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Abstract— We consider the congestion-control problem in a commu-
nication network with multiple traffic sources, each modeled as a fully-
controllable stream of fluid traffic. The controlled traffic shares a common
bottleneck node with high-priority cross traffic described by a Markov-
modulated fluid (MMF). Each controlled source is assumed to have a
unique round-trip delay. We wish to maximize a linear combination of
the throughput, delay, traffic loss rate, and a fairness metric at the bottle-
neck node. We introduce an online sampling-based burst-level congestion-
control scheme capable of performing effectively under rapidly-varying
cross traffic by making explicit use of the provided MMF model of that
variation. The control problem is posed as a finite-horizon Markov decision
process and is solved heuristically using a technique called Hindsight Opti-
mization. We provide a detailed derivation of our congestion-control algo-
rithm based on this technique. The distinguishing feature of our scheme
relative to conventional congestion-control schemes is that we exploit a
stochastic model of the cross traffic. Our empirical study shows that our
control scheme significantly outperforms the conventionalproportional-
derivative (PD) controller, achieving higher utlization, lower delay, and
lower loss under reasonable fairness. The performance advantage of our
scheme over the PD scheme grows as the rate variance of cross traffic in-
creases, underscoring the effectiveness of our control scheme under vari-
able cross traffic.

Keywords—Communication networks, congestion control, traffic mod-
els, Markov-modulated fluid, Markov decision processes, online sampling.

I. I NTRODUCTION

We study the rate-based congestion control of traffic in a net-
work where a bottleneck node is shared by multiple best-effort
traffic sources and other high-priority “cross-traffic” sources.
We assume that the best-effort sources can be fully controlled,
but that each such source originates at some distance from the
bottleneck node, and thus has a control delay. The objectiveof
congestion control is to determine proper and fair transmission
rates for the controlled sources to utilize the bandwidth available
to the best-effort traffic efficiently at the bottleneck nodewhile
at the same time achieving low average queuing delay and a low
traffic loss rate under reasonable fairness. We refer to the (vary-
ing) bandwidth available for best-effort traffic as theservice rate
of the bottleneck node.

Previous research on best-effort congestion control can bedi-
vided into rate-based approaches and credit-based approaches
(e.g., [31]). Here we present a rate-based approach, con-
trolling the rates of the best-effort sources rather than allo-
cating credits to those sources. Early rate-based work in-y Correspondence author.
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volves binary feedback [7] and proportional controllers [8]
for ATM (Asynchronous Transfer Mode) networks and linear-
increase/exponential-decrease controllers for TCP/IP (Trans-
mission Control Protocol/Internet Protocol) networks (see [15]
for a recent version). Recent rate-based approaches attempt to
achieve better performance by incorporating control-theoretic
techniques, including proportional-derivative (PD) controllers
[9], [10], [17], [30], and those using optimal control and dy-
namic game techniques such as linear quadratic (LQ) team,H1, and noncooperative game controllers [12], [13], [11].

We motivate our work by noticing that most of the above con-
trol schemes are designed for constant or slowly-varying ser-
vice rates (with the exception of the LQ team and theH1 con-
trollers, which do consider short-term variation in the service
rate). These controllers aim to balance throughput, delay,and
loss by maintaining queue size to a target value. We call these
connection-levelcongestion controllers since they assume that
the service-rate variation is caused primarily by the joining of
new connections and the termination of existing ones—as a re-
sult, these controllers are typically evaluated by measuring pri-
marily their response to single isolated step changes in service
rate rather than performance over complex rapidly varying traf-
fic. However, burstiness in cross traffic in real networks often
occurs at small time scales, i.e., from several milliseconds up to
a second [4]. Fast changes in the service rate, coupled with large
bandwidth-delay products, often significantly degrade theper-
formance of connection-level controllers. Intuitively, this per-
formance degradation is due in part to the feedback and con-
trol delays—the service rate may change even before the ad-
justment of the traffic transmission rates impacts the bottleneck
node, and thus the desired stable queue length may never be ob-
tained. Moreover, all these approaches, assume linearizedbuffer
dynamics at the bottleneck node; i.e., the boundaries of empty
and full queues are ignored. This assumption causes stability
problems under some bursty service-rate conditions.

We approach the congestion-control problem using an alter-
native paradigm that alleviates these drawbacks. We assumewe
are provided with a stochastic model of the cross traffic, and
demonstrate a controller that achieves substantial benefits from
exploiting this model. We call such controllersburst-levelcon-
gestion controllers. We take a pro-active approach by predicting
future service rates using the stochastic model so that our con-
troller can anticipate changes stochastically and act “before” the
changes happen.

We model the service rate at the bottleneck node as a Markov-
modulated fluid (MMF). MMF models are commonly used to
model high-priority QoS-sensitive (quality of service sensitive)
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traffic, mostly comprising voice and video [1], [2], [3], [4]. In
our setting, the service rate is the total link bandwidth reduced
by the portion consumed by the high-priority traffic. Hence,the
service rate can also be characterized using essentially the same
MMF models. We use a Markovian model for the following
reasons. First, Markovian models are very general; in particu-
lar, long-range dependent traffic can be approximated arbitrarily
well by a Markovian model, perhaps with a large number of
states [24]. Second, Markovian models are amenable to power-
ful decision-theoretic analysis, a strength that we exploit in our
approach.

We formulate our congestion-control problem as a discrete-
time finite-horizon Markov decision process (MDP) [6]. We
formulate a measure of performance over long traces of service-
rate variation, balancing throughput,delay, loss, and fairness. At
the bottleneck node, we receive a positive reward by forwarding
traffic, a negative reward for each time step the traffic spends
waiting in buffer for service, a negative reward for traffic lost
due to buffer overflow, and a negative reward for differencesin
traffic arrivals from different controlled sources. The objective
is to maximize the average net reward over a finite horizon by
choosing proper transmission rates for the controlled sources.
We then extend our previously proposed Hindsight Optimiza-
tion (HO) technique [5] to provide a heuristic solution to the
MDP problem. The HO technique has never previously been
used to address a problem with an infinite control action space.

