
Online Pricing for Bandwidth Provisioning in

Multi-class Networks

Uday Savagaonkar a, Edwin K. P. Chong b,∗, Robert L. Givan a

aSchool of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 47907.

bDepartment of Electrical and Computer Engineering, Colorado State University,
Fort Collins, CO 80523.

Abstract

We consider the problem of pricing for bandwidth provisioning over a single link,
where users arrive according to a known stochastic traffic model. The network ad-
ministrator controls the resource allocation by setting a price at every epoch, and
each user’s response to the price is governed by a demand function. We formulate this
problem as a partially observable Markov decision process (POMDP), and explore
two novel pricing schemes—reactive pricing and spot pricing—and compare their
performance to appropriately tuned flat pricing. We use a gradient-ascent approach
in all the three pricing schemes. We provide methods for computing the unbiased
estimates of the gradient in an online (incremental) fashion. Our simulation results
show that our novel schemes take advantage of the known underlying traffic model
and significantly outperform the model-free pricing scheme of flat pricing.

Key words: pricing, resource allocation, Markov decision processes, stochastic
optimization, infinitesimal perturbation analysis.

∗ Corresponding author, Tel: 970-491-7858, Fax: 970-491-2249
Email addresses: savagaon@ecn.purdue.edu (Uday Savagaonkar),

echong@engr.colostate.edu (Edwin K. P. Chong), givan@ecn.purdue.edu
(Robert L. Givan).
1 This research is supported in part by DARPA/ITO under contract F30602-00-2-
0552 and by NSF grants 9977981-IIS, 0093100-IIS, 0098089-ECS, and 0099137-ANI.
The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of DARPA, NSF, or the U.S. Government.
2 A preliminary version of parts of this paper was presented at the 36th Conference
on Information Sciences and Systems, Princeton, NJ, 2002.

Preprint submitted to Elsevier Science 4 August 2002

1 Introduction

Bandwidth trading is becoming increasingly important as many companies
want to sell their unused bandwidth. Various companies are setting up elec-
tronic agents that could broker such deals. A key problem in completing such
trades is to have a good online pricing scheme. A pricing scheme affects the
network owner’s revenue in two ways. First, it decides how much revenue the
owner is going to earn by selling a unit of bandwidth. Second, it affects the
amount of bandwidth the users are willing to purchase from the network ad-
ministrator. Typically, the amount of bandwidth the users purchase from the
network administrator is sensitive to the price being charged. Thus, setting
up a price for the bandwidth can also be looked at as a way of allocating
the bandwidth to various users. In other words, bandwidth trading is closely
related to resource allocation.

The latter feature of pricing makes it an effective tool for network control, and
it has been used in a wide range of network applications in the literature. Con-
gestion control and resource allocation are closely related to each other because
both of these problems deal with distributing the scarce resources amongst the
users. Gibbens and Kelly [9] have used pricing for congestion control in a net-
work in which the user actions are governed by utility functions. Marbach [16]
has used pricing for congestion control in a differentiated services network.
Low and Varaiya [14] have proposed a pricing-based approach to service pro-
visioning in ATM networks. Yaiche et al. [24] have analyzed the problem of
pricing broadband networks in a game-theoretic setting. Cao and Shen [4] have
shown that cooperative games give better results than leader-follower games
when applied to Internet pricing. Thomas et al. [22] have proposed an auction-
based framework for service provisioning and have used Scarf’s algorithm [21]
for determining the optimal prices. Even though these pricing mechanisms
show promise, they have been developed to deal with static scenarios. Hence
these mechanisms are better suited either for pricing perishable resources or
for allocating resources in a preemptive-services network. Also, these mecha-
nisms do not take into account any stochastic knowledge of the system, which
the network administrator might have in advance.

Pricing schemes appropriate for various problems with dynamic user arrivals
have also been developed under various network settings. Paschalidis and Tsit-
siklis [18] have considered the problem of pricing a single link for dial-up
connections in a dynamic network setting. They use a dynamic-programming
approach for finding the optimal prices, and conclude that under extreme con-
ditions (very large load or very light load) static pricing (where the price does
not change with time) can be made to perform almost optimally. Patek and
Campos-Náñez [19] have used a similar model and have provided experimental
results to show that dynamic pricing (where the price adapts to the system

2

conditions) cannot give significant advantage over static pricing for large sys-
tems. Wang and Peha [23] have used a similar system model and have shown
that under certain system assumptions, dynamic pricing can outperform static
pricing. But all these schemes deal with restrictive traffic models (e.g., Poisson
arrivals) and were designed primarily for fixed-bandwidth dialup connections.
Our model more naturally allows the users’ bandwidth demands to change
with price as is typical in bandwidth trading (in previous models, the arrival
rate could change in response to price changes, but each arrival would purchase
a fixed-bandwidth connection).

We consider the problem of dynamic pricing for bandwidth provisioning, in
which we restrict our attention to the case where all the resource is con-
trolled by a single broker (typically the network administrator) and is sold
to dynamically arriving users on demand. As already mentioned, this prob-
lem is closely related to that of resource allocation. We assume that the users
arrive according to a known stochastic traffic model, and explore methods
to exploit the knowledge of this model. The broker controls the price to be
charged for the bandwidth. Subject to availability, the amount of bandwidth
the users purchase is dictated by their respective demand functions, which we
assume are known to the broker. The goal of the broker is to set the price
over time so as to maximize its average revenue. We explore two novel pricing
schemes—reactive pricing and spot pricing—and compare their performance
to appropriately tuned flat pricing. Through simulations we show that the new
pricing schemes, which exploit the underlying traffic model, provide significant
revenue improvement over the model-free scheme of flat pricing.

We use the following notation throughout this paper. If ~θ is a vector, then θi

denotes ith component of ~θ. On the other hand, if α is a scalar, then αi denotes
ith power of α. We use bold-face notation to denote a random variable. Also,
for any set, say Q, we use the notation |Q| to denote the cardinality of that
set.

2 Problem Formulation

2.1 Problem Description

We consider a dynamic market in which the resource being traded is the band-
width over a single link. We assume that the maximum bandwidth available
on the link is B. Even though we focus on the single-link scenario, the al-
gorithms we present can be extended to multiple-link, end-to-end trades. We
consider a traffic model in which the user arrivals and departures are driven
by a discrete-time Markov process S(·), called the traffic-state process. The

3

finite state space, S, of this process is made up of elements called traffic states.
Each of the users arriving into the system belongs to one of the finitely many
classes. We denote the set of all classes by C. We assume that for each state
s ∈ S, the number of calls of class c ∈ C arriving in any epoch is a Poisson
random variable with mean λs,c. We also assume that for each call of class
c ∈ C arriving in state s ∈ S, the call-holding time is a geometric random
variable with mean αs,c. The call-holding time of a call is declared as soon
as the call arrives. Note that the Poisson or geometric assumptions are not
critical, and in fact can be replaced by any distribution that depends only on
the current traffic state. Also, our assumption that the call-holding times are
declared on arrival is well-justified in the bandwidth-trading setting, as the
bandwidth is typically sold for a pre-determined period of time.

