Learning Domain-Specific Control Knowledge from Random Waks

Alan Fern and SungWook Yoon and Robert Givan
Electrical and Computer Engineering, Purdue UniversitystN\ afayette IN 47907 USA

{afern, sy,

Abstract

We describe and evaluate a system for learning domain-
specific control knowledge. In particular, given a planning
domain, the goal is to output a control policy that performs
well on “long random walk” problem distributions. The sys-
tem is based on viewing planning domains as very large
Markov decision processes and then applying a recent vari-
ant of approximate policy iteration that is bootstrappethwi

a new technique based on random walks. We evaluate the sys-
tem on the AIPS-2000 planning domains (among others) and
show that often the learned policies perform well on proldem
drawn from the long-random-walk distribution. In addition
we show that these policies often perform well on the origina
problem distributions from the domains involved. Our eval-
uation also uncovers limitations of our current system that
point to future challenges.

Introduction

The most effective current planners utilize domain-specifi
control knowledge. For example, TL-Plan (Bacchus & Ka-
banza 2000) and SHOP (Nat al. 1999) use such knowl-
edge to dramatically prune the search space, often regultin
in polynomial-time planning performance. Attaining this
efficiency, however, requires effective control knowledge
for each planning domain, typically provided by a human.
Given a means for automatically producing good control
knowledge, we can achieve domain-specific planning per-
formance with a domain-independent system. In this work,
we take a step in that direction, limiting our attention tm€o
trol knowledge in the form of reactive policies that quickly

select actions for any current state and goal condition, and

avoiding any dependence on human-provided “small prob-
lems” for learning.

We present and evaluate a new system that takes a plan-

ning domain as input and learns a control policy that is tuned
to perform well on the “long random walk” (LRW) problem
distribution. This distribution randomly generates a prob
lem (i.e. an initial-state and goal) by selecting an iniiate
from the given planning domain and then executing a “long

sequence of random actions, taking the goal condition to be

a subset of properties from the resulting state.

Copyright © 2004, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

gi van} @ur due. edu

We are not aware of prior work that explicitly consid-
ers learning control knowledge for the LRW distribution;
however, this learning problem is interesting for a num-
ber of reasons. First, the LRW-performance goal suggests
an automatic and domain-independent strategy for “boot-
strapping” the learning process by using random-walk prob-
lems of gradually increasing walk length. As we discuss
in the related-work section below, nearly all existing sys-
tems for learning control knowledge require human-assiste
bootstrapping. Second, policies that perform well on the
LRW distribution clearly capture much domain knowledge
that can be leveraged in various ways. For example, in this
work we show that such policies often perform well on the
problem distributions from recent AIPS planning competi-
tions. Such policies can also serve as macro actions for
achieving subgoals, perhaps suggested by landmark analysi
(Porteous, Sebastia, & Hoffmann 2001; Zhu & Givan 2003),
though we do not explore that direction here.

Techniques for finding and improving control policies
have been the predominant focus of Markov-decision-
process (MDP) research. In this work, we show how to
leverage our recent work in that area to solve some famil-
iar Al planning domains. Though here we focus on solving
deterministic STRIPS/ADL domains, our system is appli-
cable to arbitrary MDPs, giving it a number of advantages
over many existing control-knowledge learners. First, our
system, without modification, addresses both stochastic an
deterministic domains as well as domains with general re-
ward structure (where reward is not concentrated in a “goal
region”). Second, our system is not tied to a particular do-
main representation (e.g. STRIPS, ADL, PSTRIPS) or plan-
ner. We only require the availability of an action simulator
for the planning domain. Rather than exploit the domain
representation deductively, we exploit the state- andaeti
space structure inductively using a learning algorithm. Fi
nally, the MDP formalism provides a natural way to leverage
planning heuristics (if available) and, thus, can take adva
tage of recent progress in domain-independent heuristics f
STRIPS/ADL domains (of course, only when the problem
is specified in STRIPS/ADL, or such a specification can be
learned).

Our system is based on recent work (Fern, Yoon, & Gi-

van 2003) that introduces a variant of approximate policy
iteration (API) for solving very large “relational” MDPs by

iteratively improving policiestarting from an initial (often
poor) policy. In that work, APl was applied to MDPs rep-
resenting the blocks world and a simplified logistics world
(with no planes), and produced state-of-the-art contrbt po
cies. However, there remain significant challenges for in-
corporating API into a fully automatic system for learning
policies in a wider range of domains, such as the full corpus
of AIPS benchmarks. In particular, for non-trivial plangin
domains API requires some form of bootstrapping. Previ-
ously, for the blocks world and simplified logistics world,
we were able to bootstrap API, without human assistance,
by using the domain-independent FF heuristic (Hoffmann
& Nebel 2001). This approach, however, is limited both
by the heuristic’s ability to provide useful “bootstrapgin
guidance, which can vary widely across domains, as well as
by the learner’s ability to capture the improved policy indi
cated by its training set at each iteration.

Here, we continue to use the previous underlying learn-

tion simulation” algorithm, that, given stateand actioru,
returns a next state The fourth componen®' is an action-
cost function that mapS§ x A to real-numbers, and is a
randomized “initial state” algorithm, that returns a state

S. Throughout this section, we assume a fixed planning do-
main D of the form above.

The learning component of our system assumes that the
setsS and A are represented, in the usual way, by specifying
a set of object®), a set of state predicatdd and a set of
action typesY’. A state facis a state predicate applied to
the correct number of objects andtaten S is a set of state
facts. Theactionsn A are action types applied to objects.

