�.

Proof: Now, consider a syntactic LGG	 for �. Proposition 22 implies that	 is a semantic generalization
of �. Consider any semantic LGG	0 of �. We show that	 � 	0 to conclude that	 is a semantic LGG for�. Proposition 22 implies that	0 syntactically subsumes�. It follows that	0 ^ 	 syntactically subsumes�. But, 	0 ^ 	 is syntactically subsumed by	, which is a syntactic LGG of�—it follows that	0 ^ 	
syntactically subsumes	, or	 would not be aleastsyntactic generalization of�. But then	 � (Psi0 ^),
which implies	 � 	0, as desired. 2
We note that the stronger result stating that a formula	 is a syntactic LGG of a set� of MA formulas
if and only if it is a semantic LGG of� is not an immediate consequence of our results above. At first
examination, the strengthening appears trivial, given theequivalence of� � 	 and� �syn 	 for MA �.
However, being semantically least isnot necessarily a stronger condition than being syntacticallyleast—
we have not ruled out the possibility that a semantically least generalization	 may syntactically subsume
another generalization that is semantically (but not syntactically) equivalent. (This question is open, as we
have not found an example of this phenomenon either.)

Proposition 23 together with Theorem 21 have the nice consequence for our learning approach that the
syntactic LGG of two AMA formulas is a semantic LGG of those formulas, as long as the original formulas
are themselves syntactic LGGs of sets of MA timelines. Because our learning approach starts with train-
ing examples that are converted to MA timelines using the LGCF operation, the syntactic LGGs computed
(whether combining all the training examples at once, or incrementally computing syntactic LGGs of parts of

19

FERN, GIVAN , & SISKIND

the training data) are always syntactic LGGs of sets of MA timelines and hence are also semantic LGGs, in
spite of the fact that syntactic subsumption is weaker than semantic subsumption. We note, however, that the
resulting semantic LGGs may be considerably larger than thesmallest corresponding semantic LGG (which
may not be a syntactic LGG at all).

Using Proposition 23, we now show that we cannot hope for a polynomial-time syntactic LGG algorithm.

Theorem 24The smallest syntactic LGG of two MA formulas can be exponentially large.

Proof: Suppose there is always a syntactic LGG of two MA formulas that is not exponentially large. Since
by Proposition 23 each such formula is also a semantic LGG, there is always a semantic LGG of two MA
formulas that is not exponentially large. This contradictsTheorem 17. 2

While this is discouraging, we have an algorithm for the syntactic LGG whose time complexity matches
this lower-bound, unlike the semantic LGG case, where the best algorithm we have is doubly exponential in
the worst case. Theorem 14 yields an exponential time methodfor computing the semantic LGG of a set of
MA timelines�—since for a timeline�, IS(�) = �, we can simply conjoin all the timelines of IG(�). Given
a set of AMA formulas, the syntactic LGG algorithm uses this method to compute the polynomially-many
semantic LGGs of sets of timelines, one chosen from each input formula, and conjoins all the results.

Theorem 25The formula
V�i2	i IG(f�1; : : : ;�ng) is a syntactic LGG of the AMA formulas	1; : : : ;	n.

Proof: Let	 be
V�i2	i IG(f�1; : : : ;�ng). Each timeline� of 	 must subsume each	i because� is an

output of IG on a set containing a timeline of	i—thus	 syntactically subsumes each	i. To show that	 is a syntactically least such formula, consider a	0 that syntactically subsumes every	i. We show that	 �syn 	0 to conclude. Each timeline�0 in 	0 subsumes a timelineTi 2 	i, for eachi, by our assumption
that	i �syn 	0. But then by Lemma 5,�0 must subsume a member of IG(fT1; : : : ; Tng)—and that member
is a timeline of	—so each timeline�0 of 	0 subsumes a timeline of	. We conclude	 �syn 	0, as desired.2

This theorem yields an algorithm that computes a syntactic AMA LGG in exponential time—pseudo-
code for this method is given in Figure 7. The exponential time bound follows from the fact that there are
exponentially many ways to choose�1; : : : ;�m in line 5, and for each of these there are exponentially many
semantic-LGG members in line 6 (since the�i are all MA timelines)—the product of these two exponentials
is still an exponential.

The formula returned by the algorithm shown is actually a subset of the syntactic LGG given by The-
orem 25. This subset is syntactically (and hence semantically) equivalent to the formula specified by the
theorem, but is possibly smaller due to the pruning achievedby the IF statement in lines 7–9. A timeline is
pruned from the set if it is (semantically) subsumed by any other timeline in the set (one timeline is kept from
any semantically equivalent group of timelines, at random). This pruning of timelines is sound, since a time-
line is pruned from the output only if it subsumes some other formula in the output—this fact allows an easy
argument that the pruned formula is syntactically equivalent to (i.e. mutually syntactically subsumed by) the
unpruned formula. Section 5.4.2 traces the computations ofthis algorithm for an example LGG calculation.

The method does an exponential amount of work even if the result is small (typically because many
timelines can be pruned from the output because they subsumewhat remains). It is still an open question
as to whether there is an output-efficient algorithm for computing the syntactic AMA LGG—this problem
is in coNP and we conjecture that it is coNP-complete. One route to settling this question is to determine
the output complexity of semantic LGG for MA input formulas.We believe that problem also to be coNP-
complete, but have not proven this; if that problem is in P, there is an output-efficient method for computing
syntactic AMA LGG based on Theorem 25.

A summary of the algorithmic complexity results from this section can be found in Table 3 in the conclu-
sions section of this paper.

20

LEARNING TEMPORAL EVENTS

1: syntactic-LGG(f	1;	2; : : : ;	mg)

2: // The	i are AMA formulas.
3: // Outputs a syntactic LGG of the	i.
4: G = fg;

5: For eachh�1; : : : ;�mi 2 	1 � � � � �	m
6: For each� in semantic-LGG(f�1; : : : ;�mg)
7: IF (8�0 2 G : �0 6� �)
8: THEN G0 = f�00 2 G j � � �00g;
9: G = (G�G0) [f�g;

10: RETURN (
VG)

Figure 7: Pseudo-code that computes the syntactic AMA LGG ofa set of AMA formulas.

5.4 Examples: Least-General Generalization Calculations

Below we work through the details of a semantic and a syntactic LGG calculation. We consider the AMA
formulas	 = (A;B) ^ (B;A) and� = A;B;A, for which the semantic LGG isA;B;A and the syntactic
LGG is (A;B; true) ^ (true;B;A).
5.4.1 SEMANTIC LGG EXAMPLE

The first step in calculating the semantic LGG, according to the algorithm given in Figure 6, is to compute the
interdigitation-specializations of the input formulas (i.e., IS(�) and IS()). Trivially, we have that IS(�) =� = A;B;A. To calculate IS(), we must consider the possible interdigitations of	, for which there are
three, f hA;Bi ; hB;Bi ; hB;Ai gf hA;Bi ; hB;Ai gf hA;Bi ; hA;Ai ; hB;Ai g
Each interdigitation leads to the corresponding member of IS() by unioning (conjoining) the states in each
tuple, so IS() is f (A ^ B);B; (A ^ B);(A ^ B);(A ^ B);A; (A ^ B) g:
Lines 5–9 of the semantic LGG algorithm compute the setS, which is equal to the union of the timelines in
IS() and IS(�), with all subsumed timelines removed. For our formulas, we see that each timeline in IS()
is subsumed by�—thus, we have thatS = � = A;B;A.

After computingS, the algorithm returns the conjunction of timelines in IG(S), with redundant timelines
removed (i.e., all subsuming timelines are removed). In ourcase, IG(S) = A;B;A, trivially, as there is only
one timelin inS, thus the algorithm correctly computes the semantic LGG of	 and� to beA;B;A.

5.4.2 SYNTACTIC LGG EXAMPLE

The syntactic LGG algorithm, shown in Figure 7, computes a series of semantic LGGs for MA timeline
sets, returning the conjunction of the results (after pruning). Line 5 of the algorithm, cycles through timeline
tuples from the cross-product of the input AMA formulas. In our case the tuples in� � 	 areT1 =hA;B;A; A;Bi andT2 = hA;B;A; B;Ai—for each tuple, the algorithm computes the semantic LGG of
the tuple’s timelines.

21

FERN, GIVAN , & SISKIND

The semantic LGG computation for each tuple uses the algorithm given in Figure 6, but the argument
is always a set of MA timelines rather than AMA formulas. For this reason, lines 4–9 are superfluous, as
for an MA timeline�0, IS(�0) = �0. In the case of tupleT1, lines 4–9 of the algorithm just computeS = fA;B;A; A;Bg. It remains to compute the interdigitation-generalizations ofS (i.e., IG(S)), returning
the conjunction of those timelines after pruning (lines 10–15 in Figure 6). The set of all interdigitations ofS
are, f hA;Ai ; hB;Ai ; hB;Bi ; hB;Ai gf hA;Ai ; hB;Bi ; hB;Ai gf hA;Ai ; hA;Bi ; hB;Bi ; hB;Ai gf hA;Ai ; hA;Bi ; hB;Ai gf hA;Ai ; hA;Bi ; hA;Ai ; hB;Ai g
By intersecting states in interdigitation tuples we get IG(S),f A; true;B; true; A;B; true; A; true;B; true; A; true; true; A; true;A; true g
Since the timelineA;B; true is subsumed by all timelines in IG(S), all other timelines will be pruned. Thus
the semantic LGG algorithm returnsA;B; true as the semantic LGG of the timelines inT1.

Next the syntactic LGG algorithm computes the semantic LGG of the timelines inT2. Following the
same steps as forT1, we find that the semantic LGG of the timelines inT2 is true;B;A. SinceA;B; true
andtrue;B;A do not subsume one another, the setG computed by lines 5–9 of the syntactic LGG algorithm
is equal tof A;B; true; true;B;A g. Thus, the algorithm computes the syntactic LGG of� and	 to be(A;B; true) ^ (true;B;A). Note that, in this case, the syntactic LGG is more general than the semantic
LGG.

6. Practical Extensions

We have implemented a specific-to-general AMA learning algorithm based on the LGCF and syntactic LGG
algorithms presented earlier. This implementation includes three practical extensions. The first extension
aims at controlling the exponential complexity by limitingthe length of the timelines we consider. The
second extension deals with applying our propositional algorithm to relational data, as is necessary for the
application domain of visual event recognition. Finally, we show how to gain the practical advantages of
negation despite the fact that AMA does not include negation—this turns out to be crucial to achieving good
performance in our experiments.

6.1 k-AMA Least-General Generalization

We have already indicated that our syntactic AMA LGG algorithm takes exponential time relative to the
lengths of the timelines in the AMA input formulas. This motivates restricting the AMA language tok-AMA
in practice, where formulas contain timelines with no more thank states. Ask is increased the algorithm
is able to output increasingly specific formulas at the cost of an exponential increase in computational time.
In the visual-event–recognition experiments shown later,as we increasedk, the resulting formulas became
overly specific before a computational bottle-neck is reached—i.e., for that application the best values ofk
were practically computable and the ability to limitk provided a useful language bias.