We characterize a call i, i ∈ Z+, by a triple of random variables, 〈ai,di, ci〉,
where ai represents the (integral) time of arrival of call i, di represents the
(integral) duration of call i, and ci represents the class of call i. For call i, we
define a discrete-time stochastic process Ai(·) as follows:

Ai(k) =

 1 if ai ≤ k < ai + di

0 otherwise.
(1)

In other words, Ai is one over the duration of the call, and zero everywhere
else.

When user i arrives, bandwidth allocation is performed as follows. The network
administrator observes the current system state (to be defined formally later),
and declares the price per unit time per unit bandwidth to the user. All
users belonging to class c ∈ C are assumed to purchase bandwidth according
to a class-specific demand function Dc(·) describing the amount of resource
purchased at each price by the calls of class c. For technical reasons, we assume
that the demand functions are compactly-supported, strictly-decreasing, and
twice differentiable over the interval of their support. Additionally, we assume
that the set of prices for which the total bandwidth B and the values of
the demand functions at that price are rationally related is of measure zero.
Formally, define the set P of prices as

P=

p ∈ R+ : if α0, αc, c ∈ C are rationals, then

α0B +
∑

c:Dc(p)6=0

αcDc(p) = 0⇒ α0, αc = 0

}
.

Then we assume that the set R+\P has measure zero. Usually this will hold
true if the demand functions corresponding to different classes are not ratio-

4

nal multiples of each other over a set of non-zero measure and are strictly
decreasing. For example, any countable set of different demand functions of
the form − log(p/k)/k satisfies this property. Another example of demand
functions satisfying this property is those of the form k1/x

k2 − k3, with ap-
propriate values of k1, k2, and k3. The demand function of a user determines
how much bandwidth the user would ideally purchase at the current price,
and its derivative is used by our algorithms in learning locally optimal policies
by gradient-ascent tuning. Let I denote the set of all the newly arrived users.
Let p be the price at the current decision epoch. Let B̃ denote the available
bandwidth in the system. Then the resource allocator allocates the bandwidth
using the following algorithm.

(1) Let i = arg minIDci(p). If more than one call belonging to the same class
satisfies this relation, choose one of the calls arbitrarily. If calls belonging
do different classes satisfy this relation, choose a class according to some
pre-determined fixed order, and select an arbitrary call from that class.

(2) Let b = min{Dci(p), B̃/|I|}. Allocate bandwidth b to call i.
(3) Set B̃ := B̃ − b, and I := I\i.
(4) If I is not empty, go to step 1.

The network administrator charges each of the users for the bandwidth it has
allocated to that particular user. Bandwidth once sold to a user cannot be
reclaimed before the user leaves the system, and the initial allocation to a
new user is consumed at every time epoch by that user for the duration of
the call. We assume that a user willing to purchase a given bandwidth at a
given price is also willing to purchase any smaller amount at the same unit
price—there is no minimum-bandwidth requirement in our model.

To illustrate the concept of a demand function, we refer the reader to the
utility function theory (see [15]). Utility functions are widely used in the net-
working and communications literature to denote the satisfaction that a user
gets by consuming a particular amount of resource [9][12][13][22]. A utility
function is a non-decreasing function of the amount of the commodity (in our
problem, the bandwidth) being consumed, and it is common practice to as-
sume the function to be concave (according to the law of diminishing returns)
[13][21][22]. If, in addition, we assume the utility function to be strictly con-
cave (i.e., “locally non-satiable”) and thrice differentiable in the bandwidth
being consumed, then the resulting demand function is twice-differentiable
and strictly-decreasing, as shown below.

Let U(·) be the utility function of a user; i.e., U(b) is a measure of the satis-
faction that the user gets by consuming bandwidth b per-unit-time. The user
demands the amount of resource that maximizes the difference between the
cost it pays for the purchase and the utility it gains from the purchase. Thus,
if the bandwidth is priced at p, then the user solves the following optimization

5

problem:

maximize U(b)− bp, (2)

where b ∈ R+ is the decision variable.

Because we assume the utility function U(·) to be strictly concave, there is a
unique maximizer that solves (2). Thus, given p, the bandwidth demand of
the user can be determined uniquely—this defines the user’s demand func-
tion p 7→ D(p). Also, it can be verified that if the utility function U(·) is
thrice differentiable, then the corresponding demand function D(·) is twice
differentiable.

As described above, when combined with the information about the available
resource and the number of new users of each class in the system, the demand
functions Dc(·), c ∈ C uniquely tell us the amount of resource the user receives.
We call this amount the effective demand function of the user and denote it
by Dc(p, r, ~n), where p ∈ R+ is the price, r ∈ R+ is the available resource,

and ~n ∈ Z|C|+ is the vector of number of users of all the classes arriving in the
current decision epoch.

Given the resource-allocation mechanism as described above, the aim of the
network administrator is to set the link prices p(·) (a function of time) so that
the expected revenue is maximized. To be precise, the network administrator
solves the following optimization problem:

max lim
H→∞

E

 1

H

H−1∑
k=0

∑
i∈Z+

(Ai(k)bip(ai))

 , (3)

where p(·) is the decision variable, and bi is the bandwidth allocated to user i.

To tackle such problems, a heuristic called the rolling-horizon approach is
widely used [10]. In this approach, instead of considering the steady-state
expected reward as the objective function, a finite horizon length H is fixed.
At decision epoch t, an action is chosen to maximize the expected reward over
the horizon from t to t+H−1. In this framework the objective of the network
administrator at decision epoch t is

max E

t+H−1∑
k=t

∑
i∈Z+

(Ai(k)bip(ai))

 . (4)

The pricing schemes that we introduce in Section 3 use this framework for
computing the optimal prices.

6

2.2 Partially Observable Markov Decision Process (POMDP) formulation

In this section, we formulate the pricing problem as a POMDP. To character-
ize the problem as a POMDP, we need to define the state space, the action
space, the transition law, the reward structure, the observation space, and the
conditional probability of the observations conditioned on the states. Even for
our simple problem, the exact specification of these entities necessarily entails
additional (sometimes complicated) notation.

State Space: We denote the state space by X. A state x ∈ X is a triple
〈sx, nx, ox〉, where sx ∈ S gives the traffic-process state, and nx and ox are
multisets of active user descriptions, as follows. An active user description is
a triple 〈r, b, c〉 of a natural number r > 0, a real number b ∈ [0, B], and a
class identifier c ∈ C. The user description 〈r, b, c〉 represents a user of class c
consuming bandwidth b per time epoch for the remaining duration of activity
r. The set nx represents the users that have just arrived, and we require that
each member 〈r, b, c〉 of nx has b = 0 because no bandwidth has been pur-
chased for these users yet. The set ox represents the users still in the system
from previous arrivals.