The main contribution of this work is to demonstrate that a
stochastic model of future service rates can be effectivelyex-
ploited in congestion control to achieve substantial benefits in
throughput, delay, and traffic loss, while maintaining reasonable
fairness. A secondary contribution is to provide a specific means
to obtain these benefits using a novel congestion-control frame-
work based on online sampling. It remains to be seen whether
this specific framework can be realized in practice with current
technology, but our work provides both a strong motivation and
a useful starting point for seeking a practically-realizedconges-
tion control scheme incorporating traffic models.

Our controller achieves significant performance improve-
ments over the PD controller when small time-scale bandwidth
variations are present. Although MMF models have been ex-
tensively employed in network performance analysis (e.g.,[2],
[3]), our work is the first to exploit such models for rate-based
congestion control. In [12], [13], the authors model cross traf-
fic by an auto-regressive moving-average process corruptedby
a sequence of independent and identically distributed random
numbers with zero mean and finite variance. Compared with
[12], [13], MMF models have more structure, and better perfor-
mance is therefore expected when such models are available.In
[15], the authors incorporate a long-range dependent modelinto
the design of a linear-increase/exponential-decrease controller.
Our MMF model yields to a decision-theoretic analysis, as men-
tioned above, resulting in a controller that is not constrained to
be linear-increase/exponential-decrease.

Previous work on congestion control using MDP formula-
tions include [33], [34], [35]. Our work differs from [33], [34],
[35] in several ways: 1) Our action space is continuous; 2)
our reward structure is more general; 3) we develop an online
sampling-based approach to cope with the continuous actionand

state spaces. Recent work on rollout algorithms (e.g., [36]) pro-
vide a means of using simulation to select “good” control ac-
tions heuristically, but requires starting with a good heuristic
policy.

The remainder of the paper is organized as follows. In
Section II, we describe our network model and define the
congestion-control problem as an MDP. In Section III, we intro-
duce the HO technique for heuristic MDP control, and present
our gradient-based congestion-control algorithm. Section IV
presents the simulation results of our controller and the PDcon-
troller to enable comparison. Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Model

We consider a network where a single bottleneck node is
shared by multiple rate-controlled traffic sources and other high-
priority “cross-traffic” sources. The controlled sources transmit
at rates specified by a central controller residing at the bottleneck
node. Fluid traffic generated by a source has a source-dependent
fixed forward delay to reach the bottleneck node. Control sig-
nals, periodically generated by the rate controller, travel to each
controlled source after a fixed source-dependent backward de-
lay. Thus, associated with each source is a fixed round-trip de-
lay. Without loss of generality, we assume that the round-tripde-
lays are distinct from one another. We notate vectors and their
components as follows: for vector~v, we writev(i) for the ith
component of~v when that component is scalar, and~v (i) for that
component when it is itself a vector. We also notate thejth com-
ponent of theith component of~v (when~v is a vector of vectors)
asv(i;j). Throughout this paper we use the notationEX to de-
note expectation taken with respect to the random variableX.
We assume that time is discrete with small time increments�.
We now describe four essential components of our system: the
controlled traffic sources, the cross traffic, the bottleneck node,
and the congestion controller.

Controlled Sources. We denote the collection of controlled
sources by the setN and letN = jNj be the cardinality ofN,
i.e., the number of controlled sources. We assume that in real
time the round-trip delay associated with each controlled source
is large compared with the time increment� such that we can
express the delay by integral multiples of� in our discrete-time
model with sufficient accuracy. Hence, in discrete time, we de-
note the round-trip delay of sourcei as d (i), a positive inte-
ger. Without loss of generality we index the sources such that0 < d(1) < � � � < d(N). We assume that the sources transmit at
the controller-specified rates and respond to rate commandsin-
stantaneously upon their arrival. This model emulates controlled
ABR (available bit rate) traffic in ATM networks and UDP (User
Datagram Protocol) traffic in IP networks, which are suitable
candidates for rate-based congestion-control schemes.

Cross Traffic. High-priority cross traffic represents, for ex-
ample, CBR/VBR traffic in ATM networks, or traffic in IP net-
works receiving high-priority service via the CBQ (class-based
queuing) scheme [14]. This cross traffic determines the service
rate that controlled traffic experiences at the bottleneck node.

We assume that the cross-traffic process can change at any
(discrete) time. For convenience, instead of specifying the cross-
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traffic distribution,we specify the “service process,” which is the
difference between the rate of cross traffic andC, the constant
bandwidth of the bottleneck node. We assume that the service
process is represented by a Markov chain with state spaceS =f1; : : : ;mg, a transition probability matrixM : (S � S) 7![0; 1], and a set of distinct rate valuesv1; : : : ; vm (i.e.,m is the
number of the values that the service rate can take) which are
real numbers in the interval[0; C]. By “service rate” we mean
the amount of fluid traffic that can be served in one time step.
When in states, the service rate isvs (a constant). Under this
assumption, there is a one-to-one correspondence between the
states and the service rates. Therefore, measuring servicerate
suffices to determine the state of the service process.

Bottleneck Node. The bottleneck node has a buffer of finite
size. We assume that the best-effort traffic (from the controlled
sources) is buffered together, independently of any buffering
needed for the QoS-sensitive cross traffic. We denote the size
of the buffer byB. As defined above, we denote the bandwidth
at the bottleneck node byC.

At each discrete time step, the volume of (fluid) traffic that
arrives is the sum of the fluid traffic from all of the controlled
sources during the time step—each source contributes fluid ar-
rival equal to the control sent to that source at the time step
preceding the current time step by the round-trip delay for that
source. We assume that the queue length at the bottleneck node
is known at each time step.

