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Abstract. In this paper, we introduce the notion of an bounded param-
eter Markov decision process (BMDP) as a generalization of the familiar
exact MDP. A bounded parameter MDP is a set of exact MDPs spec-
ified by giving upper and lower bounds on transition probabilities and
rewards (all the MDPs in the set share the same state and action space).
BMDPs form an efficiently solvable special case of the already known
class of MDPs with imprecise parameters (MDPIPs). Bounded parame-
ter MDPs can be used to represent variation or uncertainty concerning
the parameters of sequential decision problems in cases where no prior
probabilities on the parameter values are available. Bounded parameter
MDPs can also be used in aggregation schemes to represent the varia-
tion in the transition probabilities for different base states aggregated
together in the same aggregate state.

We introduce interval value functions as a natural extension of tradi-
tional value functions. An interval value function assigns a closed real
interval to each state, representing the assertion that the value of that
state falls within that interval. An interval value function can be used
to bound the performance of a policy over the set of exact MDPs asso-
ciated with a given bounded parameter MDP. We describe an iterative
dynamic programming algorithm called interval policy evaluation which
computes an interval value function for a given BMDP and specified pol-
icy. Interval policy evaluation on a policy # computes the most restrictive
interval value function that is sound, ¢.e., that bounds the value function
for 7 in every exact MDP in the set defined by the bounded parameter
MDP. We define optimistic and pessimistic notions of optimal policy, and
provide a variant of value iteration [Bellman, 1957] that we call interval
value iteration which computes a policies for a BMDP that are optimal
in these senses.

1 Introduction

The theory of Markov decision processes (MDPs) provides the semantic founda-
tions for a wide range of problems involving planning under uncertainty [Boutilier
et al., 1995a, Littman, 1997]. In this paper, we introduce a generalization of
Markov decision processes called bounded parameter Markov decision processes
(BMDPs) that allows us to model uncertainty in the parameters that comprise



an MDP. Instead of encoding a parameter such as the probability of making a
transition from one state to another as a single number, we specify a range of
possible values for the parameter as a closed interval of the real numbers.

A BMDP can be thought of as a family of traditional (exact) MDPs, i.e.,
the set of all MDPs whose parameters fall within the specified ranges. From this
perspective, we may have no justification for committing to a particular MDP
in this family, and wish to analyze the consequences of this lack of commitment.
Another interpretation for a BMDP is that the states of the BMDP actually
represent sets (aggregates) of more primitive states that we choose to group
together. The intervals here represent the ranges of the parameters over the
primitive states belonging to the aggregates. While any policy on the original
(primitive) states induces a stationary distribution over those states which can
be used to give prior probabilities to the different transition probabilities in the
intervals, we may be unable to compute these prior probabilities—the original
reason for aggregating the states is typically to avoid such expensive computation
over the original large state space.

BMDPs are an efficiently solvable specialization of the already known Markov
Decision Processes with Imprecisely Known Transition Probabilities (MDPIPs).
In the related work section we discuss in more detail how BMDPs relate to
MDPIPs.

In a related paper, we have shown how BMDPs can be used as part of a
strategy for efficiently approximating the solution of MDPs with very large state
spaces and dynamics compactly encoded in a factored (or implicit) representa-
tion [Dean et al., 1997]. In this paper, we focus exclusively on BMDPs, on the
BMDP analog of value functions, called interval value functions, and on policy
selection for a BMDP. We provide BMDP analogs of the standard (exact) MDP
algorithms for computing the value function for a fixed policy (plan) and (more
generally) for computing optimal value functions over all policies, called inter-
val policy evaluation and interval value iteration (IVI) respectively. We define
the desired output values for these algorithms and prove that the algorithms
converge to these desired values in polynomial-time, for a fixed discount factor.
Finally, we consider two different notions of optimal policy for an BMDP, and
show how IVI can be applied to extract the optimal policy for each notion. The
first notion of optimality states that the desired policy must perform better than
any other under the assumption that an adversary selects the model parameters.
The second notion requires the best possible performance when a friendly choice
of model parameters is assumed.