While our system is not tied to any particular action rep-
resentation, or to deterministic actions in general, frareh
forward in this paper, we focus on applying our system to de-
terministic STRIPS/ADL planning domains with goal-based
reward. In this settingl” corresponds to a deterministic in-
terpreter for STRIPS/ADL action definition&, will always

ing method, and do not yet address its weaknesses (which return one, and corresponds to a legal-state generator, e.g.

do show up in some of our experiments). Instead, we de-
scribe a novel and automatic bootstrapping technique for
guiding API toward policies for the LRW problem distri-
bution, to supplement the bootstrapping guidance provided
by the heuristic, if any. Intuitively, the idea is to initial
use API to find policies for short-random-walk distribution
and to incrementally increase the walk length during iter-
ative policy improvement until APl uncovers a policy that
works well for long walks. Our primary goal in this paper
is to demonstrate that, with this idea, our resulting syseem
able to find good control policies in a wide range of planning
benchmarks.

Our empirical results on familiar planning domains, in-
cluding the AIPS-2000 benchmarks, show that our system
can often learn good policies for the LRW distribution. In
addition, these same policies often perform as well and
sometimes better than FF on the planning-competition prob-
lem distributions, for which FF is known to be well suited.

from a planning competition. Goals are generated by ran-
dom walks from initial states drawn froh

Policy Selection. A planning problenfor D is a pair
(s,g), wheres is a state ang is a set of state facts called
the goal condition A policy is a mapping from planning
problems to actions. We say a policyafficientif it can be
evaluated in polynomial time in the size of its input problem
Given an initial problenisg, g) and an efficient policyr, we
can quickly generate a sequence of stétgss1, s2, .. .) by
iteratively applyingr, wheres; 1 = T'(s;, 7({s;,g))). We
say thatr solves(sy, g) iff there is ani such thaty C s;.
When solves(s,, g), we define thesolution lengtho be
the smallest such thayy C s;.

Given a distributior? over planning problems, theuc-
cess ratioSR(w, D, P) of « is the probability thatr solves
a problem drawn fron®P. TreatingP as a random variable,
the average lengthAL (w, D, P) of = is the conditional ex-
pectation of the solution length afon P given thatr solves

Our results also suggest that, in the domains where we do p_ For a givenD and P, we are interested in selecting

not find good policies, the primary reason is that our current
policy language is unable to express a good policy. This sug-
gests an immediate direction, orthogonal to bootstrapping
for further improving our system by adding expressiveness
to the policy representation and improving the correspond-
ing learner.

To our knowledge this is the first thorough empirical com-
parison of a control-knowledge learner to a state-of-ttie-a
planner on this corpds These results demonstrate that we
are able to automatically find reactive policies that corapet

an efficient policyr with “high” SR(w, D, P) and “low”
AL (m, D, P). Such a policy represents an efficient domain-
specific planner foD that performs well relative t®.
Random Walk Distributions. For states and set of state
predicates, let s|; denote the set of facts in that are
applications of a predicate i¢. For planning domairD
and set ofgoal predicates; C P, we define then-step
random-walk problem distributioRW,,(D, G) by the fol-
lowing stochastic algorithm: First, draw a random stafe
from the initial state distributiod. Second, starting at,

with established domain-independent techniques and point {51e 4, uniformly random actiorfsto produce the state se-

to a promising and much different direction for advancing
domain-independent planning.

Problem Setup
Planning Domains. Our system representsgganning do-
mainusing an action-simulator modél = (S, A, T, C, I),
whereS and A are finite sets of states and actions, respec-
tively. The third componerif is a (possibly stochastic) “ac-

Testing many problem instances from each of many domains.

quence(sg, s1, - - -, S,). At each uniformly random action
selection, we assume that an extra “no-op” action (that does
not change the state) is selected with some fixed probabil-
ity, for reasons explained below. Finally, return the plagn
problem (s, s,|c) as the output. We will sometimes ab-
breviateRW,,(D, G) by RW,, whenD andG are clear in

2In practice, we only select random actions from the set of ap-
plicable actions in a state, provided our simulator makes it pos-
sible to identify this set.

context.

Intuitively, to perform well on this distribution a policy
must be able to achieve facts involving the goal predicates
that typically result after am-step random walk from an
initial state. By restricting the set of goal predicat@s
we can specify the types of facts that we are interested in
achieving—e.g. in the blocks world we may only be inter-
ested in achieving facts involving the “on” predicate.

The random-walk distributions provide a natural way to
span a range of problem difficulties. Since longer random
walks tend to take us “further” from an initial state, for dma
n we typically expect that the planning problems generated
by RW,, will become more difficult as grows. However,
asn becomes large, the problems generated will require far
fewer tham steps to solve—i.e. there will be “more direct”
paths from an initial state to the end state of a long random
walk. Eventually, sinceS is finite, the problem difficulty
will stop increasing with.