We use ak-coveroperator in order to limit our syntactic LGG algorithm tok-AMA. A k-cover of an AMA
formula is a syntactically least generalk-AMA formula that syntactically subsumes the input—it is easy to
show that ak-cover for a formula can be formed by conjoining allk-MA timelines that syntactically subsume
the formula (i.e., that subsume any timeline in the formula). Figure 8 gives pseudo-code for computing
thek-cover of an AMA formula. It can be shown that this algorithm correctly computes ak-cover for any
input AMA formula. The algorithm calculates the set of leastgeneralk-MA timelines that subsume each
timeline in the input—the resultingk-MA formulas are conjoined and “redundant” timelines are pruned

22

LEARNING TEMPORAL EVENTS

1: k-cover(k;V1�i�m �i)
2: // The�i are AMA formulas.
3: // Outputs ak-cover of conjunction of the�i.
4: G = fg;

5: For i = 1 tom
6: For eachP = hP1; : : : ; Pni in all-values(a-k-partition(k;�i))
7: � = (TP1); � � � ; (TPn);
8: IF (8�0 2 G : �0 6� �)
9: THEN G0 = f�00 2 G j � � �00g;

10: G = (G�G0) [f�g;

11: RETURN (
VG)

12: a-k-partition(k; s1; � � � ; sj)
13: // s1; � � � ; sj is an MA timeline.
14: // k is an positive natural number.
15: // Non-deterministically partitionss1; � � � ; sj into a tuple of� k sets of consecutive states.

16: IF j � k THEN RETURNhfs1g; : : : ; fsjgi;
17: IF k == 1 THEN RETURNhfs1; : : : ; sjgi;
18: l = a-member-of(f1; 2; : : : ; j � k + 1g); // non-deterministically choose next block size

19: P0 = fs1; : : : ; slg; // construct next block

20: RETURN extend-tuple(P0; a-k-partition(k � 1; sl+1; � � � ; sj));
Figure 8: Pseudo-code for non-deterministically computing a k-cover of an AMA formula, along with a

non-deterministic helper function for selecting a� k block partition of the states of a timeline.

using a subsumption test. We note that thek-cover of an AMA formula may itself be exponentially larger
than that formula; however, in practice, we have foundk-covers not to exhibit undue size growth.

Given thek-cover algorithm we restrict our learner tok-AMA as follows: 1) Compute thek-cover for
each AMA input formulas. 2) Compute the syntactic AMA LGG of the resultingk-AMA formulas. 3) Return
thek-cover of the resulting AMA formula. The primary bottleneckof the original syntactic LGG algorithm is
computing the exponentially large set of interdigitation-generalizations—thek-limited algorithm limits this
complexity as it only computes interdigitation-generalizations involvingk-MA timelines.

6.2 Relational Data

LEONARD produces relational models that involve objects and (forcedynamic) relations between those ob-
jects. Thus event definitions include variables to allow generalization over objects. For example, a definition
for PICKUP(x; y; z) recognizes both PICKUP(hand; block; table) as well as PICKUP(man; dumbbell; floor).
Despite the fact that ourk-AMA learning algorithm is propositional, we are still ableto use it to learn rela-
tional definitions.

We take a straightforward object-correspondence approachto relational learning. We view the models
output by LEONARD as containing relations applied to constants. Since we (currently) support only super-
vised learning, we have a set of distinct training examples for each event type. There is an implicit corre-
spondence between the objects filling the same role across the different training models for a given type. For
example, models showing PICKUP(hand; block; table) and PICKUP(man; dumbbell; floor) have implicit

23

FERN, GIVAN , & SISKIND

correspondenceshhand;mani, hblock; dumbbelli, andhtable; floori. We outline two relational learning
methods that differ in how much object-correspondence information they require as part of the training data.

6.2.1 COMPLETE OBJECT CORRESPONDENCE

This first approach assumes that a complete object correspondence is given, as input, along with the training
examples. Given such information, we can propositionalizethe training models by replacing corresponding
objects with unique constants. The propositionalized models are then given to our propositionalk-AMA
learning algorithm which returns a propositionalk-AMA formula. We then lift this propositional formula by
replacing each constant with a distinct variable. Lavrac etal. (1991) has taken a similar approach.

6.2.2 PARTIAL OBJECT CORRESPONDENCE

The above approach assumes complete object-correspondence information. While it is sometimes possible
to provide all correspondences (for example, by color-coding objects that fill identical roles when record-
ing training movies), such information is not always available. When only a partial object correspondence
(or even none at all) is available, we can automatically complete the correspondence and apply the above
technique.

For the moment, assume that we have an evaluation function that takes two relational models and a
candidate object correspondence, as input, and yields an evaluation of correspondence quality. Given a set of
training examples with missing object correspondences, weperform a greedy search for the best set of object-
correspondence completions over the models. Our method works by storing a setP of propositionalized
training examples (initially empty) and a setU of unpropositionalized training examples (initially the entire
training set). For the first step, whenP is empty, we evaluate all pairs of examples fromU , under all possible
correspondences, select the pair that yields the highest score, remove the examples involved in that pair
fromU , propositionalize them according to the best correspondence, and add them toP . For each subsequent
step, we use the previously computed values of all pairs of examples, one fromU and one fromP , under
all possible correspondences. We then select the example fromU and correspondence that yields the highest
average score relative to all models inP—this example is removed fromU , propositionalized according
to the winning correspondence, and added toP . For a fixed number of objects, the effort expended here is
polynomial in the size of the training set; however, if the number of objectsb that appear in a training example
is allowed to grow, the number of correspondences that must be considered grows asbb. For this reason, it is
important that the events involved manipulate only a modestnumber of objects.

Our evaluation function is based on the intuition that object roles for visual events (as well as events from
other domains) can often be inferred by considering the changes between the initial and final moments of
an event. Specifically, given two models and an object correspondence, we first propositionalize the models
according to the correspondence. Next, we compute ADD and DELETE lists for each model. The ADD list
is the set of propositions that are true at the final moment butnot the initial moment. The DELETE list is the
set of propositions that are true at the initial moment but not the final moment. (These add and delete lists
are motivated by STRIPS action representations. (Fikes & Nilsson, 1971)) Given such ADDi and DELETEi
lists for models1 and2, the evaluation function returns the sum of the cardinalities of ADD1 \ ADD2 and
DELETE1\DELETE2. This heuristic measures the similarity between the ADD andDELETE lists of the two
models. The intuition behind this heuristic is similar to the intuition behind the STRIPS action-description
language—i.e., that most of the differences between the initial and final moments of an event occurrence are
related to the target event, and that event effects can be described by ADD and DELETE lists. We have found
that this evaluation function works well in the visual-event domain.

Note, that when full object correspondences are given to thelearner (rather than automatically extracted
by the learner), the training examples are interpreted as specifying that the target event took place as well as
which objects filled the various event roles (e.g., PICKUP(a,b,c)). Rather, when no object correspondences
are provided the training examples are interpreted as specifying the existence of a target event occurrence
but do not specify which objects fill the roles (i.e., the training example is labeled byPICKUP rather
than PICKUP(a,b,c)). Accordingly, the rules learned when no correspondences are provided only allow us

24

LEARNING TEMPORAL EVENTS

to infer that a target event occurred and not which objects filled the event roles. For example when object
correspondences are manually provided the learner might produce the rule,

PICKUP(x; y; z) 4= � (SUPPORTS(z; y) ^ CONTACTS(z; y));(SUPPORTS(x; y) ^ ATTACHED(x; y)) �
whereas a learner that automatically extracts the correspondences would instead produce the rule,

PICKUP
4= � (SUPPORTS(z; y) ^ CONTACTS(z; y));(SUPPORTS(x; y) ^ ATTACHED(x; y)) �

Its worth noting, however, that upon producing the second rule the availability of a single training example
with correspondence information allows the learner to determine the roles of the variables, upon which it can
output the first rule. Thus, under the assumption that the learner can reliably extract object correspondences,
we need not label all training examples with correspondenceinformation in order to obtain definitions that
explicitly recognize object roles.

6.3 Negative Information

The AMA language does not allow negated propositions. Negation, however, is sometimes necessary to
adequately define an event type. It turns out that we can easily get the practical advantages of negation
without incorporating negation into the AMA language. We dothis by adding new propositions to our models
that intuitively represent the proposition negations. Assume the training examples contain the propositionsfp1; : : : ; png. We introduce a new setf�p1; : : : ; �png of propositions and add these into the training models. It
is a design choice as to how we assign truth values to these newpropositions.

In our experiments, we compare two methods for assigning a truth value to�pi. The first method, called
full negation, assigns true to�pi in a model iffpi is false in the model. The second method, calledboundary
negation, differs from full negation in that it only allows�pi to be true in the initial and final moments of
a model (and then only ifpi is false). �pi must be false at all other times. We have found that boundary
negation provides a good trade-off between no negation, which often produces overly general results, and full
negation, which often produces overly specific and much morecomplicated results. Both methods share the
property that they produce models wherepi and�pi are never simultaneously true. It follows that our learning
methods will never produce formulas with states that contain bothpi and�pi.
7. Experiments

7.1 Data Set

Our data set contains examples of7 different event classes:pick up, put down, stack, unstack, move, assemble,
anddisassemble. Each of these involve a hand and two to three blocks. For a detailed description and sample
video sequences of these event types, see Siskind (2001). Key frames from sample video sequences of these
event classes are shown in figure 9. The results of segmentation, tracking, and model reconstruction are
overlayed on the video frames. We recorded30 movies for each of the7 event classes resulting in a total
of 210 movies comprising11946 frames. We replaced oneassemble movie, with a duplicate copy of
another because of segmentation and tracking errors.

Some of the event classes are hierarchical in that occurrences of events in one class contain occurrences
of events in one or more simpler classes. For example, a moviedepicting a MOVE(a; b;
; d) event (i.e.a
movesb from
 to d) contains subintervals where PICKUP(a; b;
) and PUTDOWN(a; b; d) events occur. In
our experiments, when learning the definition of an event class only the movies for that event class are used
in training—we do not train on movies for other event classesthat may also depict an occurrence of the event
class being learned as a sub-event. However, in evaluating the learned definitions, we wish to detect both
the events that correspond to an entire movie as well as subevents that correspond to portions of that movie.
For example, given a movie depicting MOVE(a; b;
; d), we wish to detect not only the MOVE(a; b;
; d)

25

FERN, GIVAN , & SISKIND

pick up

frame 0 frame 13 frame 24

put down

frame 0 frame 16 frame 26

stack

frame 0 frame 12 frame 26

unstack

frame 2 frame 13 frame 24

move

frame 0 frame 9 frame 18 frame 37 frame 48

assemble

frame 0 frame 15 frame 29 frame 39 frame 70

frame 77 frame 92

disassemble

frame 2 frame 14 frame 22 frame 52 frame 56

frame 69 frame 80

Figure 9: Key frames from sample videos of the seven event types.

26

LEARNING TEMPORAL EVENTS

event but also the PICKUP(a; b;
) and PUTDOWN(a; b; d) subevents as well. For each movie type in our
data set, we have a set ofintendedevents and subevents that should be detected. If a definitiondoes not
detect an intended event, we deem the error a false negative.If a definition detects an unintended event,
we deem the error a false positive. For example, if a movie depicts a MOVE(a; b;
; d) event, the intended
events are MOVE(a; b;
; d), PICKUP(a; b;
), and PUTDOWN(a; b;
). If the definition forpick updetects
the occurrence of PICKUP(
; b; a) and PICKUP(b; a;
), but not PICKUP(a; b;
), it will be charged two false
positives as well as one false negative. We evaluate our definitions in terms of false positive and negative
rates as describe below.

7.2 Experimental Procedure

For each event type, we evaluate thek-AMA learning algorithm using a leave-one-movie-out cross-validation
technique with training-set sampling. The parameters to our learning algorithm arek and the degreeD of
negative information used: the value ofD is either P, for “positive propositions only”, BN, for “boundary
negation”, or N, for “full negation”. The parameters to our evaluation procedure include the target event
typeE and the training-set sizeN . Given this information, the evaluation proceeds as follows: For each
movieM (the held-out movie) from the210 movies, apply thek-AMA learning algorithm to a randomly
drawn training sample ofN movies from the30 movies of event typeE (or 29 movies ifM is one of the30).
Use LEONARD to detect all occurrences of the learned event definition inM . Based onE and the event
type ofM , record the number of false positives and false negatives inM , as detected by LEONARD. Let
FP and FN be the total number of false positives and false negatives observed over all210 held-out movies
respectively. Repeat the entire process of calculating FP and FN10 times and record the averages asFP and
FN.