2 Exact Markov Decision Processes

An (exact) Markov decision process M is a four tuple M = (Q, A, F, R) where
@ is a set of states, A is a set of actions, R is a reward function that maps each
state to a real value R(q),! and F is a state-transition distribution so that for

! The techniques and results in this paper easily generalize to more general reward
functions. We adopt a less general formulation to simplify the presentation.



a € Aand p,gq € Q,
Fpy(a) = Pr(Xiy1 = q| Xy = p, U = @)

where X; and U; are random variables denoting, respectively, the state and
action at time ¢. When needed we will write F'™ denote the transition function
of the MDP M.

A policy is a mapping from states to actions, 7 : @ — A. The set of all
policies is denoted II. An MDP M together with a fixed policy m € IT determines
a Markov chain such that the probability of making a transition from p to ¢ is
defined by Fpq(n(p)). The expected value function (or simply the value function)
associated with such a Markov chain is denoted Vs . The value function maps
each state to its expected discounted cumulative reward defined by

Vire(p) = R(p) + 7 Y Fpq(7(p)Var,n (9)
q€Q

where 0 < 4 < 1 is called the discount rate.? In most contexts, the relevant MDP
is clear and we abbreviate Vs . as Vr.

The optimal value function V3, (or simply V* where the relevant MDP is
clear) is defined as follows.

V¥ (p) = max | B(p)+7 ) Fpg(c)V"(0)
q€Q

The value function V* is greater than or equal to any value function V; in the
partial order >g4om defined as follows: Vi >qom Vo if and only if for all states ¢,
Vilg) > Va(q).

An optimal policy is any policy 7* for which V* = V... Every MDP has at
least one optimal policy, and the set of optimal policies can be found by replacing
the max in the definition of V* with arg max.

3 Bounded Parameter Markov Decision Processes

An bounded parameter MDP is a four tuple M = (Q, A, F', R) where Q and A
are defined as for MDPs, and F and R are analogous to the MDP F and R but
vield closed real intervals instead of real values. That is, for any action « and
states p, g, R(p) and Fpﬂ(a) are both closed real intervals of the form [I, u] for {
and u real numbers with ! < u, where in the case of F we require 0 < < u < 1.3
To ensure that F admits well-formed transition functions, we require that for

2 In this paper, we focus on expected discounted cumulative reward as a performance
criterion, but other criteria, e.g., total or average reward [Puterman, 1994], are also
applicable to bounded parameter MDPs.

3 To simplify the remainder of the paper, we assume that the reward bounds are always
tight, i.e., that for all ¢ € Q, for some real I, R(q) = [I,1], and we refer to [ as R(q).
The generalization to nontrivial bounds on rewards is straightforward.
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Fig. 1. The state-transition diagram for a simple bounded parameter Markov decision
process with three states and a single action. The arcs indicate possible transitions and
are labeled by their lower and upper bounds.

any action a and state p, the sum of the lower bounds of qu(a) over all states
g must be less than or equal to 1 while the upper bounds must sum to a value
greater than or equal to 1. Figure 1 depicts the state-transition diagram for a
simple BMDP with three states and one action.

A BMDP M = (Q, A, F, R) defines a set of exact MDPs which, by abuse
of notation, we also call M. For exact MDP M = (Q', A", F', R"), we have
MeMifQ =09, A=A, and for any action « and states p,q, R'(p) is in
the interval R(p) and Fj (a) is in the interval Fpﬂ(a). We rely on context to
distinguish between the tuple view of M and the exact MDP set view of M. In
the definitions in this section, the BMDP M is implicit.

