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Abstract

We develop, analyze, and evaluate a novel specific-to-gelearner for a simple temporal logic, using
the resulting algorithm to learn visual event definitioranfrvideo sequences. First, we introduce a simple,
propositional, temporal, event-description languagéedahMA that is sufficiently expressive to represent
many events yet sufficiently restrictive to support leagnitwe then give algorithms along with lower and
upper complexity bounds for the subsumption and genetaliz@roblems for AMA formulas. We present
a positive-examples-only specific-to-general learningho@ based on these algorithms. We also present a
polynomial-time—computable “syntactic” subsumptiont that implies semantic subsumption without being
equivalent to it. A generalization algorithm based on sgtitassubsumption can be used in place of semantic
generalization to improve the asymptotic complexity of thsulting learning algorithm. Finally, we apply
this algorithm to the task of learning event definitions freiteo and show that it yields definitions that are
competitive with hand-coded ones.

1. Introduction

Humans conceptualize the world in terms of objects and evehhis is reflected in the fact that we talk
about the world using nouns and verbs. We perceive evertgtplace between objects, we interact with the
world by performing events on objects, and we reason abeueffiects that actual and hypothetical events
performed by us and others have on objects. Welalm new object and event types from novel experience.
In this paper, we present and evaluate novel implementbdigaes that allow a computer to learn new event
types from examples. We show results from an applicatiome$e techniques to learning new event types
from automatically constructed relational, force-dynadescriptions of video sequences.

We wish the acquired knowledge of event types to supportipiellmodalities. Humans can observe
someondaxing a letter for the first time and quickly be able to recogriizere occurrences of faxing, per-
form faxing, and reason about faxing. It thus appears likedy humans use and learn event representations
that are sufficiently general to support fast and efficiestinamultiple modalities. A long-term goal of our
research is to allow similar cross-modal learning and usseit representations. We intend the same learned
representations to be used for vision (as described in #pep, planning (something that we are beginning
to investigate), and robotics (something left to the future

A crucial requirement for event representations is thay ttegpture thenvariantsof an event type. Hu-
mans classify both picking up a cup off a table and picking wumbbell off the floor apicking up This
suggests that human event representationsedaional. We have an abstract relational notionpa¢king
up that is parameterized by the participant objects rather thstinct propositional notions instantiated for
specific objects. Humans also classify an evemielsng upno matter whether the hand is moving slowly or
quickly, horizontally or vertically, leftward or rightwelr or along a straight path or circuitous one. It appears
that it is not the characteristics of participant-objectiothat distinguistpicking upfrom other event types.
Rather, it is the fact that the object being picked up charfiges being supported by resting on its initial
location to be supported by being grasped by the agent. Tigigests that the primitive relations used to
build event representations dmrce dynamidTalmy, 1988).

Another desirable property of event representations isttigy beperspicuous Humans can introspect
and describe the defining characteristics of event typesh 8urospection is what allows us to create dic-
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tionaries. To support such introspection, we prefer a sepr&tion language that allows such characteristics
to be explicitly manifest in event definitions and not emetgmnsequences of distributed parameters as in
neural networks or hidden Markov models.

We develop a learner for an event representation possebsisg desired characteristics as follows. First,
we present a simple, propositional, temporal logic call&didithat is a sublanguage of a variety of familiar
temporal languages (e.g. linear temporal logic, or LTL @ars & Kabanza, 2000), temporal event logic
(Siskind, 2001)). This logic is expressive enough to désca variety of interesting temporal events, but
restrictive enough to support an effective learner, as weafstrate below. We proceed to develop a specific-
to-general learner for the AMA logic by giving algorithmsdacomplexity bounds for the subsumption and
generalization problems involving AMA formulas. While wiessv that semantic subsumption is intractable,
we provide a weaker syntactic notion of subsumption thatissgemantic subsumption but can be checked
in polynomial time. Our implemented learner is based up@ndyntactic subsumption.

We next show means to adapt this (propositional) AMA leatodearn relational concepts. We eval-
uate the resulting relational learner in a complete systanfefairning force-dynamic event definitions from
positive-only training examples given as real video seqgaen This is not the first system to perform vi-
sual event recognition from video. We review prior work amnpare it to the current work later in the
paper. In fact, two such prior systems have been buitiwllRD (Siskind & Morris, 1996) learns to classify
events from video using temporal, relational represemtatiBut these representations are not force dynamic.
LEONARD (Siskind, 2001) classifies events from video using tempoettional, force-dynamic representa-
tions but does not learn these representations. It usesaaylibf hand-code representations. This work adds
a learning component toHONARD, essentially duplicating the performance of the hand-datiinitions
automatically.

While we have demonstrated the utility of our learner in tieial event learning domain, we note that
there are many domains where interesting concepts takertimeof structured temporal sequences of events.
In machine planning, macro-actions represent useful teahpatterns of action. In computer security, typical
application behavior, represented perhaps as tempotarpsitof system calls, must be differentiated from
compromised application behavior (and likewise autharizger behavior from intrusive behavior).

In what follows, Section 2 introduces our application domai recognizing visual events. Section 3
describes the high-level construction of our learner. i8aat introduces the AMA language, syntax and
semantics, and several concepts needed in our analysis [#rthuage. Section 5 develops and analyzes al-
gorithms for the subsumption and generalization problentise language, and introduces the more practical
notion of “syntactic subsumption”. Section 6 extends th&bpropositional learner to handle relational data,
negation, and to control exponential run-time growth. Bect presents our results on visual event learning,
and Sections 8 and 9 compare to related work and conclude.

2. Recognizing Visual Events

L EONARD (Siskind, 2001) is a system for recognizing visual evertsifvideo camera input—an example of
a simple visual event is “a hand picking up a block”. This ezsh was originally motivated by the problem
of adding a learning component t&ebNARD. Below we briefly describe the system and the framework for
extending LEONARD to learn to recognize events.

LEONARDis a three-stage pipeline depicted in Figure 1. The raw iopusists of a video-frame sequence
depicting events. First, a segmentation-and-trackingamment transforms this input into a polygon movie: a
sequence of frames, each frame being a set of convex polydmresd around the tracked objects in the video.
Figure 2a shows a “partial” video sequence &fIEKUP event that is overlaid by the corresponding polygon
movie. Next, a model-reconstruction component transfahagpolygon movie into a force-dynamic model.
This model describes the changing support, contact, aadhattent relations between the tracked objects
over time. Figure 2b shows a visual depiction of the forcaaiyic model corresponding to tlRiCKUP
event. Finally, an event-recognition component armed witiorary of event definitions determines which
events occurred in the model and, accordingly, in the videigure 2c shows the “text” output and input
of the event-recognizer for tHel CKUP event. The first line corresponds to the output which indisdahe
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Figure 1: The upper boxes represent the three primary coemgsf LEONARD'S pipeline. The lower box
depicts the event-learning component described in thispdjne input to the learning component
consists of training models of a target event (e.g., movidalGKUP events) and the outputis an
event definition (e.g., a temporal logic formula definPICKUP).

interval(s) where @ICKUP occurred—the remaining lines are the text encoding of trenexecognizer
input (model-reconstruction output), indicating the timéervals in which various force-dynamic relations
are true in the video.

The event-recognition component of QNARD represents event types with event logic formulas like the
following simplified example, representingpicking upy off of z.

PIcKUP(z, y, 2) = (SUPPORTSz,y) A CONTACTS(2,y)); (SUPPORTSx, y) A ATTACHED(z,Yy))

This formula asserts that an eventiopicking upy off of z is defined as a sequence of two states where
supportsy by way of contact in the first state andsupportsy by way of attachment in the second state.
SUPPORTS CONTACTS, and ATTACHED are primitive force-dynamic relations. This formula is asific
example of the more general class of AMA formulas that we osrir learning, presented later in Section 4.

Prior to the work reported in this paper, the definitions IBONARD'S event recognition library were
hand coded. Here, we add a learning componentBEONARD so that it can learn to recognize events.
Figure 1 shows how the learning component fits into the oveyatem. The input to the learning com-
ponent consists of force-dynamic models from the modeabmstruction stage and its output consists of
event definitions which are used by the event-recognizertdkée a supervised learning approach where the
force-dynamic model-reconstruction process is appli¢dining videos of a target event-type—the resulting
force-dynamic models are then given to the learner whichiged a candidate definition of the event-type.
Note that our learning component does not require negatammples of the event type (i.e., movies depicting
non-occurrences).

3. Bottom-up Learning from Positive Data

In this work we present a specific-to-general positive-degrner for temporal events—our learning algo-
rithm is only given positive training examples (where thegét event occurs) and is not given negative
examples (where the target event does not occur). Thesitily setting is of interest as it appears that
humans are able to learn many event definitions given priynarrionly positive examples. From a practical
standpoint, a positive-only learner removes the oftendtiffitask of collecting negative examples that are
“representative” of what is not the event to be learned.

A typical learning domain specifies an example space (thectdbjwe wish to classify) and a concept
language (formulas that represent sets of examples thattwer). Generally we say a conceff is more
general (less specific) thary, if and only if C5 is a subset of'; —alternatively, a generality relation that may
not be equivalent to subset may be specified, often for coatipuntl reasons. Setting the goal of finding a
concept consistent with a set of positive-only trainingadggnerally results in the trivial solution of returning
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(PI CK-UP MOVING RED GREEN) @[ [0, 1],[ 14, 22])}
( SUPPORTED? RED) @[ [ 0: 22 ])}
( SUPPORTED? MOVING @[ [1:13]), [[24:26])}
(SUPPORTS? RED MOVING @[ [ 1:13]), [[24:26])}
(©) ( SUPPORTS? MOVING RED) @[ [ 13:22])}
( SUPPORTS? GREEN RED) @[[0: 14])}
( SUPPORTS? GREEN MOVING @[[1:13])}
(CONTACTS? RED GREEN) @[[0:2]), [[6:14])}
(ATTACHED? RED MOVING @[ [ 1: 26])}
(ATTACHED? RED GREEN) @[[1:6])}

Figure 2: LEONARDrecognizes ICKUP event. (a) Frames from the raw video input with the autoradiyic
generated polygon movie overlaid. (b) The same frames witiswal depiction of the automat-
ically generated force-dynamic properties. (c) The tepuinand output of the event classifier
corresponding to the depicted movie. The top line is the wdpd the remaining lines make up

the input that encodes the changing force-dynamic prasestier time.
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the most general concept in the language. To avoid addingtiregraining data, it is common to specify
the learning goal as finding the least-general concept thadrs all of the data With enough data and an
appropriate concept language, the least-general confteptapnverges usefully.

We take a standard specific-to-general machine-learnipgoaph to finding the least-general concept
covering a set of positive examples. Assume we have a cotarggiagel, and an example space The
approach relies on the computation of two functions: thetlganeral covering formula (LGCF) of an exam-
ple and the least-general generalization (LGG) of a setmhttas. An LGCF inL of an example ir5 is a
formulain L that covers the example such that no other covering fornsudtrictly less general. Intuitively,
the LGCF of an example, if unique, is the “most represengafiormula in L of that example. An LGG of
any subset of. is a formula more general than each formula in the subset anstrictly more general than
any other such formula. Neither the LGG nor the LGCF is guimeahto exist or be unique—these properties
must be shown for any language of interest.

Given the existence and uniqueness (up to concept equaglefh the LGCF and LGG, the specific-
to-general approach proceeds as follows. First, use theA_.t8Gransform each positive training instance
into a formula of L. Second, return the LGG of the resulting formulas. The retdrformula represents
the least-general concept in that covers all the positive training examples. This leagrapproach has
been pursued for a variety of concept languages includiagsal first-order logic (Plotkin, 1971), definite
clauses (Muggleton & Feng, 1992), and description logich@o& Hirsh, 1994). It is important to choose
an appropriate concept language as a bias for this learpimgach or the concept returned may simply be
(or resemble) one of two extremes, either the disjunctiahetraining data or the universal concept.

In this work, the concept language is the AMA temporal evegtd presented below and the example
space is the set of all models of that logic. Intuitively, aining example depicts a model where a target
event occurs. (The models can be thought of as movies.) Weavikider two notions of generalization for
AMA concepts (semantic generalization and a weaker syintastinterpart) and, under both notions, study
the properties and computation of the LGCF and LGG.

4. Representing Events with AMA

We study a subset of an interval-based logic cabednt logic(Siskind, 2001) utilized by EONARD for
event recognition in video sequences. This logic is “ingtased” in explicitly representing each of the
possible interval relationships given originally by Alléh983) in his calculus of interval relations (e.g.,
“overlaps”, “meets”, “during”). Event logic formulas aillothe definition of event-types which can specify
static properties of intervals directly and dynamic preigsrby hierarchically relating sub-intervals using
the Allen relations. In this paper the formal syntax and sra of full event logic are needed only for
Proposition 4 and are given in Appendix A.

Here we restrict our attention to a much simpler subset ofitdegic we call AMA, defined below. We
believe that our choice of event logic rather than first-oddgic, as well as our restriction to the AMA
fragment of event logic, provide a useful learning bias Hinguout a large number of ‘practically useless’
concepts while maintaining substantial expressive powae practical utility of this bias is demonstrated
via our empirical results in the visual event recognitioplagation. AMA can also be seen as a restriction
of LTL to conjunction and “Until”, with similar motivationsBelow we present the syntax and semantics of
AMA along with some of the key technical properties of AMA thwll be used throughout this paper.

4.1 AMA Syntax and Semantics

Itis natural to describe temporal events by specifying asage of properties that must hold over consecutive
time-intervals; e.g., “a hand picking up a block” might bem“the block is not supported by the hand
and then the block is supported by the hand.” We represehtseguences witMA timeline$, which are

1. In some cases, there can be more than one such leastigemarept. The set of all such concepts is called the “spdodimdary
of the version space” (Mitchell, 1982).
2. MA stands for “Meets/And”, an MA timeline being the “Meeatf a sequence of conjunctively restricted intervals.
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sequences of conjunctive state restrictions. IntuitivatyMA timeline is given by a sequence of propositional
conjunctions, separated by semi-colons, and is taken t@sept the set of events that temporally match
the sequence of consecutive conjunctions. An AMA formulthen the conjunction of a number of MA
timelines, representing events that can be simultaneoieshed as satisfying each of the conjoined timelines.
Formally, the syntax of AMA formulas is given by,

state := true | prop| propA state
MA = (state | (statg; MA /l may omit parens
AMA = MA|MAAAMA

whereprop is any primitive proposition (sometimes called a primitexgent-type). We take this grammar to
formally define the terms “MA timeline”, “MA formula”, “AMA brmula”, and “state”. Ak-MA formula is

an MA formula with at mosk states, and &-AMA formula is an AMA formula all of whose MA timelines
arek-MA timelines. We often treat states as proposition setfh(tviue the empty set) and AMA formulas as
MA timeline sets. We may also treat MA formulas as sets oéstatit is important to note, however, that MA
formulas may contain duplicate states, and the duplicat#onbe significant. For this reason, when treating
MA timelines as sets, we formally intend setsstéte-index pairgwhere the index gives a states position
in the formula). We do not indicate this explicitly to avoidaimbering our notation, but the implicit index
must be remembered whenever handling duplicate states.

The semantics of AMA formulas is defined in terms of temporatlels. A temporal modeW = (M, 7)
over the set of propositions PROP is a pair of a mappifigrom the natural numbers (representing time)
to the truth assignments over PROP, and a closed naturalevimtervall. We note that Siskind (2001)
gives a continuous-time semantics for event logic wherartbdels are defined in terms of real-valued time-
intervals. The temporal models defined here use discreteatatumber time-indices; however, our results
here still apply under the continuous-time semantics @katantics bounds the number of state changes in
the continuous timeline to a countable number). It is img@airto note that the natural numbers in the domain
of M are representing time discretely, but that there is no pitestt unit of continuous time represented by
each natural number. Instead, each number representsitmardyblong period of continuous time during
which nothing changed. Similarly, the “states” in our MA &times represent arbitrarily long periods of time
during which the conjunctive restriction given by the stadéds. The satisfiability relation for AMA formulas
is given as follows:

e A states is satisfied by mod€lM/, I) iff M[z] assignsP true for everyx € I andP € s.

e An MAtimeline s;; sa; - - - 5 55, is satisfied by a modélM, [¢, ¢']) iff there exists somé&” in [¢,t'] such
that (M, [¢,¢"']) satisfiess; and eitheg M, [t",¢']) or (M, [t" + 1,t']) satisfiesse; - -; sp.

e An AMA formula ®; A &5 A ... A ®,, is satisfied byM iff each®; is satisfied byM.

The condition defining satisfaction for MA timelines may app unintuitive at first due to the fact that
there are two ways that;;---;s, can be satisfied. The reason for this becomes clear by mgahiat
we are using the natural numbers to represent continuowsititervals. Intuitively, from a continuous-
time perspective, an MA timeline is satisfied if there aressmutive continuous-time intervals satisfying the
sequence of consecutive states of the MA timeline. Theitiandetween consecutive statgsands;; can
occur either within an interval of constant truth assigntb{#irat happens to satisfy both states) or exactly at
the boundary of two time intervals of constant truth valuethle above definition, these cases correspond to
s2;---; 8, being satisfied during the time intervd®, ¢'] and[t"” + 1,t'], respectively.

WhenM satisfiesb we sayM is a model of®. We say AMAY; subsumedMA ¥, iff every model of
¥, is a model of¥,, written U5 < ¥, and we say¥; properly subsume®,, written U5 < ¥, when we
also havel; £ ¥,. Alternatively, we may stat&, < ¥; by saying thatV; is more general (or less specific)
than¥, orthat¥; covers?¥,. Siskind (2001) provides a method to determine whetherengivodel satisfies
a given AMA formula.
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Finally, it will be useful to associate a distinguished Mféline to a model. Th& A-projectionof a
modelM = (M, [i, j]) (written as MAR.M)) is an MA timelinesy; s1;- - -; s;—; Where states;, gives the
true propositions il (i + k) for 0 < k < j — i. Later we show that the MA-projection of a model can be
viewed as “representing” that model in a precise sense.

The following two examples illustrate some basic behawidsMA formulas.