Since some event types occur more frequently in our data thanothers (because simpler events occur as
subevents of more complex events but not vice versa), we do not reportFP andFN directly. Instead, we
normalizeFP by dividing by the total number of times LEONARD detected the target event (correctly or in-
correctly) within all210 movies and we normalizeFN by dividing by the total number of correct occurrences
of the target event within all210 movies (i.e., the human assessment of the number of occurrences of the
target event). The normalized value ofFP estimates the probability that the target event did not occur given
that it was predicted to occur, while the normalized value ofFN estimates the probability that the event was
not predicted to occur given that it did occur.

7.3 Results

To evaluate ourk-AMA learning approach, we ran leave-one-movie-out experiments, as described above, for
varyingk, D, andN . The210 example movies were recorded with color-coded objects to provide complete
object-correspondence information. We compared our learned event definitions to the performance of two
sets of hand-coded definitions. The first set HD1 of hand-coded definitions appeared in Siskind (2001). In
response to subsequent deeper understanding of the behavior of Leonard’s model reconstruction methods, we
manually revised these definitions to yield another set HD2 of hand-coded definitions that gives a significantly
betterFN performance at some cost inFP performance. Appendix C gives the event definitions in HD1 and
HD2 along with a set of machine-generated definitions, producedby thek-AMA learning algorithm, given
all training data fork = 30 andD = NPN.

7.3.1 OBJECT CORRESPONDENCE

To evaluate our algorithm for finding object correspondences, we ignored the correspondence information
provided by color coding and applied the algorithm to all training models for each event type. The algo-
rithm selected the correct correspondence for all210 training models. Thus, for this data set, the learning
results when no correspondence information is given will beidentical to those where the correspondences are
manually provided, except that in the first case the rules will not specify particular object roles (as discussed

27

FERN, GIVAN , & SISKINDk D pu pd st un mo as di2 BN FP 0 0.14 0 0 0 0.75 0
FN 0 0.19 0.12 0.03 0 0 03 BN FP 0 0 0 0 0 0 0
FN 0 0.2 0.45 0.10 0.03 0.07 0.104 BN FP 0 0 0 0 0 0 0
FN 0 0.2 0.47 0.12 0.03 0.07 0.173 P FP 0.42 0.5 0 0.02 0 0 0
FN 0 0.19 0.42 0.11 0.03 0.03 0.103 BN FP 0 0 0 0 0 0 0
FN 0 0.2 0.45 0.10 0.03 0.07 0.103 N FP 0 0 0 0 0 0 0
FN 0.04 0.39 0.58 0.16 0.13 0.2 0.2

HD1 FP 0.01 0.01 0 0 0 0 0
FN 0.02 0.22 0.82 0.62 0.03 1.0 0.5

HD2 FP 0.13 0.11 0 0 0 0 0
FN 0.0 0.19 0.42 0.02 0.0 0.77 0.0

Table 1:FP andFN for learned definitions, varying bothk andD, and for hand-coded definitions.

in section 6.2.2). Since our evaluation procedure uses roleinformation, the rest of our experiments use the
manual correspondence information, provided by color-coding, rather than computing it.

7.3.2 VARYING k
The first three rows of table 1 show theFP andFN values for all7 event types fork 2 f2; 3; 4g, N = 29
(the maximum), andD = BN. Similar trends were found forD = P andD = N. The general trend is
that, ask increases,FP decreases or remains the same andFN increases or remains the same. Such a trend
is a consequence of ourk-cover approach. This is because, ask increases, thek-AMA language contains
strictly more formulas. Thus fork1 > k2, thek1-cover of a formula will never be more general than thek2-cover. This strongly suggests, but does not prove, thatFP will be non-increasing withk andFN will be
non-decreasing withk.

Our results show that2-AMA is overly general forput downand assemble, i.e. it gives highFP. In
contrast,3-AMA achievesFP= 0 for each event type but pays a penalty inFN compared to2-AMA. Since3-AMA achievesFP = 0 there is likely no advantage in moving tok-AMA for k > 3—i.e., the expected
result is forFN to become larger. This effect is demonstrated for4-AMA in the table.

7.3.3 VARYING D
Rows four through six of table 1 showFP andFN for all 7 event types forD 2 fP;BN;Ng, N = 29, andk = 3. Similar trends were observed for other values ofk. The general trend is that, as the degree of negative
information increases, the learned event definitions become more specific. In other words,FP decreases and
FN increases. This makes sense since, as more negative information is added to the training models, more
specific structure can be found in the data and exploited by the k-AMA formulas. We can see that, withD = P, the definitions forpick upandput downare overly general, as they produce highFP. Alternatively,

28

LEARNING TEMPORAL EVENTS

with D = N, the learned definitions are overly specific, givingFP = 0, at the cost of highFN. In these
experiments, as well as others, we have found thatD = BN yields the best of both worlds:FP = 0 for all
event types and lowerFN than achieved withD = N.

Experiments not shown here have demonstrated that, withoutnegation forpick upandput down, we can
increasek arbitrarily, in an attempt to specialize the learned definitions, and never significantly reduceFP.
This indicates that negative information plays a particularly important role in constructing definitions for
these event types.

7.3.4 COMPARISON TOHAND-CODED DEFINITIONS

The bottom two rows of table 1 show the results for HD1 and HD2. We have not yet attempted to automati-
cally select the parameters for learning (i.e.k andD). Rather, here we focus on comparing the hand-coded
definitions to the parameter set that we judged to be best performing across all event types. We believe, how-
ever, that these parameters could be selected reliably using cross-validation techniques on a larger data set.
In that case, the parameters would be selected on a per–event-type basis and would likely result in an even
more favorable comparison to the hand-coded definitions.

The results show that the learned definitions significantly outperform HD1 on the current data set. The
HD1 definitions were found to produce a large number of false negatives on the current data set. Manual
revision of HD1 yielded HD2. Notice that, although HD2 produces significantly fewer false negatives for all
event types, it produces more false positives forpick upandput down. This is because the hand definitions
utilize pick upandput downas macros for defining the other events.

The performance of the learned definitions is competitive with the performance of HD2. The main dif-
ferences in performance are: (a) forpick upandput down, the learned and HD2 definitions achieve nearly
the sameFN but the learned definitions achieveFP = 0 whereas HD2 has significantFP, (b) forunstack
anddisassemble, the learned definitions perform moderately worse than HD2 with respect toFN, and (c) the
learned definitions perform significantly better than HD2 onassembleevents.

We conjecture that further manual revision could improve HD2 to perform as well as (and perhaps better
than) the learned definitions for every event class. Nonetheless, we view this experiment as promising, as
it demonstrates that our learning technique is able to compete with, and sometimes outperform, significant
hand-coding efforts by a domain expert.

7.3.5 VARYING N
It is of practical interest to know how training set size affects our algorithm’s performance. For this applica-
tion, it is important that our method work well with fairly small data sets, as it can be tedious to collect event
data. Table 2 shows theFN of our learning algorithm for each event type, asN is reduced from29 to 5. For
these experiments, we usedk = 3 andD = BN. Note thatFP= 0 for all event types and allN and hence is
not shown. We expectFN to increase asN is decreased, since, with specific-to-general learning, more data
yields more-general definitions. Generally,FN is flat forN > 20, increases slowly for10 < N < 20, and
increases abruptly for5 < N < 10. We also see that, for several event types,FN decreases slowly, asN
is increased from20 to 29. This indicates that a larger data set might yield improved results for those event
types.

8. Related Work

Here we discuss two bodies of related work. First, we presentprevious work in visual event recognition and
how it relates to our experiments here. Second, we discuss previous approaches to learning temporal patterns
from positive data.

29

FERN, GIVAN , & SISKINDN pu pd st un mo as di

29 0.0 0.20 0.45 0.10 0.03 0.07 0.10
25 0.0 0.20 0.47 0.16 0.05 0.09 0.10
20 0.01 0.21 0.50 0.17 0.08 0.12 0.12
15 0.01 0.22 0.53 0.26 0.14 0.20 0.16
10 0.07 0.27 0.60 0.36 0.23 0.32 0.26
5 0.22 0.43 0.77 0.54 0.35 0.57 0.43

Table 2:FN for k = 3,D = BN, and various values ofN .

8.1 Visual Event Recognition

Prior work has investigated various subsets of the pieces oflearning and using temporal, relational, and force-
dynamic representations for recognizing events in video. But none, to date, combine all the pieces together.
The following is a representative list and not meant to be comprehensive. Borchardt (1985) presents tempo-
ral, relational, force-dynamic event definitions but thesedefinitions are neither learned nor applied to video.
Regier (1992) presents techniques for learning temporal event definitions but the learned definitions are nei-
ther relational, force dynamic, nor applied to video. Yamoto, Ohya, and Ishii (1992), Brand and Essa (1995),
Brand, Oliver, and Pentland (1997), and Bobick and Ivanov (1998) present techniques for learning temporal
event definitions from video but the learned definitions are neither relational nor force dynamic. Pinhanez
and Bobick (1995) and Brand (1997a) present temporal, relational event definitions that recognize events
in video but these definitions are neither learned nor force dynamic. Brand (1997b) and Mann and Jepson
(1998) present techniques for analyzing force dynamics in video but neither formulate event definitions nor
apply these techniques to recognizing events or learning event definitions.

8.2 Learning Temporal Patterns

We divide this body of work into three main categories: temporal data mining, inductive logic programming,
and finite-state machine induction.

Temporal Data Mining. The sequence-mining literature contains many general-to-specific (“levelwise”)
algorithms for finding frequent sequences (Agrawal & Srikant, 1995; Mannila, Toivonen, & Verkamo, 1995;
Kam & Fu, 2000; Cohen, 2001; Hoppner, 2001). Here we explore aspecific-to-general approach. In this
previous work, researchers have studied the problem of mining temporal patterns using languages that are
interpreted as placing constraints on partially or totallyordered sets of time-points, e.g., sequential patterns
(Agrawal & Srikant, 1995) and episodes (Mannila et al., 1995). These languages place constraints on time-
points rather than time-intervals as in our work here. More recently there has been work on mining temporal
patterns using interval-based pattern languages (Kam & Fu,2000; Cohen, 2001; Hoppner, 2001).

Though the languages and learning frameworks vary among these approaches they share two central
features which distinguish them from our approach. First, they all typically have the goal of finding all
“frequent” patterns (formulas) within a temporal data set—our approach is focused on finding patterns with
a frequency of one (covering all positive examples). Our first learning application of visual event recognition
has not yet required us to find patterns with frequency less than one; however, there are a number of ways in
which we can extend our method in that direction when it becomes necessary (e.g., to deal with noisy training
data). Second, these approaches all use standard general-to-specific “level-wise” search techniques, whereas
we chose to take a specific-to-general approach. One direction for future work is to develop a general-
to-specific “level-wise” algorithm for finding frequent MA formulas and to compare it with our specific-to-
general approach. Another direction is to design a “level-wise” version of our specific-to-general algorithm—
where for example, the results obtained for the k-AMA LGG canbe used to more efficiently calculate the
(k+1)-AMA LGG. Whereas a “level-wise” approach is conceptually straightforward in a general-to-specific

30

LEARNING TEMPORAL EVENTS

framework it is not so clear in the specific-to-general case.We are not familiar with other temporal data-
mining systems that take a specific-to-general approach.