An interval value function V is a mapping from states to closed real intervals.
We generally use such functions to indicate that the given state’s value falls
within the selected interval. Interval value functions can be specified for both
exact and BMDPs. As in the case of (exact) value functions, interval value
functions are specified with respect to a fixed policy. Note that in the case of
BMDPs a state can have a range of values depending on how the transition
and reward parameters are instantiated, hence the need for an interval value
function.

For each of the interval valued functions F, R, V we define two real valued
functions which take the same arguments and give the upper and lower interval
bounds, denoted F, R, V, and F, R, V, respectively. So, for example, at any
state ¢ we have V(¢) = [V(q), V(¢)].

Definition1. For any policy 7 and state ¢, we define the interval value Vi (q)
of m at ¢ to be the interval

1\141161/1\1/1 VM,?T(q)a J&nea/)\fl VM,?T(q)

In Section 5 we will give an iterative algorithm which we have proven to converge
to Vi. In preparation for that discussion we now state that there is at least one



specific MDP in M which simultaneously achieves V. (q) for all states ¢ (and
likewise a specific MDP achieving V (¢) for all ¢).

Definition 2. For any policy 7, an MDP in M is m-maximizing if it is a possible
value of arg maxyrem Var,» and it is m-minimizing if it is in arg minagre st Var,z-

Theorem 3. For any policy w, there exist m-maximizing and w-minimizing MDPs

in M.

This theorem implies that V _ is equivalent to minase pm Var,» where the min-
imization is done relative to >gom, and likewise for V' using max. We give an al-
gorithm in Section 5 which converges to V _ by also converging to a m-minimizing
MDP in M (likewise for V).

We now consider how to define an optimal value function for a BMDP. Con-
sider the expression max;cr VW. This expression is ill-formed because we have
not defined how to rank the interval value functions VW in order to select a maxi-
mum. We focus here on two different ways to order these value functions, yielding
two notions of optimal value function and optimal policy. Other orderings may
also yield interesting results.

First, we define two different orderings on closed real intervals:

l1 <, 0r

[y 11] Spes [l uz] = { li =1l and uq < ug

[y ] Sope [fz, ua] = {Zﬁiiﬁi and Iy < I

We extend these orderings to partially order interval value functions by relating
two value functions V; < V, only when Vl( ) < Vg( ) for every state ¢. We can
now use either of these orderings to compute maxyer Vy, yielding two definitions
of optimal value function and optimal policy. However, since the orderings are
partial (on value functions), we must still prove that the set of policies contains
a policy which achieves the desired maximum under each ordering (i.e., a policy
whose interval value function is ordered above that of every other policy).

Definition4. The optimistic optimal value function Vopt and the pessimistic
optimal value function Vpes are given by:

Vopt = Maxrer Vr using <gp¢ to order interval value functions

Vpes = Maxzem Vi using <,es to order interval value functions

We say that any policy m whose interval value function Vy is >opt (Zpes) the value
functions Vi of all other policies ' is optimistically (pessimistically) optimal.

Theorem 5. There ewists at least one optimistically (pessimistically) optimal
policy, and therefore the definition of Vopt (Vpes) s well-formed.



The above two notions of optimal value can be understood in terms of a
game in which we choose a policy 7 and then a second player chooses in which
MDP M in M to evaluate the policy. The goal is to get the highest* resulting
value function Vi . The optimistic optimal value function’s upper bounds Vopt
represent the best value function we can obtain in this game if we assume the
second player is cooperating with us. The pessimistic optimal value function’s
lower bounds V. represent the best we can do if we assume the second player
is our adversary, trying to minimize the resulting value function.

In the next section, we describe well-known iterative algorithms for comput-
ing the exact MDP optimal value function V*, and then in Section 5 we will

describe similar iterative algorithms which compute the BMDP variants V¢

(Vpes)-

4 Estimating Traditional Value Functions

In this section, we review the basics concerning dynamic programming methods
for computing value functions for fixed and optimal policies in traditional MDPs.
In the next section, we describe novel algorithms for computing the interval
analogs of these value functions for bounded parameter MDPs.