Congestion Controller. The controller, residing at the bot-
tleneck node, makes control decisions at each time step. The
congestion-control problem is to determine a rate commandu(i)k to relay to sourcei, i = 1; : : : ; N , at timek to achieve
some overall performance objective. Our objective is to balance
throughput, delay, loss, and fair service to controlled sources,
as described formally by the reward function below. When a
source receives a command, it transmits at the rate specifiedby
the command until another command is received. The controller
can use system observations and a model of the service process
to compute rate commands. The rate command for a source at
any given epoch impacts the bottleneck node arrivals after atime
duration equal to one round-trip delay for that source. There-
fore, at each decision-making epoch, the controller needs to
compute an appropriate rate command for each source that takes
into account the round-trip delays and anticipated service-rate
variation. The order of event occurrence at the bottleneck is: de-
cision making, MMF transition, traffic arrival and simultaneous
traffic forwarding (according to the new service-rate MMF pro-
cess state), and then checking for buffer overflow/underflow—
we thus assume that the control decision must be takenbefore
observing the service rate at the current time step; to modelthis
behavior we note that the MMF state component of the over-
all system state corresponds to the service rate observed inthe
previous time step.

B. MDP Problem Formulation

We formulate the congestion-control problem as a Markov
decision process (MDP). An MDP consists of an action space,
a state space, a state-transition structure, and a reward structure.
In the following, we describe each component for our problem.

Action Space. We assume that the transmission rates at the

controlled sources are bounded between zero and by a common
valueC > 0. We denote the action space byU = [0; C]N.
At time k the control action is a vector~uk of the form~uk =[u(1)k ; : : : ; u(N)k ]. In ATM networks the lower limit can be set
to the minimum cell rate, without significant effect on our tech-
niques.

State Space. The system state has three components. The
first is the state of the service process (during service at the pre-
vious time step), taking values inS. By the method of discretiza-
tion described above, the state of the service process at each time
step corresponds to the departure rate observed at the previous
time step, and the MMF service model will transition before de-
partures occur at the current time step. (This choice modelsthe
fact that we cannot know the current cross traffic precisely until
after it has occurred and we have had the opportunity to mea-
sure it.) The second component is the current queue lengthl,
taking values inL = [0; B]. The third component consists of
the control signals that have been issued in the past but whose
impact has not yet been felt at the bottleneck node due to the

round-trip delays. This control history~w takes values inUd(N)
,

whered(N) is the largest among alld (i)' s. For example, if the
control actions selected over time are~u0; ~u1; : : : then the con-

trol history ~wk = (~w (1)k ; : : : ; ~w (d(N))k ) at timek is such that~w (i)k = ~uk�i and thusw (i;j)k = u (j)k�i. We note that this con-
trol history includes unnecessary information in the form of his-
tory beyond the round-trip delay for sources closer than delayd(N). This information is included to greatly simplify our nota-
tion throughout this paper, but is not truly needed in the intended
model or for any of our methods. The complete state space isX = S� L�Ud(N)

.
State Transition. If the state is~x = (s; l; ~w) where ~w =(~w (1); : : : ; ~w (d(N))) denotes the control history, and we apply a

control~u, the system will make a transition to a new state~x 0 =(s0; l0; ~w0). In the following, we specify how each component of~x 0 depends on~x and~u.
The service-process state makes a transition froms to s0 with

probabilityP (s; s0) given by the(s; s0)th entry in the given ma-
trix M—this transition is unaffected by the values ofl and ~w.

The queue-length componentl0 depends on~x as follows. Leta(~x) = PNi=1w(d (i) ;i) be the aggregate fluid traffic that ar-
rives during the transition from statex to statex0 from all con-
trolled sources—this traffic is due to rate commands that were
issued to these sources in the past which are now recorded in the
state component~w. The queue-length component of the state
changes according to the following difference equation, com-
monly called Lindley's equation:l0 = maxfminfl + a(~x)� vs0 ; Bg; 0g:
The queue-length componentl0 does not depend on~u due to
non-zero round-trip delays.

Finally, the control history updates as follows:~w 0(1) = ~u; ~w 0(i+1) = ~w 0(i); i = 1; : : : ; d(N) � 1:
Reward Structure. We define the one-step reward at state~x by R(~x) = T (~x)� �D(~x)� �F (~x)� �L(~x); (1)
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where� > �, 0 < � < 1=(N � 1), � > �, T (~x) is the through-
put received at one time step when the system is in state~x,D(~x)
is the total queuing delay incurred at that time step,F (~x) is the
sum of the absolute pairwise rate differences in arriving traffic
from different controlled sources at that time step, andL(~x) is
the fluid lost at the current time step due to buffer overflow (after
“checking for buffer overflow”).

The scaling factors�, �, and� reflect our tradeoff preference
between throughput, delay, loss, and service fairness. There-
strictions on�, �, and� above represent a preference-hierarchy
among the four terms according to the following order: through-
put, delay, loss, and fairness. Because maximizing through-
put is typically the first concern in regulating controlled traffic
sources, with fairness somewhat subordinate, we are most inter-
ested in parameter values satisfying this restriction. Restricting
the ranges of�, �, and� as shown above allows the analytical
selection of a hindsight-optimal control sequence (definedlater)
more easily. We do not consider the more difficult and less im-
portant case of parameter settings that violate this restriction.

The one-step rewardR(~x) depends only on the state~x and not
explicitly on the control~u because any rate command in~u will
not have impact on the bottleneck node until at leastd(1) time
units later, due to the non-zero round-trip delaysd (i). We now
provide formal expressions forT (~x), D(~x), L(~x), andF (~x) for
completeness as follows:T (~x) = minfl + a(~x); vs0g (2)D(~x) = maxfminfl + a(~x)� vs0 ; Bg; 0g (3)L(~x) = maxfl + a(~x)� vs0 � B; 0g (4)F (~x) = NXi=1 NXj=1;j>i ���w(d (i);i) � w(d (j) ;j)��� ; (5)

wheres0 is the service-rate process state after MMF transition
from states. Note that the throughput, delay, and loss terms
of the reward function (and thus the reward itself) are random
variables due to their dependence on the random variables0.

Optimization Goal. Based on the MDP model described
above, we can state the congestion-control problem as follows.
For a given initial state~x0, we apply a control~u0 to the system
and receive a reward ofR(~x0) by serving traffic at the bottleneck
node. The system will then make a transition to a new state~x1, stochastically according to the state-transition structure. We
then apply a control~u1, and so on. After a horizon ofH steps,
the cumulative reward received (a random variable) is givenbyWH(~u0; : : : ; ~u ~H�1) � H�1Xk=0 R(~xk);
where ~H = H � d(1), and~u ~H�1 is the latest control command
that can impact the bottleneck node within the horizonH.