A question raised by this idea is whether, for larggood
performance oRRW,, ensures good performance on other
problem distributions of interest in the domain. In some do-
mains, such as the simple blocks wdtldood random-walk

Learning from Random Walks

Our system utilizes a combination of machine learning and
simulation, and is based on our recent work (Fern, Yoon,
& Givan 2003) on approximate policy iteration (API) for
relational Markov decision processes (MDPs). Below, we
first give an overview of policy iteration in our setting, de-
scribe our approximate form of policy iteration, and review
the challenges of applying API to LRW policy selection. We
then describe “random-walk bootstrapping” for API.

Policy lteration. Starting with an initial policy, (ex-
act) policy iteration(Howard 1960) iterates a policy im-
provement operator that guarantees reaching a fixed point
that is a guaranteed optimal policy. Given a policy
and a planning domai, exact policy improvement re-
quires two steps. First, we calculate the Q-cost function
Q75 ((s,g),a), which here is the number of steps required
to achieve goal after taking actior: in states and then
following 7. Second, we compute a new improved pol-
icy ' by greedily choosing, for problerts, g), the action
a that maximizes)7,((s, g),a). The policyn’ is given by
m'((s,g)) = argmin,c ,QT,((s,9),a). Clearly, since exact
policy improvement requires enumerating all planning prob

performance does seem to yield good performance on other lems(s, g), itis impractical for STRIPS/ADL domains.

distributions of interest. In other domains, such as thd gri
world (with keys and locked doors), intuitively, a random
walk is very unlikely to uncover a problem that requires un-
locking a door.

We believe that good performance on long random walks
is often useful, but is only addressing one component of the
difficulty of many planning benchmarks. To successfully ad-
dress problems with other components of difficulty, a plan-
ner will need to deploy orthogonal technology such as land-
mark extraction for setting subgoals (Porteous, Sebastia,
Hoffmann 2001; Zhu & Givan 2003). For example, in the
grid world, if orthogonal technology can set the subgoal of
possessing a key for the first door, a long random-walk pol-
icy could provide a useful macro for getting that key.

Here, we limit our focus to finding good policies for long
random walks, i.e. the problem fifng random walk (LRW)
policy selection In our experiments, we define “long” by
specifying a large walk lengthV. Theoretically, the inclu-
sion of the “no-op” action in the definition G® W ensures
that the induced random-walk Markov chéiis aperiodic,
and thus that the distribution over states reached by iserea
ingly long random walks converges to a stationary distribu-
tion®. ThusSRW., = lim,,_.oc RW,, is well-defined, and we
take good performance dRWV .. to be our goal.

®In the blocks world withG = P and largen, RW,, gener-
ates various pairs of random block configurations, typygadliring
states that are far apart—clearly, a policy that performisamethis
distribution has captured significant information abow khocks
world.

“We don't formalize this chain here, for space reasons, hut va
ious formalizations work well.

5The Markov chain may not be irreducible, so the same station-
ary distribution may not be reached from all initial statesyever,
we are only considering one initial state, described by

Approximate Policy Improvement. API (Bertsekas &
Tsitsiklis 1996) heuristically approximates policy itéca
by iterating an approximate, rather than exact, policy im-
provement operator. This operator uses simulation to es-
timate sampleQ)7, values, and the generalization ability
of machine learning to approximate given this sam-
ple; thus avoiding enumerating all planning problems. As
a result, APl can be applied to domains with very large
state spaces, although it is not guaranteed to converge due
to the possibility of unsound generalization. In practice,
API often does “converge” usefully, e.g. (Tesauro 1992;
Tsitsiklis & Van Roy 1996).

Given a policy w, a planning domainD, a heuristic
function H from states to real numbers, and a problem
distribution P, an approximate policy improvement op-
erator MPROVEPOLICY (7, D, H, P) returns an approxi-
mately improved policyr. In our STRIPS/ADL setting,
this means that the success ratio and average length of
will (approximately) be better (or no worse) than thatrof
The input heuristic functio is used to provide additional
guidance toward improvement when the policy cannot reach
the goal at all: rather than minimizing average length, the
method attempts to minimize average length plus heuris-
tic value at the horizon (if the goal is reached before the
horizon, the heuristic contribution will be zero). However
H may be the constant zero function when no heuristic is
available. In our STRIPS/ADL experiments we use the FF
heuristic function (Hoffmann & Nebel 2001).

5To avoid infinite Q-costs we can either use discounting or a
finite-horizon bound on the number of steps.

"Our actual MDP formulation evaluates policies based on
finite-horizon cost. In practice and intuitively, this meees corre-
sponds well with success ratio and average length, but iffisudt
to determine the exact relationship among these measutiesuwi
additional assumptions.

