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Abstract

We consider the problem of pricing for bandwidth pro-
visioning over a single link, where users arrive according
to a known stochastic traffic model. The network ad-
ministrator controls the resource allocation by setting a
price at every epoch, and each user’s response to the price
is governed by a demand function. We formulate this
problem as a partially observable Markov decision pro-
cess (POMDP), and explore two novel pricing schemes—
reactive pricing and spot pricing—and compare their per-
formance to appropriately tuned flat pricing. We use a
gradient-ascent approach in all the three pricing schemes.
We provide methods for computing the unbiased esti-
mates of the gradient in an online (incremental) fashion.
Our simulation results show that our novel schemes take
advantage of the known underlying traffic model and sig-
nificantly outperform the model-free pricing scheme of
flat pricing.

I Introduction

Bandwidth trading is becoming increasingly important as
many companies want to sell their unused bandwidth. A
key problem in completing such trades is to have a good
online pricing scheme. Various pricing schemes have been
discussed in the literature for scenarios with fixed sets
of users [1][2][3]. Pricing schemes appropriate for various
problems with dynamic user arrivals have also been devel-
oped under various network settings [4][5][6]. But these
schemes deal with restrictive traffic models (e.g. Poisson
arrivals) and were designed for fixed-bandwidth dialup
connections. Our model more naturally allows the users’
bandwidth demands to change with price as is typical in
bandwidth trading (in previous models, the arrival rate
can change in response to price, but each arrival purchases
a fixed-bandwidth connection).

We consider the problem of optimal pricing for band-
width provisioning, in which we restrict our attention to
the case where all the resource is controlled by a sin-
gle broker (typically the network administrator) and is
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sold to dynamically arriving users on demand. We as-
sume users arrive according to a known stochastic traffic
model, and explore methods to exploit the knowledge of
this model. The broker controls the price to be charged
for the bandwidth. Subject to availability, the amount
of bandwidth the users purchase is dictated by their re-
spective demand functions, which we assume are known
to the broker. The goal of the broker is to set the price
over time so as to maximize its average revenue. We
explore two novel pricing schemes—reactive pricing and
spot pricing—and compare their performance to appro-
priately tuned flat pricing. Through simulations we show
that the new pricing schemes, which exploit the under-
lying traffic model, provide significant revenue improve-
ment over the model-free scheme of flat pricing.

We use the following notation. If §is a vector, 8 de-
notes it" component of §. Contrarily, if « is a scalar, o’
denotes it* power of a. Also, for brevity, we present the
proofs of the various results elsewhere [7].

II Problem Formulation

A Problem description

We consider a dynamic market in which the resource be-
ing traded is the bandwidth over a single link. We assume
that the maximum bandwidth available on the link is B.
Even though we focus on the single-link scenario, the al-
gorithms we present can be extended to multiple-link,
end-to-end trades. We consider a traffic model in which
the user arrivals and departures are driven by a discrete-
time Markov process S(-), called the traffic-state process.
The finite state space, S, of this process is made up of
elements called traffic states. We assume that for each
state s € S, the number of calls arriving in any epoch is a
Poisson random variable with mean \;. We also assume
that for each call arriving in state s € S, the call-holding
time is a geometric random variable with mean a,. The
call-holding time of a call is declared as soon as the call
arrives. Note that the Poisson or geometric assumptions
are not critical, and in fact can be replaced by any dis-
tribution that depends only on the current traffic state.
We characterize a call ¢, i € Z,, by a pair of random
variables, (a;,d;), where a; represents the (integral) time
of arrival of call ¢ and d; represents the (integral) duration
of call 7. For call 7, we define a discrete-time stochastic



process A;(-) as follows:

Ai(k) = {

In other words, A; is one over the duration of the call,
and zero everywhere else.

