
2002 Conferene on Information Sienes and Systems, Prineton University, Marh 20{22, 2002Dynami Priing for Bandwidth ProvisioningUday SavagaonkarShool of Eletrial andComputer EngineeringPurdue UniversityWest Lafayette, IN 47907 Robert L. GivanShool of Eletrial andComputer EngineeringPurdue UniversityWest Lafayette, IN 47907 Edwin K. P. ChongDepartment of Eletrial andComputer EngineeringColorado State UniversityFort Collins, CO 80523AbstratWe onsider the problem of priing for bandwidth pro-visioning over a single link, where users arrive aordingto a known stohasti traÆ model. The network ad-ministrator ontrols the resoure alloation by setting aprie at every epoh, and eah user's response to the prieis governed by a demand funtion. We formulate thisproblem as a partially observable Markov deision pro-ess (POMDP), and explore two novel priing shemes|reative priing and spot priing|and ompare their per-formane to appropriately tuned at priing. We use agradient-asent approah in all the three priing shemes.We provide methods for omputing the unbiased esti-mates of the gradient in an online (inremental) fashion.Our simulation results show that our novel shemes takeadvantage of the known underlying traÆ model and sig-ni�antly outperform the model-free priing sheme ofat priing.I IntrodutionBandwidth trading is beoming inreasingly important asmany ompanies want to sell their unused bandwidth. Akey problem in ompleting suh trades is to have a goodonline priing sheme. Various priing shemes have beendisussed in the literature for senarios with �xed setsof users [1℄[2℄[3℄. Priing shemes appropriate for variousproblems with dynami user arrivals have also been devel-oped under various network settings [4℄[5℄[6℄. But theseshemes deal with restritive traÆ models (e.g. Poissonarrivals) and were designed for �xed-bandwidth dialuponnetions. Our model more naturally allows the users'bandwidth demands to hange with prie as is typial inbandwidth trading (in previous models, the arrival ratean hange in response to prie, but eah arrival purhasesa �xed-bandwidth onnetion).We onsider the problem of optimal priing for band-width provisioning, in whih we restrit our attention tothe ase where all the resoure is ontrolled by a sin-gle broker (typially the network administrator) and isThis researh is supported in part by DARPA/ITO under on-trat F30602-00-2-0552 and by NSF grants 9977981-IIS, 0093100-IIS, 0098089-ECS, and 0099137-ANI. The views and onlusionsontained in this doument are those of the authors and should notbe interpreted as representing the oÆial poliies, either expressedor implied, of DARPA, NSF, or the U.S. Government.

sold to dynamially arriving users on demand. We as-sume users arrive aording to a known stohasti traÆmodel, and explore methods to exploit the knowledge ofthis model. The broker ontrols the prie to be hargedfor the bandwidth. Subjet to availability, the amountof bandwidth the users purhase is ditated by their re-spetive demand funtions, whih we assume are knownto the broker. The goal of the broker is to set the prieover time so as to maximize its average revenue. Weexplore two novel priing shemes|reative priing andspot priing|and ompare their performane to appro-priately tuned at priing. Through simulations we showthat the new priing shemes, whih exploit the under-lying traÆ model, provide signi�ant revenue improve-ment over the model-free sheme of at priing.We use the following notation. If ~� is a vetor, �i de-notes ith omponent of ~�. Contrarily, if � is a salar, �idenotes ith power of �. Also, for brevity, we present theproofs of the various results elsewhere [7℄.II Problem FormulationA Problem desriptionWe onsider a dynami market in whih the resoure be-ing traded is the bandwidth over a single link. We assumethat the maximum bandwidth available on the link is B.Even though we fous on the single-link senario, the al-gorithms we present an be extended to multiple-link,end-to-end trades. We onsider a traÆ model in whihthe user arrivals and departures are driven by a disrete-time Markov proess S(�), alled the traÆ-state proess.The �nite state spae, S, of this proess is made up ofelements alled traÆ states. We assume that for eahstate s 2 S, the number of alls arriving in any epoh is aPoisson random variable with mean �s. We also assumethat for eah all arriving in state s 2 S, the all-holdingtime is a geometri random variable with mean �s. Theall-holding time of a all is delared as soon as the allarrives. Note that the Poisson or geometri assumptionsare not ritial, and in fat an be replaed by any dis-tribution that depends only on the urrent traÆ state.We haraterize a all i, i 2 Z+, by a pair of randomvariables, hai;dii, where ai represents the (integral) timeof arrival of all i and di represents the (integral) durationof all i. For all i, we de�ne a disrete-time stohasti