Prior to our recent work (Fern, Yoon, & Givan 2003),
existing variants of API performed poorly in large rela-
tional domains such as common STRIPS/ADL benchmark
domains. Our contribution was to introduce a newr |
PROVEPOLICY operator, that we use here, that is suited
to relational domain8. As shown in Figure 1, our
IMPROVEPOLICY (7, D, H, P) operates in two steps. First,
in DRAWTRAINING SET(), we draw a set of planning prob-
lems fromP and then for each problefs, g) we usepolicy
rollout (Tesauro & Galperin 1996) to compute the Q-cost
Q7T (s, 9), a) for all (applicable) actions, by applying ac-
tion a in s and then simulatingr. If 7 does not reach the
goal within some (human-specified, problem-specific) hori-
zon, arriving instead in state s’, we approximate the Q-cost
by addingH (s’) to the horizon length. Using the Q-costs we
can determiner’((s, g)) for each problem in our set. Sec-
ond, in LEARNPoLICY(), guided by the training data from

paper, is thatMPROVEPOLICY is fundamentally limited by
the expressiveness of the policy language and the strength
of the learner (together, these represent the “bias” of the
learner). In particular, we must manage the conflictinggask
of selecting a policy language that is expressive enough to
represent good policies, and building an effective leaforer
that language with good generalization beyond the training
data. Since our goal is to have a fully-automated system, we
give a domain-independent specification of the language and
learner. As described in detail in the appendix, we specify
policies as decision lists of action-selection rules Hudm
the state predicates and action types provided by the plan-
ning domain, using a “taxonomic” knowledge representation
similar to description logic. We then use standard decision
list learning to select such policies.

Indeed, our experimental results suggest that, in some
domains, a primary limiting factor for our current system

the first step, we use standard machine learning techniquesis an inadequately expressive combination of language and

for cost-sensitive classification to search for a compactly
represented approximatiohto «’. For a detailed descrip-
tion of this API variant for general MDPs, see (Fern, Yoon,
& Givan 2003).

There are two issues that are critical to the success of |
PROVEPOLICY. The first issue, which this paper addresses,
is that IMPROVEPOLICY (7, D, H,P) can only yield im-
provement if its inputs provide enough guidance. In our set-
ting this may correspond te occasionally reaching the goal
and/orH providing non-trivial goal-distance information for
problems drawn fronP. We call this “bootstrapping” be-

learner. In particular, for some domains (e.g., Freec#ly,
authors themselves cannot write a good policy in our current
policy language—indicating likely difficulty for the leagn

to find one. This paper does not attempt to address this
weakness, since it is somewhat orthogonal to the issue of
bootstrapping; instead, we take a generic approach to-learn
ing, borrowed from our previous work. We plan future re-
search focused on this issue that is expected to improve our
system further. One reason to avoid redesigning the policy
language here is to ensure that we do not solve each domain
by providing hidden human assistance in the form of pol-

cause, for many domains, it appears that once a (possibly icy language customization (which resembles the feature-

poor) policy is found that can reach the goal for a non-ttivia
fraction of the problems drawn frof, API is quite effec-
tive at improving the policy. The problem is getting thisffirs
somewhat successful policy.

For example, supposk is uniform on 20-block blocks
world problems and that is random andH is trivial. In
this case, MPROVEPOLICY has no hope of finding a better
policy since the generated training set will essentiallyene
provide information about how to reach or move closer to

engineering often necessary for cost-function—based.API)
Random-Walk Bootstrapping. Given a planning do-
main D and set of goal predicatés, our system attempts
to find a good policy forRWy, whereN is selected to
be large enough to adequately approxim&t®/ .., while
still allowing tractable completion of the learning. Ndiye
given an initial policyry and a heuristicd, we could try
to apply API directly by computing a sequence of policies
miy1 < IMPROVEPOLICY (m;, D, H,RWy). As already

a goal. Because we are interested in solving large domains discussed, this will not work in general, since we are inter-

such as this, providing “guiding inputs” tamPROVEPOL-
ICY is critical. In (Fern, Yoon, & Givan 2003), we showed
that by using FF's heuristic to “bootstrap” API, we were
able to use MPROVEPOLICY to uncover good policies for
the blocks world, simplified logistics world (no planes)dan
stochastic variants. This type of bootstrapping, however,
does not work well in many other benchmark domains, and
worked poorly in the blocks world with more than 10 blocks.
In this work, we contribute a new bootstrapping procedure,
based on random walks, for guiding API toward good poli-
cies for LRW distributions.

The second critical issue, which is not the focus of this

8The primary difficulty with previous variants was that the
operator MPROVEPOLICY was based on learning approximate
cost-functions and STRIPS/ADL domains typically have extely
complicated cost functions. Our operator that completelyids
cost-function learning and instead learns policies diyéata com-
pact language. In relational domains, policies are oftenhaim-
pler than their cost functions.

ested in planning domains wheRA .. produces extremely
large and difficult problems where we cannot assume the
availability of either a domain-independets or domain-
independent! that are sufficient to bootstrap API.

However, for very smalh (e.g.n = 1), RW,, typically
generates easy problems, and it is likely that API, starting
with even a random initial policy, can reliably find a good
policy for RW,,. Furthermore, we expect that if a poligy,
performs well onRW,,, then it will also provide “reason-
ably good”, but perhaps not perfect, guidance on problems
drawn fromRW,, whenm is only “moderately larger” than
n. Thus, we expectto be able to find a good policyRaw .,
by bootstrapping API with initial policyr,,. This suggests a
natural iterative bootstrapping technique to find a good pol
icy for largen (in particular, forn = N).