Example 1 (Stretchability) The MA timelineS;; S2; S3, S1;52;52;--;52;53, andSy;S1; So;.S3; 53;.53
are all equivalent. In general, MA timelines have the prapéhnat duplicating any state results in a formula
equivalent to the original formula. Recall that, given a rabd\/, I'), we view each truth assignmeit[z] as
representing a continuous time-interval—this intervah c@nceptually be divided into an arbitrary number
of subintervals. Thus if statg is satisfied by M, [z, «]), then so is the state sequernggS;---; S.

Example 2 (Infinite Descending Chains) Given propositicAsand B, the MA timeline® = (A A B) is
subsumed by each of the formuldsB, A;B; A; B, A;B; A; B; A; B, .... This is intuitively clear when
our semantics are viewed from a continuous-time perspeetany interval in which bothl and B are
true can be broken up into an arbitrary number of subintesvahere both4d and B hold. This example
illustrates that there can be infinite descending chainsM®Xormulas where the entire chain subsumes a
given formula (but no member is equivalent to the given féanun general, any AMA formula involving
only the propositionst and B will subsumeb.

4.2 Motivation for AMA

MA timelines are a very natural way to capture “stretchabbgjuences of state constraints. But why consider
the conjunction of such sequences, i.e., AMA? We have skxaaaons for this language enrichment. First
of all, we show below that the AMA least-general generaiara{LGG) is unique; this is not true for MA.
Second, and more informally, we argue that parallel corfjuaconstraints can be important to learning
efficiency. In particular, the space of MA formulas of lengtrows in size exponentially with, making it
difficult to induce long MA formulas. However, finding seveshorter MA timelines that each characterize
part of a long sequence of changes is exponentially easier. @&t,l¢he space to search is exponentially
smaller.) The AMA conjunction of these timelines placesthshorter constraints simultaneously and often
captures a great deal of the concept structure. For thismeage analyze AMA as well as MA and, in our
empirical work we consider k-AMA.

The AMA language is propositional. But our intended apyilaras are relational, or first-order, including
visual event recognition. Later in this paper we show thatglopositional AMA learning algorithms we
develop can be effectively applied in relational domainsir @proach to first-order learning is distinctive
in automatically constructing an object correspondenoasacexamples (e.g., compare (Lavrac, Dzeroski, &
Grobelnik, 1991; Roth & Yih, 2001)). Similarly, though AMAogs not allow for negative state constraints
we show how to obtain the practical advantages of negatibithwis crucial in visual event recognition.

4.3 Conversion to First-Order Clauses

We note that AMA formulas can be translated in various ways ia first-order clauses. It is not straight-
forward, however, to then use existing clausal generatimaéchniques for learning. In particular, to capture
the AMA semantics in clauses, it appears necessary to dafimeimption and generalization relative to a
background theory that restricts us to a “continuous-tifitst-order—model space. For example, consider the
AMA formulas ®; = (A A B) and®, = A; B whereA andB are propositions—from example 2 we know
that®, < ®,. Now, consider a straightforward clausal translation esthformulas giving’, = A(I)AB(I)
andCy, = A(I;) A B(I,) AMEETS1, I,) ASPANIL, I», I), where thel andI; are variables that represent
time intervalsMEETSindicates that two time intervals meet each other,@8RANindicates that the union of
the first two time-interval arguments equals the third timterval argument. The intention is for satisfying
assignments forf in C; andC- to indicated intervals over whicfh; and ®, are satisfied, respectively. It
should be clear that, contrary to what we waiit, £ C (i.e.,Cy /4 Cs), since itis easy to find “unintended”
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first-order models that satisfy,, but notC-. Thus such a translation, and other similar translatioas)at
capture the continuous-time nature of the AMA semantics.

In order to capture the AMA semantics in a clausal settingg mnght define a first-order theory that
restricts us to “continuous-time” models—for examplepwaihg for the derivation “if propertyB holds
over an interval, then that property also holds over all subrvals”. Given such a theod, we have that
Y E C1 — (5, as desired. However, it is well known that least-generakegalizations relative to such
background theories need not exist (Plotkin, 1971), sarpvark on clausal generalization does not simply
subsume our results for the AMA language.

We note that for a particular training set, it may be posdibleompile a “continuous-time” background
theory, X, into a finite but “adequate” set of ground facts. Relativedch ground theories, clausal LGGs
are known to always exist and thus could be used for our agtfic. However, the only such compiling
approaches that look promising to us require exploitingrealyeis similar to the one given in this paper—i.e.,
understanding the AMA generalization and subsumptionlprolseparately from clausal generalization, and
exploiting that understanding in compiling the backgrothmebry. We have not pursued such compilations
further.

Even if we are given such a compilation procedure, there tirer problems with using existing clausal
generalization techniques for learn AMA formulas. For tleusal translations of AMA we have found, the
resulting generalizations typically fall outside of théa{esal translations of formulas in the) AMA language,
so that the language bias of AMA is lost. In preliminary ergal work in our video-event recognition
domain using clausal inductive logic programming (ILP)teyss, we found that the learner appeared to lack
the necessary language bias to find effective event defisitid/hile we believe it would be possible to find
ways to build this language bias into ILP systems, we chostedd to define and learn within the desired
language bias directly, by defining the class of AMA formukasd studying the generalization operation on
that class.

4.4 Basic Concepts and Properties of AMA

We use the following convention in naming our results: “msiions” and “theorems” are the key results
of our work, with theorems being those results of the modineral difficulty, and “lemmas” are technical
results needed for the later proofs of propositions or thes: We number all the results in one sequence,
regardless of type. Proofs of theorems and propositionpranégded in the main text—omitted proofs of
lemmas are provided in the appendix.

We give pseudo-code for our methods in a non-deterministie.sn a non-deterministic language func-
tions can return more than one value “non-deterministitadiither because they contain non-deterministic
choice points, or because they call other non-determirfistictions. Since a non-deterministic function can
return more than one possible value, depending on the choieele at the choice-points encountered, spec-
ifying such a function is a natural way to specify a richlyustured set (if the function has no arguments)
or relation (if the function has arguments). To actually meuate the values of the set (or the relation, once
arguments are provided) one simply has to add a standardraekikg search over the different possible
computations corresponding to different choices at thécehpoints.

4.4,1 SUBSUMPTION AND GENERALIZATION FOR STATES

The most basic formulas we deal with are states (conjuretidpropositions)—in our propositional setting
computing subsumption and generalization at the statd is\atraightforward. A state&S; subsumesS,

(S, < Sy)iff S; is a subset of5,, viewing states as sets of propositions. From this we dehgée the
intersection of states is the least-general subsumer eéth@tes and that the union of states is likewise the
most general subsumee.
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4.4.2 INTERDIGITATIONS

Given a set of MA timelines, we need to consider the differeays in which a model could simultaneously
satisfy the timelines in the set. At the start of such a moidel, (the first time point), the initial state from
each timeline must be satisfied. At some time point in the hhame or more of the timelines can transition
so that the second state in those timelines must be satisfigldde of the initial state, while the initial state
of the other timelines remains satisfied. After a sequencguoh transitions in subsets of the timelines,
the final state of each timeline holds. Each way of choosiegithnsition sequence constitutes a different
“interdigitation” of the timelines.

Alternatively viewed, each model simultaneously satisfyihe timelines induces@-occurrence rela-
tion on tuples of timeline states, one from each timeline, idginiy which tuples co-occur at some point in
the model. We represent this concept formally as a set oésupl co-occurring states, i.e., a co-occurrence
relation. We sometimes think of this set of tuples as ordesethe sequence of transitions. Intuitively, the
tuples in an interdigitation represent the maximal timeiiwals over which no MA timeline has a transition,
giving the co-occurring states for each such time interval.

A relation R on X; x --- x X,, is simultaneously consistemtith orderings<y,... ,<,, if, whenever
R(x1,...,z,)andR(z, ..., z},), eitherz; <; z}, for all 4, or 2} <, z;, for all i. We sayR is piecewise total
if the projection ofR onto each component is total—i.e., every state in &pyppears irk.

Definition 1 An interdigitation of a set of MA timelineg®,,...,®,} is a co-occurrenceelation over

®, x --- x ®, (viewing timelines as sets of statpthat is piecewise total, and simultaneously consistent
with the state orderings of th®,. We say that two statese ®; ands’ € ®, for i # j co-occur inI iff some
tuple of I contains boths and s’. We sometimes refer tbas a sequence of tuples, meaning the sequence
lexicographically ordered by thé; state orderings.

We note that there are exponentially many interdigitatioheven two MA timelines (relative to the total
number of states in the timelines). Example 3 below showsterdigitation of two MA timelines, and
pseudo-code for non-deterministically generating artiatyi interdigitation for a set of MA timelines can be
found in Figure 3. Given an interdigitatiadhof the timelinessy; so; - - - ; 5,,, @andty; to; - - - ; t,, (and possibly
others, the following basic properties of interdigitasare easily verifiable:

1. Fori < j, if s; andt;, co-occur in | then for alk’ < k, s; does not co-occur witky in I, and
2. I(Sl, tl) andI(Sm, tn).

We first use interdigitations to syntactically characteszbsumption between MA timelines. An inter-
digitation I of two MA timelines®; and®, is awitnessto ®; < &, if, for every pair of co-occurring states
s1 € ®; andss € ®,, we haves; < so. The following lemma and proposition establish the eqeinat
between witnessing interdigitations and MA subsumption.

Lemma 1 For any MA timelineb and any modeM, if M satisfiesb then there is a witnessing interdigitation
for MAP(M) < ®.

Proposition 2For MA timelines®; and ®,, ®; < ®, iff there is an interdigitation that withessdsg < ®,.

Proof: We show the backward direction by induction on the hanof states: in timeline ®,. If n = 1,
then the existence of a witnessing interdigitation®qr < ®, implies that every state i, is a subset of
the single state i@, and thus that any model df; is a model of®, so that®; < ®,. Now, suppose for
induction that the backward direction of the theorem holtiemever®; hasn or fewer states. Given an
arbitrary modelM of ann + 1 state®; and an interdigitatiom” that withesse®; < ®,, we must show that
M is also a model o, to conclude?; < ®,, as desired.

3. Recall, that, formally, MA timelines are viewed as setstafe-index pairs, rather than just sets of states. Weéghis distinction
in our notation, for readability purposes, treating MA times as though no state is duplicated.
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1 an-interdigitatiof{ ®,, ®,,...,®,})

2: /I The®; are MA timelines.

3: /I Outputs an interdigitation of th@;.
4 So = (head®,),...,head®,));

5: IFforalll1 <i<n, || =1

6: THEN RETURN(Sy);

7 T’ = {®; such tha{®;| > 1};

8 T" = a-non-empty-subset{d");

o: FORi=1ton

10: IF®;, € T"

12: THEN @/ = res{®;);

12: ELSE®] = ®,;

13: RETURN extend-tuple5y, an-interdigitatiog{ ®}, ..., ®.}));

Figure 3: Pseudo-code for an-interdigitation(), which +gimterministically computes an interdigitation for
aset{®,,...,®,} of MA timelines. The functions headj and rest®) return the first state in the
timeline ® and® with the first state removed, respectively, and extendeipl) extends a tuple
I by adding a new first elementto form a longer tuple. The function a-non-empty-subséspf
non-deterministically returns an arbitrary non-emptyssitofsS.

Write &, assy;---;spt1 and®, asty; - - -5 t,. AS a witnessing interdigitatiori)’ must identify some
maximal prefixt; - - - ; t,,,» of 3 made up of states that co-occur withand thus that are subsetssgpf Since
M = (M, ][t,t']) satisfies®;, by definition there must exist@& € [t,t'] such that()/, [t,t"]) satisfiess;
(and thugy; - - - ; t,,) and(M, I') satisfiessy; - - - ; 5,41 for I' equal to eitheft”, '] or [¢ + 1,#']. In either
case, it is straightforward to construct frdin a witnessing interdigitation fofz; - - -; spr1 < tir1; - -5 tm
and use the induction hypothesis to then show {A&t ') must satisfyt,, y1;- - - ;¢ It follows that M
satisfiesP, as desired.

For the forward direction, assume thi¢ < ®,, and letM be any model such thdt; = MAP(M). It
is clear that such\ exists and satisfie®;. It follows that M satisfies®,, and Lemma 1 then implies that
there is a witnessing interdigitation for MAR1) < &, and thus fo®; < ®,. O

4.4.3 LEAST-GENERAL COVERING FORMULA

A logic can discriminate two models if it contains a formulet satisfies one but not the other. It turns
out that AMA formulas can discriminate two models exactlyamhmuch richemternal positiveevent logic
(IPEL) formulas can do so. Internal formulas are those that definatexccurrence only in terms of prop-
erties within the defining interval (i.e., satisfaction §y/, I} depends only on the proposition truth values
given by M inside the interval)—positive formulas are those that do not contain negatiyopendix A
gives the full syntax and semantics of IPEL (which are usdyg tanstate and prove Lemma 3 ). The fact that
AMA can discriminate models as well as IPEL indicates thatrestriction to AMA formulas retains sub-
stantial expressive power and leads to the following reghith serves as the least-general covering formula
(LGCF) component of our specific-to-general learning pdoce. First, we introduce the conceptrobdel
embeddingWe say that modeM embeds modeM' iff MAP (M) < MAP(M').

Lemma3ForanyE € IPEL, if modelM embeds any model that satisfi8sthen M satisfiest.

Proposition 4The MA-projection of a model is its LGCF for internal positievent logic (and hence for
AMA), up to semantic equivalence.

10
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Proof: Consider modeM. We know that MARM) coversM, so it remains to show that MARA1) is the
least general formula to do so, up to semantic equivalence.

Let E be any IPEL formula that coverst. Let M’ be any model that is covered by MAR{)—we
want to show tha¥ also coversM’. We know from Lemma 1 that there is a witnessing interdigitafor
MAP(M') < MAP(M)—thus, by Proposition 2, MARM') < MAP(M) showing thatM’ embedsM.
Combining these facts with Lemma 3 it follows thatalso covers\t’ and hence MAPM) < E. O

Proposition 4 tells us that for IPEL the LGCF of a model exissinique, and is an MA timeline. Given
this property, when an AMA formul& covers all the MA timelines covered by another AMA formtllg we
have¥’ < ¥. Thus, for the remainder of this paper when consideringwsuipsion between formulas we can
abstract away from temporal models and deal rather with M#elines. Proposition 4 also tells us that we
can compute the LGCF of a model by constructing the MA-ptajemf that model. Based on the definition
of MA-projection, it is straightforward to derive an LGCFgakithm which runs in time polynomial in the
size of the modél We note that the MA-projection may contain repeated stategpractice we remove
repeated states which does not change the meaning of tHeng$ormula (as demonstrated in Example 1).

4.4.4 GOMBINING INTERDIGITATION WITH GENERALIZATION OR SPECIALIZATION

Interdigitations are useful in analyzing both conjuncsiand disjunctions of MA timelines. When conjoining
a set of timelines, any model of the conjunction induces #erdhigitation of the timelines such that co-
occurring states simultaneously hold in the model at soniet feiewing states as sets, the union of the
co-occurring states must hold). By constructing an inggtaiion and taking the union of each tuple of
co-occurring states to get a sequence of states, we get anriwdirte that forces the conjunction of the
timelines to hold. We call such a sequence an “interdigitaipecialization” of the timelines. Dually, an
“interdigitation generalization” involving intersectie of states gives an MA timeline that holds whenever
the disjunction of a set of timelines holds.

Definition 2 An interdigitation generalization (specialization) of at& of MA timelines is an MA timeline

s1; - - -; Sm, Such that, for some interdigitatiahof ¥ with m tuples,s; is the intersection (respectively, union)
of the components of the j'th tuple of the sequehcEhe set of interdigitation generalizations (respectyel
specializations) ok is calledIG(X) (respectivelylS(X)).

Example 3Suppose,, s2, s3, t1, t2, andts are each sets of propositions (i.e., states). Considelithelines
S = s1;892;83 andT = ty;ty; t3. The relation

{ (s1,t1), (s2,t1), (s3,%2) , (s3,t3) }

is an interdigitation ofS andT in which states;; ands, co-occur witht;, andsz co-occurs witht; andts.
The correspondints andIS members are

s1MNty; so Nty s3Nita; s3Nity € |G({S,T})
s1 Ut; so Uty s3Uta; s3 Uty € |S({S,T})

If t; Cs1,t1 Cso,t2 Cs3, andts C sz, then the interdigitatiomitnessess < 7.

Each timeline in I1GX) (dually, IS X)) subsumes (is subsumed by) each timelin&in-this is easily
verified using Proposition 2. For our complexity analyses,nete that the number of states in any member
of IG(X) or IS(X) is lower-bounded by the number of states in any of the MA tined inX and is upper-
bounded by the total number of states in all the MA timeline&i The number of interdigitations af,
and thus of members of I&) or IS(X), is exponential in that same total number of states. Theritthgas
we present later for computing LGGs require the computatibhoth IGX) and ISX). Here we give
pseudo-code to compute these quantities—figure 4 givesipsende for the function an-IG-member that

4. We take the size of a modéht = (M, I') to be the sum ovet € I of the number of true propositions W ()

11



FERN, GIVAN, & SISKIND

an-1IG-membdf ®;, ®,,...,®,})
/l The®; are MA timelines.
I/ Outputs a member ¢G({®,, D»,...,2,}).

RETURN magintersect-tuplgan-interdigitation{{ ®y, ..., ®,}));

Figure 4: Pseudo-code for an-IG-member, which non-detestically computes a member of (G) where
T is a sequence of MA timelines. The function intersect-t(f)l¢akes a tupld of sets as its
argument and returns their intersection. The higher-oidiection map(, I) takes a functiory
and a tuplel as arguments and returns a tuple of the same lengitohsained by applying to
each element of and making a tuple of the results.

non-deterministically computes an arbitrary member of3l§3(an-1S-member is identical only we replace
intersection by union). Given a set of MA timelinBswe can compute I(X) by executing all possible
deterministic computation paths of the function call anA@mberE), i.e., computing the set of results
obtainable from the non-deterministic function for all pitiée decisions at non-deterministic choice-points.

We now give a useful lemma and a proposition concerning tlagioaships between conjunctions and
disjunctions of MA concepts (the former being AMA conceptSpr convenience here, we use disjunction
on MA concepts, producing formulas outside of AMA with thevaus interpretation.

