
Bounded Parameter Markov Decision ProcessesRobert Givan and Sonia Leach and Thomas DeanDepartment of Computer Science, Brown University115 Waterman Street, Providence, RI 02912, USAhttp://www.cs.brown.edu/people/frlg,sml,tldgPhone: (401) 863-7600 Fax: (401) 863-7657Email: frlg,sml,tldg@cs.brown.eduAbstract. In this paper, we introduce the notion of an bounded param-eter Markov decision process (BMDP) as a generalization of the familiarexact MDP. A bounded parameter MDP is a set of exact MDPs spec-i�ed by giving upper and lower bounds on transition probabilities andrewards (all the MDPs in the set share the same state and action space).BMDPs form an e�ciently solvable special case of the already knownclass of MDPs with imprecise parameters (MDPIPs). Bounded parame-ter MDPs can be used to represent variation or uncertainty concerningthe parameters of sequential decision problems in cases where no priorprobabilities on the parameter values are available. Bounded parameterMDPs can also be used in aggregation schemes to represent the varia-tion in the transition probabilities for di�erent base states aggregatedtogether in the same aggregate state.We introduce interval value functions as a natural extension of tradi-tional value functions. An interval value function assigns a closed realinterval to each state, representing the assertion that the value of thatstate falls within that interval. An interval value function can be usedto bound the performance of a policy over the set of exact MDPs asso-ciated with a given bounded parameter MDP. We describe an iterativedynamic programming algorithm called interval policy evaluation whichcomputes an interval value function for a given BMDP and speci�ed pol-icy. Interval policy evaluation on a policy � computes the most restrictiveinterval value function that is sound, i.e., that bounds the value functionfor � in every exact MDP in the set de�ned by the bounded parameterMDP. We de�ne optimistic and pessimistic notions of optimal policy, andprovide a variant of value iteration [Bellman, 1957] that we call intervalvalue iteration which computes a policies for a BMDP that are optimalin these senses.1 IntroductionThe theory of Markov decision processes (MDPs) provides the semantic founda-tions for a wide range of problems involving planning under uncertainty [Boutilieret al., 1995a, Littman, 1997]. In this paper, we introduce a generalization ofMarkov decision processes called bounded parameter Markov decision processes(BMDPs) that allows us to model uncertainty in the parameters that comprise



an MDP. Instead of encoding a parameter such as the probability of making atransition from one state to another as a single number, we specify a range ofpossible values for the parameter as a closed interval of the real numbers.A BMDP can be thought of as a family of traditional (exact) MDPs, i.e.,the set of all MDPs whose parameters fall within the speci�ed ranges. From thisperspective, we may have no justi�cation for committing to a particular MDPin this family, and wish to analyze the consequences of this lack of commitment.Another interpretation for a BMDP is that the states of the BMDP actuallyrepresent sets (aggregates) of more primitive states that we choose to grouptogether. The intervals here represent the ranges of the parameters over theprimitive states belonging to the aggregates. While any policy on the original(primitive) states induces a stationary distribution over those states which canbe used to give prior probabilities to the di�erent transition probabilities in theintervals, we may be unable to compute these prior probabilities|the originalreason for aggregating the states is typically to avoid such expensive computationover the original large state space.BMDPs are an e�ciently solvable specialization of the already knownMarkovDecision Processes with Imprecisely Known Transition Probabilities (MDPIPs).In the related work section we discuss in more detail how BMDPs relate toMDPIPs.In a related paper, we have shown how BMDPs can be used as part of astrategy for e�ciently approximating the solution of MDPs with very large statespaces and dynamics compactly encoded in a factored (or implicit) representa-tion [Dean et al., 1997]. In this paper, we focus exclusively on BMDPs, on theBMDP analog of value functions, called interval value functions, and on policyselection for a BMDP. We provide BMDP analogs of the standard (exact) MDPalgorithms for computing the value function for a �xed policy (plan) and (moregenerally) for computing optimal value functions over all policies, called inter-val policy evaluation and interval value iteration (IVI) respectively. We de�nethe desired output values for these algorithms and prove that the algorithmsconverge to these desired values in polynomial-time, for a �xed discount factor.Finally, we consider two di�erent notions of optimal policy for an BMDP, andshow how IVI can be applied to extract the optimal policy for each notion. The�rst notion of optimality states that the desired policy must perform better thanany other under the assumption that an adversary selects the model parameters.The second notion requires the best possible performance when a friendly choiceof model parameters is assumed.2 Exact Markov Decision ProcessesAn (exact) Markov decision process M is a four tuple M = (Q;A; F;R) whereQ is a set of states, A is a set of actions, R is a reward function that maps eachstate to a real value R(q);1 and F is a state-transition distribution so that for1 The techniques and results in this paper easily generalize to more general rewardfunctions. We adopt a less general formulation to simplify the presentation.