We present results from the theory of exact MDPs which rely on the concept
of normed linear spaces. We define operators, VI, and VI, on the space of
value functions. We then use the Banach fixed-point theorem (Theorem 6) to
show that iterating these operators converges to unique fixed-points, V; and V*
respectively (Theorems 8 and 9).

Let V denote the set of value functions on Q. For each v € V, define the (sup)
norm of v by

[[ol] = max]v(g)].

We use the term convergence to mean convergence in the norm sense. The space
V together with ||-|| constitute a complete normed linear space, or Banach Space.
If U is a Banach space, then an operator T : U — U is a contraction mapping if
there exists a A, 0 < A < 1 such that ||Tv — Tu|| < Al|jv — || for all w and v in U.
Define VI:V — V and foreach m € I, VI, :V — V on each p € Q by

VI()(p) = max | B(p) +7 Y Fpg(@)v(a)
q€Q
VI(0)(p) = R(p)+7 Y Fog(m(p))v(q)-
q€Q
In cases where we need to make explicit the MDP from which the transition
function F' originates, we write VI » and V Iy to denote the operators VI,
and VI as just defined, except that the transition function F is FM,
Using these operators, we can rewrite the expression for V* and V;, as

Vi(p) =VI(V)(p) and Vi(p) =VI(Vz)(p)

* Value functions are ranked by >4om.



for all states p € Q. This implies that V* and V. are fixed points of VI and VI,
respectively. The following four theorems show that for each operator, iterating
the operator on an initial value estimate converges to these fixed points.

Theorem 6. For any Banach space U and contraction mapping T : U — U,
there exists a unique v* in U such that Tv* = v*; and for arbitrary v° in U, the
sequence {v"} defined by v = Tv"~1 = T™v" converges to v*.

Theorem 7. VI and VI, are contraction mappings.

Theorem 6 and Theorem 7 together prove the following fundamental results
in the theory of MDPs.

Theorem 8. There exists a unique v™ € V satisfying v* = VI(v"); furthermore,
v* = V*. Similarly, V; is the unique fized-point of VI .

Theorem 9. For arbitraryv® € V, the sequence {v"} defined by v™ = VI(v"~1)
= VI*(v°) converges to V*. Similarly, iterating VI, converges to V.

An important consequence of Theorem 9 is that it provides an algorithm for
finding V* and V. In particular, to find V*, we can start from an arbitrary
initial value function v° in V, and repeatedly apply the operator VI to obtain
the sequence {v™}. This algorithm is referred to as value iteration. Theorem 9
guarantees the convergence of value iteration to the optimal value function.
Similarly, we can specify an algorithm called policy evaluation which finds V; by
repeatedly apply VI, starting with an initial ©° € V.

The following theorem from [Littman et al., 1995] states a convergence rate of
value iteration and policy evaluation which can be derived using bounds on the
precision needed to represent solutions to a linear program of limited precision
(each algorithm can be viewed as solving a linear program).

Theorem 10. For fized 7, value iteration and policy evaluation converge to the
optimal value function in a number of steps polynomial in the number of states,
the number of actions, and the number of bits used to represent the MDP pa-
rameters.

5 Estimating Interval Value Functions

In this section, we describe dynamic programming algorithms which operate
on bounded parameter MDPs. We first define the interval equivalent of policy
evaluation IV I, which computes V;, and then define the variants IV I,y and

IVIpes which compute the optimistic and pessimistic optimal value functions.



5.1 Interval Policy Evaluation

In direct analogy to the definition of VI, in Section 4, we define a function IVI,
(for interval value iteration) which maps interval value functions to other interval
value functions. We have proven that iterating IVI, on any initial interval value
function produces a sequence of interval value functions which converges to Vi
in a polynomial number of steps, given a fixed discount factore ~.