Our choice of~uk is based on~xk; that is, we use a “state-
feedback” map�k : ~x 7! ~u and apply~uk = �k(~xk). The
sequence of maps� = f�0; �1; �2; : : :g is called apolicy. For a
given initial state~x0, the problem is to find a policy that maxi-
mizes the objective functionV �H (~x0) = E �WH (�0(~x0); : : : ; � ~H�1(~x ~H�1))� :

Given a policy� or a fixed sequence of controls~u0; ~u1; : : :, we
denote the (random) state of the system at each timek in 0; 1; : : :
by the random variableXk and the (random) state of the service
process at timek by the random variableSk.

C. Optimal Solution

To describe our approach to the congestion-control problem,
we first characterize the optimal congestion-control policy. For
a given initial state~x, letV �H (~x) = max� V �H (~x):
Following a standard approach to solving MDPs, we writeQk(~x; ~u) = R(~x) + E(V �k�1(~x 0)); k = 1; : : : ;H;
where the expectation in the right-hand side is with respectto
the next state~x 0, andV �k�1(~x 0) is the optimal cumulative reward
over thek� 1 time steps starting from the (random) state~x 0. A
key result in Markov decision theory [6] then states thatV �H(~x) = max~u2UQH(~x; ~u);
and a policy�� = f��0; ��1; : : :g is optimal if it satisfies for allk,��k(~x) = argmax~u2UQH�k(~x; ~u):
In particular, for a fixed horizonH, the control~u� is an optimal
“current” action if it satisfies~u� = ��0(~x) = argmax~u2UQH(~x; ~u): (6)

At each control epoch we apply the “current” control action~u� in (6). In other words, each control epoch involves optimiz-
ingQH(~x; ~u)with respect to~u for a horizon ofH into the future.
This approach of applying a “moving-horizon” control solution
in an online fashion is common in the optimal-control literature,
for example inreceding-horizon control(see, e.g., [19], [20]).

In practice we do not have explicit knowledge ofQH . Stan-
dard techniques can be used to computeQH in time polynomial
in the size of the state space. However, because we have an
implicitly specified state space (specified component by compo-
nent above), our actual state space is astronomical in size;as a
result, these standard techniques cannot be applied in practice.
Thus, equation (6) is not directly useful for determining the op-
timal policy. Our MDP problem does not yield to any other
known analytical solution. Instead, we approach the problem by
computing an upper-bound estimate ofQH (~x; ~u). In the next
section, we describe a particular approach to solving our opti-
mization problem, based on evaluating candidate actions using
such upper-bound estimates ofQH(~x; ~u).

III. C ONGESTION-CONTROL ALGORITHM USING

HINDSIGHT OPTIMIZATION

A. The Hindsight Optimization Technique

In this subsection, we outline our solution approach, which
extends a technique calledhindsight optimization, first de-
scribed in [5]. The overall control architecture is illustrated in
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Fig. 1. Congestion-control architecture.

Figure 1. The controller comprises three parts: a state observer,
a traffic simulator, and a rate calculator. The state observer is
responsible for obtaining the system state~x by measuring the
service rate at each time step (as well as observing the current
queue length and storing the recent control history). We assume
that the controller has an accurate MMF model of the cross traf-
fic, allowing the state observer to infer the MMF state by mea-
surement (given our assumption that the MMF model state each
determines a unique service rate). Hence, the system state is
fully observable.

The traffic simulator takes the observed current state~x and
uses it as a starting state to generate a finite number of possi-
ble service-rate sequences (traces) using our MMF model. The
rate calculator takes these traces and computes a rate command
vector~u. The calculation of the rate command vector is based
on the following idea. Recall from equation (6) that at any given
control epoch and any state~x, the optimal rate command is given
by ~u� = argmax~u2UQ(~x; ~u) (7)

(we omit the subscriptH in QH(~x; ~u) for brevity). We rely
on an estimatêQ(~x; ~u) of theQ(~x; ~u) to carry out the above
maximization. This estimate is calculated as follows. For each
service-rate tracet, we compute the cumulative reward by tak-
ing action~u at state~x followed by atrace-optimalsequence of
actions~u t1; ~u t2; : : : ; ~u t~H�1 for the remaining horizon of~H � 1
time steps. We say that the sequence~u t1; ~u t2; : : : ; ~u t~H�1 is trace-
optimal if this sequence achieves the largest possible cumula-
tive reward under the assumption that the service rate does in-
deed vary according to the trace under consideration. We call
any such trace-optimal sequence ahindsight-optimal control se-
quenceand the optimal cumulative reward of any such sequence
thehindsight-optimal valueof the trace—computing such a se-
quence and its corresponding value is a deterministic optimiza-
tion problem that is often considerably easier than finding the
optimal stochastic control for the online problem. We compute
the average of the hindsight-optimal values over the set ofn gen-
erated traces for the specified initial control~u—this average is
our estimateQ̂n(~x; ~u) of Q(~x; ~u). In other words,Q̂(~x; ~u) and
its sampled approximation̂Qn(~x; ~u) are given byQ̂n(~x; ~u) = 1n nXt=1W �t (~x; ~u) (8)Q̂(~x; ~u) = R(~x)+ES1 ;:::;SH max~u1;:::;~u ~H�1WH�1(~u1; : : : ; ~u ~H�1):

(9)

where WH�1(~u1; : : : ; ~u ~H�1) � H�1Xk=1 R(~xk);
andW �t (~x; ~u) is the hindsight-optimal value for the tracet as a
result of applying control~u at state~x.

Given the estimatêQ(~x; ~u) of Q(~x; ~u) for each action, the
hindsight optimization (heuristic) approach is to select and ex-
ecute the action~u (a vector) that maximizes this estimate. Pre-
vious applications of the hindsight-optimization technique have
all involved MDP problems with finite action spaces, unlike our
congestion control problem. When the action space is finite,
we can simply compute the estimatêQ(~x; ~u) for each action~u,
and choose the candidate action associated with the largestsuch
estimate for execution. Here, however, we have an uncount-
able continuous action space, and cannot compute this estimate
for every action. Instead, we extend the hindsight optimization
technique by finding a (locally) optimal action using a gradi-
ent ascent technique. Because we seek to use gradient ascentto
solve this problem, we actually need to analyze traces to findthe
gradient ofQ̂(~x; ~u) relative to changes in~u (rather than to findQ̂(~x; ~u) itself). We discuss a method for estimating this gradient
from traces below.