� 2 A and p; q 2 Q, Fpq(�) = Pr(Xt+1 = qjXt = p; Ut = �)where Xt and Ut are random variables denoting, respectively, the state andaction at time t. When needed we will write FM denote the transition functionof the MDP M .A policy is a mapping from states to actions, � : Q ! A. The set of allpolicies is denoted �. An MDPM together with a �xed policy � 2 � determinesa Markov chain such that the probability of making a transition from p to q isde�ned by Fpq(�(p)). The expected value function (or simply the value function)associated with such a Markov chain is denoted VM;� . The value function mapseach state to its expected discounted cumulative reward de�ned byVM;�(p) = R(p) + 
Xq2QFpq(�(p))VM;�(q)where 0 � 
 < 1 is called the discount rate.2 In most contexts, the relevant MDPis clear and we abbreviate VM;� as V� .The optimal value function V �M (or simply V � where the relevant MDP isclear) is de�ned as follows.V �(p) = max�2A0@R(p) + 
Xq2QFpq(�)V �(q)1AThe value function V � is greater than or equal to any value function V� in thepartial order �dom de�ned as follows: V1 �dom V2 if and only if for all states q,V1(q) � V2(q).An optimal policy is any policy �� for which V � = V�� . Every MDP has atleast one optimal policy, and the set of optimal policies can be found by replacingthe max in the de�nition of V � with argmax.3 Bounded Parameter Markov Decision ProcessesAn bounded parameter MDP is a four tuple M = (Q;A; F̂ ; R̂) where Q and Aare de�ned as for MDPs, and F̂ and R̂ are analogous to the MDP F and R butyield closed real intervals instead of real values. That is, for any action � andstates p; q, R̂(p) and F̂p;q(�) are both closed real intervals of the form [l; u] for land u real numbers with l � u, where in the case of F̂ we require 0 � l � u � 1.3To ensure that F̂ admits well-formed transition functions, we require that for2 In this paper, we focus on expected discounted cumulative reward as a performancecriterion, but other criteria, e.g., total or average reward [Puterman, 1994], are alsoapplicable to bounded parameter MDPs.3 To simplify the remainder of the paper, we assume that the reward bounds are alwaystight, i.e., that for all q 2 Q, for some real l, R̂(q) = [l; l], and we refer to l as R(q).The generalization to nontrivial bounds on rewards is straightforward.