Lemma 5 Given an MA formulab that subsumes each member of aSetf MA formulas® also subsumes
some membe®’ of IG(X). Dually, when® is subsumed by each memberigfwe have that is also
subsumed by some memidérof IS(X). In each case, the length @f is bounded by the size &f

Proposition 6 The following hold:
1. (and-to-or) The conjunction of a sEtof MA timelines equals the disjunction of the timelinekS{EY).

2. (or-to-and) The disjunction of a sEtof MA timelines is subsumed by the conjunction of the tiraslin
in1G(X).

Proof: To prove part 2 recall that for ady € ¥ and any®’ € IG(X) we have tha® < &'. From this it is
immediate thaf\/ ) < (A IG(X)). Using a dual argumentwe can show thgtiS(X)) < (A X). Itremains
to show that( A\ ) < (\VIS(X)), which is equivalent to showing that any timeline subsumgd/R X) is
also subsumed b/ IS(X)) (by Proposition 4). Consider any MA timelirk such thatt < (A X)—this
implies that each member & subsume®. Lemma 5 then implies that there is sodec I1S(X) such that
® < @'. From this we get tha® < (\/IS(X)), as desired. O

Using “and-to-or”, we can now reduce AMA subsumption to MAbsumption, with an exponential
increase in the problem size.

Proposition 7For AMA U, and¥,, (¥, < ¥,) ifand only if for all®; € IS(¥;) and®, € ¥y, & < Py

Proof: For the forward direction we show the contrapositiesume there is &, € IS(¥,) and a®, € ¥,
such thatd; £ ®,. Thus, there is an MA timelin@ such thatd < ®; but® £ ®,. This tells us that
@ < (\VI1S(¥y)) and thatd £ U, thus(\/ I1S(¥,)) £ ¥, and by “and-to-or” we get thab; £ V.

For the backward direction assume that for&l € 1IS(¥;) and®, € ¥, that®; < ®,. This tells us
that for eachb; € IS(¥,) that®; < ¥y—thus,¥; = (VIS(¥;)) < ¥,. O

12
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MA-subsumeg®; , )
1 Input: $, = S15°" 3 Sm and<I>2 =t1;--5tn
/[ Output: @; < @,

1. IF there is a path fromy ; to v, ,, in SG(®1, ®2) THEN RETURN TRUE. For example,

(a) Create an array Reachab|g) of boolean values, all FALSE, far< i < mand0 < j < n.

(b) FORi = 1tom, Reachablg, 0) = TRUE;
FORj = 1ton, Reachabl@, j) = TRUE;
FORi=1tom
FORj=1ton
Reachabl@, j) = (t; C s; A (Reachablg — 1, j) v
Reachablg,j — 1) v
Reachablg — 1,5 — 1));

(c) IF Reachablen,n) THEN RETURN TRUE;
2. Otherwise, RETURN FALSE;

Figure 5: Pseudo-code for the MA subsumption algoritBi@(®,, ®-) is the subsumption graph defined in
the main text.

5. Subsumption and Generalization

In this section we study subsumption and generalizationf&ormulas. First, we give a polynomial-time
algorithm for deciding subsumption between MA formulas démeh show that deciding subsumption for
AMA formulas is coNP-complete. Second we give algorithmd aomplexity bounds for the construction
of least-general generalization (LGG) formulas based araoalysis of subsumption, including existence,
unigueness, lower/upper bounds, and an algorithm for th& lo@ AMA formulas. Third, we introduce
a polynomial-time—computable syntactic notion of substiompand an algorithm that computes the corre-
sponding syntactic LGG that is exponentially faster thanssumantic LGG algorithm. Fourth, in Section 5.4,
we give a detailed example showing the steps performed by @@ algorithms to compute the semantic
and syntactic LGGs of two AMA formulas.

5.1 Subsumption

All our methods rely critically on a novel algorithm for ddaig the subsumption questidn < ®, between
MA formulas ®; and®, in polynomial-time. We note that merely searching the gmesinterdigitations
of ®; and ®, for a witnessing interdigitation provides an obvious diecigprocedure for the subsumption
guestion—however, there are, in general, exponentialiyynsach interdigitations. We reduce the MA sub-
sumption problem to finding a path in a graph on pairs of stiaitds; x &5, a polynomial-time operation.
Pseudo-code for the resulting MA subsumption algorithnhv@s in Figure 5. The main data structure used
by the MA subsumption algorithm is the subsumption graph.

Definition 3 The subsumption graph of two MA timelinés = sy;---;s,, and®, = ty;---; ¢, (written
SG(®1,®,)) is a directed grapli = (V, E) with vertex seV’ equal to{v; ; | 1 <i <m,1 < j <n}. The
(directed) edge se equals{(v; j, vy j) | si <tj, sy <tj, i <i' <i+1,j<j <j+1}

To achieve a polynomial-time bound one can simply use anynpohial-time pathfinding algorithm. In
our case the special structure of the subsumption graphecaxoited to determine if the desired path exists
in O(mn) time, as the example method shown in the pseudo-code dtestr The following theorem asserts
the correctness of the algorithm assuming a correct polyaleime path-finding method is used.

13
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Lemma 8 Given MA timelinesp; = s1;---; s, and®s = t1;- - -;t,, there is a witnessing interdigitation
for ®; < @, iff there is a path in the subsumption grafi(®:, ®») fromwv; 1 t0 vy, 5.

Theorem 9Given MA timeline®, and®,, MA-subsumedy;, ®;) decidesb; < &, in polynomial time.

Proof: The algorithm clearly runs in polynomial time. Lem8&lls us that line 2 of the algorithm will return
TRUE iff there is a witnessing interdigitation. Combinirtgg with Proposition 2 shows that the algorithm
returns TRUE iff¢; < ®,. O

Given this polynomial-time algorithm for MA subsumptionyoposition 7 immediately suggests an
exponential-time algorithm for deciding AMA subsumptiotiy-computing MA subsumption between the
exponentially many IS timelines of one formula and the timed of the other formula. Our next theo-
rem suggests that we cannot do any better than this in the emse—we argue that AMA subsumption is
coNP-complete by reduction from boolean satisfiabilityaters uninterested in the technical details of this
argument may skip directly to Section 5.2.

To develop a correspondence between boolean satisfighititjems and AMA formulas, which lack
negation, we imagine that each boolean variable has two Avtjgsitions, one for “true” and one for
“false”. In particular, given a boolean satisfiability ptein overn variablesp,...,p,, we take the set
PROR, to be the set containiry, AMA propositions Trug and Falsg for eachk betweerl andn. We can
now represent a truth assignmehto thep; variables with an AMA state 4 given as follows:

sa={Trug |1<i<n, A(p;) =true} U {Falsg | 1 <i < n, A(p;) = false}

As Proposition 7 suggests, checking AMA subsumption @iljanvolves the exponentially many inter-
digitation specializations of the timelines of one of the ANbrmulas. In our proof, we design an AMA
formula whose interdigitation specializations can be seecorrespond to truth assignmehts boolean
variables, as shown in the following lemma.

Lemma 10 Given somer, let ¥ be the conjunction of the timelines

n

U{(PROF%; True; Falsg; PROR,), (PROR,; Falsg; True;; PROR, ) }.

i=1
We have the following facts about truth assignments to tldado variable, . . ., p,:
1. Forany truth assignment, PROR,; s 4; PROR, is semantically equivalentto some membelSifl).

2. Foreach® € IS(V) there is a truth assignment such that? < PROR,; s 4; PROB,.
With this lemma in hand, we can now tackle the complexity of ABubsumption.
Theorem 11Deciding AMA subsumption is coNP-complete.

Proof: We first show that deciding the AMA-subsumptioniafby ¥, is in coNP by providing a polynomial-
length certificate for any “no” answer. This certificate f@nasubsumption is an interdigitation of the time-
lines of ¥, that yields a member of (¥, ) not subsumed by,. Such a certificate can be checked in poly-
nomial time: given such an interdigitation, the corresppngdnember of 1%, ) can be computed in time
polynomial in the size oft;, and we can then test whether the resulting timeline is subdlby each time-
line in ¥, using the polynomial-time MA-subsumption algorithm. Roejtion 7 guarantees that; £ ¥,
iff there is a timeline in 1$¥,) that is not subsumed by every timeline¥s, so that such a certificate will
exist exactly when the answer to a subsumption query is “no”.

To show coNP-hardness we reduce the problem of decidingattigfiability of a 3-SAT formulaS =
Cy A --- A Cp, to the problem of recognizing non-subsumption between AM#riulas. Here, each); is

5. A truth assignment is a function mapping boolean variigerue or false.

14
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(Ii1 V02 V1 3) and eachi; ; either a propositiom chosen fromP = {pi,...,py} Of its negationp. The
idea of the reduction is to construct an AMA formullafor which we view the exponentially many members
of IS(¥) as representing truth assignments. We then construct anrivelime ® that we view as representing
—S and show thab is satisfiable iffU £ &.

Let ¥ be as defined in Lemma 10. Létbe the formulas, ;... ; s,., where

si = {Falsg |l = p; for somek} U
{Trug; | l; x = —p; for somek}.

Eachs; can be thought of as asserting “n@t”. We start by showing that i is satisfiable ther £ ®.
Assume thafS is satisfied via a truth assignmeat—we know from Lemma 10 that there is@d € 1S(¥)
that is semantically equivalentto PRQR 4; PROR,. We show that PROP s 4; PROR, is not subsumed by
®, to conclude¥ £ & using Proposition 7, as desired. Suppose for contradithianPROR; s 4; PROR,
is subsumed byp—then the state 4 must be subsumed by some statén ®. Consider the corresponding
clauseC; of S. SinceA satisfiesS we have thaC; is satisfied and at least one of its literglg must be true.
Assume that; , = p; (a dual argument holds fdy;, = —p;), then we have tha; contains Falsewhile s 4
contains Trug but not Falsge—thus, we have thaty £ s; (sinces; Z s4), contradicting our choice af

To complete the proof, we now assume tHas unsatisfiable and show théit< ®. Using Proposition 7,
we consider arbitrarg’ in IS(¥)—we will show that®’ < &. From Lemma 10 we know there is some
truth assignmentl such that®’ < PROR,; s 4; PROR,. SinceS is unsatisfiable we know that sor6g is not
satisfied by4d and hence-C; is satisfied by4. This implies that each primitive proposmonsnls insa. Let
W be the following interdigitation betweéh = PROR,; s 4; PROB, and® = s1;-- ;s

W = {(PROR,, s1) (PROR,, s3) - - - (PROR,, s;) (54, s;) (PROR,, s;) (PROR,, si+1) - - - (PROR,, s,,,) }

We see thatin each tuple of co-occurring states given albatdtte state frord’ is subsumed by the state from
®. ThusW is a witnessing interdigitation to PRQPs 4; PROR, < ®, which then holds by Proposition 2—
combining this with®’ < PROR,; s 4; PROR, we get tha®’ < ®, as desired. O

Given this hardness result we later define a weaker polyrigmia—computable subsumption notion for
use in our learning algorithms.

5.2 Least-General Generalization.

The existence of an AMA LGG is nontrivial as there can be itdirihains of increasingly specific for-
mulas all of which generalize given formulas. Example 2 destiated such chains for an MA subsumee
and can be extended for AMA subsumees. For example, each eneshithe chainP;Q, P;Q;P;Q,
P;Q; P;Q; P;Q, ...covers¥; = (PAQ);Q and¥, = P;(P A Q). Despite such complications, the
AMA LGG does exist.

Theorem 12There is an LGG for any finite s&t of AMA formulas that is subsumed by all other generaliza-
tions ofX.

Proof: LetI' be the set J, .. IS(¥'). Let ¥ be the conjunction of all the MA timelines that generalize
while having size no larger thdn Since there are only a finite number of primitive proposisicthere are
only a finite number of such timelines, Sois well defined. We show thafl is a least-general generalization
of X. First, note that each timeline ih generalize§' and thus: (by Proposition 6), s@ must generaliz.
Now, consider arbitrary generalizatidd of . Proposition 7 implies tha#’ must generalize each formula
in . Lemma 5 then implies that each timeline®f must subsume a timelin® that is no longer than the
size of[" and that also subsumes the timeline§'oBut then® must be a timeline o¥, by our choice of,

6. There must be at least one such timeline, the timeline evithstate containing all propositions
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1 semantic-LGG{¥,, ¥o,...,¥,,})

2: /I TheWw; are AMA formulas.

3: // Outputs an LGG of th&;.

4: S = {},

5 Fori =1tom

6: For each® in all-valuegan-1S-membé€;))
7: IF(V®' €S.® £ @)

8: THEN S' = {®" € S| ®" < &},
o: S=(5-5)u{®};
10: G=1{}

11 For each® in all-valuegan-1G-membg(iS))

12: IF(V®' € G.P' £ D)

13: THEN G' ={®" € G| ® < ?"};

14: G=(G-G)u{e}

15: RETURN (A G)

Figure 6: Pseudo-code for computing the semantic AMA LGG séteof AMA formulas.

so that every timeline 0¥’ subsumes a timeline d@. It follows that®' subsume®, and that¥ is an LGG
of ¥ subsumed by all other LGGs &f, as desired. O

Given that the AMA LGG exists and is unique we now show how tmpate it. Our first step is to strengthen
“or-to-and” from Proposition 6 to get an LGG for the MA subtprage.

Theorem 13For a setX of MA formulas, the conjunction of all MA timelinesl®&(X) is an AMA LGG of.

Proof: Let¥ be the specified conjunction. Since each timeline oflfzsubsumes all timelines ik, ¥
subsumes each member Bf To showV is a least-general such formula, consider an AMA formisla
that also subsumes all membersbfSince each timeline o’ must subsume all membersBf Lemma 5
implies that each timeline 0¥’ subsumes a member of (&) and thus each timeline cF’ subsumedb.
This implies? < ¥'. O

We can now characterize the AMA LGG using IS and IG.
Theorem 14 1@, IS(¥)) is an AMA LGG of the sef of AMA formulas.

Proof: LetY = {¥y,...,¥,} andE = ¥; vV --- V ¥,. We know that the AMA LGG of£ must subsume
E, or it would fail to subsume one of the;. Using “and-to-or” we can represeftas a disjunction of MA
timelines given byE! = (V IS(¥1)) V --- vV (VIS(¥,)). Any AMA LGG must be a least-general formula
that subsumeE—i.e., an AMA LGG of the set of MA timelinegJ{IS(¥)|¥ € X}. Theorem 13 tells us that
an LGG of these timelines is given by (Q{IS(¥)|¥ € ¥}). O

Theorem 14 leads directly to an algorithm for computing tihAAlL GG—figure 6 gives pseudo-code for
the computation. Lines 4-9 of the pseudo-code correspotiteteomputation of J{IS(¥)|¥ € X}, where
timelines are notincluded in the set if they are subsumedhglines already in the set (which can be checked
with the polynomial time MA subsumption algorithm). Thisuping, accomplished by the IF test in line 7,
often drastically reduces the size of the timeline set foictvlive perform the subsequent IG computation—
the final result is not affected by the pruning since the sgibset IG computation is a generalization step.
The remainder of the pseudo-code corresponds to the cotigrutd IG(|J{IS(¥)|¥ € X}) where we do

16



LEARNING TEMPORAL EVENTS

not include timelines in the final result that subsume sorherdimeline in the set. This pruning step (the
IF test in line 12) is sound since when one timeline subsumethar, the conjunction of those timelines is
equivalent to the most specific one. Section 5.4.1 tracesdhgutations of this algorithm for an example
LGG calculation.

Since the sizes of both (§ and IJ-) are exponential in the sizes of their inputs, the code in feiguis
doubly exponential in the input size. We conjecture that eenot do better than this, but we have not yet
proven a doubly exponential lower bound for the AMA case. Witiee input formulas are MA timelines the
algorithm takes singly exponential time, sincé{8}) = ® when® is in MA. We now prove an exponential
lower bound when the input formulas are in MA. Again, readerisiterested in the technical details of this
proof can safely skip forward to Section 5.3.

For this argument, we take the available primitive proposg to be those inthe s¢p; ; | 1 < i <
n, 1 < j < n}, and consider the MA timelines

(I)l = S1,%:52,%3+-3;Sn,%

and ®2 = 5.1;542;--.;8%n, Where
Sigx = Dit N ADin

and Sxj = DP1,j N NDnyj-

We will show that any AMA LGG of®; and ®, must contain an exponential number of timelines. In
particular, we will show that any AMA LGG is equivalent to thenjunction of a subset of IG®,, ®-}),
and that certain timelines may not be omitted from such aetubs

Lemma 15Any AMA LGGY of a setX of MA timelines is equivalent to a conjuncti@ of timelines from
IG(X) with |¥’| < |P|

Proof: Lemma 5 implies that any timeliriein ¥ must subsume some timelide € IG(X). But then the
conjunction®’ of such®’ must be equivalent t&, since it clearly cover& and is covered by the LG@.
Since ¥’ was formed by taking one timeline from (&) for each timeline in¥, we have|¥'| < [¥|. O

We can complete our argument then by showing that expottigrtiany timelines in 1G{®;, ®,}) cannot
be omitted from such a conjunction while it remains an LGG.

Notice that for anyi,j we have thas; . N s, ; = p;;. This implies that any state in (§®,, ®,})
contains exactly one proposition, since each such statermsefd by intersecting a state frofn and .
Furthermore, the definition of interdigitation, applieddemplies the following two facts for any timeline

q15G2; 3 qm INIG({P1, P2 }):
lL.g= P11 ande = Pn,n-
2. For consecutive statgs = p; j andgy1 = pi ;7,4 is eitheri ori + 1, j' is eitherj or j + 1, and not
bothi =i’ andj = j'.

Together these facts imply that any timeline inf{@,, ®,}) is a sequence of propositions starting wihy
and ending witlp,, ,, such that any consecutive propositigns; p; ; are different withi’ equal toi or i + 1
andj’ equaltoj or j +1. We call atimeline in IG{®,, ®,}) squareif and only if for each pair of consecutive
propositiong; ; andp; ;» have eithei’ =i or j' = j. The following lemma implies that no square timeline
can be omitted from the conjunction of timelines in(fz, ®.) if it is to remain an LGG of®; and®,.