To conclude this subsection, we argue thatQ̂(~x; ~u), if ex-
actly computed (e.g., by infinite sampling), is an upper bound
onQ(~x; ~u). Let ~x1 denote the next (random) system state after
applying control~u at state~x. Then,Q̂(~x; ~u) can be expressed
formally as:Q̂(~x; ~u) = R(~x) + ES1ES2;:::;SH max~u1;:::;~u ~H�1W1; (10)W1 = WH�1(~u1; : : : ; ~u ~H�1):
Note that the sequence~x1; : : : ; ~xH�1 depends on the controls~u1; : : : ; ~u ~H�1 although the notation does not reveal this depen-
dence explicitly. Comparing equation (10) with the following
form ofQ(~x; ~u),Q(~x; ~u) = R(~x) + ES1 max�1 ;:::;� ~H�1ES2;:::;SHW2; (11)W2 = WH�1(�1(~x1); : : : ; � ~H�1(~x ~H�1));
we can see that̂Q(~x; ~u) estimates an upper bound ofQ(~x; ~u)
computed by interchanging expectation and maximization. Note
that the “max” in the definition of̂Q(~x; ~u) is over sequences of
actionsdue to the ability (inQ̂(~x; ~u)) to apply tailored action
sequences to different stochastic futures—in contrast the“max”
in Q(~x; ~u) occurs outside the expectation, requiring a single
policy to be selected for all futures. As discussed in [5], theQ̂(~x; ~u) upper bound onQ(~x; ~u) can be arbitrarily loose. How-
ever, these estimates are only used to rank competing candidate
actions, and thus it only matters whether or not these estimates
preserve the relative values at different states. Our results below
give evidence that for congestion control problems the ranking
is preserved well enough to makêQ(~x; ~u) useful for selecting
an effective control policy.

B. Hindsight-optimal Control Sequences

At each decision-making epoch, we wish to determine a rate
vector~u� according to (7) usinĝQn(~x; ~u) in place ofQ(~x; ~u).
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For a given~x, we wish to maximizêQn(~x; ~u) with respect to~u.
Because the argument~u is a vector of continuous variables, we
can use a search algorithm based on the gradient ofQ̂n(~x; ~u)
with respect to~u, which we denote byr~u Q̂n(~x; ~u).

Note that from equation (8), we can writer~u Q̂n(~x; ~u) asr~u Q̂n(~x; ~u) = 1n nXt=1r~uW �t (~x; ~u);
wherer~uW �t (~x; ~u) is the gradient ofW �t (~x; ~u) with respect to~u. Therefore, the calculation ofr~u Q̂n(~x; ~u) reduces to calcu-
lating the gradients on a per-trace basis, i.e., the gradients of
theW �t (~x; ~u) (hindsight-optimal values). It turns out that these
gradients can be computed analytically, as we will show later.
Our gradient estimate above is akin to the idea ofinfinitesimal
perturbation analysis[27].

Recall thatd(1) is the smallest round-trip delay among alld (i)' s. We note that ifd(1) � H � 1, then no matter what con-
trol sequence we apply, by the end of the horizonH, no action
will have impact on the bottleneck node. Therefore, we consider
only the nontrivial case where0 < d(1) < H � 1.

Suppose that the current time is zero and the current state is~x0 = (s0; l0; ~w0). We wish to select as the current control the
action~u�0 that maximizesQ̂(~x0; ~u�0). In the following, we first
describe how we compute a hindsight-optimal control sequence
for a given service-process trace. Based onn such sequences,
we then show how to obtain the gradient ofQ̂n(~x0; ~u0), which
together with a search algorithm forms our congestion-control
algorithm. We now assume that we have generated a specific
service-process tracet = fvs1 ; : : : ; vsHg.

Given the initial state~x0 and action~u0, define the trace-
relative committed aggregate arrival rate (from all controlled
sources due to rate commands in the control history as indicated
in the ~w0 component ofx0) at timesk = 0; : : : ;H�1 for initial
control~u0 byatk(~u0) = NXi=1 Ii(k)w(d (i)�k;i)0 ; whereIi = 1f0;:::;d (i)g
where we define~w(0)0 to be~u0. Define the trace-relative queue-
length sequencefltk, k = 0; : : : ;Hg (and the queue lengthf~l tk+1, k = 1; : : : ;Hg before “checking for underflow”) for ini-
tial control~u0 byltk+1(~u0) = maxf~l tk+1(~u0); 0g; and~l tk+1(~u0) = minfltk(~u0) + atk(~u0)� vsk+1 ; Bg;
with lt0(~u0) = l0 the current queue size.

Noticeu(i)0 is the control decision we are going to make at the
current time and has not been determined yet; however, in the
following proposition,u(i)0 is assumed given because we will
assign candidate values to determine the associatedQ̂ values.
For a service-rate tracet = fvs1 ; : : : ; vsHg, we wish to compute
a hindsight-optimal control sequence~u t1; : : : ; ~u t~H�1. In choosing
such a control sequence, we will need notation for the number
of sources that can affect a given time (i.e., sources such that the
round-trip delay is less than the specified time)—we write~Nk

for the number of sourcesj such thatk � d (j). The following
proposition gives the means to compute the unique hindsight-
optimal control sequence analytically.

Proposition 1: Given system state~x0 = (s0; l0; ~w0), action~u0, and a trace of future service ratesvs1 ; : : : ; vsH , the sequencef~u tk, k = 1; : : : ; ~H � 1g with (utk)(i) for sourcei specified as
below is the unique hindsight-optimal control sequence.(utk)(i) = ( 0 when~l tk+d (i)+1 � 0,�~l tk+d (i)+1= ~Nk+d (i) otherwise,

where~l tk+d (i)+1 = ~l tk+d (i)+1(~u0) is a function of~u0.