When user ¢ arrives, bandwidth allocation is performed
as follows. The network administrator observes the cur-
rent system state (to be defined formally later), and de-
clares the price per unit time per unit bandwidth to the
user. All users are assumed to purchase bandwidth ac-
cording to a single demand function D(-) describing the
amount of resource purchased at each price!. We as-
sume that the demand function is compactly-supported,
strictly-decreasing, and differentiable over the interval of
its support. The demand function determines how much
bandwidth the user would ideally purchase at the cur-
rent price, and its derivative is used by our algorithms in
learning locally optimal policies by gradient-ascent tun-
ing. The network administrator next checks if there is
enough resource available to satisfy the demand of each
of the newly arrived users at the current price. If that is
the case, each of the new users gets the requested amount
of resource and pays a cost according to the current price.
Otherwise, the network administrator divides the avail-
able bandwidth equally amongst all the users that have
arrived in the current decision epoch, and charges them
for the bandwidth it has sold. Bandwidth once sold to a
user cannot be reclaimed before the user leaves the sys-
tem, and the initial allocation to a new user is consumed
at every time epoch by that user for the duration of the
call. We assume that a user willing to purchase a given
bandwidth at a given price is also willing to purchase
any smaller amount at the same unit price—there is no
minimum-bandwidth requirement in our model.

As described above, when combined with information
about the available resource and the number of new users
in the system, the demand function D(-) uniquely tells
us the amount of resource the user receives. We call this
amount the effective demand function of the user, and
denote it by D(p,r,n), where p € Ry is the price, r € Ry
is the available resource, and n € Z4 is the number of
users arriving in the current decision epoch.

Given the resource-allocation mechanism as described
above, the aim of the network administrator is to set the
link prices p(-) (a function of time) so that the expected
revenue is maximized. In other words, the network ad-
ministrator should solve the following optimization prob-
lem:

1 ifa; <k<a;+d;
0 otherwise

(1)
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where p(-) are the decision variables, and b; is the band-
width allocated to user 7.

L We assume this single demand function for simplicity here, but
this assumption can be relaxed by treating each user’s demand func-
tion as a random variable whose value is declared at arrival.

To tackle such problems, a heuristic, called the rolling-
horizon approach, is widely used [8]. In this approach,
instead of considering the steady-state expected reward as
the objective function, a finite horizon length H is fixed.
At decision epoch ¢, an action is chosen to maximize the
expected reward over the horizon from ¢t tot+ H — 1. In
this framework the objective of the network administrator
at decision epoch ¢t is:

|Vt+H—1 -|
max FE |- Z Z (Ai(k)bip(ai))J ) (3)

k=t €Ly

The pricing schemes that we introduce in Section III use
this framework for computing the optimal prices.

B Partially Observable Markov Decision
Process (POMDP) formulation

State Space: A state z € X is a triple (s, n;,0,), where
sz € S gives the arrival process state, and n, and o, are
multisets of active user descriptions, as follows. An active
user description is a pair (r,b) of a natural number r > 0
and a real number b in [0, B]. The user description (r, b)
represents a user consuming resource b per time epoch for
remaining duration of activity r. The set n, represents
the users that have just arrived, and we require that each
member (r,b) of n, has b =0 as no bandwidth has been
purchased for these users yet. The set o, represents the
users still in the system from previous arrivals.

Action Space: At any decision epoch, the network ad-
ministrator is allowed to control the price for the link
bandwidth. Thus, our action space A is just R, .

Transition Law: Using the statistics of the traffic-
state process and the various assumptions made in
Section II-A, one can easily write down the transition law
(see [7]).

Reward Structure: Let x = (s,,n,,0,) be the current
state of the system and u be the action chosen. Let £(z)
be the available resource at state z, B =37, ¢, b, and
N (z) be the number of arrivals at state x, |n,|. Then,
the one-step reward g : X x A — R is given by

g(z,u) = Z D(u, L(z), N (z))ur.

(rb)Eng

(4)

Using this definition of one-step reward, our objective is
to find the policy that maximizes the expected average
reward.

Observation Space: We treat the traffic-state part s, of
the state = as unobservable. Specifically, the observation
space O is the set of pairs 0 = (n,,0,) of multisets of
user descriptions, corresponding to the observation of the
state components n, and o,.

Observation Kernel: The observation kernel gives, for
each state x and action u, a probability distribution over
the observation space O that assigns probability one to
the observation (n., 0;).