IVIW(V) is an interval value function, defined for each state p as follows:

IVIZ(V)(p) = | min VI (V)(p) max Vs (V) ()

We define IVI_ and IVI, to be the corresponding mappings from value func-
tions to value functlons (note that for input v, IVI_ does not depend on V and
so can be viewed as a function from V to V*hke\mse for TVI, and V).

The algorithm to compute IVI, is very similar to the standard MDP com-
putation of VI, except that we must now be able to select an MDP M from
the family M which minimizes (maximizes) the value attained. We select such
an MDP by selecting a function F within the bounds specified by F to mini-
mize (maximize) the value—each possible way of selecting F' corresponds to one
MDP in M. We can select the values of F,,(«) independently for each o and
p, but the values selected for different states ¢ (for fixed o and p) interact: they
must sum up to one. We now show how to determine, for fixed « and p, the
value of Fp,(«) for each state ¢ so as to minimize (maximize) the expression
qug (Fpq(a)V (g)). This step constitutes the heart of the IVI algorithm and
the only significant way the algorithm differs from standard value iteration.

The idea is to sort the possible destination states ¢ into increasing (decreas-
ing) order according to their V (V) value, and then choose the transition prob-
abilities within the intervals specified by F so as to send as much probability
mass to the states early in the ordering. Let ¢1, g2, ...,q; be such an ordering
of Q—so that, in the minimizing case, for all ¢ and j if 1 < i < 7 < k then
V(gi) < V(g;) (increasing order).

Let r be the index 1 < r < k which maximizes the following expression
without letting it exceed 1:

r—1

> Fpal +Zﬂp,q,

i=1

r is the index into the sequence g; such that below index r we can assign the
upper bound, and above index r we can assign the lower bound, with the rest of
the probability mass from p under « being assigned to ¢,. Formally, we choose
Foq(a) for all ¢ € Q as follows:
F,.(a)ifj<r
Fpg; (@) = { poa: (@)

F, (a)ifj>r

i=k
F

pg- (@) =1 — Z Fpg, (@)

i=1,i#r



Fig. 2. An illustration of the basic dynamic programming step in computing an ap-
proximate value function for a fixed policy and bounded parameter MDP. The lighter
shaded portions of each arc represent the required lower bound transition probabil-
ity and the darker shaded portions represent the fraction of the remaining transition
probability to the upper bound assigned to the arc by F'

Figure 2 illustrates the basic iterative step in the above algorithm, for the
maximizing case. The states ¢; are ordered according to the value estimates in
V. The transitions from a state p to states ¢; are defined by the function F' such
that each transition is equal to its lower bound plus some fraction of the leftover
probability mass.

Techniques similar to those in Section 4 can be used to prove that iterating
IVI_ (IVI;) converges to V. (V). The key theorems, stated below, assert
first that IV I is a contraction mapping, and second that V _ is a fixed-point of

IVI_, and are easily proven®.

Theorem11. For any policy m, IVI_ and IV I, are conlraction mappings.
Theorem 12. For any policy ©, V.. is a fixed-point of IVI_ and V, of IVI,.

These theorems, together with Theorem 6 (the Banach fixed-point theorem) im-
ply that iterating IV I, on any initial interval value function converges to V;,
regardless of the starting point.

Theorem 13. For fized ~, interval policy evaluation converges to the desired in-
terval value function in a number of steps polynomial in the number of states, the
number of actions, and the number of bits used to represent the MDP parameters.

® The min over members of M is dealt with using a technique similar to that used to
handle the max over actions in the same proof for V*



5.2 Interval Value Iteration

As in the case of VI, and VI, it is straightforward to modify IVI, so that it
computes optimal policy value intervals by adding a maximization step over the
different action choices in each state. However, unlike standard value iteration,
the quantities being compared in the maximization step are closed real intervals,
so the resulting algorithm varies according to how we choose to compare real
intervals. We define two variations of interval value iteration—other variations
are possible.