Action Space: At any decision epoch, the network administrator is allowed
to control the price for the link bandwidth. To be physically meaningful, the
price has to be greater than or equal to zero. Thus, our action space A is just
R+.

Transition Law: Let x ∈ X be the state of the system, and let u ∈ A be the
action taken by the network administrator. To simplify the notation, define

L(x) = B −
∑

〈r,b,c〉∈ox

b,

and a vector ~N (x), whose kth component is given by

N k(x) = |{〈r, b, c〉 ∈ nx : c = k}|.

Thus, L(x) is the available bandwidth at state x, and ~N (x) is the vector of
number of arrivals of each class at state x. As our state space X is uncountable,
the transition law needs to be specified in the form qX|XA(F|(x, u)), for all
elements F of an appropriate σ-algebra of X. We will specify qX|XA(·|(·, ·)) over
the power set of X (the largest possible σ-algebra of X); we can do this because
if we fix (x, u), then the transition distribution qX|XA(·|(x, u)), is characterized
by a countable number of atoms.

We say that a state y = 〈sy, ny, oy〉 is reachable from state x = 〈sx, nx, ox〉
under action u if

7

oy = {〈r, b, c〉 : 〈r + 1, b, c〉 ∈ ox, r > 0}

∪
{
〈r,Dc(u,L(x), ~N (x), c〉 : 〈r + 1, 0, c〉 ∈ nx, r > 0

}
.

Let Y(x, u) be the set of all states reachable from state x under action u. It
can easily be seen that Y(x, u) is at most countable. For all s ∈ S and c ∈ C,
define βs,c = 1/(1 + αs,c), where αs,c is the mean duration of the calls of class
c arriving in traffic state s as described in Section 2.1. Thus, (1 − βs,c)β

r
s,c

is the probability that a call of class c arriving in traffic state s will have a
call duration of r. Using this definition, we define a probability mass function
PY(x,u) : Y(x, u)→ [0, 1] as follows.

PY(x,u)(y) = P (sx, sy)×
∏
c∈C

e−λsy,cN
c(y)

N c(y)!
×

∏
{〈r,b,c〉∈ny}

(1− βsy,c) · β
r
sy ,c
, (5)

where P (·, ·) is the probability transition matrix as defined in Section 2.1. It
can immediately be verified that PY(x,u)(y) is the probability of transition to
state y from state x under action u. Alternatively, one can write

qX|XA({y}|(x, u)) = PY(x,u)(y) ∀y ∈ Y(x, u). (6)

Thus, the transition law of the system is given by

qX|XA(F|(x, u)) =
∑

y∈Y(x,u)∩F

PY(x,u)(y) ∀F ∈ 2X. (7)

Reward Structure: Let x = 〈sx, nx, ox〉 be the current state of the system and
u be the action chosen. Then, the one-step reward g : X×A→ R is given by

g(x, u) =
∑

〈r,b,c〉∈nx

Dc(u,L(x), ~N (x))ur. (8)

Using this definition of one-step reward, our objective is to find the policy
that maximizes the expected average reward, as defined in (3).

Observation Space: We treat the traffic-state part sx of the state x as unob-
servable. Specifically, the observation space O is the set of pairs o = 〈nx, ox〉
of multisets of user descriptions, corresponding to the observation of the state
components nx and ox.

Observation Kernel: The observation kernel gives, for each state x and ac-
tion u, a probability distribution over the observation space O that assigns
probability one to the observation 〈nx, ox〉. Thus,

qO|XA(G|x, u) =

 1 if o = 〈nx, ox〉 ∈ G ⊂ O,

0 otherwise.
(9)

8

The above specifications of 〈X,A, qX|XA, g,O, qO|XA〉 is the POMDP represen-
tation of the bandwidth market. In the next section we will convert this for-
mulation to an equivalent, completely-observable MDP.

2.3 Completely-observable MDP (COMDP) Formulation

A POMDP can be converted to an equivalent COMDP whose state space
consists of the probability distributions over the state space of the POMDP.
In the case of our problem, the only un-observable part of the POMDP state
x is the traffic state of the system, sx. Thus, our POMDP can be converted
to a COMDP whose state x̃ is a three tuple 〈~Ix̃, nx̃, ox̃〉, where nx̃ and ox̃ are
as explained in the definition of the partially observable state space X. The
component ~Ix̃ is an |S|-dimensional vector representing a probability distri-
bution over S. Thus, Isx̃ indicates the probability of being in traffic state s.
The state x̃ of this COMDP is also called the belief state. As in the previous
section, we also extend the functions L(x̃) and ~N (x̃) to represent the leftover
bandwidth and number of arrivals of each class at belief state x̃. These are not
random because the relevant state components are fully observed. The action
space for the MDP is the same as that for the POMDP. Thus, to complete
the definition of the MDP, all we have to do is to specify the transition law
and the reward structure.

Now, assume that the belief-state MDP is in state x̃ at a certain epoch. Con-
sider a transition to the state ỹ. Then the distribution of the components
(random variables) nỹ and oỹ can easily be determined from x̃ using the traf-

fic model (along the lines of (5)). The component (random variable) ~Iỹ can

be determined from x̃ (and random variables ~hỹ and ~rỹ) using Bayes’ rule as
follows:

Is
′

ỹ =

∑
s∈S qX|XA({〈s

′, nỹ, oỹ〉}|〈s, nx̃, ox̃〉, a)× Isx̃∑
s∈S

∑
s′′∈S qX|XA({〈s′′, nỹ, oỹ〉}|〈s, nx̃, ox̃〉, a)× I

s
x̃

(10)

This, in turn, can be used to compute the transition law and the reward
structure for the completely observable MDP in the belief-state space.

9

3 Pricing Schemes

3.1 Flat Pricing

In this naive scheme, the network administrator charges the same price at all
decision epochs. Though closed-form formulas are available to compute the
optimal flat price for simple traffic models [18][23], no such formulas exist for
general traffic models. Here we present a stochastic gradient-ascent scheme to
solve the problem in (4). Without loss of generality 3 , we restrict our attention
to decision epoch t = 0. To facilitate the discussion, we define the set A[t1, t2]
of users that are active for at least one epoch between the epochs t1 through
t2. Thus,

A[t1, t2]
4
= {i : Ai(k) = 1 for some k ∈ [t1, t2]}. (11)

Also, associated with call i ∈ A[t1, t2], we define a random variable d̃i|[t1,t2]

to be the duration of that part of call i that overlaps with the interval t1
to t2, given by min{di,di + ai − t1, t2 − ai + 1, t2 − t1 + 1}. In addition, for
notational convenience, we extend the effective demand functionDci(p, r, ~n) to
a user-specific effective demand function that is specialized to the conditions
for user i, written D(p, i) and defined by Dci(p,L(X̃ai), ~N (X̃ai)), where X̃k

is the system belief state at time k.