C Completely-observable MDP
(COMDP) formulation

A POMDP can be converted to an equivalent COMDP
whose state space consists of probability distributions
over the state space of the POMDP. In the case of our
problem, the only un-observable part of the POMDP
state x is the traffic state of the system, s,. Thus, our
POMDP can be converted to a COMDP whose state &
is a three tuple (I},ni, 0z}, where nz and oz are as ex-
plained in the definition of the partially observable state
space X. The component I; is an |S|-dimensional vector
representing a probability distribution over S. Thus, I3
indicates the probability of being in traffic state s. The
state & of this COMDP is also called the belief state of
the system. As in the previous section, we also extend the
functions £(#) and N (Z) to represent the leftover band-
width and number of arrivals at belief state Z. These are
not random because the relevant state components are
fully observed. The reward function g(&,u) can also be
extended in a similar fashion [7].

III Pricing Schemes

A Flat pricing

In this naive scheme, the network administrator charges
the same price at all decision epochs. Though closed-
form formulas are available to compute the optimal flat
price for simple traffic models [4][6], no such formulas ex-
ist for general traffic models. Here we present a stochas-
tic gradient-ascent scheme to solve the problem in (3).
Without loss of generality?, we restrict our attention to
decision epoch ¢ = 0. To facilitate the discussion, we de-
fine the set 2A[t1,t2] of users that are active for at least
one epoch between the epochs ¢; through ¢,. Thus,

Q[[tl,tg] = {Z : A@(k) =1, for some k € [tl,tz]}. (5)
Also, associated with call i € [0, H — 1], we define a
random variable d; to be the duration of that part of
call ¢ that overlaps with the interval 0 to H — 1, given
by min{d;,d; + a;, H — a;, H}. In addition, for nota-
tional convenience, we extend the effective demand func-
tion D(p,r,n) to a user-specific effective demand function
that is specialized to the conditions for user ¢, written
D(p,i) and defined by D(p, £(X ,,),N(X,,)), where X
is the system belief state at time k.

Now in this notation, setting ¢ = 0 in (3), and not-
ing that in flat pricing the price is constant, say p, the
objective function for this problem can be written as the
expectation of the following stochastic function:

> Dlpi)xpxd,

ieA[0,H—1]

Viin) = (6)

where H is the finite horizon.

2We note that times may be negative in our formulation.

Theorem 1 The stochastic function Vgat Ry =R
is differentiable a.e. on Ry with probability one.
Moreover, BVZat(p)/Gp gives an unbiased estimate of

OE[V™(p)]/p.

Theorem 1 implies that one can use the derivative of
V?Iat(-) along an observed sample path of duration H
as an estimate of the gradient of the objective function.
Thus, to maximize the objective function online, we re-
peat the process of gradient estimation many times, and
every time we estimate the gradient, we take a step in
the direction of the gradient. A step size of 7 such that
>omr =00 and Y ni < oo is known to be appropriate for
such algorithms [9].

The derivative of Vﬁ“t(p) along an observed sample
path can be computed in an incremental fashion as fol-
lows. Define vy, (+), for 0 < L < H, recursively as follows:

vo(p) = Z (D(p,i) X p X le)
{i€2[0,0]}

vp(p) = Z (D(pai) XpXx ai) +vr-1(p)
{i:a;=L}

(7)

Using this definition, we have Vﬁat(p) = vy_1(p), and
thus V’Zat(-) can be computed in an incremental fashion
as we observe the sample path. Now, differentiating (7),
we get,

Ovr(p) _ Ovr.(p)
Op Op
3D(p,z) 3
+{ZZ< +prp>Xdl

(8)

But from the definition of D(p,%) it can easily be seen
that

8D .
0D(p, 1) _ al(,p) ok if not congested, o)
Op M )}(ui ) (ap“" ) otherwise,

where call 7 is considered “congested” if and only if

Z{j:aj:ai} D(p) > ‘C(Xaz)
The available bandwidth £(X 1) at time L, in turn
evolves according to the following discrete-time equation,

LX) = L(Xk 1))=Y Dpi)+ Y Dpi), (10)
{ira;=k—1} {i:a;+d;=k}
which on differentiation gives,
3CéXk) _ aﬁ(g{kfl) _Zapgpai) n Z aD;p,i)_
p p {i:ai:k—l} p {lal+dl:k} p
(11)

Equations (9) and (11) are discrete-time causal equa-
tions, that can be implemented in an online fashion to
compute the respective derivatives, which when combined
with (8), can be used to compute VA (p)/8p online.