IV V)00 = g | gnin, Vo (V0 g, Vo (V)0

W) = x| s Vo (001, o, Ve (7))

The added maximization step introduces no new difficulties in implementing
the algorithm. We discuss convergence for I‘A/Ioptfthe convergence results for
IVIpes are similar. We write IV—Iopt for the upper bound returned by IVIopt,
and we consider IV—Iopt a function from V to V because H/—Iopt(f/) depends
only on V. IVI,,; can be easily shown to be a contraction mapping, and it
can be shown that Vopt is a fixed point of IVIopt. It then follows that IV—Iopt
converges to Vopt in polynomially many steps. The analogous results for IV I,
are somewhat more problematic. Because the action selection is done according
to <opt, which focuses primarily on the interval upper bounds, IVI,, is not

properly a mapping from V to V, as IVIOpt(V) depends on both V and V.

However, for any particular value function V and interval value function V such

that V = V, we can write IV1,, v for the mapping from V to V which carries V.

to IVI, . (V). We can then show that for each V', IV

LV Lot v converges as desired.

—_ Opt7 p—
The algorithm must then iterate IV I,,; convergence to some upper bound V,
and then iterate IVIopt 7 to converge to the lower bounds V—each convergence
within polynomial time.

Theorem 14. A. IV, and IVIpe
B. For any value functions V', IV, y and IV I,.s v are contraction mappings.

s are contraction mappings.

Theorem 15. Vopt is a fired-point of IVIopt , and Vpes of IVIpes.

Theorem 16. For fized ~, iteration of IVIopt converges to Vopt, and iteration
of IVIpes converges to Vpes, in polynomially many iterations in the problem size
(including the number of bits used in specifying the parameters).

6 Policy Selection, Sensitivity Analysis, and Aggregation

In this section, we consider some basic issues concerning the use and interpre-
tation of bounded parameter MDPs. We begin by reemphasizing some ideas
introduced earlier regarding the selection of policies.



To begin with, it is important that we are clear on the status of the bounds
in a bounded parameter MDP. A bounded parameter MDP specifies upper and
lower bounds on individual parameters; the assumption is that we have no addi-
tional information regarding individual exact MDPs whose parameters fall with
those bounds. In particular, we have no prior over the exact MDPs in the family
of MDPs defined by a bounded parameter MDP.

Policy selection Despite the lack of information regarding any particular MDP,
we may have to choose a policy. In such a situation, it is natural to consider
that the actual MDP, i.e., the one in which we will ultimately have to carry out
some policy, is decided by some outside process. That process might choose so
as to help or hinder us, or it might be entirely indifferent. To minimize the risk
of performing poorly, it is reasonable to think in adversarial terms; we select
the policy which will perform as well as possible assuming that the adversary
chooses so that we perform as poorly as possible.

These choices correspond to optimistic and pessimistic optimal policies. We
have discussed in the last section how to compute interval value functions for
such policies—such value functions can then be used in a straightforward manner
to extract policies which achieve those values.

There are other possible choices, corresponding in general to other means of
totally ordering real closed intervals. We might for instance consider a policy
whose average performance over all MDPs in the family is as good as or better
than the average performance of any other policy. This notion of average is
potentially problematic, however, as it essentially assumes a uniform prior over
exact MDPs and, as stated earlier, the bounds do not imply any particular prior.

Sensitivity analysis There are other ways in which bounded parameter MDPs
might be useful in planning under uncertainty. For example, we might assume
that we begin with a particular exact MDP, say, the MDP with parameters whose
values reflect the best guess according to a given domain expert. If we were to
compute the optimal policy for this exact MDP, we might wonder about the
degree to which this policy is sensitive to the numbers supplied by the expert.

To explore this possible sensitivity to the parameters, we might assess the
policy by perturbing the parameters and evaluating the policy with respect to
the perturbed MDP. Alternatively, we could use BMDPs to perform this sort of
sensitivity analysis on a whole family of MDPs by converting the point estimates
for the parameters to confidence intervals and then computing bounds on the
value function for the fixed policy via interval policy evaluation.