Now in this notation, setting t = 0 in (4), and noting that in flat pricing the
price is constant, say p, the objective function for this problem can be written
as the expectation of the following stochastic function:

V flat
H (p) =

∑
i∈A[0,H−1]

D(p, i)× p× d̃i|[0,H−1] , (12)

where H is the finite horizon. As our following result indicates, there exists a
value of p that maximizes EV flat

H (p).

Theorem 1 The function EV flat
H (·) is continuous over R+, and there exists

p0 ∈ R+ that maximizes EV flat
H (·).

Proof: See Appendix A. 2

Our aim is to find the price p0 ∈ R+ that maximizes EV flat
H (p). The following

theorem is useful in estimating the derivative of EV flat
H (p) with respect to p.

Theorem 2 The stochastic function V flat
H : R+ → R is differentiable a.e. on

R+ with probability one. Moreover, ∂V flat
H (p)/∂p gives an unbiased estimate of

∂E[V flat
H (p)]/∂p.

3 We note that times may be negative in our formulation.

10

Proof: See Appendix B. 2

Theorem 2 implies that we can use the derivative of V flat
H (·) along an observed

sample path of duration H as an estimate of the gradient of the objective func-
tion. Thus, to maximize the objective function online, we repeat the process of
gradient estimation many times, and every time we estimate the gradient, we
take a step in the direction of the gradient, with a step size of ηk in iteration
k (using a standard stochastic approximation algorithm [7][8]). A step size of
ηk such that

∑
ηk = ∞ and

∑
η2
k < ∞ is known to be appropriate for such

algorithms [11][7][8]. The unbiasedness of the derivative estimate guarantees
convergence of the algorithm to a local minimizer under general conditions
(see [7][8]).

The derivative of V flat
H (p) along an observed sample path can be computed in

an incremental fashion as follows. Define vL(·), for 0 ≤ L < H, recursively as

v0(p) =
∑

{i∈A[0,0]}

(
D(p, i)× p× d̃i|[0,H−1]

)
,

vL(p) =
∑

{i:ai=L}

(
D(p, i)× p× d̃i|[0,H−1]

)
+ vL−1(p). (13)

Using this definition, we have V flat
H (p) = vH−1(p), and thus V flat

H (·) can be
computed in an incremental fashion as we observe the sample path. Now,
differentiating (13), we get

∂vL(p)

∂p
=
∂vL−1(p)

∂p
+

∑
{i:ai=L}

(
D(p, i) + p×

∂D(p, i)

∂p

)
× d̃i|[0,H−1]. (14)

To facilitate the development, we introduce some new terminology. Given the
resource-allocation mechanism in Section 2.1, we say call i is congested if it
receives bandwidth less than Dci(p) (the amount it would ideally purchase).
Otherwise we say that the call is not congested. As all calls belonging to
the same class have the same demand function, a call belonging to class c is
congested if and only if all the other calls belonging to class c arriving in the
same epoch are also congested (the algorithm described in Section 2.1 ensures
that calls belonging to the same class receive equal amount of bandwidth).
Now, at any state X̃, we divide the newly arrived calls in to two sets, C(X̃)
and NC(X̃), containing the congested and non-congested calls in state X̃
respectively. Using this notation, we have

∂D(p, i)

∂p
=


∂Dci (p)

∂p
if not congested,

1
|C(X̃)|

[
∂L(X̃ai)

∂p
−
∑
j∈NC(X̃)

∂D(p,j)
∂p

]
otherwise.

(15)

11

The available bandwidth L(XL) at time L in turn evolves according to the
following discrete-time equation,

L(X̃k) = L(X̃k−1)−
∑

{i:ai=k−1}

D(p, i) +
∑

{i:ai+di=k}

D(p, i), (16)

which on differentiation gives,

∂L(X̃k)

∂p
=
∂L(X̃k−1)

∂p
−

∑
{i:ai=k−1}

∂D(p, i)

∂p
+

∑
{i:ai+di=k}

∂D(p, i)

∂p
. (17)

Equations (15) and (17) are discrete-time causal equations that can be imple-
mented in an online fashion to compute the respective derivatives, which when
combined with (14) can be used to compute ∂V flat

H (p)/∂p online. This algo-
rithm, because of its incremental nature, computes the derivative efficiently.
We tune the flat-pricing algorithm using this algorithm so that it would have
a “fair chance” when we compare its performance with the two pricing mech-
anisms we are about to present.

3.2 Reactive Pricing

In our remaining two pricing approaches, the price being charged can vary from
epoch to epoch at the administrator’s discretion. The administrator decides
the appropriate price for a particular epoch using the underlying known traffic
model. In reactive pricing, the network administrator associates a price with
each underlying traffic state, i.e., maintains a vector ~θ of |S| prices. At each
epoch, it chooses a component of this vector, and charges accordingly. Because
the traffic process is not fully observable, the choice of this component is based
on the probability-distribution vector ~Ix̃. Specifically, we can use one of the
following two methods.

(1) Let x̃ be the state of the belief-state MDP at any decision epoch. Let
s = arg maxs′∈S I

s′

x̃ . Then the network administrator charges price θs in
that decision epoch.

(2) Let x̃ be the state of the belief-state MDP at any decision epoch. The
network administrator generates a state s randomly according to the
distribution described by ~Ix̃, and charges price θs for that decision epoch.

In either case, we can view the vector ~θ as a design parameter. A price to be
charged at any decision epoch is a component of this vector. The index of the
component depends on the actual realization of the random experiment. Note
that once one of the above two methods has been chosen, the index selected
to charge a price at any decision epoch can be determined by observing the

12

sample path (we extend the definition of our random experiment to encompass
the random samples being drawn by the network administrator). Thus, we
have a stochastic process that takes values from the set of traffic states S. We
denote this stochastic process by S̃(·). Define

V reactive
H (~θ) =

∑
i∈A[0,H−1]

(
D(θS̃(ai), i)× θS̃(ai) × d̃i|[0,H−1]

)
.

Then E[V reactive
H (·)] is our objective function. As the following result indicates,

there exists a ~θ0 ∈ R|S|+ that maximizes this objective function.

Theorem 3 The function EV reactive
H (·) is continuous over R|S|+ , and there ex-

ists ~θ0 ∈ R|S|+ that maximizes EV reactive
H (·).

Proof: The proof follows exactly same argument as that of Theorem 1. 2

Our goal is to find the ~θ that maximizes E[V reactive
H (·)]. We have the following

result.