A correctness argument for Proposition 1 can be found in the
full version of this paper at: dynamo.ecn.purdue.edu/�ngi/).

C. Search Algorithm

At each time step, we wish to determine the control action~u�0 that yields the largest estimatêQ(~x0; ~u0). We use a search
algorithm that uses only the gradient ofQ̂. Letr~u Q̂n(~x0; ~u0)
represent the gradient of̂Qn(~x0; ~u0) (with respect to the control
action~u0). The search algorithm is of the form (see, e.g., [16])~u(k + 1) = ~u(k) + 
(k)r~u Q̂n(~x0; ~u(k)); (12)

where 
(k) is a positive step size, and the iterate~u(k) is
an estimate of~u�0 (more sophisticated algorithms are possible,
but appear unnecessary for our purposes). From equation (8),r~u Q̂n(~x0; ~u0) is given byr~u Q̂n(~x0; ~u0) = 1n nXt=1r~uW �t (~x0; ~u0)
wherer~uW �t (~x0; ~u0) is the gradient of the hindsight-optimal
value for the tracet.

There are points where the trace-relative hindsight-optimal
value is not differentiable. The use of gradient ascent methods
with functions that are not everywhere differentiable has been
studied before (e.g., [32]). In practice, we have found thatthe
non-differentiable points in our objective function do notim-
pact the efficacy of the gradient ascent algorithm. In fact, in our
empirical study the gradient ascent algorithm never encounters
these non-differentiable points. Hence, we do not delve further
into this issue.

The result of Proposition 2 below can be used to compute
the gradientr~uW �t (~x0; ~u0). Combining this result with the
algorithm (12), we have an iterative procedure to compute~u�0.
In practice, we terminate the algorithm (12) when the gradientr~u Q̂n(~x0; ~u(k)) is sufficiently close to~0. Specifically, we stop
whenkr~u Q̂n(~x0; ~u(k))k � ", where" > 0 is a prespecified
parameter and we usek~vk to denote the “sup norm” given bymaxi jv(i)j. Note that we also need a value~u0(0) to initialize
the algorithm. For the step size sequencef
(k)g, a typical and
simple choice is to set
(k) to be a small positive constant.

We summarize the search procedure in the following routine.
Let Tr be a given set of future bandwidth traces,n = jTrj
the cardinality ofTr as defined before, andr~uW �t (~x0; ~u(k))
the gradient of the hindsight-optimal value for tracet in Tr, as
given by Proposition 2. Let~d be a vector whoseith entry isd (i).
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grad-search(Tr; ~d)
1. Initialize~u(0).
2. Fork = 1; 2; : : :; dor~u Q̂n(~x0; ~u(k)) = (1=n)Pnt=1r~uW �t (~x0; ~u(k))~u(k + 1) = ~u(k) + 
(k)r~u Q̂n(~x0; ~u(k))

until jr~u Q̂n(~x0; ~u(k))j � ".
3. Output~u(k).

The set of tracesTr and delay parameter vector~d are listed
as arguments of the routine because both are needed in the cal-
culation ofr~uW �t (~x0; ~u(k)). Note that the above algorithm
assumes that the state~x0 is given.

The search algorithm is in fact only a local-search method;
the solution obtained depends on the initial condition, andmay
not be globally optimal. To search for a globally optimal solu-
tion, we could employ other familiar search techniques suchas
simulated annealing, but we have found satisfactory empirical
results using only this local search.

D. The Gradient of the Hindsight-optimal Value

This section summarizes our efficient means of computing the
gradientr~uW �(~x0; ~u0) (a more technical account, including a
correctness argument of the gradient, can be found in the full
version of this paper at: dynamo.ecn.purdue.edu/�ngi/).

Let the trace-relative projected queue-size trajectoriesfltk,k = 0; : : : ;Hg andf~l tk+1, k = 1; : : : ;Hg be as defined pre-
viously. Letkt;i(~u0) be the first buffer-underflow or buffer-full
time afterd (i)� 1 when encountering tracet with no additional
flow requested after~u0, given bykt;i# (~u0) = minnk : �ltk+1 = 0 andd (i) � k < H � 1�

or k = H � 1o;kt;i" (~u0) = minnk : �ltk+1 = B andd (i) � k < H � 1�
or k = H � 1o; andkt;i(~u0) = minnkt;i# ; kt;i" o :

DefineNi to be the set of all sourcesj in N with round-trip
delays greater thand (i). By our ordering of the sources we haveNi = fj 2 N : j > ig. We now introduce notation that divides
the sources inNi according to whether they have arrival rates at
timed (i) that are higher or lower than any particular rater. For
each sourcei 2 N, we partition the setNi of “uncontrollable”
sources into two subsets,Ni<(r) andNi>(r), according to how
the arrival rates from those sources at timed (i) compare to the
rater, as follows:Ni<(r) = fj 2Ni : w(d (j)�d (i) ;j)0 < rg;N i<(r) = jNi<(r)j;Ni>(r) = fj 2Ni : w(d (j)�d (i) ;j)0 > rg; andN i>(r) = jNi>(r)j:

The gradientr~uW �(~x0; ~u0), at points where it exists, is now
given as follows.

Proposition 2: Given state~x0, candidate initial control~u0,
and service-rate tracet = fvs1 ; : : : ; vsHg, the sourcei compo-
nent (for anyi) ofr~uW �(~x0; ~u0) is given by the weighted sum
of the following four terms (with the weights1, ��, ��, and��, respectively), representing the throughput, delay, fairness,
and loss components of the change in total reward:r~u T (~x0; ~u0)(i) = � 1 if i = 1 andkt;1# (~u0) = d (1)0 otherwiser~uD(~x0; ~u0)(i) = kt;i � d (i)r~uF (~x0; ~u0)(i) = N i<(u(i)0 ) �N i>(u(i)0 ) +r~uF (i)1r~uL(~x0; ~u0)(i) = � 1 if kt;i" < kt;i#0 otherwise

wherer~uF (i)1 = 8>>><>>>: 0 if i = 1i � 1 else if~l td (i)+1 > 0i +N i>(r)� N i<(r) else ifr < u(i)0�i + N i>(r) �N i<(r) else ifr > u(i)0 ;r = �~l td (i)+1(u(i)0 )=(i� 1):
E. The Congestion-control Algorithm

We conclude this section by summarizing the congestion-
control algorithm as follows. At each control epoch, we perform
these steps:

1. Observe current system state~x0;
2. Generate a setTr of future service-rate traces;
3. Compute~u�0 = grad-search(Tr; ~d);
4. Transmit rate command~u�0 to sources.