Aggregation Another use of BMDPs involves a different interpretation altogether.
Instead of viewing the states of the bounded parameter MDP as individual prim-
itive states, we view each state of the BMDP as representing a set or aggregate
of states of some other, larger MDP.

In this interpretation, states are aggregated together because they behave
approximately the same with respect to possible state transitions. A little more
precisely, suppose that the set of states of the BMDP M corresponds to the set



of blocks {Bi,..., By} such that the {B;} constitutes the partition of another
MDP with a much larger state space.
Now we interpret the bounds as follows; for any two blocks B; and B;, let

FB,Bj (&) represent the interval value for the transition from B; to B; on action «

defined as follows: I'p, g, (o) = [minpegl quBj F,q(a), maxyen, quBj Foq(a)
Intuitively, this means that all states in a block behave approximately the same
(assuming the lower and upper bounds are close to each other) in terms of
transitions to other blocks even though they may differ widely with regard to
transitions to individual states.

In Dean et al. [1997] we discuss methods for using an implicit representation
of a exact MDP with a large number of states to construct an explicit BMDP
with a possibly much smaller number of states based on an aggregation method.
We then show that policies computed for this BMDP can be extended to the
original large implicitly described MDP. Note that the original implicit MDP
is not even a member of the family of MDPs for the reduced BMDP (it has a
different state space, for instance). Nevertheless, it is a theorem that the policies
and value bounds of the BMDP can be soundly applied in the original MDP
(using the aggregation mapping to connect the state spaces).

7 Related Work and Conclusions

Our definition for bounded parameter MDPs is related to a number of other
ideas appearing in the literature on Markov decision processes; in the follow-
ing, we mention just a few such ideas. First, BMDPs specialize the MDPs with
imprecisely known parameters (MDPIPs) described and analyzed in the op-
erations research literature[White and Eldeib, 1994, White and Eldeib, 1986,
Satia and Lave, 1973]. The more general MDPIPs described in these papers re-
quire more general and expensive algorithms for solution. For example, [White
and Eldeib, 1994] allows an arbitrary linear program to define the bounds on the
transition probabilities (and allows no imprecision in the reward parameters)—
as a result, the solution technique presented appeals to linear programming at
each iteration of the solution algorithm rather than exploit the specific structure
available in a BMDP. [Satia and Lave, 1973] mention the restriction to BMDPs
but give no special algorithms to exploit this restriction. Their general MDPIP
algorithm is very different from our algorithm and involves two nested phases
of policy iteration—the outer phase selecting a traditional policy and the inner
phase selecting a “policy” for “nature”, i.e., a choice of the transition parameters
to minimize or maximize value (depending on whether optimistic or pessimistic
assumptions prevail). Our work, while originally developed independently of the
MDPIP literature, follows similar lines to [Satia and Lave, 1973] in defining
optimistic and pessimistic optimal policies.

Bertsekas and Castafion [1989] use the notion of aggregated Markov chains
and consider grouping together states with approximately the same residuals.
Methods for bounding value functions are frequently used in approximate algo-
rithms for solving MDPs; Lovejoy [1991] describes their use in solving partially



observable MDPs. Puterman [1994] provides an excellent introduction to Markov
decision processes and techniques involving bounding value functions.

Boutilier and Dearden [1994] and Boutilier et al. [1995b] describe methods for
solving implicitly described MDPs and Dean and Givan [1997] reinterpret this
work in terms of computing explicitly described MDPs with aggregate states.

Bounded parameter MDPs allow us to represent uncertainty about or vari-
ation in the parameters of a Markov decision process. Interval value functions
capture the resulting variation in policy values. In this paper, we have defined
both bounded parameter MDP and interval value function, and given algorithms
for computing interval value functions, and selecting and evaluating policies.
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