The pseudo-code for our algorithm LRWERRN is given
in Figure 1. Intuitively, this is an “anytime” algorithm tha
iterates through two stages: first, finding a “hard enough”
distribution for the current policy (by increasing; and,

** H*
LRW-LEARN (D, G, H, 70, N) 5 RWn RW. & RWn RW.
. . . £ n SR AL SR AL = n SR AL SR AL
/I planning domainD, goal predicates,
/I heuristic functionH, initial policy 7o, max walk lengthV. o
Blocks World Logistics

T« To; N« 1;

0 1] 4]092 20 0 O 1| 5/0.86 3.1/0.25 11.3
P 2| 14/0.94 560.10 41.4 2|45|0.86 6.5/0.28 7.2

if SR(n)>T 3| 54/056 15.00.17 42.8 3|45/0.81 6.9/0.31 8.4

. o 4| 54/0.78 15.00.32 40.2 4| 45/0.86 6.8/0.28 8.9

/I Find hardern-step distribution forr. 5| 54/0.88 33.70.65 47.0 5|45/0.76 6.1/0.28 7.8

n « leasti € [n, N] s.t.SR:(i) < 7—4, or N if none; 6| 54/0.98 25.10.90 439 6|45|0.76 59|0.32 8.4

_ 7/334/0.84 45.60.87 50.1 7|45|0.86 6.2/0.39 9.1

7 = IMPROVEPOLICY(m, D, H, RWn (D, G)); 8|334/0.99 37.d 1 433 8|45/0.76 6.9]0.31 11.0
until satisfied withr or progress stops FF 0.96 490 9|45/0.70 6.1/0.19 7.8
10| 45/0.81 6.1/0.25 7.6

Return 7;
Freecell 43| 45/0.74 6.4]/025 9.0

IMPROVEPOLICY (7, D, H, P)

T DRAWTRAININGSET(r, D, H,P); Il Deseribes’ 2| 3losr 274026 63 45|45|092 66loas 94
7 < LEARNPOLICY (T); I Approximatesr 3| 30/065 7.0078 7.0 46| 70| ** o+ | x x
Return 7; 4| 30(0.72 7.1085 7.0 FF 1 13
5| 30/0.90 6.70.85 6.3
- 6| 30/0.81 6.70.89 6.6
Figure 1: Pseudo-code for LRWEARN. SR, (n) estimates the 7| 30(/0.78 6.80.87 6.8 Schedule
success ratio of in planning domainD on problems drawn from 8| 30/0.90 6.90.89 6.6 1| 1/093 1] 0.1 143
RWn (D, G) by drawing a set of problems and returning the frac- 9| 30/0.93 7.7093 7.9 2| 5/0.89 1.5% 0.1 14.4
tion solved byr. Constants andé, and functions RAWTRAIN- FF 1 54 3] 5/ 1 168 1 13.0
INGSET and LEARNPOLICY are described in the text. FF |1 13
Elevator
then, finding a good policy for the hard distribution using 1| 20 1 4.0/ 1 26 Briefcase
API. The algorithm maintains a current poligyand current FF 1 23 1| 5/091 14| 0 0
walk lengthn (initially, n = 1). As long as the success ratio 2/ 15(0.89 42|02 38
of m on RW,, is below thesuccess threshold, which is a Gripper 3/15/ 1 30] 1 30
constant close to one, we simply iterate steps of approximat FF | 1 28
policy improvement. Once we achieve a success ratio of 1/ 10| 1 38 1 13
with some policyr, the if-statement increasesuntil the FF 1 13

success ratio af onRW,, falls belowr—¢. Thatis, whenr

performs well enough on the curremtstep distribution we Figure 2: Results for each iteration of LRWERRNin seven plan-
move on to a distribution that is “slightly” harder. The con- hing domains. For each iteration, we show the walk lengttsed
stants determines how much harder and is set small enough for learning, along with the success ratio (SR) and averength
so thatr can likely be used to bootstrap policy improvement (AL ﬁf the _Iearneﬁl SO“CV.O“ boftRWn al;ndRV\é* o ghs final pﬁ("
on the harder distribution. (The simpler method of just in- 'Y SNOWn In €ach gomain periorms abave= 0.9 Six on walks

- . : . of length N = 10, 000, and further iteration does not improve the

creasingn by 1 whenever success ratiois achieved will

. . . . performance. The exception is Logistics, where the largalrar
also find good policies whenever this method does. This can g terations required exhausted the CPU time availablbeatime

take much longer, as it may run API repeatedly on a training of this submission. For each benchmark we also show the SR and
sets for which we already have a good policy.) AL of FF on problems drawn frofR W ...
Oncen becomes equal to the maximum walk lengdth

we will haven = N for all future iterations. It is important
to note that even after we find a policy with a good success iy (Bacchus & Kabanza 2000), along with the Gripper do-
ratio onRWy it may still be possible to improve on the p3in.
average length of the policy. Thus, we continue o itérate | p\y Experiments. Our first set of experiments eval-
pc_>I|cy|mprovementonth!s distribution until we are satsfi uates the ability of LRW-EARN to find good policies for
with both the success ratio and average length of the current RW.. We provided LRW-IEARN with the FF heuristic

e

policy. function H and an initial policyr, that corresponded to a
. one-step—look-ahead greedy search based on the FF heuris-

Experiments tic. The maximum-walk-length parametat was set to be
We perform experiments in seven familiar STRIPS/ADL 10,000 for all experiments, with equal t00.9 andd equal
planning domains: Blocks World, Freecell, Logistics, to 0.1. In each iteration, RAWTRAININGSET generates
Schedule, Elevator, Gripper, and Briefcase. These domains a training set constructed from 100 problems. Recall that
represent the union of the STRIPS/ADL domains from the in each iteration of LRW-EARN we compute an (approx-
AIPS-2000 competition and those used to evaluate TL-Plan imately) improved policy and may also increase the walk

lengthn to find a harder problem distribution. We contin-
ued iterating LRW-IEARN until we observed no further im-
provement. The training time per iteration is approximatel
five hours. Though the initial training period is signficant,
once a policy is learned it can be used to solve new prob-
lems very quickly, terminating in seconds with a solutions
when one is found, even for very large problems.