Lemma 16Let ®; and ®, be as given above and I& = A\ IG({®,, ®»}). For any ¥’ whose timelines are
a subset of those i that omits some square timeline, we have: ¥’.

The number of square timelines in (@P,, ®,}) is equal to% and hence is exponential in the size

of ®; and®,. We have now completed the proof of the following result.

Theorem 17The smallest LGG of two MA formulas can be exponentiallydarg
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Proof: By Lemma 15, any AMA LGQ@V' of ®; and®; is equivalent to a conjunction of the same number
of timelines chosen from I ®,, ®»}). However, by Lemma 16, any such conjunction must have at leas

% timelines, and then so mut, which must then be exponentially large.CI

Conjecture 18The smallest LGG of two AMA formulas can be doubly-expoalgniarge.

We now show that our lower-bound on AMA LGG complexity is natmaly a consequence of the existence
of large AMA LGGs. Even when there is a small LGG, it can be exgdee to compute due to the difficulty
of testing AMA subsumption:

Theorem 19Determining whether a formuld is an AMA LGG for two given AMA formulak; and ¥, is
co-NP-hard, and is in co-NEXP, in the size of all three forasubgether.

Proof: To show co-BP-hardness we use a straightforwardcteEgufrom AMA subsumption. Given two
AMA formulas ¥; and ¥, we decide¥; < W, by asking whethe®, is an AMA LGG of ¥; and ¥,.
Clearly¥; < W, iff ¥, is an LGG of the two formulas.

To show the co-NEAP upper bound, note that we can check inreqi@l time whethe@; < ¥ and
¥, < ¥ using Proposition 7 and the polynomial-time MA subsumptdgorithm. It remains to show that
we can check whethe¥ is notthe “least” subsumer. Since Theorem 14 shows that the LG%, aind ¥,
is IG(1S(¥) U IS(P,)), if ¥ is not the LGG thent £ IG(I1S(¥;) U IS(¥5)). Thus, by Proposition 7, if
¥ is not a least subsumer, there must be timelidese 1S(¥) and®, € IG(IS(¥;) U IS(¥5)) such that
¢, £ &,. We can then use exponentially long certificates for “No"veers: each certificate is a pair of an
interdigitation; of ¥ and an interdigitatiod, of IS(¥;) U IS(¥,), such that the corresponding members
&, € IS(¥) and®, € IG(IS(¥;) U IS(¥,)) haved®; £ .. Given the pair of certificatef, and I, @,
can be computed in polynomial tim&, can be computed in exponential time, and the subsumptiovelaet
them can be checked in polynomial time (relative to theie sighich can be exponential). ¥ is the LGG
then¥ < IG(I1S(¥,) UIS(¥5)), so that no such certificates will exist.O

5.3 Syntactic Subsumption and Syntactic Least-General Gemalization.

Given the intractability results for semantic AMA subsuiopt we now introduce a tractable generality no-
tion, syntactic subsumption, and discuss the correspgnd®® problem. The use of syntactic forms of gen-
erality for efficiency is familiar in ILP (Muggleton & De Ragdl994)—where, for examplé;subsumption

is often used in place of the entailment generality relatiomlike AMA semantic subsumption, syntactic
subsumption requires checking only polynomially many MAsumptions, each in polynomial time (via
Theorem 9).

Definition 4 AMA ¥, is syntactically subsumed by AMI, (written ¥, <gyn ¥,) iff for each MA timeline
®, € ¥,, there is an MA timelin@; € ¥, such thatb; < ®,.

Proposition 20AMA syntactic subsumption can be decided in polynomial time

Syntactic subsumption trivially implies semantic substiorpp—however, the converse does not hold in
general. Consider the AMA formuldsl; B)A(B; A), andA; B; A whereA andB are primitive propositions.
We have(A; B) A (B; A) < A; B; A; however, we have neithel; B < A; B; AnorB; A < A; B; A, so that
A; B; A does not syntactically subsuraé; B)A(B; A). Syntactic subsumption fails to recognize constraints
that are only derived from the interaction of timelines with formula.

Syntactic Least-General Generalization. Thesyntactic AMA LGGs the syntactically least-general AMA

formula that syntactically subsumes the input AMA formulligre, “least” means that no formula properly
syntactically subsumed by a syntactic LGG can syntacyicalbsume the input formulas. Based on the
hardness gap between syntactic and semantic AMA subsumti@ might conjecture that a similar gap
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exists between the syntactic and semantic LGG problemsvirRyguch a gap exists requires closing the
gap between the lower and upper bounds on AMA LGG shown in fémed 4 in favor of the upper bound,
as suggested by Conjecture 18. While we cannot yet show adssdjap between semantic and syntactic
LGG, we do give a syntactic LGG algorithm that is exponehtialore efficient than the best semantic LGG
algorithm we have found (that of Theorem 14). First, we sHoat syntactic LGG'’s exist and are unique up
to mutual syntactic subsumption (and hence up to semantigagnce).

Theorem 21There exists a syntactic LGG for any AMA formula Sethat is syntactically subsumed by all
syntactic generalizations af.

Proof: Let®¥ be the conjunction of all the MA timelines that syntactigajleneralizeX while having size
no larger thark. As in the proof of Theorem 12¥ is well defined. We show thab is a syntactic LGG
for X. First, note that? syntactically generalizes because each timeline @ generalizes a timeline in
every member oE, by the choice off. Now consider an arbitrary syntactic generalizatidrof . By the
definition of syntactic subsumption, each timelihén ¥’ must subsume some timelidg, in each member
a of ¥. Lemma 5 then implies that there is a timeli@eof size no larger thak that subsumes all thé,
while being subsumed b¥. By our choice of¥, the timeline®’ must be a timeline o¥. It follows then that
¥’ syntactically subsumeB, and that¥ is a syntactic LGG ok subsumed by all other generalizations;of
|

In general, we know that semantic and syntactic LGGs arerdifft, though clearly the syntactic LGG is a
semantic generalization and so must subsume the semarEclE® example(4; B) A (B; A), andA4; B; A
have a semantic LGG of; B; A, as discussed above; but their syntactic LGGASB; true) A(true; B; A),
which subsumesd; B; A but is not subsumed hy; B; A. Even so, for MA formulas:

Proposition 22For MA @ and AMAY, & <y, ¥ is equivalent tcd < .

Proof: The forward direction is immediate since we alreadgw syntactic subsumption implies semantic
subsumption. For the reverse direction, note that ¥ implies that each timeline of subsume®—thus
since® is a single timeline each timeline ¥ subsumes “some timeline” i® which is the definition of
syntactic subsumption. O

Proposition 23Any syntactic AMA LGG for an MA formula sgtis also a semantic LGG fox.

Proof: Now, consider a syntactic LG® for . Proposition 22 implies thab is a semantic generalization
of ¥. Consider any semantic LG®' of . We show thatl < ¥’ to conclude tha® is a semantic LGG for
Y. Proposition 22 implies thak’ syntactically subsumes. It follows that®’ A ¥ syntactically subsumes
Y. But, ¥’ A ¥ is syntactically subsumed by, which is a syntactic LGG oE—it follows that ¥/ A ¥
syntactically subsumeg, or ¢ would not be deastsyntactic generalization &. But then¥ < (Psi’ A V),
which implies¥ < ¥’, as desired. O

We note that the stronger result stating that a formllas a syntactic LGG of a se€f of MA formulas

if and only if it is a semantic LGG ok is not an immediate consequence of our results above. At first
examination, the strengthening appears trivial, givenetipgivalence ofe < ¥ and® <qn ¥ for MA &.
However, being semantically leasti®t necessarily a stronger condition than being syntactidatgt—

we have not ruled out the possibility that a semanticallgtiggeneralization? may syntactically subsume
another generalization that is semantically (but not sstitally) equivalent. (This question is open, as we
have not found an example of this phenomenon either.)

Proposition 23 together with Theorem 21 have the nice caresgeze for our learning approach that the
syntactic LGG of two AMA formulas is a semantic LGG of thosenfimlas, as long as the original formulas
are themselves syntactic LGGs of sets of MA timelines. Bseawwur learning approach starts with train-
ing examples that are converted to MA timelines using the E@@eration, the syntactic LGGs computed
(whether combining all the training examples at once, adnmentally computing syntactic LGGs of parts of
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the training data) are always syntactic LGGs of sets of MAetines and hence are also semantic LGGs, in
spite of the fact that syntactic subsumption is weaker teamesitic subsumption. We note, however, that the
resulting semantic LGGs may be considerably larger thasitiedlest corresponding semantic LGG (which
may not be a syntactic LGG at all).

Using Proposition 23, we now show that we cannot hope for aaohial-time syntactic LGG algorithm.

Theorem 24The smallest syntactic LGG of two MA formulas can be expdalbriarge.

Proof: Suppose there is always a syntactic LGG of two MA fdaaudhat is not exponentially large. Since
by Proposition 23 each such formula is also a semantic LG&etls always a semantic LGG of two MA
formulas that is not exponentially large. This contradidteorem 17. O

While this is discouraging, we have an algorithm for the agtic LGG whose time complexity matches
this lower-bound, unlike the semantic LGG case, where tis¢ ddgorithm we have is doubly exponential in
the worst case. Theorem 14 yields an exponential time mdtratbmputing the semantic LGG of a set of
MA timelinesE—since for atimeling, IS(®) = &, we can simply conjoin all the timelines of (&). Given
a set of AMA formulas, the syntactic LGG algorithm uses thistiod to compute the polynomially-many
semantic LGGs of sets of timelines, one chosen from each fopmula, and conjoins all the results.

Theorem 25The formula/\q)ieq,i IG({®,,...,®,}) is a syntactic LGG of the AMA formulds,, ..., ¥,,.

Proof: LetW¥ be A4y, IG({®1, ..., ®n}). Each timelined of ¥ must subsume each; becauseb is an
output of IG on a set containing a timeline ¥f—thus ¥ syntactically subsumes eadh. To show that
¥ is a syntactically least such formula, consideb‘athat syntactically subsumes eveby. We show that
¥ <¢n ¥’ to conclude. Each timelin@’ in ¥’ subsumes a timelin€; € ¥;, for eachi, by our assumption
that®; <syn ¥'. But then by Lemma 5p’ must subsume a member of(({#71, . .., T, })—and that member
is a timeline of#—so each timelin@’ of ¥’ subsumes a timeline df. We concludel <s, ¥', as desired.
]

This theorem yields an algorithm that computes a syntachitAA.GG in exponential time—pseudo-
code for this method is given in Figure 7. The exponentiaktimound follows from the fact that there are
exponentially many ways to choode, . .., ®,, in line 5, and for each of these there are exponentially many
semantic-LGG members in line 6 (since theare all MA timelines)—the product of these two exponentials
is still an exponential.

The formula returned by the algorithm shown is actually asstilof the syntactic LGG given by The-
orem 25. This subset is syntactically (and hence semalylicduivalent to the formula specified by the
theorem, but is possibly smaller due to the pruning achiéyethe IF statement in lines 7-9. A timeline is
pruned from the set if it is (semantically) subsumed by ahgotimeline in the set (one timeline is kept from
any semantically equivalent group of timelines, at randadrhjs pruning of timelines is sound, since a time-
line is pruned from the output only if it subsumes some otbaniila in the output—this fact allows an easy
argument that the pruned formula is syntactically equiviaie (i.e. mutually syntactically subsumed by) the
unpruned formula. Section 5.4.2 traces the computatiotti®algorithm for an example LGG calculation.

The method does an exponential amount of work even if thetresssmall (typically because many
timelines can be pruned from the output because they subsdmaeremains). It is still an open question
as to whether there is an output-efficient algorithm for catimy the syntactic AMA LGG—this problem
is in coNP and we conjecture that it is cONP-complete. Ongertausettling this question is to determine
the output complexity of semantic LGG for MA input formulaale believe that problem also to be coNP-
complete, but have not proven this; if that problem is in Brehs an output-efficient method for computing
syntactic AMA LGG based on Theorem 25.

A summary of the algorithmic complexity results from thigtsen can be found in Table 3 in the conclu-
sions section of this paper.
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1 syntactic-LGG{¥,,¥,,...,¥,,})

/I The®,; are AMA formulas.
// Outputs a syntactic LGG of thg;.

4: G= {},

5: Foreach®q,...,®,,) € ¥y x --- x U,

6: For each® in semantic-LG&{®4,...,P,,})
7 IF(V®' € G. 2" £ Q)

8: THEN G' ={®" € G| ® < ®"};
9 G=(G-G)u{2}

10: RETURN (\ G)

Figure 7: Pseudo-code that computes the syntactic AMA LG&ss#t of AMA formulas.

5.4 Examples: Least-General Generalization Calculations

Below we work through the details of a semantic and a syrtadlG calculation. We consider the AMA
formulas¥ = (4; B) A (B; A) and® = A4; B; A, for which the semantic LGG id; B; A and the syntactic
LGG is (4; B;true) A (true; B; A).

5.4.1 EMANTIC LGG EXAMPLE

The first step in calculating the semantic LGG, accordingéoaigorithm given in Figure 6, is to compute the
interdigitation-specializations of the input formulag(j IS ®) and IS¥)). Trivially, we have that I$®) =

® = A; B; A. To calculate 18¥), we must consider the possible interdigitationsloffor which there are
three,

{ (4,B),(B,B),(B,4) }
{ (4,B),(B,A) }
{ <A7 B> ? <A" A> ? <B’A> }

Each interdigitation leads to the corresponding membeB@F) by unioning (conjoining) the states in each
tuple, so I137) is

{ (AAB);B;(AADB),
(AN B),
(AANB); A;(ANB) }.

Lines 5-9 of the semantic LGG algorithm compute theSewhich is equal to the union of the timelines in
IS(¥) and IS ®), with all subsumed timelines removed. For our formulas, eethat each timeline in (¥)
is subsumed byp—thus, we have thaf = ® = A; B; A.

After computingS, the algorithm returns the conjunction of timelines ir( 83, with redundant timelines
removed (i.e., all subsuming timelines are removed). Incase, 1GS) = A; B; A, trivially, as there is only
one timelin inS, thus the algorithm correctly computes the semantic LG@ ahd® to be A4; B; A.

5.4.2 SINTACTIC LGG EXAMPLE

The syntactic LGG algorithm, shown in Figure 7, computesraéesef semantic LGGs for MA timeline
sets, returning the conjunction of the results (after prghiLine 5 of the algorithm, cycles through timeline
tuples from the cross-product of the input AMA formulas. lara@ase the tuples i® x ¥ areT; =
(A;B; A, A; B) andT» = (4; B; A, B; A)—for each tuple, the algorithm computes the semantic LGG of
the tuple’s timelines.
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The semantic LGG computation for each tuple uses the algorgiven in Figure 6, but the argument
is always a set of MA timelines rather than AMA formulas. Hoistreason, lines 4-9 are superfluous, as
for an MA timeline @', 1IS(®') = ®'. In the case of tupldy, lines 4-9 of the algorithm just compute
S ={A4;B; A, A;B}. Itremains to compute the interdigitation-generalizagiof S (i.e., 1G(S)), returning
the conjunction of those timelines after pruning (lines 1 Figure 6). The set of all interdigitations 6f
are,

)}

)}
B, A) }

(B, A
}

(B, A
}

(
By intersecting states in interdigitation tuples we get3®G

{ A;true; B;true, A; B;true, A;true; B; true, A;true;true, A;true; A;true }

Since the timelined; B; true is subsumed by all timelines in (&), all other timelines will be pruned. Thus
the semantic LGG algorithm returals B; true as the semantic LGG of the timelinesii.

Next the syntactic LGG algorithm computes the semantic L&G@e timelines inZ;. Following the
same steps as fdr, we find that the semantic LGG of the timelineslinis true; B; A. SinceA; B; true
andtrue; B; A do not subsume one another, the@Getomputed by lines 5-9 of the syntactic LGG algorithm
is equal to{ A; B;true, true; B; A }. Thus, the algorithm computes the syntactic LGGbcadnd ¥ to be
(4; B;true) A (true; B; A). Note that, in this case, the syntactic LGG is more genegal the semantic
LGG.

6. Practical Extensions

We have implemented a specific-to-general AMA learning iilym based on the LGCF and syntactic LGG
algorithms presented earlier. This implementation inekithree practical extensions. The first extension
aims at controlling the exponential complexity by limititige length of the timelines we consider. The
second extension deals with applying our propositionabrigm to relational data, as is necessary for the
application domain of visual event recognition. Finallye whow how to gain the practical advantages of
negation despite the fact that AMA does not include negatitins turns out to be crucial to achieving good
performance in our experiments.

6.1 k-AMA Least-General Generalization

We have already indicated that our syntactic AMA LGG aldorittakes exponential time relative to the
lengths of the timelines in the AMA input formulas. This nvaties restricting the AMA language itsAMA

in practice, where formulas contain timelines with no mdventk states. Ask is increased the algorithm
is able to output increasingly specific formulas at the cbstnoexponential increase in computational time.
In the visual-event—recognition experiments shown laemwe increasefl, the resulting formulas became
overly specific before a computational bottle-neck is redehi.e., for that application the best valuestof
were practically computable and the ability to limiprovided a useful language bias.

We use &-coveroperator in order to limit our syntactic LGG algorithmieAMA. A k-cover of an AMA
formula is a syntactically least genefaAMA formula that syntactically subsumes the input—it isg#o
show that &-cover for a formula can be formed by conjoining/alMA timelines that syntactically subsume
the formula (i.e., that subsume any timeline in the formuldjigure 8 gives pseudo-code for computing
the k-cover of an AMA formula. It can be shown that this algorithorrectly computes &-cover for any
input AMA formula. The algorithm calculates the set of legsheralk-MA timelines that subsume each
timeline in the input—the resulting-MA formulas are conjoined and “redundant” timelines aranad
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=

k-covelk, A\ <i<,, ®i)
/I The®; are AMA formulas.
/I Outputs ak-cover of conjunction of thé;.

4: G = {},

5: Fori =1tom

6: For eachP = (P,..., P,) in all-valuega-k-partitior(k, ®;))
4 e =(N"); (NP

8 IF(V®' € G. 2" £ ®)

9: THEN G' ={®" € G| ® < ?"};

10: G=(G@-G)u{e};

1L RETURN (A G)

12:  a-k-partitior(k, s1;---;s;)

13: Il s1;-++; s is an MA timeline.