Theorem 4 The function V reactive
H : R|S|+ → R is differentiable almost every-

where on R|S|+ with probability one. Moreover, ∂V reactive
H (~θ)/∂θs is an unbiased

estimate of ∂E[V reactive
H (~θ)]/∂θs for all s ∈ S.

Proof: The proof follows exactly same argument as that of Theorem 2. 2

Theorem 4 is an analog of Theorem 2 for the reactive-pricing scheme. Using
this theorem, an on-line, incremental gradient-based algorithm for estimating
the gradient of E[V reactive

H (·)] can be developed. Such an algorithm works by
generalizing the method given in the previous section to tune each component
of ~θ in place of tuning the scalar p. This generalization is fairly straightforward,
and is given by the following variants of equations (13) to (17).

v0(~θ)=
∑

{i∈A[0,0]}

(
D(θS̃(ai), i)× θS̃(ai) × d̃i|[0,H−1]

)
,

vL(~θ)=
∑

{i:ai=L}

(
D(θS̃(ai), i)× θS̃(ai) × d̃i|[0,H−1]

)
+ vL−1(~θ). (18)

∂vL(~θ)

∂θs
=
∂vL−1(~θ)

∂θs

+
∑

{i:ai=L}

D(θS̃(ai), i)
∂θS̃(ai)

∂θs
+ θS̃(ai)

∂D(θS̃(ai), i)

∂θs

 d̃i|[0,H−1].

(19)

13

∂D(θS̃(ai), i)

∂θs
=



0
if not congested

and S̃(ai) 6= s,

∂D(θs)
∂θs

if not congested

and S̃(ai) = s,(
∂L(X̃ai)

∂p
−
∑

j∈NC(X̃)

∂D(θ
S̃(aj)

,j)
∂θs

)
|C(X̃)| otherwise.

(20)

L(X̃k) = L(X̃k−1)−
∑

{i:ai=k−1}

D(θS̃(ai), i) +
∑

{i:ai+di=k}

D(θS̃(ai), i), (21)

∂L(X̃k)

∂θs
=
∂L(X̃k−1)

∂θs
−

∑
{i:ai=k−1}

∂D(θS̃(ai), i)

∂θs
+

∑
{i:ai+di=k}

∂D(θS̃(ai), i)

∂θs
.

(22)

In this scheme the network administrator keeps track of the belief state to
select a state estimate in order to charge an appropriate price at each de-
cision epoch. To do this, the administrator relies on the underlying traffic
model. Thus this scheme exploits the traffic model for pricing the bandwidth
efficiently.

If we constrain all the components of ~θ to be equal, then reactive pricing
reduces to flat pricing. Thus, the set of all the flat-pricing policies is a subset
of the set of all the reactive-pricing policies. Hence, it is obvious that an
optimal reactive-pricing scheme would perform no worse than any flat-pricing
scheme.

3.3 Spot Pricing

In a spot-pricing scheme, as in the reactive pricing scheme, the network ad-
ministrator may change the price at every decision epoch. But here, the ad-
ministrator is not bound to select the price as a deterministic function of the
state estimate s̃. Solving the pricing problem as a POMDP as described in
Section 2.2 results in an optimal spot-pricing policy. In Section 2.3, we con-
verted the pricing POMDP to a belief-state MDP. But this belief-state MDP
has an uncountable state space, and thus techniques such as value iteration
or linear programming (see [20]) cannot be applied in this case.

There are a number of heuristic techniques for solving such MDPs. Bertsekas
and Tsitsiklis [3] have developed a framework of Neuro-Dynamic Programming
(NDP) for solving problems with large state spaces. Marbach and Tsitsiklis

14

[17] have extended this framework to problems with large action spaces. But
these techniques require identifying “important features” of the problem and
casting the optimal solution as a continuously differentiable function of the
features, which may not always be possible. Furthermore, there is no system-
atic way of identifying the features.

A number of sampling techniques have also been proposed and used to solve
large MDPs. Policy Rollout [2], Hindsight Optimization [6], Parallel Rollout
[5], etc., are examples of such techniques. Chang et al. [5] have compared
such techniques for various problem settings and have empirically established
that the performance of a particular technique depends on the specifics of the
problem.

We will focus on the policy-rollout technique because of the simplicity of im-
plementation and availability of an obvious “base policy” for rollout. In what
follows, we will describe the general policy-rollout technique, and describe our
approach to solving the pricing problem.

Consider the belief-state MDP as defined in Section 2.3. A policy
π = {µπ0 , µ

π
1 , . . .} is a sequence of maps µπk : X̃ → A, which map a belief

state x̃ to the action u = µπk(x̃) at time k. Let Π be the set of all policies. For
state x̃ ∈ X̃, define

V π
L (x̃) = E

[(
L−1∑
k=0

g(X̃k, µ
π
k(X̃k))

) ∣∣∣∣∣X̃0 = x̃

]
. (23)

Define

V ∗L (x̃) = max
π∈Π

V π
L (x̃). (24)

Then the horizon-k Q-function for state x̃ and action u is defined as

Qk(x̃, u) =
{
g(x̃, u) + E

[
V ∗k−1(X̃1)

∣∣∣X̃0 = x̃, u
]}
. (25)

A well-known result from MDP theory [1] states that

V ∗H(x̃) = max
u∈A

QH(x̃, u), (26)

and the optimal policy (if it exists) is given by

µ∗k(x̃) = arg max
u∈A

QH−k(x̃, u). (27)

In particular, for a fixed horizon H, the action

u∗ = µ∗0 = arg max
u∈A

QH(x̃, u) (28)

is the optimal “current” decision in state x̃.

15

In practice, the Q-function is generally not available, and thus (28) is not
directly useful. All of the sampling methods mentioned earlier rely on drawing
random samples for estimating the Q-function, and then use the estimated
Q-function, rather than the actual Q-function, to evaluate the current action
according to (28). Thus, the sampling methods described above differ from
each other in the way they estimate the Q-function.

To facilitate the discussion of the policy-rollout technique, we use the following
definitions. Define

qπH(x̃, u) = g(x̃, u) +
H−1∑
k=1

g(X̃k, µ
π
k(X̃k)).

Also define

Qπ
H(x̃, u)

4
= E

[
qπH(x̃, u)|X̃0 = x̃

]
.

In the policy rollout technique, a “reasonably good” base policy π0 is chosen.
Then, based on the current state x̃, an action u∗ = arg maxuQ

π0
H (x̃, u) is

chosen as the current action. Under certain general conditions, such a policy
is an improvement over π0. In case the base policy is optimal, the rollout
policy is also optimal. For our pricing problem, we use an appropriately tuned
reactive-pricing policy as the base policy. Here onwards, π0 refers to such a
base policy. The following theorem tells us that the function Qπ0

H (x̃, u) has a
maximizer in its domain.