Figure 2 provides data for each iteration of LRVEARN
in each of the seven domafhg he first column, for each do-
main, indicates the iteration number (e.g. the Blocks World
was run for 8 iterations). The second column records the
walk lengthn used for learning in the corresponding itera-
tion. The third and fourth columns record the SR and AL of
the policy learned at the corresponding iteration as measur
on 100 problems drawn froRW,, for the corresponding
value ofn (i.e. the distribution used for learning). When
this SR exceeds, the next iteration seeks an increased walk
lengthn. The fifth and sixth columns record the SR and AL
of the same policy, but measured on 100 problems drawn
from the LRW target distributio®W.., which in these ex-
periments is approximated BV for N = 10, 000.

So, for example, we see that in the Blocks World there are
a total of 8 iterations, where we learn at first for one itenati
with n = 4, one more iteration with = 14, four iterations
with n = 54, and then two iterations with, = 334. At
this point we see that the resulting policy performs well on
RW.. Further iterations witm = N, not shown, showed
no improvement over the policy found after iteration eight.
In other domains, we also observed no improvement after
iterating withn = N, and thus do not show those itera-
tions. We note that all domains except Logistics (see below)
achieve policies with good performance BV y by learn-
ing on much shorteRW,, distributions, indicating that we
have indeed selected a large enough valu& db capture
RW., as desired.

Comments on Figure 2 Results.For several domains,
our learner bootstraps very quickly from short random-walk
problems, finding a policy that works well even for much
longer random-walk problems. These include Schedule,
Briefcase, Gripper, and Elevator. Typically, large probde

in these domains have many somewhat independent sub-

problems with short solutions, so that short random walks
can generate instances of all the different typical subprob
lems. In each of these domains, our best LRW policy is
found in a small number of iterations and performs compa-
rably to FF onRW... We note that FF is considered a very

FF

T

Domain Size SR AL | SR AL
Blocks (20 blocks) 1 541 0.81 60
(50 blocks) 1 151| 0.28 158

Freecell (8 cards) 036 15| 1 10
(52 cards) 0 — | 047 112

Logistics (6 packages)| 0.87 6| 1 6
(30 packages) O — | 1 158

Elevator (30 people) 1 112 1 98
Schedule (50 parts) 1 174 1 212
Briefcase (10 objects) 1 30| 1 29
(50 objects) 1 162| O —

Gripper (40-60balls) | 1 150| 1 150

Figure 3: Results on “standard” problem distributions feven
benchmarks. Success ratio (SR) and average length (AL)rare p
vided for both FF and our policy learned for the LRW problem
distribution. For a given domain, the same learned LRW pakc
used for each problem size shown.

reasons. First, we ourselves cannot write good policies for
these domains within our current policy language. Second,
the success ratio (not shown) for the sampling-based roll-
out policy! 7’ is substantially higher than that for the re-
sulting learned policyr that becomes the policy of the next
iteration. This indicates thatHARNPOLICY is learning a
much weaker policy than the sampling-based policy gener-
ating its training data, indicating a weakness in either the
policy language or the learning algorithm (or possibly too
small a training set). For example, in the logistics domain,
at iteration eight, the training data for learning the itena

nine policy is generated by a sampling rollout policy that
achieves success ratio 0.97 on 100 training problems drawn
from the samé&R W 5 distribution, but the learned iteration-
nine policy only achieves success ratio 0.70, as shown in the
figure at iteration nine. Because of these limitations, fitds
surprising that FF outperforms our learned policyow..

In the remaining domain, the Blocks World, the bootstrap-
ping provided by increasingly long random walks appears
particularly useful. The policies learned at each of thekwal
lengths 4, 14, 54, and 334 are increasingly effective oretarg
LRW distributionRW... For walks of length 54 and 334, it
takes multiple iterations to master the provided level &f-di

good domain-independent planner for these domains, so We ¢ty heyond the previous walk length. Finally, upon master

consider this a successful result.

For two domains, Logisti¢8 and Freecell, our planner
is unable to find a policy with success ratio oneRW...
We believe that this is a direct result of the limited knowl-
edge representation we allowed for policies for the follogvi

®Learning was conducted using the following domain sizes: 20
Blocks World, 8 card Freecell, 6 package Logistics, 10 peSe-
vator, 8 part Schedule, and 10 object Briefcase, and 10 loigip€r.