14: Il k is an positive natural number.

15: /I Non-deterministically partitions;; - - - ; s; into a tuple of < k sets of consecutive states.
16: IFj <k THEN RETURN({s1},...,{s;});

17: IFk ==1THEN RETURN({s1,...,s;});

18: [ = a-member-af{1,2,...,j — k +1}); // non-deterministically choose next block size
19: Py={s1,...,s1}; /I construct next block

20: RETURN extend-tuplgry, a-k-partitiortk — 1, s;115- - -5 55));

Figure 8: Pseudo-code for non-deterministically computink-cover of an AMA formula, along with a
non-deterministic helper function for selectingak block partition of the states of a timeline.

using a subsumption test. We note that kheover of an AMA formula may itself be exponentially larger
than that formula; however, in practice, we have fokntbvers not to exhibit undue size growth.

Given thek-cover algorithm we restrict our learner lesAMA as follows: 1) Compute thé:-cover for
each AMA input formulas. 2) Compute the syntactic AMA LGG leétresultinge-AMA formulas. 3) Return
thek-cover of the resulting AMA formula. The primary bottlenemfithe original syntactic LGG algorithm is
computing the exponentially large set of interdigitatipeneralizations—thk-limited algorithm limits this
complexity as it only computes interdigitation-generatians involvingk-MA timelines.

6.2 Relational Data

LEONARD produces relational models that involve objects and (fdsggamic) relations between those ob-
jects. Thus event definitions include variables to allowegatization over objects. For example, a definition
for PiIckUpP(z, y, z) recognizes bothiek Ur(hand, block, table) as well as Rek Up(man, dumbbell, floor).
Despite the fact that our-AMA learning algorithm is propositional, we are still aliteuse it to learn rela-
tional definitions.

We take a straightforward object-correspondence apprtmaosiational learning. We view the models
output by LEONARD as containing relations applied to constants. Since wadntly) support only super-
vised learning, we have a set of distinct training exampbesfich event type. There is an implicit corre-
spondence between the objects filling the same role acressffhrent training models for a given type. For
example, models showingi® Upr(hand, block, table) and RckUp(man, dumbbell, floor) have implicit
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correspondencehand, man), (block,dumbbell), and (table, floor). We outline two relational learning
methods that differ in how much object-correspondenceinéion they require as part of the training data.

6.2.1 GMPLETE OBJECTCORRESPONDENCE

This first approach assumes that a complete object corrdspon is given, as input, along with the training
examples. Given such information, we can propositiondheetraining models by replacing corresponding
objects with unique constants. The propositionalized risodee then given to our propositionelAMA
learning algorithm which returns a propositiodkaRMA formula. We then lift this propositional formula by
replacing each constant with a distinct variable. Lavraal.€t1991) has taken a similar approach.

6.2.2 RARTIAL OBJECTCORRESPONDENCE

The above approach assumes complete object-correspanishéoenation. While it is sometimes possible
to provide all correspondences (for example, by colordogdibjects that fill identical roles when record-
ing training movies), such information is not always avaldéa When only a partial object correspondence
(or even none at all) is available, we can automatically detepthe correspondence and apply the above
technique.

For the moment, assume that we have an evaluation functatntakes two relational models and a
candidate object correspondence, as input, and yieldsamadion of correspondence quality. Given a set of
training examples with missing object correspondencepevi®drm a greedy search for the best set of object-
correspondence completions over the models. Our methoksway storing a seP of propositionalized
training examples (initially empty) and a détof unpropositionalized training examples (initially thetiee
training set). For the first step, whéhis empty, we evaluate all pairs of examples frbimunder all possible
correspondences, select the pair that yields the highest,scemove the examples involved in that pair
from U, propositionalize them according to the best corresporelend add them t8. For each subsequent
step, we use the previously computed values of all pairs afmgtes, one frond/ and one fromP, under
all possible correspondences. We then select the exanopid frand correspondence that yields the highest
average score relative to all models iR—this example is removed froii, propositionalized according
to the winning correspondence, and addedtaFor a fixed number of objects, the effort expended here is
polynomial in the size of the training set; however, if thermer of object$ that appear in a training example
is allowed to grow, the number of correspondences that mausbhsidered grows &8. For this reason, it is
important that the events involved manipulate only a modestber of objects.

Our evaluation function is based on the intuition that objeles for visual events (as well as events from
other domains) can often be inferred by considering the ghabetween the initial and final moments of
an event. Specifically, given two models and an object cpmedence, we first propositionalize the models
according to the correspondence. Next, we compute ADD andHJE lists for each model. The ADD list
is the set of propositions that are true at the final momenmnbtthe initial moment. The DELETE list is the
set of propositions that are true at the initial moment butthe final moment. (These add and delete lists
are motivated by STRIPS action representations. (Fikesl&shin, 1971)) Given such ADand DELETE
lists for modelsl and2, the evaluation function returns the sum of the cardireditf ADD, N1 ADD» and
DELETE,NDELETE,. This heuristic measures the similarity between the ADDBBRUETE lists of the two
models. The intuition behind this heuristic is similar t@ tintuition behind the STRIPS action-description
language—i.e., that most of the differences between thialiaind final moments of an event occurrence are
related to the target event, and that event effects can loeilded by ADD and DELETE lists. We have found
that this evaluation function works well in the visual-evdomain.

Note, that when full object correspondences are given téetmmer (rather than automatically extracted
by the learner), the training examples are interpreted esifsfing that the target event took place as well as
which objects filled the various event roles (e.gg#UP(a,b,c)). Rather, when no object correspondences
are provided the training examples are interpreted as fypegithe existence of a target event occurrence
but do not specify which objects fill the roles (i.e., the tiag example is labeled by?IC KU P rather
than RckUP(a,b,c)). Accordingly, the rules learned when no corresigoces are provided only allow us
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to infer that a target event occurred and not which objededfihe event roles. For example when object
correspondences are manually provided the learner mighuge the rule,

2o | (SUPPORTSz,y) A CONTACTS(z,Y));
PICKUP(z,y, 2) = [ (SUPPORTSz, y) A ATTACHED(z, y))

whereas a learner that automatically extracts the correspwes would instead produce the rule,

(SUPPORTSz,y) A CONTACTS(2,9));

A
PICKUP = |: (SUPPORTQ(QHS,Z/) A ATTACHED(CU,ZI))

Its worth noting, however, that upon producing the secomelthe availability of a single training example
with correspondence information allows the learner tormeitge the roles of the variables, upon which it can
output the first rule. Thus, under the assumption that theégaan reliably extract object correspondences,
we need not label all training examples with correspondémfoemation in order to obtain definitions that
explicitly recognize object roles.

6.3 Negative Information

The AMA language does not allow negated propositions. Negahowever, is sometimes necessary to
adequately define an event type. It turns out that we canyegstlthe practical advantages of negation
without incorporating negation into the AMA language. Wetklis by adding new propositions to our models

that intuitively represent the proposition negations. ukss the training examples contain the propositions
{p1,...,pn}. We introduce a new sép;, ..., p,} of propositions and add these into the training models. It
is a design choice as to how we assign truth values to thesg@rgpaesitions.

In our experiments, we compare two methods for assigningth t#alue top;. The first method, called
full negation assigns true t@; in a model iffp; is false in the model. The second method, cabbedndary
negation differs from full negation in that it only allowg; to be true in the initial and final moments of
a model (and then only ip; is false). p; must be false at all other times. We have found that boundary
negation provides a good trade-off between no negatiorgiwdifien produces overly general results, and full
negation, which often produces overly specific and much rnomeplicated results. Both methods share the
property that they produce models whefeandp; are never simultaneously true. It follows that our learning
methods will never produce formulas with states that corttathp; andp;.

7. Experiments
7.1 Data Set

Our data set contains examplegafifferent event classegick up put down stack unstackmove assemble
anddisassembleEach of these involve a hand and two to three blocks. Foraildétdescription and sample
video sequences of these event types, see Siskind (200 fra¢aes from sample video sequences of these
event classes are shown in figure 9. The results of segmamtatacking, and model reconstruction are
overlayed on the video frames. We record@dmovies for each of th& event classes resulting in a total
of 210 movies comprisingl 1946 frames. We replaced oresssenbl e movie, with a duplicate copy of
another because of segmentation and tracking errors.

Some of the event classes are hierarchical in that occlesarfecevents in one class contain occurrences
of events in one or more simpler classes. For example, a nu@pe&ting a MoVE(a, b, ¢, d) event (i.e.a
movesb from ¢ to d) contains subintervals wheredkUpP(a, b, c) and RITDOWN(a, b, d) events occur. In
our experiments, when learning the definition of an evergsctaly the movies for that event class are used
in training—we do not train on movies for other event claghkas may also depict an occurrence of the event
class being learned as a sub-event. However, in evaludteteairned definitions, we wish to detect both
the events that correspond to an entire movie as well as satsethat correspond to portions of that movie.
For example, given a movie depictingdWe(a, b, ¢, d), we wish to detect not only the &WE(a, b, ¢, d)
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Figure 9: Key frames from sample videos of the seven evemistyp
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event but also the IBKUP(a, b, ¢) and RuTDOWN(a, b, d) subevents as well. For each movie type in our
data set, we have a set imtendedevents and subevents that should be detected. If a defimiiea not
detect an intended event, we deem the error a false negatigedefinition detects an unintended event,
we deem the error a false positive. For example, if a moviéotiep MOVE(a, b, ¢, d) event, the intended
events are MVE(a, b, ¢,d), PICKUP(a, b, c), and RITDOWN(a, b, ¢). If the definition forpick up detects
the occurrence of RKUP(c, b,a) and RCKUP(b, a, ¢), but not Rck UP(a, b, ¢), it will be charged two false
positives as well as one false negative. We evaluate ouritiefis in terms of false positive and negative
rates as describe below.

7.2 Experimental Procedure

For each event type, we evaluate tRAMA learning algorithm using a leave-one-movie-out croatidation
technique with training-set sampling. The parameters tdearning algorithm aré and the degre® of
negative information used: the value bfis either P, for “positive propositions only”, BN, for “bodary
negation”, or N, for “full negation”. The parameters to owakiation procedure include the target event
type E and the training-set siz&. Given this information, the evaluation proceeds as fodlowor each
movie M (the held-out movie) from th@10 movies, apply thé-AMA learning algorithm to a randomly
drawn training sample aV movies from the30 movies of event typ& (or 29 movies if M is one of the30).
Use LEONARD to detect all occurrences of the learned event definition/in Based onE and the event
type of M, record the number of false positives and false negativeéd jras detected by #ONARD. Let
FP and FN be the total number of false positives and falsetiwvegabserved over all10 held-out movies
respectively. Repeat the entire process of calculatingrféFF&l 10 times and record the averagesasand
FN.

Since some event types occur more frequently in our datadtiars (because simpler events occur as
subevents of more complex events but not vice versa), we toeportFP andFN directly. Instead, we
normalizeFP by dividing by the total number of timesEbNARD detected the target event (correctly or in-
correctly) within all210 movies and we normaliZeN by dividing by the total number of correct occurrences
of the target event within ak10 movies (i.e., the human assessment of the number of ocoaseaf the
target event). The normalized valuef® estimates the probability that the target event did notiogiven
that it was predicted to occur, while the normalized valuENfestimates the probability that the event was
not predicted to occur given that it did occur.

7.3 Results

To evaluate ouk-AMA learning approach, we ran leave-one-movie-out experits, as described above, for
varyingk, D, andN. The210 example movies were recorded with color-coded objectsduige complete
object-correspondence information. We compared our é&ghavent definitions to the performance of two
sets of hand-coded definitions. The first set;Hid hand-coded definitions appeared in Siskind (2001). In
response to subsequent deeper understanding of the bebivémnard’s model reconstruction methods, we
manually revised these definitions to yield another set Bilhand-coded definitions that gives a significantly
betterFN performance at some costi® performance. Appendix C gives the event definitions in ldbd
HD- along with a set of machine-generated definitions, prodbgetthe £-AMA learning algorithm, given

all training data fort = 30 andD = NPN.

7.3.1 BIJECTCORRESPONDENCE

To evaluate our algorithm for finding object correspondsnees ignored the correspondence information
provided by color coding and applied the algorithm to alirtiag models for each event type. The algo-
rithm selected the correct correspondence foRall training models. Thus, for this data set, the learning
results when no correspondence information is given wiltleatical to those where the correspondences are
manually provided, except that in the first case the rulesnail specify particular object roles (as discussed
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k| D pu pd st un mo as di

BN FP |0 014 O 0 0 075 0

FN| O 0.19 0.12 0.03 O 0 0

3|BN FP|O 0 0 0 0 0 0
FN| O 0.2 045 0.10 0.03 0.07 0.10

4|BN FP|O 0 0 0 0 0 0
FN| O 0.2 047 0.12 0.03 0.07 0.17

3| P FP | 042 05 0 002 0 0 0
FN| O 0.19 042 0.11 0.03 0.03 0.10

3/BN FP |0 0 0 0 0 0 0
FN| O 0.2 045 0.10 0.03 0.07 0.10

3|N FP|O 0 0 0 0 0 0
FN | 0.04 039 058 016 0.13 02 0.2

HD, FP|0.01 001 O 0 0 0 0
FN | 002 022 082 062 0.03 1.0 05

HD, FP|0.13 0.11 O 0 0 0 0
FN| 00 019 042 002 00 0.77 0.0

Table 1:FP andFN for learned definitions, varying bothand D, and for hand-coded definitions.

in section 6.2.2). Since our evaluation procedure usesimédemation, the rest of our experiments use the
manual correspondence information, provided by colotifgpdather than computing it.

7.3.2 VARYING k

The first three rows of table 1 show tk® andFN values for all7 event types fok € {2,3,4}, N = 29
(the maximum), and> = BN. Similar trends were found fab = P andD = N. The general trend is
that, ask increaseskP decreases or remains the sameNdncreases or remains the same. Such a trend
is a consequence of oércover approach. This is because kagicreases, thé-AMA language contains
strictly more formulas. Thus fok; > k-, the k;-cover of a formula will never be more general than the
k»-cover. This strongly suggests, but does not prove,FRatvill be non-increasing witk andFN will be
non-decreasing with.

Our results show tha2-AMA is overly general forput downand assemblgi.e. it gives highFP. In
contrast3-AMA achievesFP = 0 for each event type but pays a penaltyFiN compared t@-AMA. Since
3-AMA achievesFP = 0 there is likely no advantage in moving ¥8AMA for k£ > 3—i.e., the expected
result is forFN to become larger. This effect is demonstratediféMA in the table.

7.3.3 VARYING D

Rows four through six of table 1 sholP andFN for all 7 event types foD € {P,BN,N}, N = 29, and

k = 3. Similar trends were observed for other valueg of he general trend is that, as the degree of negative
information increases, the learned event definitions becmmre specific. In other wordsP decreases and
FN increases. This makes sense since, as more negativanatfon is added to the training models, more
specific structure can be found in the data and exploited eytAMA formulas. We can see that, with

D = P, the definitions fopick upandput downare overly general, as they produce higP. Alternatively,
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with D = N, the learned definitions are overly specific, giviRB = 0, at the cost of highFN. In these
experiments, as well as others, we have found fhat BN yields the best of both world$FP = 0 for all
event types and lowdtN than achieved witlD = N.

Experiments not shown here have demonstrated that, wittegétion fopick upandput down we can
increasek arbitrarily, in an attempt to specialize the learned detini, and never significantly redué®.
This indicates that negative information plays a partidylamportant role in constructing definitions for
these event types.

7.3.4 GOMPARISON TOHAND-CODED DEFINITIONS

The bottom two rows of table 1 show the results forHihd HD;. We have not yet attempted to automati-
cally select the parameters for learning (keand D). Rather, here we focus on comparing the hand-coded
definitions to the parameter set that we judged to be bestieirig across all event types. We believe, how-
ever, that these parameters could be selected reliablg asiiss-validation techniques on a larger data set.
In that case, the parameters would be selected on a per-tgperivasis and would likely result in an even
more favorable comparison to the hand-coded definitions.

The results show that the learned definitions significantiyperform HOQ on the current data set. The
HD; definitions were found to produce a large number of false tieggaon the current data set. Manual
revision of HD, yielded HD,. Notice that, although HPproduces significantly fewer false negatives for all
event types, it produces more false positivesgick upandput down This is because the hand definitions
utilize pick upandput downas macros for defining the other events.

The performance of the learned definitions is competitivilr thie performance of HP The main dif-
ferences in performance are: (a) fuck upandput down the learned and HPdefinitions achieve nearly
the sameFN but the learned definitions achie#® = 0 whereas HD has significanFP, (b) forunstack
anddisassemblehe learned definitions perform moderately worse than kidh respect td=N, and (c) the
learned definitions perform significantly better than Hih assemblevents.

We conjecture that further manual revision could improve,H®perform as well as (and perhaps better
than) the learned definitions for every event class. Nometkewe view this experiment as promising, as
it demonstrates that our learning technique is able to cteenpigh, and sometimes outperform, significant
hand-coding efforts by a domain expert.

7.3.5 WARYING N

It is of practical interest to know how training set size affeour algorithm'’s performance. For this applica-
tion, it is important that our method work well with fairly sih data sets, as it can be tedious to collect event
data. Table 2 shows tifeN of our learning algorithm for each event type,fdss reduced fron29 to 5. For
these experiments, we uskd= 3 andD = BN. Note that~P = 0 for all event types and alV and hence is
not shown. We expedN to increase ad' is decreased, since, with specific-to-general learningerdata
yields more-general definitions. Generafy is flat for N > 20, increases slowly fot0 < N < 20, and
increases abruptly fd¥ < N < 10. We also see that, for several event tydeN, decreases slowly, a$

is increased fron20 to 29. This indicates that a larger data set might yield improwsiilts for those event

types.

8. Related Work

Here we discuss two bodies of related work. First, we preggevious work in visual event recognition and
how it relates to our experiments here. Second, we discesgus approaches to learning temporal patterns
from positive data.
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N | pu pd st un mo as di

29|/ 0.0 020 045 0.10 0.03 0.07r 0.10
25|00 020 047 0.16 0.05 0.09 0.10
20| 0.01 0.21 050 0.17 0.08 0.12 0.12
15/ 0.01 0.22 053 0.26 0.14 0.20 0.16
10| 0.07 0.27 0.60 0.36 0.23 0.32 0.26

51022 043 0.77 054 035 057 043

Table 2:FN for k = 3, D = BN, and various values d¥ .