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0.0 0.1,[ ]Fig. 1. The state-transition diagram for a simple bounded parameter Markov decisionprocess with three states and a single action. The arcs indicate possible transitions andare labeled by their lower and upper bounds.any action � and state p, the sum of the lower bounds of F̂pq(�) over all statesq must be less than or equal to 1 while the upper bounds must sum to a valuegreater than or equal to 1. Figure 1 depicts the state-transition diagram for asimple BMDP with three states and one action.A BMDP M = (Q;A; F̂ ; R̂) de�nes a set of exact MDPs which, by abuseof notation, we also call M. For exact MDP M = (Q0;A0; F 0; R0), we haveM 2 M if Q = Q0, A = A0, and for any action � and states p; q, R0(p) is inthe interval R̂(p) and F 0p;q(�) is in the interval F̂p;q(�). We rely on context todistinguish between the tuple view ofM and the exact MDP set view ofM. Inthe de�nitions in this section, the BMDP M is implicit.An interval value function V̂ is a mapping from states to closed real intervals.We generally use such functions to indicate that the given state's value fallswithin the selected interval. Interval value functions can be speci�ed for bothexact and BMDPs. As in the case of (exact) value functions, interval valuefunctions are speci�ed with respect to a �xed policy. Note that in the case ofBMDPs a state can have a range of values depending on how the transitionand reward parameters are instantiated, hence the need for an interval valuefunction.For each of the interval valued functions F̂ , R̂, V̂ we de�ne two real valuedfunctions which take the same arguments and give the upper and lower intervalbounds, denoted F , R, V , and F , R, V , respectively. So, for example, at anystate q we have V̂ (q) = [V (q); V (q)].De�nition1. For any policy � and state q, we de�ne the interval value V̂�(q)of � at q to be the interval� minM2MVM;�(q); maxM2MVM;�(q)�In Section 5 we will give an iterative algorithmwhich we have proven to convergeto V̂� . In preparation for that discussion we now state that there is at least one



speci�c MDP in M which simultaneously achieves V �(q) for all states q (andlikewise a speci�c MDP achieving V �(q) for all q).De�nition2. For any policy �, an MDP inM is �-maximizing if it is a possiblevalue of argmaxM2M VM;� and it is �-minimizing if it is in argminM2M VM;� .Theorem3. For any policy �, there exist �-maximizing and �-minimizing MDPsin M.This theorem implies that V � is equivalent to minM2M VM;� where the min-imization is done relative to �dom, and likewise for V using max. We give an al-gorithm in Section 5 which converges to V � by also converging to a �-minimizingMDP in M (likewise for V �).We now consider how to de�ne an optimal value function for a BMDP. Con-sider the expression max�2� V̂�. This expression is ill-formed because we havenot de�ned how to rank the interval value functions V̂� in order to select a maxi-mum.We focus here on two di�erent ways to order these value functions, yieldingtwo notions of optimal value function and optimal policy. Other orderings mayalso yield interesting results.First, we de�ne two di�erent orderings on closed real intervals:[l1; u1] �pes [l2; u2] () � l1 < l2; orl1 = l2 and u1 � u2[l1; u1] �opt [l2; u2] () �u1 < u2; oru1 = u2 and l1 � l2We extend these orderings to partially order interval value functions by relatingtwo value functions V̂1 � V̂2 only when V̂1(q) � V̂2(q) for every state q. We cannow use either of these orderings to compute max�2� V̂� , yielding two de�nitionsof optimal value function and optimal policy. However, since the orderings arepartial (on value functions), we must still prove that the set of policies containsa policy which achieves the desired maximumunder each ordering (i.e., a policywhose interval value function is ordered above that of every other policy).De�nition4. The optimistic optimal value function V̂opt and the pessimisticoptimal value function V̂pes are given by:V̂opt = max�2� V̂� using �opt to order interval value functionsV̂pes = max�2� V̂� using �pes to order interval value functionsWe say that any policy � whose interval value function V̂� is�opt (�pes) the valuefunctions V̂�0 of all other policies �0 is optimistically (pessimistically) optimal.Theorem5. There exists at least one optimistically (pessimistically) optimalpolicy, and therefore the de�nition of V̂opt (V̂pes) is well-formed.