B Reactive Pricing

In our remaining two pricing approaches, the price being
charged can vary from epoch to epoch at the adminis-
trator’s discretion. The administrator decides the appro-
priate price for a particular epoch using the underlying
known traffic model. In reactive pricing, the network ad-
ministrator associates a price with each underlying traf-
fic state, i.e., maintains a vector 6 of |S| prices. Because
the arrival process is not fully observable, at each epoch,
the administrator chooses a state estimate § according to
the probability distribution I;—this defines the stochas-
tic process S(-) giving § over time. The administrator
then chooses the component 6% of g corresponding to s as
the current price. .

Thus, we can view the vector 8 as a design parameter
to be tuned by gradient ascent. Define

Vreactwe( ") — Z

ieA[0,H—1]

DE5(), i) x 65 x d; ) .

Our goal is to find the § that maximizes E[Vigactive( )],
We have the following result:

Theorem 2 The function V5ectve ]lel — R is dif-
ferentiable almost everywhere on ]RE‘ with probability
one. Also, BVTe“Ct“’e( )/06° is an unbiased estimate of
aE[V’W“W( )]/06° for all s € S.

Theorem 2 is an analog of Theorem 1 for the reactive-
pricing scheme. Using this theorem, an on-line, incremen-
tal gradient-based algorithm by generalizing the method
given in the previous section to tune each component of
# in place of tuning the scalar p. This generalization is
fairly straightforward, and is given by the following vari-
ants of equations 7 to 11.

Uo(_’ = Z

~—"

D(GS(‘“),i) x §5(@i) x (Nli)

{i€[0,0]}
o) =Y (DO%,0) x 65 x &) +vii (p)
{ica;=L}
(12)
dur(0)  Ovr_i(f)
o9s 05
aasw S(a) OD(B5(@0) i) -
S(ai) ; S(a;) ) )
+Z( R I
{i:a; =L}
(13)
0 if not congested
S(ar) and S(a;) # s,
aD(§>'*"), ) _ aD(6°) if not congested
96° o9° i and S(a;) = s,
N()lc )Mé);s ) otherwise,

(14)

L(Xg) =L(X k1) ZD 650 §) + ZD (65(a)

{ira;=k—1} {i:a;+d;=k}
(15)
OL(Xy) _ OL(Xy1) 3 D65 (@) )
95 96° , 96°
{ira;=k—1}
aD(B5(e) i)
+ > — g

{i:a;+d;=k}
(16)

Note that, in this scheme the network administrator
keeps track of the belief state to select a state estimate
in order to charge an appropriate price at each decision
epoch. To do this, the administrator relies on the under-
lying traffic model. Thus this scheme exploits the traffic
model for pricing the bandwidth efficiently.

C Spot Pricing

In a spot-pricing scheme, as in reactive pricing, the net-
work administrator may change the bandwidth price ev-
ery decision epoch. But here, the administrator is not
bound to select a price as a deterministic function of
the state estimate §. Solving the pricing problem as a
POMDP as described in Section II-B results in an opti-
mal spot-pricing policy. In Section II-C, we converted the
pricing POMDP to a belief-state MDP. But this belief-
state MDP has an uncountable state space, and thus tech-
niques such as value iteration or linear programming (see
[10]) cannot be applied in this case.

There are a number of heuristic techniques for solving
such MDPs [11][12][13][14]. Here we explore the policy-
rollout technique developed by Bertsekas and Castanon
[13] because of the simplicity of implementation and avail-
ability of an obvious “base policy” for rollout. Here
we describe this technique briefly. See [7] and [13] for
more details. A policy 7 = {ug, u7T,...} is a sequence of
maps pj : X — A, which map a belief state Z to action
u = pf (%) at time k. Given a policy 7, let X, denote the
belief-state trajectory that results from following policy
m from start state & and then define

=
—_

Also define Q7 (%, u) ZE [q’TH(i,u)|)~(0 =7
icy rollout technique, a “reasonably good” base policy g
is chosen. Then based on the current state &, an action
u* = argmax, Q7 (&,u) is chosen as the current action.
Under certain general conditions, such a policy is an im-
provement over my. The following result helps us estimate
the derivative of Q7 (-, ) with respect to .