IV. EMPIRICAL RESULTS

A. Evaluation Setup

We use the network simulatorns version 2 as the basis of
our simulation environment. We have modifiednsto implement
our congestion-control algorithm over UDP inns to emulate an
ATM network. Accordingly, we set the packet size to be 53
bytes, the size of a standard ATM cell.

Figure 2 illustrates our simulated network configuration. The
traffic sent from four sources, indexed by0 to 3, shares a com-
mon bottleneck node, and has a common destination node. All
links between the sources and the bottleneck node have band-
width of 155 Mbps, while the bottleneck link is of only 55 Mbps.
The size of the buffer at the bottleneck node is 150 cells. Source0 represents the source for high-priority cross traffic. Sources1, 2, and3 are controlled best-effort traffic sources, which send
traffic at the rates determined by the controller residing atthe
bottleneck node. These three sources are associated with round-
trip delays of 20, 30, and 40 ms, respectively, as shown in the
figure.

Our empirical study consists of two parts. In the first part,
source0 is composed of ten identical connections, each gen-
erating fluid traffic according to a two-state ON-OFF MMF
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Fig. 2. Network configuration for empirical study.

model. In our experiments, we will be varying the two trans-
mission rates corresponding to the ON and the OFF states, re-
spectively, to let the aggregated cross traffic rate have different
variances (ranging from0 to 72:6 Mbps2) but the same mean
(22 Mbps). This allows us to study the impact of the variance
of the cross-traffic rate on system performance. In the two-state
MMF model, the expected lengths of the ON and the OFF peri-
ods are 400 and 600 ms, respectively; these values were chosen
to reflect realistic voice connections, which is the focus ofthe
second part of our empirical study.

In the second part, source0 consists of one thousand inde-
pendent and identically distributed voice connections, reflect-
ing a typical scenario arising in networks with mixed voice and
data traffic. While most data traffic receives only best-effort ser-
vice, commercial telecommunication companies have begun to
carry voice connections, which require real-time guaranteed ser-
vice, over packet-switched networks. The dynamics of voice
connections are well captured by MMF models [2], [18]. We
model a single voice connection by a two-state ON-OFF MMF
model, with the expected ON and OFF periods being 400 and
600 ms, respectively. Since a standard voice connection con-
sumes 64 Kbps bandwidth, we set the rate of each voice con-
nection in our simulation to 70.667 Kbps by considering that
the actual payload in a 53-byte ATM cell is only 48 bytes.

B. Comparison Metrics

We compare the performance of the controller described in
this paper, called the “HO controller” hereafter, with the well-
known PD controller (with various values of the target queue
size). Our metrics for comparison are utilization, averagequeu-
ing delay, cell loss rate, and fairness. Utilization is the through-
put normalized by the total available service “volume” (thesum
of the service rates) over the simulation period at the bottleneck
node. The average queuing delay is the total amount of time
that all the cells spend waiting in the queue at the bottleneck
node divided by the total number of cells forwarded. The cell
loss rate is defined as the number of cells (from the controlled
sources) lost due to buffer overflow divided by the total number
of cells (from the controlled sources) that arrive at the bottle-
neck node over the simulation period. To define fairness, letTi
denote the total number of cells that arrive from sourcei. Then,
fairness is defined as the sum of the mutual absolute differences
between theTi (i = 1; 2; 3) values, normalized by the product
of the number of source pairs (3 in our case) and the sum ofTi,i = 1; 2; 3. In order words, our fairness metric is the the average
pairwise arrival difference per unit arrival.

In most previous papers on rate-based congestion control,
e.g., [9], [10], the test metric is the controller's abilityto main-
tain a target queue size. However, by design the HO controller

does not aim to maintain a fixed queue size. Thus, we do not
evaluate the HO controller's ability to maintain a particular tar-
get queue size.

C. Impact of Cross-traffic Variance

In this subsection, we change the variance of the cross traffic
rate by varying the transmission rates corresponding to theON
and OFF states but still keep the same mean rate. We investigate
how the variance impacts the performance of the HO and the PD
controllers.

PD-type congestion controllers have been shown to be gen-
erally effective [9], [10], [17], [30]. PD controllers adjust the
transmission rate based on the deviation of the queue length
from a target value. We tested the PD controller with different
target queue sizes. The target queue size reflects the network ad-
ministrator's tradeoff among utilization, delay, and cellloss rate.
A larger queue size indicates the desire for higher utilization at
the expense of higher delay and cell loss rate. To maintain fair-
ness, the PD controller issues the same rate command to every
controlled source at every decision-making epoch.

We chose the values of the parameters (gains) of the PD con-
troller by first following the design procedure provided in [9]
and then by fine tuning manually to obtain the best response
possible for a constant cross traffic with rate of 22 Mbps, which
is the mean rate of the cross traffic with which we will be car-
rying out our tests. The queue-length responses achieved byour
choice of gains are very similar to those of [10]. Our experience
with the PD controller suggests that tuning the gains of a high-
order PD controller is nontrivial (the order is determined by the
largest round-trip delay; for example, in our experiments the PD
controller is of order 43). The stability and quality of the system
response depend on many factors, such as the values of gains,
the length of the control update interval, and initial conditions.

For the HO controller, we usen = 200; i.e., at each decision
epoch we generate 200 service-rate traces using the cross-traffic
model. Each trace is of lengthH = 50 time intervals. We
chose the duration� of each time interval to be 1 ms. The value
of � was chosen on the one hand to be small enough to cap-
ture the fast variation in service rate and on the other hand large
enough for affordable computation. In addition, 1 ms is a value
of � small enough to express typical round-trip delays as integral
multiples of�.