The above two notions of optimal value can be understood in terms of agame in which we choose a policy � and then a second player chooses in whichMDP M in M to evaluate the policy. The goal is to get the highest4 resultingvalue function VM;� . The optimistic optimal value function's upper bounds V optrepresent the best value function we can obtain in this game if we assume thesecond player is cooperating with us. The pessimistic optimal value function'slower bounds V pes represent the best we can do if we assume the second playeris our adversary, trying to minimize the resulting value function.In the next section, we describe well-known iterative algorithms for comput-ing the exact MDP optimal value function V �, and then in Section 5 we willdescribe similar iterative algorithms which compute the BMDP variants V̂opt(V̂pes).4 Estimating Traditional Value FunctionsIn this section, we review the basics concerning dynamic programming methodsfor computing value functions for �xed and optimal policies in traditional MDPs.In the next section, we describe novel algorithms for computing the intervalanalogs of these value functions for bounded parameter MDPs.We present results from the theory of exact MDPs which rely on the conceptof normed linear spaces. We de�ne operators, V I� and V I , on the space ofvalue functions. We then use the Banach �xed-point theorem (Theorem 6) toshow that iterating these operators converges to unique �xed-points, V� and V �respectively (Theorems 8 and 9).Let V denote the set of value functions on Q. For each v 2 V, de�ne the (sup)norm of v by kvk = maxq2Q jv(q)j:We use the term convergence to mean convergence in the norm sense. The spaceV together with k�k constitute a complete normed linear space, or Banach Space.If U is a Banach space, then an operator T : U ! U is a contraction mapping ifthere exists a �, 0 � � < 1 such that kTv�Tuk � �kv�uk for all u and v in U .De�ne V I : V ! V and for each � 2 �, V I� : V ! V on each p 2 Q byV I(v)(p) = max�2A0@R(p) + 
Xq2QFpq(�)v(q)1AV I�(v)(p) = R(p) + 
Xq2QFpq(�(p))v(q):In cases where we need to make explicit the MDP from which the transitionfunction F originates, we write V IM;� and V IM to denote the operators V I�and V I as just de�ned, except that the transition function F is FM .Using these operators, we can rewrite the expression for V � and V� asV �(p) = V I(V �)(p) and V�(p) = V I�(V�)(p)4 Value functions are ranked by �dom.



for all states p 2 Q. This implies that V � and V� are �xed points of V I and V I�,respectively. The following four theorems show that for each operator, iteratingthe operator on an initial value estimate converges to these �xed points.Theorem6. For any Banach space U and contraction mapping T : U ! U ,there exists a unique v� in U such that Tv� = v�; and for arbitrary v0 in U , thesequence fvng de�ned by vn = Tvn�1 = Tnv0 converges to v�.Theorem7. V I and V I� are contraction mappings.Theorem 6 and Theorem 7 together prove the following fundamental resultsin the theory of MDPs.Theorem8. There exists a unique v� 2 V satisfying v� = V I(v�); furthermore,v� = V �. Similarly, V� is the unique �xed-point of V I� .Theorem9. For arbitrary v0 2 V, the sequence fvng de�ned by vn = V I(vn�1)= V In(v0) converges to V �. Similarly, iterating V I� converges to V�.An important consequence of Theorem 9 is that it provides an algorithm for�nding V � and V� . In particular, to �nd V �, we can start from an arbitraryinitial value function v0 in V, and repeatedly apply the operator V I to obtainthe sequence fvng. This algorithm is referred to as value iteration. Theorem 9guarantees the convergence of value iteration to the optimal value function.Similarly, we can specify an algorithm called policy evaluation which �nds V� byrepeatedly apply V I� starting with an initial v0 2 V.The following theorem from [Littman et al., 1995] states a convergence rate ofvalue iteration and policy evaluation which can be derived using bounds on theprecision needed to represent solutions to a linear program of limited precision(each algorithm can be viewed as solving a linear program).Theorem10. For �xed 
, value iteration and policy evaluation converge to theoptimal value function in a number of steps polynomial in the number of states,the number of actions, and the number of bits used to represent the MDP pa-rameters.5 Estimating Interval Value FunctionsIn this section, we describe dynamic programming algorithms which operateon bounded parameter MDPs. We �rst de�ne the interval equivalent of policyevaluation ^IV I� which computes V̂� , and then de�ne the variants ^IV Iopt and^IV Ipes which compute the optimistic and pessimistic optimal value functions.