} . In the pol-

Theorem 3 The stochastic function qj} (Z,u) s differ-
entiable with respect to u a.e. on Ry with probability
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Figure 1: Comparison of the three pricing schemes as a
function of the ratio of the load factors.

one. Moreover, 0q7 (%,u)/0u gives a conditionally unbi-
ased estimate of 0Q7 (Z,u)/0u, conditioned on the event

Xo=1z.

Thus, to find the current price, we estimate the gra-
dient of @} by drawing multiple samples with Xo=1%
and computing the derivative of g7 (-,-) for each sam-
ple using a technique similar to the one demonstrated in
Section III-A. We then take a step in that direction and
repeat this procedure several times until some stopping
criterion is met.

Note that the process of drawing samples distinguishes
spot pricing from the previous two schemes. Both in flat
pricing and reactive pricing, we rely on the past trajec-
tory of the system state to infer the gradient informa-
tion. In spot pricing, on the other hand, we simulate the
future of the system by drawing multiple future trajec-
tories using the system belief state and the underlying
traffic model for this purpose. As a consequence, the
spot-pricing scheme relies heavily on the knowledge of
the traffic model.

IV  Empirical Results

In this section, we summarize the empirical results briefly.
We compare the performance of the three pricing schemes
via simulation. Mainly we wish to evaluate the pricing
schemes on the basis of (i) how they cope with varying
traffic load, and (¢i) how they cope with non-linearity in
the demand function.

We consider a bandwidth market in which only one
vendor is present. The only resource it has for sale is the
bandwidth on a single link. We restrict our attention to
the case where all the users have a single demand func-
tion of the form —log(p/k)/k. We call the parameter
k the non-linearity of the demand function, as a func-
tion with larger value of k is more “non-linear.” The
users arrive according to a discrete-time Markov Modu-
lated Poisson Process (MMPP) in which the underlying
traffic-state process has four states. States 1 and 3 have
high traffic load, whereas States 2 and 4 have low traffic
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Figure 2: Percentage improvement over the flat-pricing
scheme as a function of the ratio of the load factors.
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Figure 3: Comparison of the three pricing schemes as a
function of the non-linearity of the demand function.

load. Formally, we define the load factor in traffic state s
as the mean call holding time a; multiplied by the aver-
age number of arrivals A\s in that state. To evaluate the
performance of the three traffic schemes under varying
load conditions, we vary the ratio of the load factors in
States 1 and 2 (by varying the load factor in State 2).
Fig. 1 and Fig. 2 compare the performance of the three
traffic schemes as the ratio of the traffic load in States 1
and 2 is changed. It can be seen that spot pricing always
performs the best, while flat pricing always performs the
worst. Similar results are obtained for Fig. 3 and Fig. 4
where we compare the performance of the three pricing
schemes as the non-linearity of the demand function is
changed. Also, it can be seen that unlike reactive pric-
ing, spot pricing maintains its advantage even at high
non-linearity values. Further evaluation of these tech-
niques is presented in [7].

V  Summary

We presented the problem of pricing in a broker-mediated
market, where the entire resource is controlled by the
broker. We presented two novel pricing schemes: reac-
tive pricing and spot pricing, and compared their perfor-
mance with that of the flat-pricing scheme. Flat pricing
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Figure 4: Percentage improvement over the flat-pricing
scheme as a function of non-linearity of the demand func-
tion.

uses the least system-state information, while the spot-
pricing scheme uses the most system-state information.
We established that under various traffic conditions and
demand structures, the spot-pricing scheme outperforms
the reactive-pricing scheme, which in turn outperforms
the flat-pricing scheme. The spot-pricing scheme was also
shown to take advantage of various conditions, such as
varying load and non-linearity of demand function. Even
though we focussed on the single-link model, the pric-
ing schemes presented here can immediately be extended
to multi-link, end-to-end trades by associating a different
price with each link.
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