8.1 Visual Event Recognition

Prior work has investigated various subsets of the pieckesafing and using temporal, relational, and force-
dynamic representations for recognizing events in vidad.r®ne, to date, combine all the pieces together.
The following is a representative list and not meant to be mainensive. Borchardt (1985) presents tempo-
ral, relational, force-dynamic event definitions but thdsénitions are neither learned nor applied to video.
Regier (1992) presents techniques for learning tempomaitedefinitions but the learned definitions are nei-
ther relational, force dynamic, nor applied to video. Yam@hya, and Ishii (1992), Brand and Essa (1995),
Brand, Oliver, and Pentland (1997), and Bobick and lvan®28) present techniques for learning temporal
event definitions from video but the learned definitions aher relational nor force dynamic. Pinhanez

and Bobick (1995) and Brand (1997a) present temporal,ioektevent definitions that recognize events

in video but these definitions are neither learned nor fogageachic. Brand (1997b) and Mann and Jepson
(1998) present techniques for analyzing force dynamicsdaorbut neither formulate event definitions nor

apply these techniques to recognizing events or learniagtelefinitions.

8.2 Learning Temporal Patterns

We divide this body of work into three main categories: temapdata mining, inductive logic programming,
and finite-state machine induction.

Temporal Data Mining. The sequence-mining literature contains many generapémific (“levelwise”)
algorithms for finding frequent sequences (Agrawal & Srtkd895; Mannila, Toivonen, & Verkamo, 1995;
Kam & Fu, 2000; Cohen, 2001; Hoppner, 2001). Here we explaspexific-to-general approach. In this
previous work, researchers have studied the problem ofngit@mporal patterns using languages that are
interpreted as placing constraints on partially or totaligered sets of time-points, e.g., sequential patterns
(Agrawal & Srikant, 1995) and episodes (Mannila et al., J99%ese languages place constraints on time-
points rather than time-intervals as in our work here. Mecently there has been work on mining temporal
patterns using interval-based pattern languages (Kam &600; Cohen, 2001; Hoppner, 2001).

Though the languages and learning frameworks vary amorsg tapproaches they share two central
features which distinguish them from our approach. Fitstytall typically have the goal of finding all
“frequent” patterns (formulas) within a temporal data set#approach is focused on finding patterns with
a frequency of one (covering all positive examples). Out l@arning application of visual event recognition
has not yet required us to find patterns with frequency lems time; however, there are a number of ways in
which we can extend our method in that direction when it beepnecessary (e.g., to deal with noisy training
data). Second, these approaches all use standard gemsgadific “level-wise” search techniques, whereas
we chose to take a specific-to-general approach. One direfiir future work is to develop a general-
to-specific “level-wise” algorithm for finding frequent MAfmulas and to compare it with our specific-to-
general approach. Another direction is to design a “leviskiwersion of our specific-to-general algorithm—
where for example, the results obtained for the k-AMA LGG banused to more efficiently calculate the
(k+1)-AMA LGG. Whereas a “level-wise” approach is conceglyi straightforward in a general-to-specific
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framework it is not so clear in the specific-to-general cagke. are not familiar with other temporal data-
mining systems that take a specific-to-general approach.

First-Order Learning In Section 4.3, we pointed out difficulties in using existiirgt-order clausal gen-
eralization techniques for learning AMA formulas. In spfehese difficulties, it is still possible to represent
temporal events in first-order logic (either with or withaapturing the AMA semantics precisely) and to
apply general-purpose relational learning techniques, &ductive logic programming (ILP) (Muggleton
& De Raedt, 1994). Most ILP systems require both positive meghative training examples and hence are
not suitable for our current positive-only framework—eptiens include Golem (Muggleton & Feng, 1992),
Claudien (De Raedt & Dehaspe, 1997), and Progol (Muggleit®@5), among others. While we have not
performed a full evaluation of these systems, our early exyts in the visual event recognition domain
confirmed our belief that horn clauses, lacking special hag@f time, give a poor inductive bias. In partic-
ular, many of the learned clauses find patterns that simgyntst make sense” from a temporal perspective,
and in turn generalize poorly. We believe a reasonablergitize to our approach may be to incorporate syn-
tactic biases into ILP systems as done, for example, in (€at®94; Dehaspe & De Raedt, 1996; Klingspor,
Morik, & Rieger, 1996). In this work, however, we chose to wdirectly in a temporal logic representation.

Finite-State Machines Finally, we note there has been much theoretical and erapmsearch into learn-
ing finite-state machines (FSMs) (Angluin, 1987; Lang, Reatter, & Price, 1998). We can view FSMs as
describing properties of strings (symbol sequences). hcase, however, we are interested in describing
sequences of propositional models rather than just seqaarfcsymbols. This suggests learning a type of
'factored’ FSM where the arcs are labeled by sets of projpositrather than by single symbols. Factored
FSM may be a natural direction in which to extend the expvessiss of our current language (for example
by allowing repetition). We are not aware of work concernéithyearning 'factored’ FSMs; however, it is
likely that inspiration can be drawn from symbol-based F®&&rhing algorithms.

9. Conclusion

We have presented a simple logic for representing tempwegits called AMA and have shown theoretical
and empirical results for learning AMA formulas. Empirigalve’ve given the first system for learning tem-
poral, relational, force-dynamic event definitions fronsipee-only input and we have applied that system to
learn such definitions from real video inputs. The resulfegformance matches that of event definitions that
are hand-coded with substantial effort by human domainsp@n the theoretical side, Table 3 summarizes
the upper and lower bounds we have shown for the subsumptthgeneralization problems associated with
this logic. In each case, we have provided a provably coatgririthm matching the upper bound shown.
The table also shows the worst-case size that the smallgstddald possibly take relative to the input size,
for both AMA and MA inputs. The key results in this table are folynomial-time MA subsumption and
AMA syntactic subsumption, the coNP lower bound for AMA sulmgption, the exponential size of LGGs
in the worst case, and the apparently lower complexity ofasytic AMA LGG versus semantic LGG. We
described how to build a learner based on these results gigcjfi to the visual-event learning domain. To
date, however, the definitions we learn are neither crosgatmor perspicuous. And while the performance
of the learned definitions matches that of hand-coded oreesjish to surpass hand coding. In the future, we
intend to address cross-modality by applying our learnéehnique to the planning domain. We also believe
that addressing perspicuity will lead to improved perfonce
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Appendix A. Internal Positive Event Logic

Here we give the syntax and semantics for an event logicathikernal Positive Event Logic (IPEL) his
logic is used in the main text only to motivate our choice ofreal subset of this logic, AMA, by showing,
in Proposition 4, that AMA can define any set of models thatllle&n define.

An event type (i.e., set of models) is said toib&ernal if whenever it contains any modgh = (M, I),
it also contains any model that agrees wit on truth assignmentd/[i] wherei € I. Full event logic
allows the definition of non-internal events, for examples tormula¥ = & P is satisfied by A/, I') when
there is some intervdl' entirely precedindg such thatP is satisfied by(A/, I'), thus¥ is not internal. The
applications we are considering do not appear to requireémnnal events, thus we currently only consider
events that are internal.

Call an event typgositiveif it contains the modelM = (M, [1, 1]) whereM (1) is the truth assignment
assigning all propositions the value “true”. A positive Bt/g/pe cannot require any proposition to be false at
any point in time.
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I, Relation I, English | Definition Inverse
[y, ma) S [y, m02] starts | m; = n; andms < no Si
[ml, mz] f [nl, ’ng] finishes mi1 <ny andm2 = Ny fi
[ml,mz] d [’I’Ll,’ng] during mi > ny andm2 < ne di
[ml, mz] b [nl, ’ng] before mo < Ny bi
[ml,mg] m [’I’Ll,’I’LQ] meets | mo =n1 0r mo +1=mn1 mi
[y, ma) o} [n1,m2] || overlaps| m; < ny < mg < ny oi
[ml, mg] = [’I’Ll, ’I’L2] equals m1 = n1 andms = ns =

Table 4: The Thirteen Allen Relations (adapted to our seiosnt

IPEL is a fragment of full propositional event logic that camly describe positive internal events. We
conjecture, but have not yet proven, that all positive ma¢events representable in the full event logic of
Siskind (2001) can be represented by some IPEL formula. &bynthe syntax of IPEL formulas is given by

E ::= true | pr0p| E\V E, | Or B | Ey Ag E5,

where theE; are IPEL formulasprop is a primitive proposition (sometimes called primitive et«ype),

R is a subset of the thirteen Allen interval relatiofss f, d, b, m,0,=, si, fi,di, bi,ai, oi} (Allen, 1983),
andR' is a subset of the restricted set of Allen relatignsf, d, =} (the semantics for each Allen relation is
given below). The difference between IPEL syntax and th&tlbpropositional event logic is that event logic
allows for a negation operator, and that, in full event lpgitcan be any subset of all thirteen Allen relations.
The operatorg\ and; used to define AMA formulas are merely abbreviations for fEL operators\;_,
andAm, respectively, so AMA is a subset of IPEL (though a distingetssubset as indicated by Proposition
4

Each of the thirteen interval Allen relations are binaryatieins on the set of closed natural-number
intervals. Table 4 gives the definitions of these relatidie$ining[m, , ms] r [n1,n2] for each Allen relation
r. Satisfiability for IPEL formulas can now be defined as fokow

e true is satisfied by every model.

propis satisfied by modg|M, I) iff M [z] assigngroptrue for everyr € I.

E, V E, is satisfied by a modeU iff M satisfiesE; or M satisfiesEs.

OrEis satisfied by mod€lM, I) iff for somer € R there is an interval’ such thatl’ r I and(M,I")
satisfiest.

E, Np E, is satisfied by mode{/, I) iff for somer € R there exists interval$, andI, such that
I r I, SPANI1, I,) = I and both(M, I, ) satisfiesE; and(M, I,) satisfiesEs.

whereprop is a primitive proposition,E and E; are IPEL formulas,R is a set of Allen relations, and
SPANI, I,) is the minimal interval that contains boflh and I,. From this definition it is easy to show
by induction on the number of operators and connectives orradla that all IPEL formulas define internal
events. One can also verify that the definition of satisfighifiven earlier for AMA formulas corresponds to
the one we give here.
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Appendix B. Omitted Proofs

Lemma 1 For any MA timelineb and any modeM, if M satisfiesb then there is a withessing interdigitation
for MAP(M) < ®.

Proof: Assume thatt = (M, I) satisfies the MA timeliné@ = s;;---;s,, and let®’ = MAP(M). Itis
straightforward to argue, by induction on the lengthbothat there exists a mapping from states ofb to
sub-intervals of, such that

e foranyi € V'(s), M[i] satisfiess,

e V'(s1) includes the initial timepoint of ,

e V'(s,) includes the final timepoint of, and

e foranyi € [1,n — 1], we haveV'(s;) meetsV’(s;11) (see Table 4).

Let V' be the relation between statesc ® and members € [ that is true when € V'(s). Note that
the conditions oV’ ensure that every € ® and everyi € I appear in some tuple il (not necessarily
together). Below we usE to construct a witnessing interdigitatidii.

Let R be the total, one-to-one, onto function from time-pointg ito corresponding states i/, noting
that®’ has one state for each time-pointlinas®’ = MAP((), I). Note thatR preserves ordering in that,
wheni < j, R(i) is no later tharR(j) in ®'. LetTW be the compositioy o R of the relationd” andR.

We show thatV is an interdigitation. We first show that each state frbrar &’ appears in a tuple iiV/,
soW is piecewise total. States frodnmust appear, trivially, because each appears in a tugle ahdR is
total. States fron®’ appear because eathk I appears in a tuple df, andR is onto the states @b’

It now suffices to show that for any statebeforet from ®, W (s, s") andW (¢, t") implies thatt is no
later tharnt’ in @', so thati?’ is simultaneously consistent. The conditions defifdifigibove imply that every
number ini € V(s) is less than or equal to evejye V' (t). The order-preservation property & noted
above, then implies that every statec Vo R(s) is no later than any staté € Vo R(t) in &', as desired. So
W is an interdigitation.

We now argue thalV witnessesd’ < ®. Considers € ® andt € &' such thatiV(s,t). By the
construction ofiV, there must bé € V'(s) for which ¢ is thei'th state of®’. Since®’ = MAP(M), it
follows thatt is the set of true propositions it/ [i]. Sincei € V'(s), we know thatM [i] satisfiess. It
follows thats C t,andsat < s. O

Lemma 3 For anyE € IPEL, if modelM embeds any model that satisfiégshen M satisfiest.

Proof: Consider the modelst = (M, I) and M’ = (M', I') such thatM embedsM’, let & = MAP(M)
and®’ = MAP(M’). Assume thaty € IPEL is satisfied byM’, we will show thatE is also satisfied byM.

We know from the definition of embedding that< &' and thus there is a witnessing interdigitatidh
for ® < &’ by Proposition 2. We know there is a one-to-one corresparelbatween numbers ih(I’) and
states ofb (®') and denote the state #n(®') correspondingto € I (i' € I') ass; (ti). This correspondence
allows us to naturally interpré¥” as a mappind” from subsets of’ to subsets of as follows: forl] C I,
V(I7) equals the set of all € I such that for somé& € I], s; co-occurs witht; in W. We will use the
following properties of/,

1. If I] is a sub-interval of ', thenV'(I}) is a sub-interval of .

2. If I is a sub-interval of’, then(AZ, V (I7)) embedsg M, I).

3. If I] andI} are sub-intervals of’, andr is an Allen relation, thed; r I} iff V (I])rV (I}).
4

. If I andI; are sub-intervals of’, thenV (SPANI], I;)) = SPANV (I]),V (I3)).
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5. V(') =1

We sketch the proofs of these properties. 1) Use inductiotheriength ofI;, with the definition of
interdigitation. 2) Sincé/ (1) is an interval, MAR(M,V (I7))) is well defined. MAR(M,V (I]))) <
MAP((M', I7)) follows from the assumption that! embedsM’. 3) From Appendix A, we see that all
Allen relations are defined in terms of therelation on the natural number endpoints of the intervals. W
can show thal’ preserves< (but not<) on singleton sets (i.e., every membedd(f{i'}) is < every member
of V({j'}) wheni’ < j') and thatl’ commutes with set union. It follows th&t preserves the Allen interval
relations. 4) Use the fact tht preserves< in the sense just argued, along with the fact 8BANI], 1))
depends only on the minimum and maximum numberg;jirand I5. 5) Follows from the definition of
interdigitation and the construction of.

We now use induction on the number of operators and conmesatiMy to prove that, ifM' satisfiesE,
then so musi\. The base case is whéh= prop, wherepropis a primitive proposition, otrue. Since M’
satisfiesE/, we know thaipropis true in allM'[z'] for ' € I'. SinceW witnessesp < @', we know that, if
propis true inM'[z], thenpropis true in allM[z], wherez € V(z'). Therefore, sinc& (I') = I, propis
true for all M'[z], wherex € I, henceM' satisfiesE.

For the inductive case, assume that the claim holds for IREMn@ilas with fewer thaV operators and
connectives—leff;, £, be two such formulas. WheR = E; V Es, the claim trivially holds. When
E = OprE;, R must be a subset of the set of relatiofss f,d,=}. Notice thatE can be written as a
disjunction of& . Ey formulas, where- is a single Allen relation fronR. Thus, it suffices to handle the case
whereR is a single Allen relation. Suppode = ¢, E;. SinceM'’ satisfiest, there must be a sub-interval
I of I' such thatl] s I' and(M', I]) satisfiesE, . Letl; = V(I]), we know from the properties df that
V(I') = 1, and, hence, that s I. Furthermore, we know thgf\/, I;) embedsA/’, I;), and, thus, by the
inductive hypothesig,M, I, ) satisfiesF;. Combining these facts, we get thatis satisfied byM. Similar
arguments hold for the remaining three Allen relations.alyn consider the case wheii = E; Ar Es,
where R can be any set of Allen relations. Again, it suffices to haridkecase whetk is a single Allen
relationr. Since M’ satisfiesE = E; A, E,, we know that there are sub-intervdlsand I}, of I' such
thatSPANI{, ;) = I', I] r I, (M', I]) satisfiesE;, and(M’, I}) satisfiesE,. From these facts, and the
properties of/, it is easy to verify thai\ satisfiest). O

Lemma5 Given an MA formulab that subsumes each member of aSelf MA formulas® also subsumes
some membe®’ of IG(X). Dually, when® is subsumed by each memberigfwe have that is also
subsumed by some memidérof IS(X). In each case, the length @ can be bounded by the sizeXf

Proof: We prove the result for IQ&)—the proof for ISX) follows similar lines. LetY = {®4,...,®,},
® = s1;--+;8,, and assume that for eath< i < n, ®; < ®. From Proposition 2, for each there is a
witnessing interdigitatio; for ®; < ®. We will combine thel¥/; into an interdigitation ot, and show
that the corresponding member of(I%) is subsumed byp.

To construct an interdigitation @i, first notice that, for eacky;, eachi¥; specifies a set of states (possibly
a single state but at least one) frdm that all co-occur withs;. Furthermore, sinc@; is an interdigitation,
it is easy to show that this set of states corresponds to acatige sub-sequence of states frém—let ¢; ;
be the MA timeline corresponding to this subsequence. Nowje= {®;; | 1 <i < n}, anda; be any
interdigitation of%;. We now takel to be the union of ally;, for 1 < j < m.

We show thafl is an interdigitation ofS. Since each stateappearing inC must co-occur with at least
one states; in ® in at least onéV;, s will be in at least one tuple af;, and, hence, be in some tuplelef-so
I is piecewise total.