proess Ai(�) as follows:Ai(k) = � 1 if ai � k < ai + di0 otherwise : (1)In other words, Ai is one over the duration of the all,and zero everywhere else.When user i arrives, bandwidth alloation is performedas follows. The network administrator observes the ur-rent system state (to be de�ned formally later), and de-lares the prie per unit time per unit bandwidth to theuser. All users are assumed to purhase bandwidth a-ording to a single demand funtion D(�) desribing theamount of resoure purhased at eah prie1. We as-sume that the demand funtion is ompatly-supported,stritly-dereasing, and di�erentiable over the interval ofits support. The demand funtion determines how muhbandwidth the user would ideally purhase at the ur-rent prie, and its derivative is used by our algorithms inlearning loally optimal poliies by gradient-asent tun-ing. The network administrator next heks if there isenough resoure available to satisfy the demand of eahof the newly arrived users at the urrent prie. If that isthe ase, eah of the new users gets the requested amountof resoure and pays a ost aording to the urrent prie.Otherwise, the network administrator divides the avail-able bandwidth equally amongst all the users that havearrived in the urrent deision epoh, and harges themfor the bandwidth it has sold. Bandwidth one sold to auser annot be relaimed before the user leaves the sys-tem, and the initial alloation to a new user is onsumedat every time epoh by that user for the duration of theall. We assume that a user willing to purhase a givenbandwidth at a given prie is also willing to purhaseany smaller amount at the same unit prie{there is nominimum-bandwidth requirement in our model.As desribed above, when ombined with informationabout the available resoure and the number of new usersin the system, the demand funtion D(�) uniquely tellsus the amount of resoure the user reeives. We all thisamount the e�etive demand funtion of the user, anddenote it by D(p; r; n), where p 2 R+ is the prie, r 2 R+is the available resoure, and n 2 Z+ is the number ofusers arriving in the urrent deision epoh.Given the resoure-alloation mehanism as desribedabove, the aim of the network administrator is to set thelink pries p(�) (a funtion of time) so that the expetedrevenue is maximized. In other words, the network ad-ministrator should solve the following optimization prob-lem:max limH!1E 24 1H H�1Xk=0 Xi2Z+ (Ai(k)bip(ai))35 , (2)where p(�) are the deision variables, and bi is the band-width alloated to user i.1We assume this single demand funtion for simpliity here, butthis assumption an be relaxed by treating eah user's demand fun-tion as a random variable whose value is delared at arrival.

To takle suh problems, a heuristi, alled the rolling-horizon approah, is widely used [8℄. In this approah,instead of onsidering the steady-state expeted reward asthe objetive funtion, a �nite horizon length H is �xed.At deision epoh t, an ation is hosen to maximize theexpeted reward over the horizon from t to t+H � 1. Inthis framework the objetive of the network administratorat deision epoh t is:max E 24t+H�1Xk=t Xi2Z+ (Ai(k)bip(ai))35 , (3)The priing shemes that we introdue in Setion III usethis framework for omputing the optimal pries.B Partially Observable Markov DeisionProess (POMDP) formulationState Spae: A state x 2 X is a triple hsx; nx; oxi, wheresx 2 S gives the arrival proess state, and nx and ox aremultisets of ative user desriptions, as follows. An ativeuser desription is a pair hr; bi of a natural number r > 0and a real number b in [0; B℄. The user desription hr; birepresents a user onsuming resoure b per time epoh forremaining duration of ativity r. The set nx representsthe users that have just arrived, and we require that eahmember hr; bi of nx has b = 0 as no bandwidth has beenpurhased for these users yet. The set ox represents theusers still in the system from previous arrivals.Ation Spae: At any deision epoh, the network ad-ministrator is allowed to ontrol the prie for the linkbandwidth. Thus, our ation spae A is just R+ .Transition Law: Using the statistis of the traÆ-state proess and the various assumptions made inSetion II-A, one an easily write down the transition law(see [7℄).Reward Struture: Let x = hsx; nx; oxi be the urrentstate of the system and u be the ation hosen. Let L(x)be the available resoure at state x, B �Phr;bi2ox b, andN (x) be the number of arrivals at state x, jnxj. Then,the one-step reward g : X� A ! R is given byg(x; u) = Xhr;bi2nxD(u;L(x);N (x))ur: (4)Using this de�nition of one-step reward, our objetive isto �nd the poliy that maximizes the expeted averagereward.Observation Spae: We treat the traÆ-state part sx ofthe state x as unobservable. Spei�ally, the observationspae O is the set of pairs o = hno; ooi of multisets ofuser desriptions, orresponding to the observation of thestate omponents nx and ox.Observation Kernel: The observation kernel gives, foreah state x and ation u, a probability distribution overthe observation spae O that assigns probability one tothe observation hnx; oxi.