First-Order Learning In Section 4.3, we pointed out difficulties in using existingfirst-order clausal gen-
eralization techniques for learning AMA formulas. In spiteof these difficulties, it is still possible to represent
temporal events in first-order logic (either with or withoutcapturing the AMA semantics precisely) and to
apply general-purpose relational learning techniques, e.g., inductive logic programming (ILP) (Muggleton
& De Raedt, 1994). Most ILP systems require both positive andnegative training examples and hence are
not suitable for our current positive-only framework—exceptions include Golem (Muggleton & Feng, 1992),
Claudien (De Raedt & Dehaspe, 1997), and Progol (Muggleton,1995), among others. While we have not
performed a full evaluation of these systems, our early experiments in the visual event recognition domain
confirmed our belief that horn clauses, lacking special handling of time, give a poor inductive bias. In partic-
ular, many of the learned clauses find patterns that simply “do not make sense” from a temporal perspective,
and in turn generalize poorly. We believe a reasonable alternative to our approach may be to incorporate syn-
tactic biases into ILP systems as done, for example, in (Cohen, 1994; Dehaspe & De Raedt, 1996; Klingspor,
Morik, & Rieger, 1996). In this work, however, we chose to work directly in a temporal logic representation.

Finite-State Machines Finally, we note there has been much theoretical and empirical research into learn-
ing finite-state machines (FSMs) (Angluin, 1987; Lang, Pearlmutter, & Price, 1998). We can view FSMs as
describing properties of strings (symbol sequences). In our case, however, we are interested in describing
sequences of propositional models rather than just sequences of symbols. This suggests learning a type of
’factored’ FSM where the arcs are labeled by sets of propositions rather than by single symbols. Factored
FSM may be a natural direction in which to extend the expressiveness of our current language (for example
by allowing repetition). We are not aware of work concerned with learning ’factored’ FSMs; however, it is
likely that inspiration can be drawn from symbol-based FSM learning algorithms.

9. Conclusion

We have presented a simple logic for representing temporal events called AMA and have shown theoretical
and empirical results for learning AMA formulas. Empirically, we’ve given the first system for learning tem-
poral, relational, force-dynamic event definitions from positive-only input and we have applied that system to
learn such definitions from real video inputs. The resultingperformance matches that of event definitions that
are hand-coded with substantial effort by human domain experts. On the theoretical side, Table 3 summarizes
the upper and lower bounds we have shown for the subsumption and generalization problems associated with
this logic. In each case, we have provided a provably correctalgorithm matching the upper bound shown.
The table also shows the worst-case size that the smallest LGG could possibly take relative to the input size,
for both AMA and MA inputs. The key results in this table are the polynomial-time MA subsumption and
AMA syntactic subsumption, the coNP lower bound for AMA subsumption, the exponential size of LGGs
in the worst case, and the apparently lower complexity of syntactic AMA LGG versus semantic LGG. We
described how to build a learner based on these results and applied it to the visual-event learning domain. To
date, however, the definitions we learn are neither cross-modal nor perspicuous. And while the performance
of the learned definitions matches that of hand-coded ones, we wish to surpass hand coding. In the future, we
intend to address cross-modality by applying our learning technique to the planning domain. We also believe
that addressing perspicuity will lead to improved performance.

References

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In International Conference on Data Engi-
neering, pp. 3–14.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals.Communications of the ACM, 26(11),
832–843.

31

FERN, GIVAN , & SISKIND

Subsumption Semantic AMA LGG Syntactic AMA LGG
Inputs Semantic Syntactic Lower Upper Size Lower Upper Size
MA P P P coNP EXP P coNP EXP
AMA coNP-complete P coNP NEXP 2-EXP? P coNP EXP

Table 3: Complexity Results Summary. The LGG complexities are relative toinput plus outputsize. The
size column reports the worst-case smallest correct outputsize. The “?” indicates a conjecture.

Angluin, D. (1987). Learning regular sets from queries and counterexamples.Information and Computation,
75, 87–106.

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control knowledge for planning.
Artificial Intelligence, 16, 123–191.

Bobick, A. F., & Ivanov, Y. A. (1998). Action recognition using probabilistic parsing. InProceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 196–202, Santa
Barbara, CA.

Borchardt, G. C. (1985). Event calculus. InProceedings of the Ninth International Joint Conference on
Artificial Intelligence, pp. 524–527, Los Angeles, CA.

Brand, M. (1997a). The inverse hollywood problem: From video to scripts and storyboards via causal anal-
ysis. InProceedings of the Fourteenth National Conference on Artificial Intelligence, pp. 132–137,
Providence, RI.

Brand, M. (1997b). Physics-based visual understanding.Computer Vision and Image Understanding, 65(2),
192–205.

Brand, M., & Essa, I. (1995). Causal analysis for visual gesture understanding. InProceedings of AAAI Fall
Symposium on Computational Models for Integrating Language and Vision.

Brand, M., Oliver, N., & Pentland, A. (1997). Coupled hiddenMarkov models for complex action recognition.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

Cohen, P. (2001). Fluent learning: Elucidation the structure of episodes. InSymposium on Intelligent Data
Analysis.

Cohen, W. (1994). Grammatically biased learning: Learninglogic programs using an explicit antecedent
description lanugage.Artificial Intelligence, 68, 303–366.

Cohen, W., & Hirsh, H. (1994). Learnability of the classic description logic: Theoretical and experimental
results. In4th International Knowledge Representation and Reasoning, pp. 121–133.

De Raedt, L., & Dehaspe, L. (1997). Clausal discovery.Machine Learning, 26, 99–146.

Dehaspe, L., & De Raedt, L. (1996). Dlab: A declarative language bias formalism. InInternational Syposium
on Methodologies for Intelligent Systems, pp. 613–622.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to theapplication of theorem proving to problem
solving. Artificial Intelligence, 2(3/4).

Hoppner, F. (2001). Discovery of temporal patterns—learning rules about the qualitative behaviour of time
series. In5th European Principles and Practice of Knowledge Discovery in Databases.

Kam, P., & Fu, A. (2000). Discovering temporal patterns for interval-based events. InInternational Confer-
ence on Data Warehousing and Knowledge Discovery.

Klingspor, V., Morik, K., & Rieger, A. D. (1996). Learning concepts from sensor data of a mobile robot.
Artificial Intelligence, 23(2/3), 305–332.

32

LEARNING TEMPORAL EVENTS

Lang, K., Pearlmutter, B., & Price, R. (1998). Results of theabbadingo one dfa learning competition and a
new evidence-driven state merging algorithm. InInternational Colloquium on Grammatical Inference.

Lavrac, N., Dzeroski, S., & Grobelnik, M. (1991). Learning nonrecursive definitions of relations with LINUS.
In Proceedings of the Fifth European Working Session on Learning, pp. 265–288.

Mann, R., & Jepson, A. D. (1998). Toward the computational perception of action. InProceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 794–799, Santa
Barbara, CA.

Mannila, H., Toivonen, H., & Verkamo, A. I. (1995). Discovery of frequent episodes in sequences. In
International Conference on Data Mining and Knowledge Discovery.

Mitchell, T. (1982). Generalization as search.Artificial Intelligence, 18(2), 517–42.

Muggleton, S. (1995). Inverting entailment and Progol. InMachine Intelligence, Vol. 14, pp. 133–188.
Oxford University Press.

Muggleton, S., & Feng, C. (1992). Efficient induction of logic programs. In Muggleton, S. (Ed.),Inductive
Logic Programming, pp. 281–298. Academic Press.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.Journal of Logic
Programming, 19/20, 629–679.

Pinhanez, C., & Bobick, A. (1995). Scripts in machine understanding of image sequences. InAAAI Fall
Symposium Series on Computational Models for Integrating Language and Vision.

Plotkin, G. D. (1971).Automatic Methods of Inductive Inference. Ph.D. thesis, Edinburgh University.

Regier, T. P. (1992).The Acquisition of Lexical Semantics for Spatial Terms: A Connectionist Model of
Perceptual Categorization. Ph.D. thesis, University of California at Berkeley.

Roth, D., & Yih, W. (2001). Relational learning via propositional algorithms: An information extraction case
study. InProeedings of the Seventeenth International Joint Conference on Artificial Intelligence.

Siskind, J. M. (2001). Grounding the lexical semantics of verbs in visual perception using force dynamics
and event logic.Journal of Artificial Intelligence Research, 15, 31–90.

Siskind, J. M., & Morris, Q. (1996). A maximum-likelihood approach to visual event classification. In
Proceedings of the Fourth European Conference on Computer Vision, pp. 347–360, Cambridge, UK.
Springer-Verlag.

Talmy, L. (1988). Force dynamics in language and cognition.Cognitive Science, 12, 49–100.

Yamoto, J., Ohya, J., & Ishii, K. (1992). Recognizing human action in time-sequential images using hid-
den Markov model. InProceedings of the 1992 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 379–385. IEEE Press.

Appendix A. Internal Positive Event Logic

Here we give the syntax and semantics for an event logic called Internal Positive Event Logic (IPEL). This
logic is used in the main text only to motivate our choice of a small subset of this logic, AMA, by showing,
in Proposition 4, that AMA can define any set of models that IPEL can define.

An event type (i.e., set of models) is said to beinternal if whenever it contains any modelM = hM; Ii,
it also contains any model that agrees withM on truth assignmentsM [i℄ wherei 2 I . Full event logic
allows the definition of non-internal events, for example: the formula	 = 3<P is satisfied byhM; Ii when
there is some intervalI 0 entirely precedingI such thatP is satisfied byhM; I 0i, thus	 is not internal. The
applications we are considering do not appear to require non-internal events, thus we currently only consider
events that are internal.

Call an event typepositiveif it contains the modelM = hM; [1; 1℄i whereM(1) is the truth assignment
assigning all propositions the value “true”. A positive event type cannot require any proposition to be false at
any point in time.

33

FERN, GIVAN , & SISKINDI1 Relation I2 English Definition Inverse[m1;m2℄ s [n1; n2℄ starts m1 = n1 andm2 � n2 si[m1;m2℄ f [n1; n2℄ finishes m1 � n1 andm2 = n2 fi[m1;m2℄ d [n1; n2℄ during m1 � n1 andm2 � n2 di[m1;m2℄ b [n1; n2℄ before m2 � n1 bi[m1;m2℄ m [n1; n2℄ meets m2 = n1 or m2 + 1 = n1 mi[m1;m2℄ o [n1; n2℄ overlaps m1 � n1 � m2 � n2 oi[m1;m2℄ = [n1; n2℄ equals m1 = n1 andm2 = n2 =

Table 4: The Thirteen Allen Relations (adapted to our semantics).

IPEL is a fragment of full propositional event logic that canonly describe positive internal events. We
conjecture, but have not yet proven, that all positive internal events representable in the full event logic of
Siskind (2001) can be represented by some IPEL formula. Formally, the syntax of IPEL formulas is given byE ::= true j prop j E1 _ E2 j 3R0E1 j E1 ^R E2;
where theEi are IPEL formulas,prop is a primitive proposition (sometimes called primitive event-type),R is a subset of the thirteen Allen interval relationsfs; f; d; b;m; o;=; si; fi; di; bi; ai; oig (Allen, 1983),
andR0 is a subset of the restricted set of Allen relationsfs; f; d;=g (the semantics for each Allen relation is
given below). The difference between IPEL syntax and that offull propositional event logic is that event logic
allows for a negation operator, and that, in full event logic,R0 can be any subset of all thirteen Allen relations.
The operatorŝ and; used to define AMA formulas are merely abbreviations for the IPEL operatorŝ f=g
and^fmg respectively, so AMA is a subset of IPEL (though a distinguished subset as indicated by Proposition
4).