Now, define the restrictiod®’/ of I to components andj, with ¢ < j, to be the relation given by
taking the set of all pairs formed by shortening tupled dfy omitting all components except thh and
the j'th. Likewise definen;” for eachk. To showI is an interdigitation, it now suffices to show that each
I is simultaneously consistent. Consider statemnds; from timelines®; and®;, respectively, such that
I (s;,s;). Suppose that; occurs aftes; in ®;, and for some; € ®;, I/ (t;,t;) holds. It suffices to show
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thats; is no later thart; in ®;. Sincel®(s;,s;) andI™J (t;,t;), we must haver,” (s;, s;) andak/ (t;, t;),
respectively, for somé andk’. We knowk < k' becausss; is beforet; in ®; andW; is simultaneously
consistent. Ik = &', thens; is no later thart; in ®;, becausey, must be simultaneously consistent, being an
interdigitation. Otherwisé; < &'. Thens; is no later thar; in ®;, as desired, becau¥g; is simultaneously
consistent. Sd is simultaneously consistent, and an interdigitatioX of

Let ' be the member of I(E) corresponding td. We now show tha®’ < &. We know that each state
s' € @' is the intersection of the states in a tuple of same-we say thas’ derives froma;. Consider the
interdigitation/’ between® and®’, wherel(s;, s'), for s; € ® ands’ € @', if and only if s’ derives from
I;. I' is piecewise total, as every tuple bilerives from some;, and now; is empty.I’ is simultaneously
consistent because tuplesofieriving from latera;, must be later in the lexicographic orderinglgfgiven
the simultaneous consistency of thg, interdigitations used to construct eaeh Finally, we know thas;
subsumes (i.e., is a subset of) each state in each tuplg decause eaclV, is a witnessing interdigitation
to &, < @, and, hence, subsumes (is a subset of) the intersectioros¢ thtates. Therefore, 4f € ¢
co-occurs withs’ € @' in I' we have that’ < s;. Thus,I’ is a witnessing interdigitation fob’ < @, and by
Proposition 2 we havé’ < ¢.

The size bound o®’ follows, since, as pointed out in the main text, the size gfmember of IGY) is
upper-bounded by the number of stateXin O

Lemma 8 Given MA timelinesb; = s1;---;s,, and®, = ty;---; t,, there is a witnessing interdigitation
for ®; < @, iff there is a path in the subsumption grafi(®:, ®») fromwv; 1 t0 vy, 5.

Proof: The subsumption grafG(®,, ®.) is equal to{V, E) with V' = {v; ; | 1 <i<m,1 < j <n}and
E = {(vij,vy )| si <tj, s <tj,i<i' <i+1,j<j <j+1}. Notethatthereis a correspondence
between vertices and state tuples—with veutgxcorresponding tds;, ¢;).

For the forward direction, assume tHat is a witnessing interdigitation fob; < ®,. We know that, if
the states; andt; co-occur inl¥, thens; < t; sincelV witnessesP; < ®,. The vertices corresponding
to the tuples of¥ will be called co-occurrence vertices, and satisfy the fiostdition for belonging to some
edge inE (thats; < t;). It follows from the definition of interdigitation that blov; ; andwv,, ,, are both co-
occurrence vertices. Consider a co-occurrence vesgtexot equal tov,, ,,, and the lexicographically least
co-occurrence vertexy ;. afterv; ; (ordering vertices by ordering the pair of subscripts). Wevsthati, j,

i’, andj’ satisfy the requirements f¢u; ;, vy ;) € E. If not, then eithei’ > i+1orj > j+1. Ifi' > i+1,
then there can be no co-occurrence veugy ;, contradicting thal?” is piecewise total. Ifi’ > j + 1,
then sincelV’ is piecewise total, there must be a co-occurrence vertex,,: but if i" < i ori” > ',
this contradicts the simultaneous consistenci#ofand ifi’" = i, this contradicts the lexicographically least
choice ofv; ;. It follows that every co-occurrence vertex byt ,, has an edge to another co-occurrence
vertex closer in Manhattan distanceug ,,, and thus that there is a path fram, to v, ,,.

For the reverse direction assume there is a path of vertic8&{®,, ®,) from v, ; to vy, , given by,

Uiy j1sVis,jas - - > Vinj, With iy = §1 = 1,4, = m, j, = n. LetIW be the set of state tuples corresponding to
the vertices along this pathl” must be simultaneously consistent with thgorderings because our directed
edges are all non-decreasing in theorderings.J/’ must be piecewise total because no edge can cross more
than one state transition in eithéi or ®,, by the edge set definition. & is an interdigitation. Finally,

the definition of the edge séf ensures that each tup(e;, ¢;) in W has the property; < t¢;, so thatiVis a
witnessing interdigitation fo®; < ®,, showing thatt; < ®,, as desired. O

Lemma 10 Given some, let ¥ be the conjunction of the timelines

U{(PROPn; True;; Falsg; PROR,), (PROR,; Falsg; Trug;; PROR,) }.

i=1
We have the following facts about truth assignments to tldado variableg,, . . ., p,:

1. Forany truth assignment, PROR,; s 4; PROR, is semantically equivalentto some membelSifl).
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2. Foreach® € IS(V) there is a truth assignment such that? < PROR,; s 4; PROB,.

Proof: To prove the first part of the lemma, we construct aerdigitation/ of ¥ such that the corresponding
member of 1%¥) is equivalent to PROR s 4; PROR,. Intuitively, we construct by ensuring that some
tuple of I consists only of states of the form Truer Falsg that agree with the truth assignment—the union
of all the states in this tuple, taken by(IB) will equals 4. LetI = {Ty,T1,T>, 15,14} be an interdigitation
of ¥ with exactly five state tuples;. We assign the states of each timelineloto the tuples as follows:

1. Foranyk, such thatl < k < n andA(py) is true,

o forthetimelinesy; sq;s3; 54 = Q; Truey; Falsey; (), assign each state to tupleT;, and assign
states; to Ty as well, and

o for the timelines|; sy; st; sy = Q; Falser; Trueg; @, assign each statg to tuple;_;, and
states), to tupleTy as well.

2. Foranyk, suchthal < k < n andA(p;) is false, assign states to tuples as in item 1 while interghan
ing the roles ofl'ruey, and Fal sey,.

It should be clear that is piecewise total and simultaneously consistent with tageorderings in?, and so
is an interdigitation. The union of the states in eacliigfl’, 75, andT} is equal to PROR, since PROR is
included as a state in each of those tuples. Furthermoreggvéhat the union of the states’in is equal to
sa. Thus, the member of (¥) corresponding td is equal to PROR: PROR,; s 4; PROR,; PROR,, which
is semantically equivalent to PRQR 4; PROR,, as desired.

To prove the second part of the lemma,ddbe any member of I&). We first argue that every statedn
must contain either Tryeor Falsg for eachl < k < n. For anyk, since¥ contains PROP, True,; False;
PROR,, every member of 18F) must be subsumed by PRQHTrue,; Falsg; PROR,. So,® is subsumed
by PROR,; True,; Falseg ; PROR,. But every state in PRQRTrue,; Falsg ; PROR, contains either Tryeor
Falsg,, implying that so doe#®, as desired.

Next, we claim that for each < k£ < n, either® < True, or ® < Falsg—i.e., either all states i®
include True, or all states inP include Falsg (and possibly both). To prove this claim, assume, for the sak
of contradiction, that, for somk, & £ True, and® £ Falsg. Combining this assumption with our first
claim, we see there must be statemnds’ in ® such thats containsI'rue;, but notFalseg, ands’ contains
Falsey, but notT'ruey,, respectively. Consider the interdigitatiérof ¥ that corresponds té (as a member
of IS(¥). We know thats ands’ are each equal to the union of states in tudlesndT”, respectively, of.

T andT’ must each include one state from each timelines.; s3; s, = PROR,; True,; Falsg; PROR, and
si; sh; sh; sy = PROR,; False; True,; PROR,. Clearly, sinces does notinclude FalgeT includes the states
s1 ands), and likewiseT” includes the states, ands]. It follows thatI is not simultaneously consistent
with the state orderings isy; sa; s3; 54 @andsi; sb; s4; sy, contradicting our choice aof as an interdigitation.
This shows that eithep < True, or ® < False..

Define the truth assignmeurt such that for alll < & < n, A(px) ifand only if & < True,. Since,for
eachk, ® < Trueg, or ® < False, it follows that each state @b is subsumed by 4. Furthermore, sincé
begins and ends with PRQPt is easy to give an interdigitation @& and PROR); s 4; PROR, that withesses
¢ < PROR,; s 4; PROR,. Thus, we have that < PROR,; s4;PROR,. O

Lemma 16 Let®; and®, be as given on page 17, in the proof of Theorem 17, an@l let A IG({®,, ®-}).
For any ¥’ whose timelines are a subset of thos&ithat omits some square timeline, we have: V',

Proof: Since the timelines i’ are a subset of the timelinesin we know that? < ¥’, It remains to show
that¥’ £ ¥. We show this by constructing a timeline that is coveredibybut not by¥.

Let ® = s1;82; ;52,1 b€ a square timeline i@ that is not included in?’. Recall that each;
is a single proposition from the proposition fet= {p,; |1 < i < n, 1 < j < n}, and that, for
consecutive stateg; ands;;1, if s; = p;;, thens;; is eitherp;1; or p; j+1. Define a new timeline
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® = 5y;33; -+ ;52,_0 With5; = (P — s;). We now show tha® £ & (so that® £ ¥), and that, for anyb’
in¥ — {®}, ® < & (sothatd < ¥').

For the sake of contradiction, assume tlkakk ®—then there must be a interdigitatidi witnessing
® < ®. We show by induction on that, fori > 2, W(s;,s;) impliesj > i. For the base case, when
i = 2, we know thatsy £ ss, sincess Z s», and solW (sq, S2) is false, sincdV witnesses subsumption.
For the inductive case, assume the claim holds foi' af ¢, and thatV (s;,s;). We know that; £ s;, and
thusi # j. BecausdV is piecewise total, we must haV&(s;_1,5;:) for somej’, and, by the induction
hypothesis, we must hayé > i—1. SincelV is simultaneously consistent with tegands; state orderings,
andi — 1 < i, we havej’ < j. It follows that; > i as desired. Given this claim, we see that_» cannot
co-occur inl¥ with any state ink, contradicting the fact tha¥’ is piecewise total. Thus we have tiatl .

Let ®' = si;---;s!, be any timeline in¥ — {®}, we now construct an interdigitation that witnesses
& < @'. Note that while® is assumed to be squar®, need not be. Lej be the smallest index where
sj # s;—sinces; = s| = p1;1, and® # @, we know that such g must exist, and is in the range
2 < j < m. We use the index to guide our construction of an interdigitation. Uét be an interdigitation
of & and®’, with exactly the following co-occurring states (i.e. tsttuples):

1. Forl <i < j—1,3;4; co-occurs withs!.
2. Forj <i <m,3; co-occurs withs}.
3. Forj +1 <i < 2n —2,3; co-occurs withs!,, .

It is easy to check thdl/ is both piecewise total and simultaneously consistent thighstate orderings i
and®, and so is an interdigitation. We now show tfitwitnessesp < &’ by showing that all states i
are subsumed by the states they co-occur with/in For co-occurring state®, ands; corresponding to
the first item above we have thelt = s;—this implies thats] is contained irs;, giving thats;;; < s;.
Now consider co-occurring stateésands; from the second item above. Singds square, choodeand! so
thats;_1 = pi,;, we have thas; is eitherpy1; or py41. In addition, sinces;_; = 5971 we have thats;.
is eitherpy1,1, Pr,i+1 OF Pr+1,14+1 but thats; # s; In any of these cases, we find that no staté’irafters;.
can equak;—this follows by noting that the proposition indices nevecrkase across the timeli®¢’. We
therefore have that, far> j, 5; < s}. Finally, for co-occurring states ands], from item three above, we
haves; < s, sinces),, = pn,, Which is in all states o®. Thus, we have shown that for all co-occurring
states inl/, the state fromp is subsumed by the co-occurring statebih ThereforeJV witnessesp < &,
which implies thatb < . O

7. Note that if® were not required to be square then it is possibles;g_r1 to equals;—i.e., they could both equad, 11 ;41-
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Appendix C. Hand-coded and Learned Definitions Used in Our Eperiments

Below we give the two sets of hand-coded definitions, HIbd HD;, used in our experimental evaluation.
definitions for the sapwen event-types. The learned definitions
correspond to the output of okrAMA learning algorithm, given all available training exaies (30 exam-
ples per event-type), with = 3 andD = NPN All the event definitions are written in event logic, where

We also give a set of learned AMA event

- o p denotes the proposition corresponding to the negationagqsitionp.

Qr=yA-Oz=aA-0z=yA

PIcKUP(z, y, 2)

[

\

,

PuTDOWN(z, ¥, 2) =
[
\
A
STACK (w, z,y,2) = PUT
_—|AT
UNSTACK(w, z,y,2) = Sféi
o
MoVE(w,z,y,2) = —Oy=
ASSEMBLEw, ,y, z) £

1>

DISASSEMBLEw, ,y, 2) UNSTA

Figure 10: The HD eve

SUPPORTELy) A
Pl

Qr=yA-Oz=aA-0z=yA
SUPPORTELNy) A =OATTACHED(z, 2)A

—~OATTACHED(z, 2)A
—~OATTACHED(z, y) A =OSUPPORTSZ, y)A
SUPPORTSz, y)A

—~OSUPPORTEz) A “OATTACHED(y, 2)A
—~OSUPPORTSYY, z) A “OSUPPORTSyY, 2)A
-~OSUPPORTSZ, 2) A “OSUPPORTSZ, x)
ATTACHED(z,y) V ATTACHED(y, 2)] ;

[ ATTACHED(z,y) A SUPPORTS,y)A
—~OSUPPORTS 2, ¥)A

—~OSUPPORTEz) A =OATTACHED(y, 2)A
—~OSUPPORTSYY, z) A “OSUPPORTSY, 2)A
-~OSUPPORTSZ, 2) A “OSUPPORTSZ, x)

ATTACHED(z,y) A SUPPORTSZ, y)A
—~OSUPPORTS 2, ¥)A
—~OSUPPORTEz) A “OATTACHED(y, 2)A
—~OSUPPORTYyY, z) A “OSUPPORTS]yY, 2)A
| ~OSUPPORTSZ,2) A ~OSUPPORTS2, )
ATTACHED(z,y) V ATTACHED(y, 2)];
[ ~OATTACHED(z,y) A =~OSUPPORTST, y)A
SUPPORTSz, y)A
—~OSUPPORTEz) A “OATTACHED(y, 2)A
—~OSUPPORTSYY, z) A “OSUPPORTSY, 2)A
| ~OSUPPORTSZ,2) A ~OSUPPORTS2, )

[ 2Oz =wA-Cz=2 A0z =yA

DoOwN(w, z,y) A SUPPORTSz, y)A
TACHED(z,y)

=wA-Oz =N~z =yA
UP(w, z,y) A SUPPORTSz,y) A “ATTACHED(z, y)

z A [PiIckUP(w, z, y); PUTDOWN(w, z, z)]

PUTDOWN(w, y, 2) A{<} STACK(w, z,y, 2)

CK(w, z,y,2) A{<y PICKUP(z,y, 2)

nt logic definitions for all seven event-types.
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PUTDOWN(z, y, 2)

LEARNING TEMPORAL EVENTS

AOr=yA-Cz=ax Az =yA
SUPPORTELy) A =OATTACHED(x, 2)A

([ ~OATTACHED(z,y) A ~OSUPPORTSZ, y)A
SUPPORTSz,y) A CONTACTS(z, y)A
—~OSUPPORTENz) A "OATTACHED(y, 2)A
—~OSUPPORTSYy, z) A "OSUPPORTS]Y, 2)A
—~OSUPPORTSZ, z) A “OSUPPORTSz, x)
ATTACHED(z, y) A SUPPORTSZ, y)A
—~OSUPPORTSz, Y)A
—~OSUPPORTENz) A “OATTACHED(y, 2)A
—~OSUPPORTSRy, z) A “OSUPPORTS]Y, 2)A
| | ~OSUPPORTSx, 2) A ~OSUPPORTSz, x)

Or=yA-Oz=aA-0z=yA
SUPPORTELy) A =OATTACHED(x, 2)A

([ ATTACHED(z,y) A SUPPORTSx,y)A
—~OSUPPORTSz, y)A
—~OSUPPORTENz) A “OATTACHED(y, 2)A
—~OSUPPORTSRyY, z) A “OSUPPORTS]Y, 2)A
-~OSUPPORTSZ, z) A “OSUPPORTSz, x)
—~OATTACHED(z, y) A =OSUPPORTSx, y)A
SUPPORTSz,y) A CONTACTS(z,y)A
—~OSUPPORTENz) A “OATTACHED(y, 2)A
—~OSUPPORTSRyY, z) A “OSUPPORTS]Y, 2)A
—~OSUPPORTSZ, z) A “OSUPPORTS%, 7)

Figure 11: Part | of the HPevent logic definitions.
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STACK (w, x,y, 2)

UNSTACK(w, z,y, 2)

MOVE(w, z,y, z)
ASSEMBLE(w, z,y, 2)

DISASSEMBLE(w, , Y, 2)

>

>

\

Sup
4
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—Qw =z A=0Cy =wA Oy =zA
A0z =wA Oz =N\ Oz =yA
SUPPORTENxz) A ~OATTACHED(w, y)A
l

ATTACHED(w, ) A SUPPORTSw, z)A
—~OSUPPORTSY, £)A

SUPPORTSz,y) A CONTACTS(z,y)A
—~OATTACHED(z, y)A

—~OSUPPORTENw) A =OATTACHED(z, y)A
—~OSUPPORTSz, w) A ~OSUPPORTSZ, y)A

—~<OSUPPORTSw, y) A =OSUPPORTSy, w)

SUPPORTS]y, ) A CONTACTS(y, z)A
SUPPORTSz,y) A CONTACTS(z,y)A
—~OATTACHED(Z, y)A

—~OSUPPORTENw) A =OATTACHED(z, y)A
—~OSUPPORTSz, w) A =~OSUPPORTSZ, y)A
—~OSUPPORTSw, y) A 7O SUPPORTSyY, w)

—Qw =z A-OCy =wA-0Cy =zA
Oz=wA-Cz=c A0z =yA

PORTEQxz) A ~OATTACHED(w, y)A

SUPPORTS]y, ) A CONTACTS(y, z)A
SUPPORTS%,y) A CONTACTS(z, y)A
—~OATTACHED(Z, y)A

~OSUPPORTENw) A =OATTACHED(z, y)A
—~OSUPPORTSz, w) A =~OSUPPORTSZ, y)A
<O SUPPORTSw, y) A =~OSUPPORTSy, w)
[ ATTACHED(w, z) A SUPPORTSw, z)A i
—~OSUPPORTSY, £)A