C Completely-observable MDP(COMDP) formulationA POMDP an be onverted to an equivalent COMDPwhose state spae onsists of probability distributionsover the state spae of the POMDP. In the ase of ourproblem, the only un-observable part of the POMDPstate x is the traÆ state of the system, sx. Thus, ourPOMDP an be onverted to a COMDP whose state ~xis a three tuple h~I~x; n~x; o~xi, where n~x and o~x are as ex-plained in the de�nition of the partially observable statespae X. The omponent ~I~x is an jSj-dimensional vetorrepresenting a probability distribution over S. Thus, Is~xindiates the probability of being in traÆ state s. Thestate ~x of this COMDP is also alled the belief state ofthe system. As in the previous setion, we also extend thefuntions L(~x) and N (~x) to represent the leftover band-width and number of arrivals at belief state ~x. These arenot random beause the relevant state omponents arefully observed. The reward funtion g(~x; u) an also beextended in a similar fashion [7℄.III Priing ShemesA Flat priingIn this naive sheme, the network administrator hargesthe same prie at all deision epohs. Though losed-form formulas are available to ompute the optimal atprie for simple traÆ models [4℄[6℄, no suh formulas ex-ist for general traÆ models. Here we present a stohas-ti gradient-asent sheme to solve the problem in (3).Without loss of generality2, we restrit our attention todeision epoh t = 0. To failitate the disussion, we de-�ne the set A[t1; t2℄ of users that are ative for at leastone epoh between the epohs t1 through t2. Thus,A[t1; t2℄ 4= fi : Ai(k) = 1; for some k 2 [t1; t2℄g: (5)Also, assoiated with all i 2 A[0; H � 1℄, we de�ne arandom variable ~di to be the duration of that part ofall i that overlaps with the interval 0 to H � 1, givenby minfdi;di + ai; H � ai; Hg. In addition, for nota-tional onveniene, we extend the e�etive demand fun-tion D(p; r; n) to a user-spei� e�etive demand funtionthat is speialized to the onditions for user i, writtenD(p; i) and de�ned by D(p;L( ~Xai);N ( ~Xai)), where ~Xkis the system belief state at time k.Now in this notation, setting t = 0 in (3), and not-ing that in at priing the prie is onstant, say p, theobjetive funtion for this problem an be written as theexpetation of the following stohasti funtion:V atH (p) = Xi2A[0;H�1℄D(p; i)� p� ~di ; (6)where H is the �nite horizon.2We note that times may be negative in our formulation.

Theorem 1 The stohasti funtion V atH : R+ ! Ris di�erentiable a.e. on R+ with probability one.Moreover, �V atH (p)=�p gives an unbiased estimate of�E[V atH (p)℄=�p.Theorem 1 implies that one an use the derivative ofV atH (�) along an observed sample path of duration Has an estimate of the gradient of the objetive funtion.Thus, to maximize the objetive funtion online, we re-peat the proess of gradient estimation many times, andevery time we estimate the gradient, we take a step inthe diretion of the gradient. A step size of �k suh thatP �k =1 andP �2k <1 is known to be appropriate forsuh algorithms [9℄.The derivative of V atH (p) along an observed samplepath an be omputed in an inremental fashion as fol-lows. De�ne vL(�), for 0 � L < H , reursively as follows:v0(p) = Xfi2A[0;0℄g�D(p; i)� p� ~di�vL(p) = Xfi:ai=Lg�D(p; i)� p� ~di�+ vL�1(p) (7)Using this de�nition, we have V atH (p) = vH�1(p), andthus V atH (�) an be omputed in an inremental fashionas we observe the sample path. Now, di�erentiating (7),we get,�vL(p)�p = �vL�1(p)�p+ Xfi:ai=Lg�D(p; i) + p� �D(p; i)�p �� ~di:(8)But from the de�nition of D(p; i) it an easily be seenthat�D(p; i)�p = 8<: �D(p)�p if not ongested,1N ( ~Xai ) �L( ~Xai )�p otherwise, (9)where all i is onsidered \ongested" if and only ifPfj:aj=aigD(p) > L( ~Xai).The available bandwidth L(XL) at time L, in turnevolves aording to the following disrete-time equation,L( ~Xk) = L( ~Xk�1)�Xfi:ai=k�1gD(p; i) + Xfi:ai+di=kgD(p; i); (10)whih on di�erentiation gives,�L( ~Xk)�p = �L( ~Xk�1)�p �Xfi:ai=k�1g�D(p; i)�p + Xfi:ai+di=kg�D(p; i)�p :(11)Equations (9) and (11) are disrete-time ausal equa-tions, that an be implemented in an online fashion toompute the respetive derivatives, whih when ombinedwith (8), an be used to ompute �V atH (p)=�p online.