5.1 Interval Policy EvaluationIn direct analogy to the de�nition of V I� in Section 4, we de�ne a function ^IV I�(for interval value iteration) which maps interval value functions to other intervalvalue functions. We have proven that iterating ^IV I� on any initial interval valuefunction produces a sequence of interval value functions which converges to V̂�in a polynomial number of steps, given a �xed discount factore 
.^IV I�(V̂ ) is an interval value function, de�ned for each state p as follows:^IV I�(V̂ )(p) = � minM2MV IM;�(p)(V )(p) maxM2MV IM;�(p)(V )(p)� :We de�ne IV I� and IV I� to be the corresponding mappings from value func-tions to value functions (note that for input V̂ , IV I� does not depend on V andso can be viewed as a function from V to V|likewise for IV I� and V ).The algorithm to compute ^IV I� is very similar to the standard MDP com-putation of V I, except that we must now be able to select an MDP M fromthe familyM which minimizes (maximizes) the value attained. We select suchan MDP by selecting a function F within the bounds speci�ed by F̂ to mini-mize (maximize) the value|each possible way of selecting F corresponds to oneMDP in M. We can select the values of Fpq(�) independently for each � andp, but the values selected for di�erent states q (for �xed � and p) interact: theymust sum up to one. We now show how to determine, for �xed � and p, thevalue of Fpq(�) for each state q so as to minimize (maximize) the expressionPq2Q (Fpq(�)V (q)). This step constitutes the heart of the IVI algorithm andthe only signi�cant way the algorithm di�ers from standard value iteration.The idea is to sort the possible destination states q into increasing (decreas-ing) order according to their V (V ) value, and then choose the transition prob-abilities within the intervals speci�ed by F̂ so as to send as much probabilitymass to the states early in the ordering. Let q1; q2; : : : ; qk be such an orderingof Q|so that, in the minimizing case, for all i and j if 1 � i � j � k thenV (qi) � V (qj) (increasing order).Let r be the index 1 � r � k which maximizes the following expressionwithout letting it exceed 1:r�1Xi=1 Fp;qi (�) + kXi=r F p;qi(�)r is the index into the sequence qi such that below index r we can assign theupper bound, and above index r we can assign the lower bound, with the rest ofthe probability mass from p under � being assigned to qr. Formally, we chooseFpq(�) for all q 2 Q as follows:Fpqj (�) = �F p;qi(�) if j < rF p;qi(�) if j > rFpqr (�) = 1� i=kXi=1;i 6=rFpqi(�)
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pFig. 2. An illustration of the basic dynamic programming step in computing an ap-proximate value function for a �xed policy and bounded parameter MDP. The lightershaded portions of each arc represent the required lower bound transition probabil-ity and the darker shaded portions represent the fraction of the remaining transitionprobability to the upper bound assigned to the arc by F .Figure 2 illustrates the basic iterative step in the above algorithm, for themaximizing case. The states qi are ordered according to the value estimates inV . The transitions from a state p to states qi are de�ned by the function F suchthat each transition is equal to its lower bound plus some fraction of the leftoverprobability mass.Techniques similar to those in Section 4 can be used to prove that iteratingIV I� (IV I�) converges to V � (V �). The key theorems, stated below, assert�rst that IV I� is a contraction mapping, and second that V � is a �xed-point ofIV I� , and are easily proven5.Theorem11. For any policy �, IV I� and IV I� are contraction mappings.Theorem12. For any policy �, V � is a �xed-point of IV I� and V � of IV I� .These theorems, together with Theorem 6 (the Banach �xed-point theorem) im-ply that iterating ^IV I� on any initial interval value function converges to V̂� ,regardless of the starting point.Theorem13. For �xed 
, interval policy evaluation converges to the desired in-terval value function in a number of steps polynomial in the number of states, thenumber of actions, and the number of bits used to represent the MDP parameters.5 The min over members ofM is dealt with using a technique similar to that used tohandle the max over actions in the same proof for V �



5.2 Interval Value IterationAs in the case of V I� and V I , it is straightforward to modify ^IV I� so that itcomputes optimal policy value intervals by adding a maximization step over thedi�erent action choices in each state. However, unlike standard value iteration,the quantities being compared in the maximization step are closed real intervals,so the resulting algorithm varies according to how we choose to compare realintervals. We de�ne two variations of interval value iteration|other variationsare possible.^IV Iopt(V̂ )(p) = max�2A; �opt � minM2MV IM;�(V )(p); maxM2MV IM;�(V )(p)�^IV Ipes(V̂ )(p) = max�2A; �pes � minM2MV IM;�(V )(p); maxM2MV IM;�(V )(p)�The added maximization step introduces no new di�culties in implementingthe algorithm. We discuss convergence for ^IV Iopt|the convergence results for^IV Ipes are similar. We write IV Iopt for the upper bound returned by ^IV Iopt,and we consider IV Iopt a function from V to V because IV Iopt(V̂ ) dependsonly on V . IV Iopt can be easily shown to be a contraction mapping, and itcan be shown that V̂opt is a �xed point of ^IV Iopt. It then follows that IV Ioptconverges to V opt in polynomially many steps. The analogous results for IV Ioptare somewhat more problematic. Because the action selection is done accordingto �opt, which focuses primarily on the interval upper bounds, IV Iopt is notproperly a mapping from V to V, as IV Iopt(V̂ ) depends on both V and V .However, for any particular value function V and interval value function V̂ suchthat V = V , we can write IV Iopt;V for the mapping from V to V which carries Vto IV Iopt(V̂ ). We can then show that for each V , IV Iopt;V converges as desired.The algorithm must then iterate IV Iopt convergence to some upper bound V ,and then iterate IV Iopt;V to converge to the lower bounds V|each convergencewithin polynomial time.Theorem14. A. IV Iopt and IV Ipes are contraction mappings.B. For any value functions V , IV Iopt;V and IV Ipes;V are contraction mappings.Theorem15. V̂opt is a �xed-point of ^IV Iopt , and V̂pes of ^IV Ipes.Theorem16. For �xed 
, iteration of ^IV Iopt converges to V̂opt, and iterationof ^IV Ipes converges to V̂pes, in polynomially many iterations in the problem size(including the number of bits used in specifying the parameters).6 Policy Selection, Sensitivity Analysis, and AggregationIn this section, we consider some basic issues concerning the use and interpre-tation of bounded parameter MDPs. We begin by reemphasizing some ideasintroduced earlier regarding the selection of policies.



To begin with, it is important that we are clear on the status of the boundsin a bounded parameter MDP. A bounded parameter MDP speci�es upper andlower bounds on individual parameters; the assumption is that we have no addi-tional information regarding individual exact MDPs whose parameters fall withthose bounds. In particular, we have no prior over the exact MDPs in the familyof MDPs de�ned by a bounded parameter MDP.Policy selection Despite the lack of information regarding any particular MDP,we may have to choose a policy. In such a situation, it is natural to considerthat the actual MDP, i.e., the one in which we will ultimately have to carry outsome policy, is decided by some outside process. That process might choose soas to help or hinder us, or it might be entirely indi�erent. To minimize the riskof performing poorly, it is reasonable to think in adversarial terms; we selectthe policy which will perform as well as possible assuming that the adversarychooses so that we perform as poorly as possible.These choices correspond to optimistic and pessimistic optimal policies. Wehave discussed in the last section how to compute interval value functions forsuch policies|such value functions can then be used in a straightforward mannerto extract policies which achieve those values.There are other possible choices, corresponding in general to other means oftotally ordering real closed intervals. We might for instance consider a policywhose average performance over all MDPs in the family is as good as or betterthan the average performance of any other policy. This notion of average ispotentially problematic, however, as it essentially assumes a uniform prior overexact MDPs and, as stated earlier, the bounds do not imply any particular prior.Sensitivity analysis There are other ways in which bounded parameter MDPsmight be useful in planning under uncertainty. For example, we might assumethat we begin with a particular exact MDP, say, the MDP with parameters whosevalues re