SUPPORTSz,y) A CONTACTS(z,y)A
—~OATTACHED(z, y)A

~OSUPPORTENw) A =OATTACHED(z, y)A
—~OSUPPORTSz, w) A ~OSUPPORTSZ, y)A

\

~OATTACHED(w, ) A =OSUPPORTSw, o)A |

[ = OATTACHED(w, z) A ~OSUPPORTSw, T)A ]

—~OSUPPORTSw, y) A =OSUPPORTSy, w)

z A [PIckUP(w, z,y); PUTDOWN(w, z, z)]

PUTDOWN(w, y, 2) A<} STACK(w, 7, Y, 2)

UNSTACK(w, z,y, 2) Af<y PICKUP(z,y, 2)

Figure 12: Part Il of the HR event logic definitions.
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LEARNING TEMPORAL EVENTS

SUPPORTELy);
SUPPORTERy) A ATTACHED(z,y)A |
ATTACHED(y, 2) '

[SUPPORTELY) A ATTACHED(z, ¥)]

[SuPPORTELY) A CONTACTS(y, 2)];

[SUPPORTENy) A ATTACHED(y, 2)]; ¢ A

[SUPPORTELy) A ATTACHED(z, y)]

[ SUPPORTENy) A SUPPORTSz2, y)A

CONTACTS(y, 2) A "OSUPPORTSZ, y)A

—~OATTACHED(z,y) A ~OATTACHED(y, 2) A

[SUPPORTEY) A SUPPORTSz, y)];
SUPPORTEN{y) A ATTACHED(z, y)]
[ SUPPORTENy) A SUPPORTSz,y)A
CONTACTS(y, 2) A "OSUPPORTSZ, y)A
~OATTACHED(z,y) A ~OATTACHED(y, 2)
SUPPORTENy); i A
[ SUPPORTENy) A SUPPORTSZ, y)A
ATTACHED(z,y) A "OSUPPORTSzZ, y)A
-l —OCONTACTS(y, z) A ~OCATTACHED(y,2) | )
[SUPPORTELY) A SUPPORTSz,y)];
[SUPPORTELY) A ATTACHED(z, y)];
[ SUPPORTENy) A SUPPORTSZ, y)A
ATTACHED(z,y) A "OSUPPORTSzZ, y)A
| ~OCONTACTS(y, z) A =OATTACHED(y, 2) |

N/
—

PickUP(z,y, z) 2

—

[ SuPPORTEMy) A ATTACHED(z,y) |;
| SUPPORTENy) /\ATTACHED( )/\ATTACHED(y,z) I pA
SUPPORTEL(y)

A [ SUPPORTEIy) A ATTACHED(x,y) A ATTACHED(z, y)A )
PUTDOWN(z,y,2) = ﬂOSUPPOIS‘I’S‘Q)Z,y) /\—|<>COIEITAC)TS(y,z) AﬂO,(A\TTACHED(y,z) } ’
SUPPORTELY);
[ SUPPORTELy) A SUPPORTSx,y) A CONTACTS(2,y)A
| ~OSUPPORTSz,y) A ~CATTACHED(z,y) ]

Figure 13: The learned 3-AMA definitions for& UP(x,y,z) and RITDOWN(X,Y,Z).
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[SUPPORTEMy
[SUPPORTEMy
[SUPPORTELy
[SUPPORTEMy
[SUPPORTEMy
[SUPPORTELy
[SUPPORTEMy
[SUPPORTEMy
[SUPPORTELy
[SUPPORTEMy
[SUPPORTEMy

A ATTACHED(w, )] ;

A ATTACHED(z,y)] ; } A

A SUPPORTEz) A SUPPORTSy, z) A CONTACTS(z, y)]

A ATTACHED(w, )] ;

A SUPPORTSz,y) A ATTACHED(w, ) A ATTACHED(z, y) A ATTACHED(y, 2)];
A SUPPORTERz)SUPPORTSY, z)]

A SUPPORTEz) A SUPPORTSz,y) A SUPPORTSy, z) A ATTACHED(w, )] ;
A SUPPORTEz) A SUPPORTSRy, )]
A ATTACHED(w, ) A SUPPORTSz,y) A CONTACTYy, 2)] ;
A ATTACHED(y, 2)]; } A
[SUPPORTELy) A SUPPORTEz) A SUPPORTSy, z) A CONTACTS(y, z)]
[SUPPORTELy) A ATTACHED(w, ) A SUPPORTSz,y) A CONTACTS(y, 2)] ; }

A

— — — — — — — — — — — - o

[SUPPORTELy) A ATTACHED(w, z) A ATTACHED(y, z)];
[SUPPORTELy) A SUPPORTE{z) A SUPPORTYy, z)]

—~OSUPPORTSz, y) A =OSUPPORT]Y, ) A =OCONTACTS(z, y) A =OCATTACHED(z, y)
[SUPPORTEMy) A ATTACHED(w, )] ;
[SUPPORTEy) A SUPPORTEL{z) A SUPPORTSy, z)]
[ SUPPORTEMy) A ATTACHED(w, z) A SUPPORTSz, ) A CONTACTS(y, 2)A )
—~OSUPPORTSz, y) A =OSUPPORT]Y, ) A =OCONTACTS(z, y) A =OCATTACHED(z, y) } ’
[SUPPORTEMY)];
[ SUPPORTEMy) A SUPPORTELx) A SUPPORTSy, ) A CONTACTS(z, y) A CONTACTS(y, 2)A
—~OSUPPORTSz, y) A “OATTACHED(w, z) A ~OATTACHED(z, y) A ~OATTACHED(y, 2)
[SUPPORTEMy) A ATTACHED(w, Z)] ; }
A

[SUPPORTELy) A ATTACHED(w, z) A SUPPORTSz,y) A CONTACTS(y, z)] ;

[SUPPORTELy) A SUPPORTEL{x)]

[SUPPORTELy) A ATTACHED(w, z)];

[SUPPORTELy) A ATTACHED(w, z) A SUPPORTSz,y) A SUPPORTELx)]; } A

[SUPPORTELy) A SUPPORTE{x)]

[SUPPORTEMy) A ATTACHED(w, z)];

[ SUPPORTELy) A CONTACTS(y, z) A SUPPORTSz,y) A SUPPORTERZ)A ]

; A

—~OSUPPORTSz, y) A ~OATTACHED(x, y)

[SUPPORTEy) A SUPPORTEL{x)]

SUPPORTELY);

[ SUPPORTELy) A CONTACTS(y, z) A SUPPORT%z,y) A SUPPORTERZ)A ] N
negOSUPPORTSx, y) A =OATTACHED(x, y) A =~OATTACHED(y, z) ’

[SUPPORTEy) A SUPPORTELz) A SUPPORTSy, z)]

[SUPPORTELy) A ATTACHED(w, z)];

[SuPPORTELy) A CONTACTS(y, z) A SUPPORTELz)] ; } A

[SUPPORTEL{y) A SUPPORTE{z) A SUPPORTELY)x]

[SUPPORTEMy) A ATTACHED(w, z)];

[SUPPORTENy) A SUPPORTELz) A SUPPORTSy, z)];

[ SUPPORTEy) A SUPPORTEHxz) A SUPPORTSy, z) A CONTACTS(z, y) A CONTACTS(y, 2)A
—~OSUPPORTSz, y) A “OATTACHED(w, z) A ~OATTACHED(z, y) A ~OATTACHED(y, 2)

SUPPORTEy);

[ SUPPORTEMy) A SUPPORTEHxz) A SUPPORTSy, z) A SUPPORTSz, y)A
CONTACTY(z, y) A CONTACTS(y, z)

| SUPPORTEMy) A SUPPORTEMx) A SUPPORTSy, ) A CONTACTS(z, y) A CONTACTS(y, 2)A
—~OSUPPORTSz, y) A " OATTACHED(w, ) A ~OATTACHED(z, y) A ~OATTACHED(y, 2)

)

Figure 14: The learned 3-AMA definition fortf&ck (w,x,y,z).
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A ATTACHED(w, )] ; }
A

[ SUPPORTEMy) A ATTACHED(w, z) A SUPPORTSz, y) A CONTACTS(y, 2)A } i
)
A

|

)
|




N/

~ —

N/

LEARNING TEMPORAL EVENTS

[SUPPORTEz) A SUPPORTEY) A SUPPORTSY, )] ;
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, z) A ATTACHED(y, 2)]; ¢ A
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, ) A CONTACTS(y, z)]
[SUPPORTEz) A SUPPORTELY) A SUPPORTS]Y, ) A CONTACTS(y, 2)];
[SUPPORTEz) A SUPPORTELY) A ATTACHED(y, 2)]; A
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, ) A CONTACTS(y, z)]
[SUPPORTEz) A SUPPORTEY) A SUPPORTSy, ) A CONTACTS(z, y)];
[SUPPORTEz) A SUPPORTEY) A SUPPORTSYy, x) A ATTACHED(z,y)]; ¢ A
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, )]
[SUPPORTELz) A SUPPORTELY) A SUPPORTSY, )] ;
[SUPPORTEz) A SUPPORTEY) A CONTACTS(y, 2)]; » A
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, )]
[SUPPORTEz) A SUPPORTEY) A SUPPORTSY, )] ;
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, )] ;
SUPPORTEN{z) A SUPPORTELy) A ATTACHED(w, ) A SUPPORTSz,y)A A
CONTACTS(y, 2) A ATTACHED(w, ) A =~OSUPPORTSZ, y)A
—~OSUPPORTYy, z) A “OCONTACTS(xz, y) A "OCATTACHED(xz, y) A “OATTACHED(y, 2)
SUPPORTEL{z) A SUPPORTEyY) A SUPPORTSy, x) A CONTACTS(z,y) A CONTACTS(y, 2)A |
—~OSUPPORTSw, ) A ~OSUPPORTSZ, y) A “OATTACHED(w, ) A “OATTACHED(2, ) ’
[SUPPORTELz) A SUPPORTELY) A SUPPORTSY, )] ;
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, )]
[SUPPORTEz) A SUPPORTEY) A SUPPORTSy, ) A CONTACTS(y, 2)];
[SUPPORTENz) A SUPPORTENy) A SUPPORTSy, z) A ATTACHED(y, 2)]; p A
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, )]
[SUPPORTEz) A SUPPORTELY) A SUPPORTSY, )] ;
SUPPORTEL{z) A SUPPORTEN{y) A SUPPORTSY, ) A ATTACHED(y, z)A |
SUPPORTSz,y) A ATTACHED(w, ) A ATTACHED(x, y) ’
[SUPPORTEz) A SUPPORTEY) A ATTACHED(w, )]
[SUPPORTEz) A SUPPORTELY)];
[SUPPORTEz) A SUPPORTEY) A SUPPORTSY, ) A ATTACHED(w, x)]; 2 A
[SUPPORTEz) A SUPPORTELY) A SUPPORTSw, ) A ATTACHED(w, x)]
[ )
[ )
[

~— e’
— — — —

SUPPORTEL{z) A SUPPORTEN{y) A SUPPORTSY, )] ;

SUPPORTEL{z) A SUPPORTERyY) A SUPPORTSw, x) A ATTACHED(w, z)]; ¢ A

SUPPORTEL{z) A SUPPORTER{y) A ATTACHED(w, x)]

[ SUPPORTEL{x) A SUPPORTEN(y) A SUPPORTSy, ) A CONTACTS(z,y) A CONTACTS(y,2)A |
-~ OSUPPORTSw, ) A ~OSUPPORTSZ, y) A =“OATTACHED(w, ) A ~OATTACHED(x, y) } ’
[SUPPORTEMz) A SUPPORTENy)];

[ SUPPORTEN(z) A SUPPORTELy) A ATTACHED(w, z) A SUPPORTS2,y)A '|
CONTACTS(y, z) A ATTACHED(w, ) A =-OSUPPORTS, y)A

—~OSUPPORTSYy, z) A “OCONTACTS(xz, y) A “OCATTACHED(xz, y) A “OATTACHED(y, 2) J
[SUPPORTENz) A SUPPORTEy) A SUPPORTSY, 7)) ;

[ SUPPORTEL{z) A SUPPORTENy) A CONTACTS(y, 2)A

—~OSUPPORTSz, y) A “OATTACHED(z, y) A =~OATTACHED(y, 2)

[SUPPORTENz) A SUPPORTEXy)]

N N N e N e

Figure 15: The learned 3-AMA definition forNBTACK(W,X,Y,Z).
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[SUPPORTEz) A SUPPORTSY, )] ;

[SUPPORTEN(z) A ATTACHED(w, x)]; § A

SUPPORTEN{x)

SUPPORTEz);

[SUPPORTENz) A ATTACHED(w, ) A ATTACHED(z, 2)]; p A
SUPPORTEx)

[SUPPORTENZ)];

[SUPPORTEN(z) A ATTACHED(z, 2)]; p A

[SUPPORTEz) A CONTACTS(z, 2)]

SUPPORTENz);

[SUPPORTEz) A ATTACHED(w, ) A SUPPORTSw, x)]; » A
SUPPORTEx)

SUPPORTEz);

[SUPPORTEMx) A ATTACHED(w, &) A ATTACHED(y, z)]; ¢ A
SUPPORTEN{x)

[SuPPORTEz) A CONTACTS(y, x)];

[SUPPORTENz) A ATTACHED(y, 7)]; ¢ A

SUPPORTEN{x)

[ SUPPORTENx) A SUPPORTSy, z) A CONTACTS(y, ) A 1 )

—~OSUPPORTSw, z) A ~OSUPPORTSz, 2) A ~OCONTACTS(z, 2)A | ;

—OATTACHED(w, ) A ~OATTACHED(y, ) A ~OATTACHED(z, 2) |

SUPPORTEL(z);

[ SUPPORTENz) A SUPPORTS2, z) A CONTACTS(z, 2)A
—~OSUPPORTSw, ) A ~OSUPPORTSy, ) A 7O CONTACTS(y, )A

| ~OATTACHED(w, x) A ~OATTACHED(y, x) A ~OATTACHED(z,2) | )

Figure 16: The learned 3-AMA definition for ®WE(W,X,y,Zz).
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[ =OSUPPORTENz) A =OSUPPORTSz,y) A ~OSUPPORTSy, z) A =OCONTACTS(z, Y)A | )
—~OCONTACTS(z, y) A ~OATTACHED(w, ) A =OATTACHED(z, y) ] ’

ATTACHED(w, y);

SUPPORTEy)

[ ~OSUPPORTENz) A =OSUPPORTSz,y) A ~OSUPPORTSY, z) A ~OCONTACTS(z, Y)A | )

—~OCONTACTS(z, y) A ~OATTACHED(w, ) A =OATTACHED(z, y) ] ’

t_rue; A

[ SUPPORTEL{z) A SUPPORTEN(y) A SUPPORTSz,y) A SUPPORTSY, z)A }

CONTACTS(z,y) A CONTACTS(z,y) A ~OATTACHED(w, y)
t-rue;
[SUPPORTEY) A ~OATTACHED(w, x)A LOATTACHED(z,y)]; » A
SUPPORTEL{y)
true;
[SUPPORTELY) A ATTACHED(z,y)]; ¢ A
[SuPPORTELY) A CONTACTS(2,y)]
true;
[SUPPORTENy) A SUPPORTSz, ) CONTACTS(z,y) A ATTACHED(w, )] ; ¢ A
SUPPORTEL{y)
true;
[SUPPORTELY) A ATTACHED(w, y)ATTACHED(z,y)];
SUPPORTEy)

Figure 17: The learned 3-AMA definition for #gsEMBLEW,X,Y,Z).
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[SUPPORTEz) A SUPPORTELY)];
{ SUPPORTENz) A SUPPORTENY) A SUPPORTSw, z)A } O

SUPPORTSz,y) A CONTACTS(z,y) A ATTACHED(z,w) |’
SUPPORTENy)

SUPPORTEL{z) A SUPPORTELy) A SUPPORTSz,y)A | )
{ SUPPORTRy, ) A CONTACTS(z,y) A CONTACTS(z,y) ] ’
[SUPPORTEz) A SUPPORTELY) A SUPPORTSY, ) A ATTACHED(z, y)];
SUPPORTENy) )
[SUPPORTELz) A SUPPORTENy) A SUPPORTSY, z) A CONTACTS(z,y)]; )
[ SUPPORTELz) A SUPPORTENY) A SUPPORTSz, y)A | |
SUPPORTSRyY, z) A ATTACHED(z,y) A ATTACHED(z, y) } ’
SUPPORTEL(y)
[SUPPORTEz) A SUPPORTELY) A SUPPORTSY, )] ;
[ SUPPORTEL{z) A SUPPORTENy) A SUPPORTST, y)A
SUPPORTSy, z) A ATTACHED(z,y) A ATTACHED(z, y) A ATTACHED(z, w)
SUPPORTEL{y)
[ SUPPORTEN(x) A SUPPORTENy) A SUPPORTSy, x) A SUPPORTSz, y)A
CONTACTS(z,y) A CONTACTS(z,y) A ~OSUPPORTSw, )A
—~OSUPPORTSw, y) A =OSUPPORTSZ, y) A =~OATTACHED(z, w)A
~OATTACHED(w, y) A ~OATTACHED(z, y) A ~OATTACHED(z, y)
SUPPORTEMy);
[ SUPPORTENy) A ~OSUPPORTENx) A =OSUPPORTSwW, ) A
—~OSUPPORTSz,y) A =OSUPPORT]y, z) A “OCONTACTS(z, y)A | ;
—~OCONTACTS(2, y) A =“OATTACHED(z, w) A =OATTACHED(z,Yy)
SUPPORTELy);
[SUPPORTELY) A ATTACHED(w, y) A ATTACHED(z,4)]; ¢ A
SUPPORTEL{y)
SUPPORTELy);
[SUPPORTELY) A SUPPORTSw, y) A ATTACHED(w, y)];
SUPPORTENy)

Figure 18: The learned 3-AMA definition foriIBASSEMBLEW,X,Y,Z).
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