With a value of� = 1 ms, the computational burden still
seems nontrivial. Fortunately, many of the computation per-
formed by the HO controller can be carried out in parallel. For
example, the calculation of the components in the gradient are
independent of each other, and thus these components can be
readily computed in parallel. The trace generation can alsobe
carried out in parallel. Bearing this in mind and considering the
pace of progress in computation speeds, we believe that real-
time implementation of our control algorithm is feasible.

We set� = 1000, � = 1=3, and� = 1=2. These values
satisfy the restrictions on the values of�, �, and� that we have
given in defining our objective function, in equation (1).

Figure 3 shows the utilization values achieved by the compet-
ing controllers. The PD controller with a target queue size of
50 cells is denoted by PD-50; similarly, PD-10 and PD-1 rep-
resent PD controllers with target queue sizes of 10 and 1, re-
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Fig. 3. Plots of utilizations achieved by the HO controller and PD controllers
with different target queue sizes versus the variance of cross-traffic rate. The
symbol PD-50 stands for the PD controller with a target queuesize of 50
cells, etc.

spectively. The horizontal axis is the rate variance of the cross
traffic. We see that all controllers achieve high utilization, when
constant-rate cross traffic is present (i.e., when rate variance is
zero in the figure). As the cross traffic becomes more variable,
the utilization values achieved by the PD controllers decrease at
rates much faster than that of the HO controller. The reason is
that when the cross traffic is highly variable, the PD controllers
cannot maintain a stable queue size to ensure satisfactory uti-
lization. In contrast, the HO controller can stochastically “an-
ticipate” changes in service rate and can in turn respond to these
changes beforehand. Figure 3 demonstrates the effectiveness
of the HO controller in an environment with a highly-variable
service rate, a condition which is often found in practical net-
works. We note that at very low variance the HO controller
is outperformed by the most utilization-aggressive (high target
queue size) PD controllers, but that this disadvantage disappears
quickly with increasing variance. We note that even for verylow
variance traffic this disadvantage is not without a corresponding
benefit—in the next plot we will see that utilization-aggressive
PD controller suffer a significant penalty in average delay un-
der these same conditions. The only PD controller that compete
with HO in average delay is the PD-1 controller, which shows
no utilization advantage over the HO controller, even with low
variance in the service rate.

Figure 4 shows plots of the average queuing delays. The HO
controller achieves much smaller queuing delays than thoseof
PD-50 and PD-10. PD-1 has queuing delays close to those of
HO; however, it does so at the significant cost of much smaller
utilizations (see Figure 3). Compared with HO, PD-50 has much
larger delay and less utilization; it has more than twice thedelay
and8% less utilization in the most variable service rate case,
i.e., the right-most point in the figures shown. Figures 4 and
3 suggest that the HO controller can achieve higher utilization
with smaller delay compared with the PD controllers with fixed
target queue sizes.

Figure 5 shows plots of cell loss rates (CLRs). The CLR for
the HO controller is the smallest for all the experiments we car-
ried out due to the fact that the implicit goal of a hindsight-
optimal control sequence is to keep a zero queue length, and
hence it leaves most of the buffer ready to absorb bursts of in-
coming traffic. The PD-50 controller, which achieves the closest
utilization values to HO among the PD controllers, has a CLR
that is at least seven times that of HO in all our experiments.
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Fig. 4. Plots of average delays.
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Fig. 5. Plots of cell loss rates.

Figure 6 shows plots of the fairness metric. We see that the
HO controller is less fair than the PD controllers. The figure
shows that in the most variable service rate case, the average
difference between twoTi' s is less than4% of the total arrival,
while for the PD's, the unfairness value is negligibly small.
The reason that the PD controllers are more fair is that they
are “hardwired” to issue to all the controlled sources the same
rate command at decision-making epochs, while the HO con-
troller does not have this restriction. Instead, the HO controller
makes decisions based on balancing the throughput, delay, loss,
and fairness in the reward function (with fairness being lowest
in priority), and thus the controller may sacrifice fairnessfor
throughput. For example, in the most variable service rate case,
HO gains8%more throughput than PD-50 with much less delay
and cell loss rate.

Moreover, as expected, the HO controller achieves the highest
cumulative reward in all the experiments we conducted. How-
ever, we do not show any figure here due to space limiataion.
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Fig. 6. Plots of fairness metric.
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D. Voice Connections As Cross Traffic

In this subsection, cross traffic consists of 1000 identical
voice connections. Each voice connection generates fluid traffic
according to a two-state MMF model whose parameters are as
given in the last subsection. The parameters of the HO and the
PD controllers also stay the same. Table 1 summarizes the per-
formance comparison between the HO and the PD controllers.
In this experiment, the rate variance of the cross traffic is small
(1.2 Mbps2), and therefore the PD controllers achieve good uti-
lizations. However, the HO controller, while maintaining the
highest utilization value among the competing controllers, en-
joys a much smaller queuing delay and cell loss rate.

Table 1: Performance comparison using 1000 voice
connections as cross traffic

Controller Util Delay (ms) CLR UF
HO 0.988 0.078 0.00 0.0089

PD-50 0.976 0.828 2.39e-3 0.0013
PD-10 0.949 0.238 2.82e-4 0.0013
PD-1 0.896 0.087 6.22e-5 0.0013

Util = Utilization CLR = Cell Loss Rate UF = Unfairness

V. CONCLUSIONS

We have introduced an online sampling-based congestion
controller to regulate best-effort traffic to achieve high network
efficiency. We have demonstrated that exploiting the structure of
service-rate models can result in significantly improved network
performance.

While the proposed control scheme is promising, two main
issues remain to be addressed:
1) Our hindsight-optimization framework is founded on a crisp
and powerful decision-theoretic formulation, but little is under-
stood on conditions under which the technique works well.
2) To incorporate a long-range-dependence traffic model into
our control scheme is an interesting direction worth pursuing.
Such a model can be made Markovian but with a potentially
large state space. Managing the size of the state space but still
capturing the long-range dependence is important for our ap-
proach to apply in this case.
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