0In Logistics, the planner generates a long sequence ofigslic
with similar, oscillating success ratio that are elidedrirthe table
with an ellipsis for space reasons.

ing walk length 334, the resulting policy appears to perform
well for any walk length. The learned policy is modestly
superior to FF oW .. in success ratio and average length.
Evaluation on the Original Problem Distributions.
Figure 3 shows results for our best learned LRW policy (de-
notedr,)*? from each domain, in comparison to FF, on the

"The policy described by the training data generated Ry\B-
TRAININGSET, but only approximated by EARNPOLICY, see
Figure 1.

12The policy, from each domain, with the highest performance
onRW., as shown in Figure 2.

original intended problem distributions for those domains exercises, which typically requires insight into the pliaugn
Here we have attempted to select the largest problem sizesdomain and the underlying form of control knowledge and
previously used in evaluation of domain-specific planners planner. Our work can be viewed as an automatic instanti-
(either in AIPS-2000 or in (Bacchus & Kabanza 2000)), as ation of “learning from exercises”, specifically designed f
well as show a smaller problem size for those cases where learning LRW policies.
one of the planners we show performed poorly on the large Our random-walk bootstrapping is most similar to
size. In each case, we use the problem generators providedthe approach used in MRO-HILLARY (Finkelstein &
with the domains, and evaluate on 100 problems of each size Markovitch 1998), a macro-learning system for problem
used (or 20 problems of similar sizes in the case of Gripper). solving. In that work, instead of generating problems via
Overall, these results indicate that our learned, reactive random walks starting at an initial state, random walks were
policies (learned in a domain-independentfashion) aree.com generated “backwards” from goal states. This approach as-
petitive with the domain-independent planner FF. On two sumes that actions are invertible or that we are given a set
domains, Logistics and Freecell, FF substantially outper- of “backward actions”. When such assumptions hold, the
forms our learned policies on success ratio, for reasons dis backward random-walk approach may be preferable when
cussed above, especially on large domain sizes. On two we are provided with a goal distribution that does not match
other domains, Blocks World and Briefcase, our learned well with the goals generated by forward random walks. Of
policies substantially outperform FF on success ratiogesp course, in other cases forward random walks may be prefer-
cially on large domain sizes. On the other domains, the two able. MCRO-HILLARY was empirically tested in th& x N
approaches perform quite similarly on success ratio, with sliding-puzzle domain; however, as discussed in that work,
our approach superior in average length on Schedule but FF there remain challenges for applying the system to more

superior in average length on Elevator.

Related Work

For a collection and survey of work on “learning for
planning” see (Minton 1993; Zimmerman & Kambham-
pati 2003). Two primary approaches are to learn domain-
specific control rules for guiding search-based planners
e.g. (Mintonet al. 1989; Velosoet al. 1995; Estlin &
Mooney 1996; Huang, Selman, & Kautz 2000; Ambite,
Knoblock, & Minton 2000; Aler, Borrajo, & Isasi 2002),
and, more closely related, to learn domain-specific reactiv
control policies (Khardon 1999; Martin & Geffner 2000;
Yoon, Fern, & Givan 2002).

The ultimate goal of such systems is to allow for plan-
ning in large, difficult problems that are beyond the reach of
domain-independent planning technology. Clearly, leagni

complex domains with parameterized actions and recursive
structure, such as familiar STRIPS/ADL domains. To the

best of our knowledge, the idea of learning from random

walks has not been previously explored in the context of

STRIPS/ADL planning domains.

Conclusion

Our evaluation demonstrates that, with random-walk boot-
strapping, our system is often able to select good con-
trol knowledge (i.e., a good policy) for familiar planning
benchmarks. The results point to an immediate direc-
tion for improvement—most significantly, extensions to
the policy language and corresponding learner are needed.
Our immediate goal is to show that with these extensions
we can succeed across an even wider range of planning
benchmarks—in particular, benchmarks where search-based

to achieve this goal requires some form of bootstrapping and domain-independent planners fail. Policy-language exten
almost all previous systems have relied on the humanfor this sions that we are considering include various extensions

purpose. By far, the most common human-bootstrapping ap-

proach is “learning from small problems”. Here, the human
provides a small problem distribution to the learner, byitim

ing the number of objects (e.g. using 2-5 blocks in the blocks
world), and control knowledge is learned for the small prob-

lems. For this approach to work, the human must ensure that

the small distribution is such that good control knowledge
for the small problems is also good for the large target dis-
tribution. In contrast, our approach can be applied without
human assistance directly to large planning domains. How-
ever, as already pointed out, our goal of performing well on
the LRW distribution may not always correspond well with
a particular target problem distribution.

Our bootstrapping approach is similar in spirit to the boot-
strapping framework of “learning from exercises”(Nataraj
1989; Reddy & Tadepalli 1997). Here, the learner is pro-
vided with planning problems, or “exercises”, in order of
increasing difficulty. After learning on easier problents t
learner is able to use its new knowledge, or “skills”, in or-
der to bootstrap learning on the harder problems. This work,
however, has previously relied on a human to provide the

to the knowledge representation used to represent sets of
objects in the domain (in particular, for route-finding in
maps/grids), as well as non-reactive policies that incorpo
rate search into decision-making.

Acknowledgements

We would like to thank Lin Zhu for originally suggesting
the idea of using random walks for bootstrapping. This
work was supported in part by NSF grants 9977981-11S and
0093100-IIS.