Each of the thirteen interval Allen relations are binary relations on the set of closed natural-number
intervals. Table 4 gives the definitions of these relations,defining[m1;m2℄ r [n1; n2℄ for each Allen relationr. Satisfiability for IPEL formulas can now be defined as follows,� true is satisfied by every model.� prop is satisfied by modelhM; Ii iff M [x℄ assignsprop true for everyx 2 I .� E1 _E2 is satisfied by a modelM iff M satisfiesE1 orM satisfiesE2.� 3RE is satisfied by modelhM; Ii iff for somer 2 R there is an intervalI 0 such thatI 0 r I andhM; I 0i

satisfiesE.� E1 ^R E2 is satisfied by modelhM; Ii iff for some r 2 R there exists intervalsI1 andI2 such thatI1 r I2, SPAN(I1; I2) = I and bothhM; I1i satisfiesE1 andhM; I2i satisfiesE2.
whereprop is a primitive proposition,E andEi are IPEL formulas,R is a set of Allen relations, and
SPAN(I1; I2) is the minimal interval that contains bothI1 andI2. From this definition it is easy to show
by induction on the number of operators and connectives in a formula that all IPEL formulas define internal
events. One can also verify that the definition of satisfiability given earlier for AMA formulas corresponds to
the one we give here.

34

LEARNING TEMPORAL EVENTS

Appendix B. Omitted Proofs

Lemma 1 For any MA timeline� and any modelM, ifM satisfies� then there is a witnessing interdigitation
for MAP(M) � �.

Proof: Assume thatM = hM; Ii satisfies the MA timeline� = s1; � � � ; sn, and let�0 = MAP(M). It is
straightforward to argue, by induction on the length of�, that there exists a mappingV 0 from states of� to
sub-intervals ofI , such that� for anyi 2 V 0(s), M [i℄ satisfiess,� V 0(s1) includes the initial timepoint ofI ,� V 0(sn) includes the final timepoint ofI , and� for anyi 2 [1; n� 1℄, we haveV 0(si) meetsV 0(si+1) (see Table 4).

Let V be the relation between statess 2 � and membersi 2 I that is true wheni 2 V 0(s). Note that
the conditions onV 0 ensure that everys 2 � and everyi 2 I appear in some tuple inV (not necessarily
together). Below we useV to construct a witnessing interdigitationW .

LetR be the total, one-to-one, onto function from time-points inI to corresponding states in�0, noting
that�0 has one state for each time-point inI , as�0 = MAP(hM; Ii. Note thatR preserves ordering in that,
wheni � j,R(i) is no later thanR(j) in �0. LetW be the compositionV ÆR of the relationsV andR.

We show thatW is an interdigitation. We first show that each state from� or�0 appears in a tuple inW ,
soW is piecewise total. States from� must appear, trivially, because each appears in a tuple ofV , andR is
total. States from�0 appear because eachi 2 I appears in a tuple ofV , andR is onto the states of�0.

It now suffices to show that for any statess beforet from �, W (s; s0) andW (t; t0) implies thatt is no
later thant0 in �0, so thatW is simultaneously consistent. The conditions definingV 0 above imply that every
number ini 2 V (s) is less than or equal to everyj 2 V (t). The order-preservation property ofR, noted
above, then implies that every states0 2 V ÆR(s) is no later than any statet0 2 V ÆR(t) in �0, as desired. SoW is an interdigitation.

We now argue thatW witnesses�0 � �. Considers 2 � and t 2 �0 such thatW (s; t). By the
construction ofW , there must bei 2 V 0(s) for which t is thei’th state of�0. Since�0 = MAP(M), it
follows that t is the set of true propositions inM [i℄. Sincei 2 V 0(s), we know thatM [i℄ satisfiess. It
follows thats � t, and sot � s. 2
Lemma 3 For anyE 2 IPEL, if modelM embeds any model that satisfiesE thenM satisfiesE.

Proof: Consider the modelsM = hM; Ii andM0 = hM 0; I 0i such thatM embedsM0, let� = MAP(M)
and�0 = MAP(M0). Assume thatE 2 IPEL is satisfied byM0, we will show thatE is also satisfied byM.

We know from the definition of embedding that� � �0 and thus there is a witnessing interdigitationW
for � � �0 by Proposition 2. We know there is a one-to-one correspondence between numbers inI (I 0) and
states of� (�0) and denote the state in� (�0) corresponding toi 2 I (i0 2 I 0) assi (ti0). This correspondence
allows us to naturally interpretW as a mappingV from subsets ofI 0 to subsets ofI as follows: forI 01 � I 0,V (I 01) equals the set of alli 2 I such that for somei0 2 I 01, si co-occurs withti0 in W . We will use the
following properties ofV ,

1. If I 01 is a sub-interval ofI 0, thenV (I 01) is a sub-interval ofI .

2. If I 01 is a sub-interval ofI 0, thenhM;V (I 01)i embedshM 0; I 01i.
3. If I 01 andI 02 are sub-intervals ofI 0, andr is an Allen relation, thenI 01rI 02 iff V (I 01)rV (I 02).
4. If I 01 andI 02 are sub-intervals ofI 0, thenV (SPAN(I 01; I 02)) = SPAN(V (I 01); V (I 02)).

35

FERN, GIVAN , & SISKIND

5. V (I 0) = I .

We sketch the proofs of these properties. 1) Use induction onthe length ofI 01, with the definition of
interdigitation. 2) SinceV (I 01) is an interval, MAP(hM;V (I 01)i) is well defined. MAP(hM;V (I 01)i) �
MAP(hM 0; I 01i) follows from the assumption thatM embedsM0. 3) From Appendix A, we see that all
Allen relations are defined in terms of the� relation on the natural number endpoints of the intervals. We
can show thatV preserves� (but not<) on singleton sets (i.e., every member ofV (fi0g) is� every member
of V (fj0g) wheni0 � j0) and thatV commutes with set union. It follows thatV preserves the Allen interval
relations. 4) Use the fact thatV preserves� in the sense just argued, along with the fact thatSPAN(I 01; I 02)
depends only on the minimum and maximum numbers inI 01 and I 02. 5) Follows from the definition of
interdigitation and the construction ofV .

We now use induction on the number of operators and connectives inE to prove that, ifM0 satisfiesE,
then so mustM. The base case is whenE = prop, whereprop is a primitive proposition, ortrue. SinceM0
satisfiesE, we know thatprop is true in allM 0[x0℄ for x0 2 I 0. SinceW witnesses� � �0, we know that, if
prop is true inM 0[x℄, thenprop is true in allM [x℄, wherex 2 V (x0). Therefore, sinceV (I 0) = I , prop is
true for allM 0[x℄, wherex 2 I , henceM0 satisfiesE.

For the inductive case, assume that the claim holds for IPEL formulas with fewer thanN operators and
connectives—letE1; E2 be two such formulas. WhenE = E1 _ E2, the claim trivially holds. WhenE = 3RE1, R must be a subset of the set of relationsfs; f; d;=g. Notice thatE can be written as a
disjunction of3rE1 formulas, wherer is a single Allen relation fromR. Thus, it suffices to handle the case
whereR is a single Allen relation. SupposeE = 3fsgE1. SinceM0 satisfiesE, there must be a sub-intervalI 01 of I 0 such thatI 01 s I 0 andhM 0; I 01i satisfiesE1. Let I1 = V (I 01), we know from the properties ofV thatV (I 0) = I , and, hence, thatI1 s I . Furthermore, we know thathM; I1i embedshM 0; I 01i, and, thus, by the
inductive hypothesis,hM; I1i satisfiesE1. Combining these facts, we get thatE is satisfied byM. Similar
arguments hold for the remaining three Allen relations. Finally, consider the case whenE = E1 ^R E2,
whereR can be any set of Allen relations. Again, it suffices to handlethe case whenR is a single Allen
relationr. SinceM0 satisfiesE = E1 ^r E2, we know that there are sub-intervalsI 01 andI 02 of I 0 such
thatSPAN(I 01; I 02) = I 0, I 01 r I 02, hM 0; I 01i satisfiesE1, andhM 0; I 02i satisfiesE2. From these facts, and the
properties ofV , it is easy to verify thatM satisfiesE. 2
Lemma 5 Given an MA formula� that subsumes each member of a set� of MA formulas,� also subsumes
some member�0 of IG(�). Dually, when� is subsumed by each member of�, we have that� is also
subsumed by some member�0 of IS(�). In each case, the length of�0 can be bounded by the size of�.

Proof: We prove the result for IG(�)—the proof for IS(�) follows similar lines. Let� = f�1; : : : ;�ng,� = s1; � � � ; sm, and assume that for each1 � i � n, �i � �. From Proposition 2, for eachi, there is a
witnessing interdigitationWi for �i � �. We will combine theWi into an interdigitation of�, and show
that the corresponding member of IG(�) is subsumed by�.

To construct an interdigitation of�, first notice that, for eachsj , eachWi specifies a set of states (possibly
a single state but at least one) from�i that all co-occur withsj . Furthermore, sinceWi is an interdigitation,
it is easy to show that this set of states corresponds to a consecutive sub-sequence of states from�i—let�j;i
be the MA timeline corresponding to this subsequence. Now let �j = f�j;i j 1 � i � ng, and�j be any
interdigitation of�j . We now takeI to be the union of all�j , for 1 � j � m.

We show thatI is an interdigitation of�. Since each states appearing in� must co-occur with at least
one statesj in � in at least oneWi, s will be in at least one tuple of�j , and, hence, be in some tuple ofI—soI is piecewise total.

Now, define the restrictionI i;j of I to componentsi and j, with i < j, to be the relation given by
taking the set of all pairs formed by shortening tuples ofI by omitting all components except thei’th and
thej’th. Likewise define�i;jk for eachk. To showI is an interdigitation, it now suffices to show that eachI i;j is simultaneously consistent. Consider statessi andsj from timelines�i and�j , respectively, such thatI i;j(si; sj). Suppose thatti occurs aftersi in �i, and for sometj 2 �j , I i;j(ti; tj) holds. It suffices to show

36

LEARNING TEMPORAL EVENTS

thatsj is no later thantj in �j . SinceI i;j(si; sj) andI i;j(ti; tj), we must have�i;jk (si; sj) and�i;jk0 (ti; tj),
respectively, for somek andk0. We knowk � k0 becausesi is beforeti in �i andWi is simultaneously
consistent. Ifk = k0, thensj is no later thantj in �j , because�k must be simultaneously consistent, being an
interdigitation. Otherwise,k < k0. Thensj is no later thantj in �j , as desired, becauseWj is simultaneously
consistent. SoI is simultaneously consistent, and an interdigitation of�.

Let�0 be the member of IG(�) corresponding toI . We now show that�0 � �. We know that each states0 2 �0 is the intersection of the states in a tuple of some�j—we say thats0 derives from�j . Consider the
interdigitationI 0 between� and�0, whereI(sj ; s0), for sj 2 � ands0 2 �0, if and only if s0 derives fromIj . I 0 is piecewise total, as every tuple ofI derives from some�j , and no�j is empty.I 0 is simultaneously
consistent because tuples ofI deriving from later�k must be later in the lexicographic ordering ofI , given
the simultaneous consistency of theWk interdigitations used to construct each�j . Finally, we know thatsj
subsumes (i.e., is a subset of) each state in each tuple of�j , because eachWk is a witnessing interdigitation
to �k � �, and, hence, subsumes (is a subset of) the intersection of those states. Therefore, ifsj 2 �
co-occurs withs0 2 �0 in I 0 we have thats0 � sj . Thus,I 0 is a witnessing interdigitation for�0 � �, and by
Proposition 2 we have�0 � �.