Theorem 5 The function Qπ0
H (x̃, ·) is a continuous function over R+ for all

belief states x̃, and there exists u0 ∈ R+ that maximizes Qπ0
H (x̃, ·).

Proof: The proof for this theorem follows argument similar to that of Theo-
rem 1. 2

The following result helps us estimate the derivative of Qπ0
H (·, ·) with respect

to u.

Theorem 6 The stochastic function qπ0
H (x̃, ·) is differentiable a.e. on R+ with

probability one. Moreover, ∂qπ0
H (x̃, u)/∂u gives a conditionally unbiased esti-

mate of ∂Qπ0
H (x̃, u)/∂u, conditioned on the event X̃0 = x̃.

Proof: The proof follows exactly same argument as that of Theorem 2. 2

Thus, to find the current price, we estimate the gradient of Qπ0
H by drawing

multiple samples with X̃0 = x̃ and computing the derivative of qπ0
H (·, ·) for

each sample using a technique similar to the one described in Section 3.2. We
then take a step in that direction and repeat this procedure several times until
some stopping criterion is met.

Note that the process of drawing samples distinguishes spot pricing from the

16

previous two schemes. Both in flat pricing and in reactive pricing, we rely
on the past trajectory of the system state to infer the gradient information.
In spot pricing, on the other hand, we simulate the future of the system by
drawing multiple future trajectories using the system belief state and the
underlying traffic model for this purpose. As a consequence, the spot-pricing
scheme relies heavily on the knowledge of the traffic model.

As mentioned earlier, under some general conditions, it can be proven that the
policy obtained by rolling out a base policy outperforms the base policy. Even
though it is not possible to verify these conditions for our pricing problem, we
expect the spot-pricing scheme to outperform even the best reactive-pricing
scheme, as the former is obtained by rolling out the latter.

4 Empirical Results

4.1 Evaluation Setup

In this section, we summarize the empirical results. We present the simulation
results for a single-class case only, i.e., we assume that all the users arriving
into the system have the same demand function. Our goal is to evaluate the
pricing schemes on the basis of (i) how they cope with varying traffic load,
and (ii) how they cope with non-linearity in the demand function.

We consider a broker-mediated market in which only one vendor is present.
The vendor itself acts as the broker. The only resource the vendor has for sale
is the bandwidth on a single link. Without loss of generality, we assume that
the maximum bandwidth available on this link is 1.

The users arrive according to a discretized Markov modulated Poison process
(MMPP). Fig. 1 shows the state transition diagram for the underlying traffic-
state process. Table 1 lists the base state-transition parameters (the entry
in the ith row, jth column indicates the probability of transition from state
i to state j), and Table 2 lists the base traffic parameters describing the
traffic statistics. Unless mentioned otherwise, we will use this model with
these parameters for the traffic-state process. We will modify some of these
parameters for the purpose of evaluation.

As can be seen from the transition diagram and the probability transition ma-
trix, States 1 and 2 have long holding times, whereas States 3 and 4 commute
with each other very frequently. The rate of transition from States 1 and 2 to
States 3 and 4 is very low. This is also true about the rate of transition from
States 3 and 4 to States 1 and 2.

17

State 3

State 1 State 2

State 4

Fig. 1. State diagram for the traffic-state process

Table 1
State-transition probabilities for the traffic-state process

State 1 State 2 state 3 State 4

State 1 0.95 0.025 0.0125 0.0125

State 2 0.00625 0.9875 0.003125 0.003125

State 3 0.025 0.025 0.55 0.4

State 4 0.025 0.025 0.4 0.55

Table 2
Arrival and holding-time parameters for the traffic-state process

State 1 State 2 State 3 State 4

λs 8 0.25 2 0.25

αs 0.875 0.875 0.75 0.5

From Table 2 it can be seen that States 1 and 3 are the states with high
load, and State 2 and 4 are the states with low load. Thus States 1 and 2
together represent slowly varying load conditions, while States 3 and 4 together
represent traffic in which the load conditions change abruptly.

The demand functions we use in our simulations are of the form − log(p/k)/k,
where p is the price of the resource, and k is a parameter. Such demand
functions arise from the utility functions of the form 1 − exp(kx), where x is
the amount of resource being consumed. Fig. 2 shows a sample utility and a
sample demand function with k = 3.

18

0 0.5 1
0

0.5

1

(a)

0 1 2 3
0

0.5

1

(b)

Fig. 2. (a) A sample utility function with k = 3, and (b) The corresponding demand
function

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

LF in State 1 / LF in State 2

A
ve

ra
ge

 r
ev

en
ue

Spot pricing
Reactive pricing
Flat pricing

Fig. 3. Comparison of the three pricing schemes as a function of the ratio of the
load factors.

1 2 4 8 16 32 64 128
0

10

20

30

40

50

LF in State 1 / LF in State 2

P
er

ce
nt

ag
e

im
pr

ov
em

en
t o

ve
r

fla
t p

ric
in

g

Spot pricing
Reactive pricing

Fig. 4. Percentage improvement over the flat-pricing scheme as a function of the
ratio of the load factors.

4.2 Simulation Parameters and Performance Metric

The performance of all the three schemes depends on the evaluation setup.
Two of the factors affecting the evaluation setup are the traffic model and the

19

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Non−linearity of demand function

A
ve

ra
ge

 r
ev

en
ue

Spot pricing
Reactive pricing
Flat pricing

Fig. 5. Comparison of the three pricing schemes as a function of the non-linearity
of the demand function.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Non−linearity of demand function

P
er

ce
nt

ag
e

im
pr

ov
em

en
t o

ve
r

fla
t p

ric
in

g

Spot pricing
Reactive pricing

Fig. 6. Percentage improvement over the flat-pricing scheme as a function of
non-linearity of the demand function.

choice of the demand functions.

As mentioned earlier, we restrict our attention to the case where all the users
have the same demand function (single class) of the form − log(p/k)/k. We call
the parameter k the non-linearity of the demand function, because a function
with larger value of k is more “non-linear.” We will evaluate the performance
of the various pricing schemes as we vary the non-linearity of the demand
function.

We also wish to evaluate how the various pricing schemes cope with varying
load conditions. Recall that we are using a four-state MMPP model with ge-
ometric holding times modulated by the underlying traffic state. This model
naturally generates traffic with varying load conditions, if we associate a dif-
ferent load factor with each of the states. Formally, we define the load factor
in traffic state s as the mean call holding time αs multiplied by the average
number of arrivals λs in that state (we drop the subscript c representing the
class, as we are considering the single-class case). To evaluate the performance

20

of the three traffic schemes under varying load conditions, we vary the ratio
of the load factors in States 1 and 2 (by varying the load factor in State 2).
This change in load factor has an unwanted side effect, described next.