Appendix: Policy Language

For single argument actions, useful rules often take tha for
“apply action typea to any object in se€”; e.g., “unload
any object that is at its destination”. (Martin & Geffner
2000) introduced decision lists of such rules as a language
bias for learning policies. Here we use a similar rule form,
but generalized to handle multiple arguments.

Each action-sectionrule hasthefors: L, Lo, ... L,,,
where A is an m-argument action type, and the; are

literals. Literals have the fornx; € Ci(x1,...,2m),
where eacly; is an action-argument variable and thgare

set expressions expressed in an enriched taxonomic syntax

(McAllester & Givan 1993), defined by

C :=Cy|a-thing | -C|(RC)|CNC | (minR)
R:=Ry|R™'|RNR|R"

Here, Cy is any one argument predicate, or one of the
variables, and?, any binary predicate from the predicates

in P. One argument predicates denote the set of objects that

they are true of(R C) denotes the image of the objects in
classC under the binary predicat®, (min R) denotes the
class of minimal elements under the binary predidatand

for the (natural) semantics of the other constructs shown,
please refer to (Yoon, Fern, & Givan 2002). A new predi-
cate symbol is included for each predicat&into represent
the desired goal state; e.gclear(x) represent that is clear

in the goal. Given a planning problefs, g) and a concept

C expressed in this syntax, it is straightforward to compute
the set of domain objects that are represented 'y (s, g),

in order to execute the policy. Predicates of three or more ar
guments are represented with multiple introduced auxiliar
binary predicates.

For a particular planning problem we say that a rale
lowsactionA(os, ... on), Where thep; are objects, iff each
literal is true when the variables are instantiated withahe
jects. Thatisp; € C;(01,...,0) is true for each. Thus,

a rule places mutual constraints on the tuples of objects tha
an action type can be applied to. Given a list of such rules
we say that an action is allowed by the list if it is allowed
by some rule in the list, and no previous rule allows any ac-
tions. Given a planning problem and a decision-list policy,
the policy selects the lexicographically least allowedoarct

References

Aler, R.; Borrajo, D.; and Isasi, P. 2002. Using genetic
programming to learn and improve control knowledge.
tificial Intelligence141(1-2):29-56.

Ambite, J. L.; Knoblock, C. A.; and Minton, S. 2000.
Learning plan rewriting rules. Irtificial Intelligence
Planning System$8-12.

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for plannigificial
Intelligencel16:123-191.

Bertsekas, D. P., and Tsitsiklis, J. N. 198&uro-Dynamic
Programming Athena Scientific.

Estlin, T. A., and Mooney, R. J. 1996. Multi-strategy learn-
ing of search control for partial-order planning. 13th
National Conference on Atrtificial Intelligenc843—848.

Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate
policy iteration with a policy language bias. Ii6th Con-
ference on Advances in Neural Information Processing

Finkelstein, L., and Markovitch, S. 1998. A selective
macro-learning algorithm and its application to the NxN
sliding-tile puzzle. Journal of Atrtificial Intelligence Re-
search8:223-263.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic seaiobrnal
of Artificial Intelligence Research4:263—-302.

Howard, R. 1960. Dynamic Programming and Markov
Decision ProcesseMIT Press.

Huang, Y.-C.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planniing.
17th International Conferebce on Machine Learnidd5—
422. Morgan Kaufmann, San Francisco, CA.

Khardon, R. 1999. Learning action strategies for planning
domains.Artificial Intelligence113(1-2):125-148.

Martin, M., and Geffner, H. 2000. Learning generalized

policies in planning domains using concept languages. In
Proceedings of the 7th International Conference on Knowl-
edge Representation and Reasoning

McAllester, D., and Givan, R. 1993. Taxonomic syntax for
first-order inferenceJournal of the ACM10:246-283.

Minton, S.; Carbonell, J.; Knoblock, C. A.; Kuokka, D. R.;
Etzioni, O.; and Gil, Y. 1989. Explanation-based learn-
ing: A problem solving perspectivértificial Intelligence
40:63-118.

Minton, S., ed. 1993Vlachine Learning Methods for Plan-
ning. Morgan Kaufmann Publishers.

Natarajan, B. K. 1989. On learning from exercises. In
Annual Workshop on Computational Learning Theory

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. Itterna-
tional Joint Conference on Artificial Intelligenc@68—-973.

Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning.
In 6th European Conference on Plannjr&y—48.

Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exerciseslriternational Con-
ference on Machine Learning78-286.

Tesauro, G., and Galperin, G. R. 1996. On-line policy
improvement using monte-carlo search 9th Conference
on Advances in Neural Information Processing

Tesauro, G. 1992. Practical issues in temporal difference
learning.Machine Learnin@:257-277.

Tsitsiklis, J. N., and Van Roy, B. 1996. Feature-based
methods for large scale dynamic programmirMachine
Learning22:59-94.

Veloso, M.; Carbonell, J.; Perez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecturelournal of Experimental and
Theoretical Artificial Intelligencé(1).

Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. IRroceedings of the Eigh-
teenth Conference on Uncertainty in Artificial Intelligenc
Zhu, L., and Givan, R. 2003. Landmark Extraction via
Planning Graph Propagation. I6APS Doctoral Consor-
tium.

Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward.Al Magazine?4(2)(2):73-96.