The size bound on�0 follows, since, as pointed out in the main text, the size of any member of IG(�) is
upper-bounded by the number of states in�. 2
Lemma 8 Given MA timelines�1 = s1; � � � ; sm and�2 = t1; � � � ; tn, there is a witnessing interdigitation
for �1 � �2 iff there is a path in the subsumption graphSG(�1;�2) fromv1;1 to vm;n.

Proof: The subsumption graphSG(�1;�2) is equal tohV;Ei with V = fvi;j j 1 � i � m; 1 � j � ng andE = fhvi;j ; vi0;j0i j si � tj ; si0 � tj0 ; i � i0 � i+ 1; j � j0 � j + 1g. Note that there is a correspondence
between vertices and state tuples—with vertexvi;j corresponding tohsi; tji.

For the forward direction, assume thatW is a witnessing interdigitation for�1 � �2. We know that, if
the statessi andtj co-occur inW , thensi � tj sinceW witnesses�1 � �2. The vertices corresponding
to the tuples ofW will be called co-occurrence vertices, and satisfy the firstcondition for belonging to some
edge inE (thatsi � tj). It follows from the definition of interdigitation that both v1;1 andvm;n are both co-
occurrence vertices. Consider a co-occurrence vertexvi;j not equal tovm;n, and the lexicographically least
co-occurrence vertexvi0 ;j0 aftervi;j (ordering vertices by ordering the pair of subscripts). We show thati, j,i0, andj0 satisfy the requirements forhvi;j ; vi0;j0i 2 E. If not, then eitheri0 > i+1 or j0 > j+1. If i0 > i+1,
then there can be no co-occurrence vertexvi+1;j00 , contradicting thatW is piecewise total. Ifj0 > j + 1,
then sinceW is piecewise total, there must be a co-occurrence vertexvi00;j+1: but if i00 < i or i00 > i0,
this contradicts the simultaneous consistency ofW , and if i00 = i, this contradicts the lexicographically least
choice ofvi0;j0 . It follows that every co-occurrence vertex butvm;n has an edge to another co-occurrence
vertex closer in Manhattan distance tovm;n, and thus that there is a path fromv1;1 to vm;n.

For the reverse direction assume there is a path of vertices in SG(�1;�2) from v1;1 to vm;n given by,vi1;j1 ; vi2;j2 ; : : : ; vir ;js with i1 = j1 = 1, ir = m; js = n. LetW be the set of state tuples corresponding to
the vertices along this path.W must be simultaneously consistent with the�i orderings because our directed
edges are all non-decreasing in the�i orderings.W must be piecewise total because no edge can cross more
than one state transition in either�1 or �2, by the edge set definition. SoW is an interdigitation. Finally,
the definition of the edge setE ensures that each tuplehsi; tji in W has the propertysi � tj , so thatW is a
witnessing interdigitation for�1 � �2, showing that�1 � �2, as desired. 2
Lemma 10 Given somen, let	 be the conjunction of the timelinesn[i=1f(PROPn;Truei;Falsei;PROPn); (PROPn;Falsei;Truei;PROPn)g:
We have the following facts about truth assignments to the Boolean variablesp1; : : : ; pn:

1. For any truth assignmentA, PROPn; sA;PROPn is semantically equivalent to some member ofIS().
37

FERN, GIVAN , & SISKIND

2. For each� 2 IS() there is a truth assignmentA such that� � PROPn; sA;PROPn.

Proof: To prove the first part of the lemma, we construct an interdigitationI of 	 such that the corresponding
member of IS() is equivalent to PROPn; sA;PROPn. Intuitively, we constructI by ensuring that some
tuple ofI consists only of states of the form Truek or Falsek that agree with the truth assignment—the union
of all the states in this tuple, taken by IS() will equalsA. Let I = fT0; T1; T2; T3; T4g be an interdigitation
of 	 with exactly five state tuplesTi. We assign the states of each timeline of	 to the tuples as follows:

1. For anyk, such that1 � k � n andA(pk) is true,� for the timelines1; s2; s3; s4 = Q;Truek;Falsek;Q, assign each statesi to tupleTi, and assign
states1 to T0 as well, and� for the timelines01; s02; s03; s04 = Q;Falsek;Truek;Q, assign each states0i to tupleTi�1, and
states04 to tupleT4 as well.

2. For anyk, such that1 � k � n andA(pk) is false, assign states to tuples as in item 1 while interchang-
ing the roles ofTruek andFalsek.

It should be clear thatI is piecewise total and simultaneously consistent with the state orderings in	, and so
is an interdigitation. The union of the states in each ofT0, T1, T3, andT4 is equal to PROPn, since PROPn is
included as a state in each of those tuples. Furthermore, we see that the union of the states inT2 is equal tosA. Thus, the member of IS() corresponding toI is equal to PROPn;PROPn; sA;PROPn;PROPn, which
is semantically equivalent to PROPn; sA;PROPn, as desired.

To prove the second part of the lemma, let� be any member of IS(). We first argue that every state in�
must contain either Truek or Falsek for each1 � k � n. For anyk, since	 contains PROPn;Truek;Falsek;
PROPn, every member of IS() must be subsumed by PROPn;Truek;Falsek;PROPn. So,� is subsumed
by PROPn;Truek;Falsek;PROPn. But every state in PROPn;Truek;Falsek;PROPn contains either Truek or
Falsek, implying that so does�, as desired.

Next, we claim that for each1 � k � n, either� � Truek or � � Falsek—i.e., either all states in�
include Truek, or all states in� include Falsek (and possibly both). To prove this claim, assume, for the sake
of contradiction, that, for somek, � 6� Truek and� 6� Falsek. Combining this assumption with our first
claim, we see there must be statess ands0 in � such thats containsTruek but notFalsek, ands0 containsFalsek but notTruek, respectively. Consider the interdigitationI of 	 that corresponds to� (as a member
of IS(). We know thats ands0 are each equal to the union of states in tuplesT andT 0, respectively, ofI .T andT 0 must each include one state from each timelines1; s2; s3; s4 = PROPn;Truek;Falsek;PROPn ands01; s02; s03; s04 = PROPn;Falsek;Truek;PROPn. Clearly, sinces does not include Falsek, T includes the statess1 ands02, and likewiseT 0 includes the statess2 ands01. It follows thatI is not simultaneously consistent
with the state orderings ins1; s2; s3; s4 ands01; s02; s03; s04, contradicting our choice ofI as an interdigitation.
This shows that either� � Truek or� � Falsek.

Define the truth assignmentA such that for all1 � k � n, A(pk) if and only if � � Truek. Since,for
eachk, � � Truek or � � Falsek, it follows that each state of� is subsumed bysA. Furthermore, since�
begins and ends with PROPn, it is easy to give an interdigitation of� and PROPn; sA;PROPn that witnesses� � PROPn; sA;PROPn. Thus, we have that� � PROPn; sA;PROPn. 2
Lemma 16 Let�1 and�2 be as given on page 17, in the proof of Theorem 17, and let	 = V IG(f�1;�2g).
For any	0 whose timelines are a subset of those in	 that omits some square timeline, we have	 < 	0.
Proof: Since the timelines in	0 are a subset of the timelines in	, we know that	 � 	0. It remains to show
that	0 6� 	. We show this by constructing a timeline that is covered by	0, but not by	.

Let � = s1; s2; � � � ; s2n�1 be a square timeline in	 that is not included in	0. Recall that eachsi
is a single proposition from the proposition setP = fpi;j j 1 � i � n; 1 � j � ng, and that, for
consecutive statessi and si+1, if si = pi;j , thensi+1 is eitherpi+1;j or pi;j+1. Define a new timeline

38

LEARNING TEMPORAL EVENTS� = s2; s3; � � � ; s2n�2 with si = (P � si). We now show that� 6� � (so that� 6�), and that, for any�0
in 	� f�g, � � �0 (so that� � 	0).

For the sake of contradiction, assume that� � �—then there must be a interdigitationW witnessing� � �. We show by induction oni that, for i � 2, W (si; sj) implies j > i. For the base case, wheni = 2, we know thats2 6� s2, sinces2 6� s2, and soW (s2; s2) is false, sinceW witnesses subsumption.
For the inductive case, assume the claim holds for alli0 < i, and thatW (si; sj). We know thatsi 6� si, and
thusi 6= j. BecauseW is piecewise total, we must haveW (si�1; sj0) for somej0, and, by the induction
hypothesis, we must havej0 > i�1. SinceW is simultaneously consistent with thesk andsk0 state orderings,
andi� 1 < i, we havej0 � j. It follows thatj > i as desired. Given this claim, we see thats2n�2 cannot
co-occur inW with any state in�, contradicting the fact thatW is piecewise total. Thus we have that� 6� �.

Let �0 = s01; � � � ; s0m be any timeline in	 � f�g, we now construct an interdigitation that witnesses� � �0. Note that while� is assumed to be square,�0 need not be. Letj be the smallest index wheresj 6= s0j— sinces1 = s01 = p1;1, and� 6= �0, we know that such aj must exist, and is in the range2 � j � m. We use the indexj to guide our construction of an interdigitation. LetW be an interdigitation
of � and�0, with exactly the following co-occurring states (i.e., state tuples):

1. For1 � i � j � 1, si+1 co-occurs withs0i.
2. Forj � i � m, sj co-occurs withs0i.
3. Forj + 1 � i � 2n� 2, si co-occurs withs0m.

It is easy to check thatW is both piecewise total and simultaneously consistent withthe state orderings in�
and�, and so is an interdigitation. We now show thatW witnesses� � �0 by showing that all states in�
are subsumed by the states they co-occur with inW . For co-occurring statessi+1 ands0i corresponding to
the first item above we have thats0i = si—this implies thats0i is contained insi+1, giving thatsi+1 � s0i.
Now consider co-occurring statessj ands0i from the second item above. Since� is square, choosek andl so
thatsj�1 = pk;l, we have thatsj is eitherpk+1;l or pk;l+1. In addition, sincesj�1 = s0j�1 we have thats0j
is eitherpk+1;l; pk;l+1 or pk+1;l+1 but thatsj 6= s0j . In any of these cases, we find that no state in�0 afters0j
can equalsj—this follows by noting that the proposition indices never decrease across the timeline�07. We
therefore have that, fori � j, sj � s0i. Finally, for co-occurring statessi ands0m from item three above, we
havesi � s0m, sinces0m = pn;n, which is in all states of�. Thus, we have shown that for all co-occurring
states inW , the state from� is subsumed by the co-occurring state in�0. Therefore,W witnesses� � �,
which implies that� � �. 2

7. Note that if� were not required to be square then it is possible fors0j+1 to equalsj—i.e., they could both equalpk+1;l+1.

39

FERN, GIVAN , & SISKIND

Appendix C. Hand-coded and Learned Definitions Used in Our Experiments

Below we give the two sets of hand-coded definitions, HD1 and HD2, used in our experimental evaluation.
We also give a set of learned AMA event definitions for the sameseven event-types. The learned definitions
correspond to the output of ourk-AMA learning algorithm, given all available training examples (30 exam-
ples per event-type), withk = 3 andD = NPN. All the event definitions are written in event logic, where: � p denotes the proposition corresponding to the negation of propositionp.