As we change the load factor in some state, it affects the amount to which that
state contributes to the overall revenue. Increasing the load factor implies that
the particular state contributes more to the overall revenue and vice versa. In
the extreme condition, when the load factor in a state is very high compared to
that in the others, the actions taken in that state almost completely determine
the net revenue. The domination of the model by a single state makes the
model degenerate. But as mentioned earlier, we are interested in comparing
the performance of the various pricing schemes under varying load conditions.
This cannot be done if the traffic model is dominated by a single state.

To counter this effect, we alter the mean state holding time for a state in
an inverse proportion to the variation in the load factor (so that the average
volume of traffic served in that state remains constant). Thus, in our simulation
studies, if we double the load factor in State 2 (the only state for which we
modify the traffic parameters), we make the average state-holding time in that
state half of what it originally was. Thus, the expected volume of calls served
in State 2 is always the same as the one in the traffic model given in 1.

Our performance metric is the time average of the revenue accrued by the
resource owner. In the next section, we study the performance of the three
pricing schemes with respect to the above metric, and how it varies with the
changes in the non-linearity of the demand function, and the changes in the
load factor in State 2.

4.3 Simulation Details and Results

In this section we compare the performance of the pricing schemes based on
the average revenue gathered by the resource allocator. Fig. 3 through Fig. 6
present these simulation results in a graphical form. Each of the points in
this graph was generated by simulating the traffic process for 200,000 decision
epochs. All the traffic parameters, except for those required for varying the
load factor and state holding time in State 2, were the same as those of the
base model presented in Fig. 1.

For the flat and reactive pricing methods, a gradient-based scheme was used
to find the optimal prices. The gradient information was collected for 200
decision epochs, and the price vector was updated every 200 decision epochs.
Recall that for defining the reactive-pricing policy, we need to specify the
method of choosing a component of the parameter vector ~θ. We compared the
performance of both the methods described in Section 3 and found that the

21

performance of the two schemes does not differ by a significant margin (less
than 1%). For the results provided in this section, we chose the components

of ~θ randomly according to the belief-state distribution. For the spot pricing
method, a rollout policy with a rollout horizon of 200 decision epochs was
used. For estimating the gradient of the rollout reward with respect to the
current action, 40 sample paths were used.

Fig. 3 and Fig. 4 compare the performance of the three traffic schemes as the
ratio of the load factors in States 1 and 2 is changed. It can be seen that spot
pricing always performs the best, while flat pricing always performs the worst.
We can also see from Fig. 4 that at low disparity between the load factors
in States 1 and 2, the percentage gain achieved by spot pricing is relatively
low. This is not surprising, because as the ratio of load factors in States 1
and 2 gets close to 1, the traffic model loses its multi-state nature, and hence
spot pricing loses its advantage. But it should be noted that even in the worst
case, spot pricing outperforms flat pricing by about 14%. We can also see
that under modest load-factor disparity between the states, reactive pricing
performs very well, and its performance is comparable to that of spot pricing.
But under extreme conditions (load-factor ratio very close to or very far from
1), spot pricing outperforms reactive pricing by a considerable margin.

Similar results were obtained for Fig. 5 and Fig. 6, where we compare the
performance of the three pricing schemes as the non-linearity of the demand
function is changed. In this case as well, it can be seen that the spot-pricing
scheme always outperforms the reactive-pricing scheme, which in turn per-
forms better than the flat-pricing scheme for all values of non-linearity. Also,
from Fig. 6, it can be seen that unlike reactive pricing, spot pricing maintains
its advantage even at high non-linearity values.

5 Summary

We presented the problem of pricing in a broker-mediated market, where the
entire resource is controlled by the broker. We presented two novel pricing
schemes, reactive pricing and spot pricing, and compared their performance
with that of the flat-pricing scheme. Flat pricing uses the least system-state
information, while the spot-pricing scheme uses the most system-state in-
formation. We established that under various traffic conditions and demand
structures, the spot-pricing scheme outperforms the reactive-pricing scheme,
which in turn outperforms the flat-pricing scheme. The spot-pricing scheme
was also shown to take advantage of various conditions, such as varying load
and non-linearity of demand function. Even though we focussed on the single-
link model, the pricing schemes presented here can immediately be extended
to multi-link, end-to-end trades by associating a different price with each link.

22

References

[1] D. P. Bertsekas. Dynamic Programming and Optimal Control, Volumes 1 and
2. Athena Scientific, 1995.

[2] D. P. Bertsekas and D. A. Castanon. Rollout algorithms for stochastic
scheduling problems. Journal of Heuristics, 5:89–108, 1999.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic Programming. Athena
Scientific, Belmont, MA 02178, 1996.

[4] X.-R. Cao and H.-X. Shen. Internet pricing with a game-theoretical approach:
Concepts and examples. In Proceedings of the 39th IEEE Conference on
Decision and Control, volume 3, pages 2284–2289, Sydney, 2000.

[5] H.-S. Chang. On-line Sampling-based Control for Network Queuing. PhD thesis,
Department of Electrical and Computer Engineering, Purdue University, West
Lafayette, IN 47907, July 2001.

[6] E. K. P. Chong, R. L. Givan, and H.-S. Chang. A framework for simulation-
based network control via hindsight optimization. Proceedings of the 39th IEEE
Conference on Decision and Control, 2:1433–1438, 2000.

[7] E. K. P. Chong and P. J. Ramadge. Convergence of recursive optimization
algorithms using infinitesimal perturbation analysis estimates. Discrete Event
Dynamic Systems: Theory and Applications, 1(4):339–372, June 1992.

[8] E. K. P. Chong and P. J. Ramadge. Optimization of queues using an
infinitesimal perturbation analysis-based stochastic algorithm with general
update times. SIAM Journal of Control and Optimization, 31(3):698–732, May
1993.

[9] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion
control. Automatica, 35, 1995.

[10] O. Hernández-Lerma and J. B. Lasserre. Error bounds for rolling-horizon
policies in general markov control processes. IEEE Transactions on Automatic
Control, 35(10):1118–1124, 1990.

[11] Y.-C. Ho and X.-R. Cao. Perturbation Analysis of Discrete Event Dynamic
Systems. Kluwer Academic Publishers, 1991.

[12] F. P. Kelly. Charging and rate control for elastic traffic. European Transactions
on Telecommunications, 8:33–37, 1997.

[13] S. H. Low and D. E. Lapsley. Optimization flow control, I: Basic algorithm and
convergence. IEEE/ACM Transactions on Networking, 7(6):861–874, December
1999.

[14] S. H. Low and P. P. Varaiya. A new approach to service provisioning in ATM
networks. IEEE/ACM Transactions on Networking, 1(5):547–553, October
1993.

23

[15] R. D. Luce and H. Raffia. Games and Decisions. John Wiley & Sons, Inc. New
York, 1957.