ect the best guess according to a given domain expert. If we were tocompute the optimal policy for this exact MDP, we might wonder about thedegree to which this policy is sensitive to the numbers supplied by the expert.To explore this possible sensitivity to the parameters, we might assess thepolicy by perturbing the parameters and evaluating the policy with respect tothe perturbed MDP. Alternatively, we could use BMDPs to perform this sort ofsensitivity analysis on a whole family of MDPs by converting the point estimatesfor the parameters to con�dence intervals and then computing bounds on thevalue function for the �xed policy via interval policy evaluation.Aggregation Another use of BMDPs involves a di�erent interpretation altogether.Instead of viewing the states of the bounded parameter MDP as individual prim-itive states, we view each state of the BMDP as representing a set or aggregateof states of some other, larger MDP.In this interpretation, states are aggregated together because they behaveapproximately the same with respect to possible state transitions. A little moreprecisely, suppose that the set of states of the BMDP M corresponds to the set



of blocks fB1; : : : ; Bng such that the fBig constitutes the partition of anotherMDP with a much larger state space.Now we interpret the bounds as follows; for any two blocks Bi and Bj , letF̂BiBj (�) represent the interval value for the transition fromBi to Bj on action �de�ned as follows: F̂BiBj (�) = hminp2Bi Pq2Bj Fpq(�); maxp2Bi Pq2Bj Fpq(�)iIntuitively, this means that all states in a block behave approximately the same(assuming the lower and upper bounds are close to each other) in terms oftransitions to other blocks even though they may di�er widely with regard totransitions to individual states.In Dean et al. [1997] we discuss methods for using an implicit representationof a exact MDP with a large number of states to construct an explicit BMDPwith a possibly much smaller number of states based on an aggregation method.We then show that policies computed for this BMDP can be extended to theoriginal large implicitly described MDP. Note that the original implicit MDPis not even a member of the family of MDPs for the reduced BMDP (it has adi�erent state space, for instance). Nevertheless, it is a theorem that the policiesand value bounds of the BMDP can be soundly applied in the original MDP(using the aggregation mapping to connect the state spaces).7 Related Work and ConclusionsOur de�nition for bounded parameter MDPs is related to a number of otherideas appearing in the literature on Markov decision processes; in the follow-ing, we mention just a few such ideas. First, BMDPs specialize the MDPs withimprecisely known parameters (MDPIPs) described and analyzed in the op-erations research literature[White and Eldeib, 1994, White and Eldeib, 1986,Satia and Lave, 1973]. The more general MDPIPs described in these papers re-quire more general and expensive algorithms for solution. For example, [Whiteand Eldeib, 1994] allows an arbitrary linear program to de�ne the bounds on thetransition probabilities (and allows no imprecision in the reward parameters)|as a result, the solution technique presented appeals to linear programming ateach iteration of the solution algorithm rather than exploit the speci�c structureavailable in a BMDP. [Satia and Lave, 1973] mention the restriction to BMDPsbut give no special algorithms to exploit this restriction. Their general MDPIPalgorithm is very di�erent from our algorithm and involves two nested phasesof policy iteration|the outer phase selecting a traditional policy and the innerphase selecting a \policy" for \nature", i.e., a choice of the transition parametersto minimize or maximize value (depending on whether optimistic or pessimisticassumptions prevail). Our work, while originally developed independently of theMDPIP literature, follows similar lines to [Satia and Lave, 1973] in de�ningoptimistic and pessimistic optimal policies.Bertsekas and Casta~non [1989] use the notion of aggregated Markov chainsand consider grouping together states with approximately the same residuals.Methods for bounding value functions are frequently used in approximate algo-rithms for solving MDPs; Lovejoy [1991] describes their use in solving partially
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