PICKUP(x; y; z) 4=
0BBBBBBBBBBBBBBBBBBBB�

:3x = y ^ :3z = x ^ :3z = y^
SUPPORTED(y) ^ :3ATTACHED(x; z)^8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
266664 :3ATTACHED(x; y) ^ :3SUPPORTS(x; y)^

SUPPORTS(z; y)^:3SUPPORTED(x) ^ :3ATTACHED(y; z)^:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x) 377775 ;[ATTACHED(x; y) _ ATTACHED(y; z)℄ ;266664 ATTACHED(x; y) ^ SUPPORTS(x; y)^:3SUPPORTS(z; y)^:3SUPPORTED(x) ^ :3ATTACHED(y; z)^:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x) 377775
9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
1CCCCCCCCCCCCCCCCCCCCA

PUTDOWN(x; y; z) 4=
0BBBBBBBBBBBBBBBBBBBB�

:3x = y ^ :3z = x ^ :3z = y^
SUPPORTED(y) ^ :3ATTACHED(x; z)^8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
266664 ATTACHED(x; y) ^ SUPPORTS(x; y)^:3SUPPORTS(z; y)^:3SUPPORTED(x) ^ :3ATTACHED(y; z)^:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x) 377775 ;[ATTACHED(x; y) _ ATTACHED(y; z)℄ ;266664 :3ATTACHED(x; y) ^ :3SUPPORTS(x; y)^

SUPPORTS(z; y)^:3SUPPORTED(x) ^ :3ATTACHED(y; z)^:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x) 377775
9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
1CCCCCCCCCCCCCCCCCCCCA

STACK(w; x; y; z) 4= 24 :3z = w ^ :3z = x ^ :3z = y^
PUTDOWN(w; x; y) ^ SUPPORTS(z; y)^:ATTACHED(z; y) 35

UNSTACK(w; x; y; z) 4= � :3z = w ^ :3z = x ^ :3z = y^
PICKUP(w; x; y) ^ SUPPORTS(z; y) ^ :ATTACHED(z; y) �

MOVE(w; x; y; z) 4= :3y = z ^ [PICKUP(w; x; y);PUTDOWN(w; x; z)℄
ASSEMBLE(w; x; y; z) 4= PUTDOWN(w; y; z) ^f<g STACK(w; x; y; z)

DISASSEMBLE(w; x; y; z) 4= UNSTACK(w; x; y; z) ^f<g PICKUP(x; y; z)
Figure 10: The HD1 event logic definitions for all seven event-types.

40

LEARNING TEMPORAL EVENTS

PICKUP(x; y; z) 4=
0BBBBBBBBBBBBBBBBBB�

:3x = y ^ :3z = x ^ :3z = y^
SUPPORTED(y) ^ :3ATTACHED(x; z)^8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
266664 :3ATTACHED(x; y) ^ :3SUPPORTS(x; y)^

SUPPORTS(z; y) ^ CONTACTS(z; y)^:3SUPPORTED(x) ^ :3ATTACHED(y; z)^:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x) 377775^f<;mg266664 ATTACHED(x; y) ^ SUPPORTS(x; y)^:3SUPPORTS(z; y)^:3SUPPORTED(x) ^ :3ATTACHED(y; z)^:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x) 377775
9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
1CCCCCCCCCCCCCCCCCCA

PUTDOWN(x; y; z) 4=
0BBBBBBBBBBBBBBBBBB�

:3x = y ^ :3z = x ^ :3z = y^
SUPPORTED(y) ^ :3ATTACHED(x; z)^8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
266664 ATTACHED(x; y) ^ SUPPORTS(x; y)^:3SUPPORTS(z; y)^:3SUPPORTED(x) ^ :3ATTACHED(y; z)^:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x) 377775^f<;mg266664 :3ATTACHED(x; y) ^ :3SUPPORTS(x; y)^

SUPPORTS(z; y) ^ CONTACTS(z; y)^:3SUPPORTED(x) ^ :3ATTACHED(y; z)^:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x) 377775
9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
1CCCCCCCCCCCCCCCCCCA

Figure 11: Part I of the HD2 event logic definitions.

41

FERN, GIVAN , & SISKIND

STACK(w; x; y; z) 4=
0BBBBBBBBBBBBBBBBBBBBBBBBBBBB�

:3w = x ^ :3y = w ^ :3y = x^:3z = w ^ :3z = x ^ :3z = y^
SUPPORTED(x) ^ :3ATTACHED(w; y)^8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

2666666664 ATTACHED(w; x) ^ SUPPORTS(w; x)^:3SUPPORTS(y; x)^
SUPPORTS(z; y) ^ CONTACTS(z; y)^:3ATTACHED(z; y)^:3SUPPORTED(w) ^ :3ATTACHED(x; y)^:3SUPPORTS(x;w) ^ :3SUPPORTS(x; y)^:3SUPPORTS(w; y) ^ :3SUPPORTS(y; w)

3777777775^f<;mg2666666664 :3ATTACHED(w; x) ^ :3SUPPORTS(w; x)^
SUPPORTS(y; x) ^ CONTACTS(y; x)^
SUPPORTS(z; y) ^ CONTACTS(z; y)^:3ATTACHED(z; y)^:3SUPPORTED(w) ^ :3ATTACHED(x; y)^:3SUPPORTS(x;w) ^ :3SUPPORTS(x; y)^:3SUPPORTS(w; y) ^ :3SUPPORTS(y; w)

3777777775
9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA
UNSTACK(w; x; y; z) 4=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB�

:3w = x ^ :3y = w ^ :3y = x^:3z = w ^ :3z = x ^ :3z = y^
SUPPORTED(x) ^ :3ATTACHED(w; y)^8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

2666666664 :3ATTACHED(w; x) ^ :3SUPPORTS(w; x)^
SUPPORTS(y; x) ^ CONTACTS(y; x)^
SUPPORTS(z; y) ^ CONTACTS(z; y)^:3ATTACHED(z; y)^:3SUPPORTED(w) ^ :3ATTACHED(x; y)^:3SUPPORTS(x;w) ^ :3SUPPORTS(x; y)^:3SUPPORTS(w; y) ^ :3SUPPORTS(y; w)

3777777775^f<;mg2666666664 ATTACHED(w; x) ^ SUPPORTS(w; x)^:3SUPPORTS(y; x)^
SUPPORTS(z; y) ^ CONTACTS(z; y)^:3ATTACHED(z; y)^:3SUPPORTED(w) ^ :3ATTACHED(x; y)^:3SUPPORTS(x;w) ^ :3SUPPORTS(x; y)^:3SUPPORTS(w; y) ^ :3SUPPORTS(y; w)

3777777775
9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA
MOVE(w; x; y; z) 4= :3y = z ^ [PICKUP(w; x; y);PUTDOWN(w; x; z)℄

ASSEMBLE(w; x; y; z) 4= PUTDOWN(w; y; z) ^f<g STACK(w; x; y; z)
DISASSEMBLE(w; x; y; z) 4= UNSTACK(w; x; y; z) ^f<g PICKUP(x; y; z)

Figure 12: Part II of the HD2 event logic definitions.

42

LEARNING TEMPORAL EVENTS

PICKUP(x; y; z) 4=
0BB�

8>><>>: SUPPORTED(y);�
SUPPORTED(y) ^ ATTACHED(x; y)^
ATTACHED(y; z) � ;[SUPPORTED(y) ^ ATTACHED(x; y)℄ 9>>=>>;^8<: [SUPPORTED(y) ^ CONTACTS(y; z)℄ ;[SUPPORTED(y) ^ ATTACHED(y; z)℄ ;[SUPPORTED(y) ^ ATTACHED(x; y)℄ 9=;^8>>>><>>>>: 24 SUPPORTED(y) ^ SUPPORTS(z; y)^
CONTACTS(y; z) ^ :3SUPPORTS(x; y)^:3ATTACHED(x; y) ^ :3ATTACHED(y; z) 35 ;[SUPPORTED(y) ^ SUPPORTS(z; y)℄ ;[SUPPORTED(y) ^ ATTACHED(x; y)℄ 9>>>>=>>>>;^8>>>>>>>><>>>>>>>>:

24 SUPPORTED(y) ^ SUPPORTS(z; y)^
CONTACTS(y; z) ^ :3SUPPORTS(x; y)^:3ATTACHED(x; y) ^ :3ATTACHED(y; z) 35 ;

SUPPORTED(y);24 SUPPORTED(y) ^ SUPPORTS(x; y)^
ATTACHED(x; y) ^ :3SUPPORTS(z; y)^:3CONTACTS(y; z) ^ :3ATTACHED(y; z) 35

9>>>>>>>>=>>>>>>>>;^8>>>><>>>>: [SUPPORTED(y) ^ SUPPORTS(z; y)℄ ;[SUPPORTED(y) ^ ATTACHED(x; y)℄ ;24 SUPPORTED(y) ^ SUPPORTS(x; y)^
ATTACHED(x; y) ^ :3SUPPORTS(z; y)^:3CONTACTS(y; z) ^ :3ATTACHED(y; z) 35 9>>>>=>>>>;

1CCA
PUTDOWN(x; y; z) 4= 0BBBBBBBBBB�

8<: �
SUPPORTED(y) ^ ATTACHED(x; y) � ;�
SUPPORTED(y) ^ ATTACHED(x; y) ^ ATTACHED(y; z) � ;

SUPPORTED(y) 9=;^8>>>><>>>>: �
SUPPORTED(y) ^ ATTACHED(x; y) ^ ATTACHED(x; y)^:3SUPPORTS(z; y) ^ :3CONTACTS(y; z) ^ :3ATTACHED(y; z) � ;

SUPPORTED(y);�
SUPPORTED(y) ^ SUPPORTS(x; y) ^ CONTACTS(z; y)^:3SUPPORTS(x; y) ^ :3ATTACHED(x; y) � 9>>>>=>>>>;

1CCCCCCCCCCA
Figure 13: The learned 3-AMA definitions for PICKUP(x,y,z) and PUTDOWN(x,y,z).