[16] P. Marbach. Pricing priority classes in a differentiated services network.
In Proceedings of the 37th Annual Allerton Conference on Communication,
Control, and Computing, pages 1075–1084, University of Illinois, Urbana-
Champaign, 1999.

[17] P. Marbach and J. N. Tsitsiklis. Simulation-based optimization of markov
reward processes. IEEE Transactions on Automatic Control, 46(2):191–209,
February 2001.

[18] I. C. Paschalidis and J. N. Tsitsiklis. Congestion-dependent pricing of network
services. IEEE/ACM Transactions on Networking, 8(2):171–184, 2000.

[19] S. D. Patek and E. Campos-Náñez. Pricing of dialup services: an example of
congestion-dependent pricing in the internet. In Proceedings of the 39th IEEE
Conference on Decision and Control, volume 3, pages 2296–2301, 2000.

[20] M. L. Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, Inc. New York, 1994.

[21] H. Scarf. The Computation of Economic Equilibria. Yale University Press, New
Haven and London, 1973.

[22] P. Thomas, D. Teneketzis, and J. K. MacKie-Mason. A market-based
approach to optimal resource allocation in integrated-services connection-
oriented networks. In Proceedings of the Fifth INFORMS Telecommunications
Conference, Boca Raton, FL, 2000.

[23] Q. Wang and J. M. Peha. State-dependent pricing and its economic
implications. In Proceedings of the 7th International Conference on
Telecommunication Systems Modeling and Analysis, pages 61–71, Nashville,
Tennessee, March 1999.

[24] H. Yaiche, R. R. Mazumdar, and C. Rosenberg. A game-theoretic framework
for bandwidth allocation and pricing in broadband networks. IEEE/ACM
Transactions on Networking, 8(5):667–678, October 2000.

A Proof of Theorem 1

Recall that we assume that the demand functions Dc(·), c ∈ C are compactly
supported. Let pmax = sup{p ∈ R+ : Dc(p) > 0 for some c ∈ C}. Now,
V flat

H (p) is continuous w.p. 1 on R+. Thus, for any p0 ∈ [0, pmax]

lim
p→p0

V flat
H (p) = V flat

H (p0).

Also, V flat
H (p) ≤ HpmaxB w.p. 1, which in turn has finite expectation. Hence,

by the Dominated Convergence Theorem,

24

lim
p→p0

EV flat
H (p) =E

[
lim
p→p0

V flat
H (p)

]
=EV flat

H (p0).

Thus, EV flat
H (p) is continuous. Also, because the function is compactly sup-

ported (from 0 to pmax), it attains its maximum for some p0 ∈ [0, pmax]. 2

B Proof of Theorem 2

Throughout this section, we denote the underlying probability space by
(Ω,F, P). We will also assume that there exists time −∞ < t < 0, such
that the system is empty at that time. This assumption is reasonable, because
in practice the system is empty before it was started. Also, we use the notation
defined in Section 3.1.

Proposition 1 Let the price p be such that Dc(p), c ∈ C and B are not ra-
tionally related (see Section 2.1 for definition). Then V flat

H (p) is differentiable
w.p. 1.

Proof: For notational convenience, we denote the portion of the bandwidth
assigned to call i by Si. We call this portion the slot assigned to call i. The
size of the slot (i.e., the amount of bandwidth assigned) is denoted by |Si|.

For the sake of contradiction, let us assume that there exists A ⊂ Ω such that
P (A) > 0 and along any sample path in A, V flat

H (p) is not differentiable (for
notational simplicity we do not notate the dependence on the sample path).
Let Ã be the set of all trajectories for which V flat

H (·) is defined for all p and the
number of users arriving in any epoch is finite. Clearly, from the assumptions
about the traffic statistics, we have P (Ã) = 1. This in turn implies that
P (A ∩ Ã) > 0. Now, consider any trajectory in in A ∩ Ã for which V flat

H (·)
is defined, and only a finitely many users arrive at any epoch. Then, for this
trajectory, there exists time instances tj , tj > t (recall that t < 0 is the time
at which the system was empty), such that if call i arrives at time tj, then
D(p, i) = Dci(p), and

∂|Si|

∂p
6=
∂Dci(p)

∂p
.

Let t0 > t be first such time instant. Now, from development in Section 3.1 it
follows that for this to hold we require that∑

c∈C
N c(X̃t0)Dc(p) = L(X̃t0).

But because Dc(p), c ∈ C and B are not rationally related, it is evident that
the calls arriving in epoch t0 will be admitted into slots that are left vacant

25

by some other calls arriving between epoch t and epoch t0. Moreover, calls of
class c will be admitted only into slots left vacant by calls of the same class.
Let us denote these calls by ni, i = 1, · · · ,

∑
c∈CN

c(X̃t0). But because each of
the ni arrived between epochs t and t0, we have

∂|Sni |

∂p
=
∂Dcni (p)

∂p
.

Because each call arriving at time t0 occupies one of the Sni , the same holds
true for such other calls as well. This is a contradiction, and hence implies
that the set A ∩ Ã is empty, which in turn implies that P (A) = 0.

Thus, we have,

P
(
V flat

H (p) is differentiable
)

= 1.

2

Proof of Theorem 2. Recall that V flat
H (p) is defined as

V flat
H (p) =

∑
i∈A[0,H−1]

D(p, i)× p× d̃i|[0,H−1].

By Proposition 1, V flat
H (·) is differentiable over R+, except at those p for which

Dc(p), c ∈ C and B are rationally related, w.p. 1. Because we assume the set
of prices for which Dc(p), c ∈ C and B are not rationally related to be of
measure zero, we have that V flat

H (p) is differentiable a.e. w.p. 1.

Let p be any point at which V flat
H (p) is differentiable w.p. 1. Let pn → p be

any sequence in R+. We have,

∂EV flat
H (p)

∂p
=
∂

∂p

∫
Ω
V flat

H (p) dP

= lim
n→∞

∫
Ω V

flat
H (p) dP −

∫
Ω V

flat
H (pn) dP

p− pn

= lim
n→∞

∫
Ω

V flat
H (p)− V flat

H (pn)

p− pn
dP

Now, from the definition of V flat
H (·), we have that |V flat

H (p)| ≤ Bp. This in turn
implies ∣∣∣∣V flat

H (p)− V flat
H (pn)

p− pn

∣∣∣∣ ≤ 2B. (B.1)

The right-hand side in (B.1) is a bounded function, which is integrable over
Ω. Hence, by the Dominated Convergence Theorem,

26

lim
n→∞

∫
Ω

V flat
H (p)− V flat

H (pn)

p− pn
dP =

∫
Ω

lim
n→∞

V flat
H (p)− V flat

H (pn)

p− pn
dP

=
∫

Ω

∂V flat
H (p)

∂p
dP

Thus the derivative and the expectation operations can be interchanged. 2

27