43

FERN, GIVAN , & SISKIND0BB�

([SUPPORTED(y) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ ATTACHED(x; y)℄ ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x) ^ CONTACTS(x; y)℄)^([SUPPORTED(y) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ SUPPORTS(x; y) ^ ATTACHED(w; x) ^ ATTACHED(x; y) ^ ATTACHED(y; z)℄ ;[SUPPORTED(y) ^ SUPPORTED(x)SUPPORTS(y; x)℄)^([SUPPORTED(y) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(x; y) ^ SUPPORTS(y; x) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x)℄)^([SUPPORTED(y) ^ ATTACHED(w; x) ^ SUPPORTS(z; y) ^ CONTACTS(y; z)℄ ;[SUPPORTED(y) ^ ATTACHED(y; z)℄ ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x) ^ CONTACTS(y; z)℄)^([SUPPORTED(y) ^ ATTACHED(w; x) ^ SUPPORTS(z; y) ^ CONTACTS(y; z)℄ ;[SUPPORTED(y) ^ ATTACHED(w; x) ^ ATTACHED(y; z)℄ ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x)℄)^8><>: �
SUPPORTED(y) ^ ATTACHED(w; x) ^ SUPPORTS(z; y) ^ CONTACTS(y; z)^:3SUPPORTS(x; y) ^ :3SUPPORTS(y; x) ^ :3CONTACTS(x; y) ^ :3ATTACHED(x; y) � ;[SUPPORTED(y) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x)℄ 9>=>;^8>>><>>>: �
SUPPORTED(y) ^ ATTACHED(w; x) ^ SUPPORTS(z; y) ^ CONTACTS(y; z)^:3SUPPORTS(x; y) ^ :3SUPPORTS(y; x) ^ :3CONTACTS(x; y) ^ :3ATTACHED(x; y) � ;[SUPPORTED(y)℄ ;�
SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x) ^ CONTACTS(x; y) ^ CONTACTS(y; z)^:3SUPPORTS(x; y) ^ :3ATTACHED(w; x) ^ :3ATTACHED(x; y) ^ :3ATTACHED(y; z) � 9>>>=>>>;^([SUPPORTED(y) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ ATTACHED(w; x) ^ SUPPORTS(z; y) ^ CONTACTS(y; z)℄ ;[SUPPORTED(y) ^ SUPPORTED(x)℄)^([SUPPORTED(y) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ ATTACHED(w; x) ^ SUPPORTS(z; y) ^ SUPPORTED(x)℄ ;[SUPPORTED(y) ^ SUPPORTED(x)℄)^8><>: [SUPPORTED(y) ^ ATTACHED(w; x)℄ ;�
SUPPORTED(y) ^ CONTACTS(y; z) ^ SUPPORTS(z; y) ^ SUPPORTED(x)^:3SUPPORTS(x; y) ^ :3ATTACHED(x; y) � ;[SUPPORTED(y) ^ SUPPORTED(x)℄ 9>=>;^8><>: SUPPORTED(y);�
SUPPORTED(y) ^ CONTACTS(y; z) ^ SUPPORTS(z; y) ^ SUPPORTED(x)^neg3SUPPORTS(x; y) ^ :3ATTACHED(x; y) ^ :3ATTACHED(y; z) � ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x)℄ 9>=>;^([SUPPORTED(y) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ CONTACTS(y; z) ^ SUPPORTED(x)℄ ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTED(y)x℄)^8><>: [SUPPORTED(y) ^ ATTACHED(w; x)℄ ;[SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x)℄ ;�
SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x) ^ CONTACTS(x; y) ^ CONTACTS(y; z)^:3SUPPORTS(x; y) ^ :3ATTACHED(w; x) ^ :3ATTACHED(x; y) ^ :3ATTACHED(y; z) � 9>=>;^8>>><>>>: SUPPORTED(y);�
SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x) ^ SUPPORTS(z; y)^
CONTACTS(x; y) ^ CONTACTS(y; z) � ;�
SUPPORTED(y) ^ SUPPORTED(x) ^ SUPPORTS(y; x) ^ CONTACTS(x; y) ^ CONTACTS(y; z)^:3SUPPORTS(x; y) ^ :3ATTACHED(w; x) ^ :3ATTACHED(x; y) ^ :3ATTACHED(y; z) � 9>>>=>>>;

1CCA
Figure 14: The learned 3-AMA definition for STACK(w,x,y,z).

44

LEARNING TEMPORAL EVENTS

0BB�

8<: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x) ^ ATTACHED(y; z)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x) ^ CONTACTS(y; z)℄ 9=;^8<: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ CONTACTS(y; z)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(y; z)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x) ^ CONTACTS(y; z)℄ 9=;^8<: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ CONTACTS(x; y)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ ATTACHED(x; y)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x)℄ 9=;^8<: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ CONTACTS(y; z)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x)℄ 9=;^8>>>><>>>>: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x)℄ ;24 SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x) ^ SUPPORTS(z; y)^
CONTACTS(y; z) ^ ATTACHED(w; x) ^ :3SUPPORTS(x; y)^:3SUPPORTS(y; x) ^ :3CONTACTS(x; y) ^ :3ATTACHED(x; y) ^ :3ATTACHED(y; z) 35 9>>>>=>>>>;^8>><>>: �
SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ CONTACTS(x; y) ^ CONTACTS(y; z)^:3SUPPORTS(w; x) ^ :3SUPPORTS(x; y) ^ :3ATTACHED(w; x) ^ :3ATTACHED(x; y) � ;[SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x)℄ 9>>=>>;^8<: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ CONTACTS(y; z)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ ATTACHED(y; z)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x)℄ 9=;^8>><>>: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x)℄ ;�
SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ ATTACHED(y; z)^
SUPPORTS(x; y) ^ ATTACHED(w; x) ^ ATTACHED(x; y) � ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x)℄ 9>>=>>;^8<: [SUPPORTED(x) ^ SUPPORTED(y)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ ATTACHED(w; x)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(w; x) ^ ATTACHED(w; x)℄ 9=;^8<: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(w; x) ^ ATTACHED(w; x)℄ ;[SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x)℄ 9=;^8>>>>>><>>>>>>:

�
SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ CONTACTS(x; y) ^ CONTACTS(y; z)^:3SUPPORTS(w; x) ^ :3SUPPORTS(x; y) ^ :3ATTACHED(w; x) ^ :3ATTACHED(x; y) � ;[SUPPORTED(x) ^ SUPPORTED(y)℄ ;24 SUPPORTED(x) ^ SUPPORTED(y) ^ ATTACHED(w; x) ^ SUPPORTS(z; y)^
CONTACTS(y; z) ^ ATTACHED(w; x) ^ :3SUPPORTS(x; y)^:3SUPPORTS(y; x) ^ :3CONTACTS(x; y) ^ :3ATTACHED(x; y) ^ :3ATTACHED(y; z) 35

9>>>>>>=>>>>>>;^8>><>>: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x)℄ ;�
SUPPORTED(x) ^ SUPPORTED(y) ^ CONTACTS(y; z)^:3SUPPORTS(x; y) ^ :3ATTACHED(x; y) ^ :3ATTACHED(y; z) � ;[SUPPORTED(x) ^ SUPPORTED(y)℄ 9>>=>>;

1CCA
Figure 15: The learned 3-AMA definition for UNSTACK(w,x,y,z).

45

FERN, GIVAN , & SISKIND

0BB�

8<: [SUPPORTED(x) ^ SUPPORTS(y; x)℄ ;[SUPPORTED(x) ^ ATTACHED(w; x)℄ ;
SUPPORTED(x) 9=;^8<: SUPPORTED(x);[SUPPORTED(x) ^ ATTACHED(w; x) ^ ATTACHED(x; z)℄ ;
SUPPORTED(x) 9=;^8<: [SUPPORTED(x)℄ ;[SUPPORTED(x) ^ ATTACHED(x; z)℄ ;[SUPPORTED(x) ^ CONTACTS(x; z)℄ 9=;^8<: SUPPORTED(x);[SUPPORTED(x) ^ ATTACHED(w; x) ^ SUPPORTS(w; x)℄ ;
SUPPORTED(x) 9=;^8<: SUPPORTED(x);[SUPPORTED(x) ^ ATTACHED(w; x) ^ ATTACHED(y; x)℄ ;
SUPPORTED(x) 9=;^8<: [SUPPORTED(x) ^ CONTACTS(y; x)℄ ;[SUPPORTED(x) ^ ATTACHED(y; x)℄ ;
SUPPORTED(x) 9=;^8>>>>>>>><>>>>>>>>:
24 SUPPORTED(x) ^ SUPPORTS(y; x) ^ CONTACTS(y; x)^:3SUPPORTS(w; x) ^ :3SUPPORTS(z; x) ^ :3CONTACTS(x; z)^:3ATTACHED(w; x) ^ :3ATTACHED(y; x) ^ :3ATTACHED(x; z) 35 ;
SUPPORTED(x);24 SUPPORTED(x) ^ SUPPORTS(z; x) ^ CONTACTS(x; z)^:3SUPPORTS(w; x) ^ :3SUPPORTS(y; x) ^ :3CONTACTS(y; x)^:3ATTACHED(w; x) ^ :3ATTACHED(y; x) ^ :3ATTACHED(x; z) 35

9>>>>>>>>=>>>>>>>>;

1CCA
Figure 16: The learned 3-AMA definition for MOVE(w,x,y,z).

46

LEARNING TEMPORAL EVENTS

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

8>><>>: � :3SUPPORTED(x) ^ :3SUPPORTS(z; y) ^ :3SUPPORTS(y; x) ^ :3CONTACTS(x; Y)^:3CONTACTS(z; y) ^ :3ATTACHED(w; x) ^ :3ATTACHED(z; y) � ;
ATTACHED(w; y);
SUPPORTED(y) 9>>=>>;^8>>>><>>>>: � :3SUPPORTED(x) ^ :3SUPPORTS(z; y) ^ :3SUPPORTS(y; x) ^ :3CONTACTS(x; Y)^:3CONTACTS(z; y) ^ :3ATTACHED(w; x) ^ :3ATTACHED(z; y) � ;true;�

SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(z; y) ^ SUPPORTS(y; x)^
CONTACTS(x; y) ^ CONTACTS(z; y) ^ :3ATTACHED(w; y) � 9>>>>=>>>>;^8<: true;[SUPPORTED(y) ^ :3ATTACHED(w; x)^ 6 3ATTACHED(z; y)℄ ;

SUPPORTED(y) 9=;^8<: true;[SUPPORTED(y) ^ ATTACHED(z; y)℄ ;[SUPPORTED(y) ^ CONTACTS(z; y)℄ 9=;^8<: true;[SUPPORTED(y) ^ SUPPORTS(z; y)CONTACTS(z; y) ^ ATTACHED(w; x)℄ ;
SUPPORTED(y) 9=;^8<: true;[SUPPORTED(y) ^ ATTACHED(w; y)ATTACHED(z; y)℄ ;
SUPPORTED(y) 9=;

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
Figure 17: The learned 3-AMA definition for ASSEMBLE(w,x,y,z).

47

FERN, GIVAN , & SISKIND

0BB�

8>><>>: [SUPPORTED(x) ^ SUPPORTED(y)℄ ;�
SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(w; x)^
SUPPORTS(z; y) ^ CONTACTS(z; y) ^ ATTACHED(x;w) � ;

SUPPORTED(y) 9>>=>>;^8>><>>: �
SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(z; y)^
SUPPORTS(y; x) ^ CONTACTS(x; y) ^ CONTACTS(z; y) � ;[SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ ATTACHED(x; y)℄ ;

SUPPORTED(y) 9>>=>>;^8>><>>: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ CONTACTS(z; y)℄ ;�
SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(x; y)^
SUPPORTS(y; z) ^ ATTACHED(x; y) ^ ATTACHED(z; y) � ;

SUPPORTED(y) 9>>=>>;^8>><>>: [SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x)℄ ;�
SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(x; y)^
SUPPORTS(y; z) ^ ATTACHED(x; y) ^ ATTACHED(z; y) ^ ATTACHED(x;w) � ;

SUPPORTED(y) 9>>=>>;^8>>>>>>>>>><>>>>>>>>>>:
2664 SUPPORTED(x) ^ SUPPORTED(y) ^ SUPPORTS(y; x) ^ SUPPORTS(z; y)^

CONTACTS(x; y) ^ CONTACTS(z; y) ^ :3SUPPORTS(w; x)^:3SUPPORTS(w; y) ^ :3SUPPORTS(x; y) ^ :3ATTACHED(x;w)^:3ATTACHED(w; y) ^ :3ATTACHED(x; y) ^ :3ATTACHED(z; y) 3775 ;
SUPPORTED(y);24 SUPPORTED(y) ^ :3SUPPORTED(x) ^ :3SUPPORTS(w; x)^:3SUPPORTS(z; y) ^ :3SUPPORTS(y; x) ^ :3CONTACTS(x; y)^:3CONTACTS(z; y) ^ :3ATTACHED(x;w) ^ :3ATTACHED(z; y) 35 ;

9>>>>>>>>>>=>>>>>>>>>>;^8<: SUPPORTED(y);[SUPPORTED(y) ^ ATTACHED(w; y) ^ ATTACHED(z; y)℄ ;
SUPPORTED(y) 9=;^8<: SUPPORTED(y);[SUPPORTED(y) ^ SUPPORTS(w; y) ^ ATTACHED(w; y)℄ ;
SUPPORTED(y) 9=;

1CCA
Figure 18: The learned 3-AMA definition for DISASSEMBLE(w,x,y,z).

48