B Reative PriingIn our remaining two priing approahes, the prie beingharged an vary from epoh to epoh at the adminis-trator's disretion. The administrator deides the appro-priate prie for a partiular epoh using the underlyingknown traÆ model. In reative priing, the network ad-ministrator assoiates a prie with eah underlying traf-� state, i.e., maintains a vetor ~� of jSj pries. Beausethe arrival proess is not fully observable, at eah epoh,the administrator hooses a state estimate ~s aording tothe probability distribution ~I~x|this de�nes the stohas-ti proess ~S(�) giving ~s over time. The administratorthen hooses the omponent �~s of ~� orresponding to ~s asthe urrent prie.Thus, we an view the vetor ~� as a design parameterto be tuned by gradient asent. De�neV reativeH (~�) = Xi2A[0;H�1℄�D(� ~S(ai); i)� � ~S(ai) � ~di� :Our goal is to �nd the ~� that maximizes E[V reativeH (�)℄.We have the following result:Theorem 2 The funtion V reativeH : RjSj+ ! R is dif-ferentiable almost everywhere on RjSj+ with probabilityone. Also, �V reativeH (~�)=��s is an unbiased estimate of�E[V reativeH (~�)℄=��s for all s 2 S.Theorem 2 is an analog of Theorem 1 for the reative-priing sheme. Using this theorem, an on-line, inremen-tal gradient-based algorithm by generalizing the methodgiven in the previous setion to tune eah omponent of~� in plae of tuning the salar p. This generalization isfairly straightforward, and is given by the following vari-ants of equations 7 to 11.v0(~�) = Xfi2A[0;0℄g�D(� ~S(ai); i)� � ~S(ai) � ~di�vL(~�) = Xfi:ai=Lg�D(� ~S(ai); i)� � ~S(ai) � ~di�+ vL�1(p)(12)�vL(~�)��s = �vL�1(~�)��s+ Xfi:ai=Lg D(� ~S(ai); i)�� ~S(ai)��s + � ~S(ai) �D(� ~S(ai); i)��s ! ~di:(13)�D(� ~S(ai); i)��s = 8>>>>><>>>>>: 0 if not ongestedand ~S(ai) 6= s,�D(�s)��s if not ongestedand ~S(ai) = s,1N ( ~Xai ) �L( ~Xai )��s otherwise, (14)

L( ~Xk) = L( ~Xk�1)�Xfi:ai=k�1gD(� ~S(ai); i) + Xfi:ai+di=kgD(� ~S(ai); i);(15)�L( ~Xk)��s = �L( ~Xk�1)��s � Xfi:ai=k�1g�D(� ~S(ai); i)��s+ Xfi:ai+di=kg�D(� ~S(ai); i)��s : (16)Note that, in this sheme the network administratorkeeps trak of the belief state to selet a state estimatein order to harge an appropriate prie at eah deisionepoh. To do this, the administrator relies on the under-lying traÆ model. Thus this sheme exploits the traÆmodel for priing the bandwidth eÆiently.C Spot PriingIn a spot-priing sheme, as in reative priing, the net-work administrator may hange the bandwidth prie ev-ery deision epoh. But here, the administrator is notbound to selet a prie as a deterministi funtion ofthe state estimate ~s. Solving the priing problem as aPOMDP as desribed in Setion II-B results in an opti-mal spot-priing poliy. In Setion II-C, we onverted thepriing POMDP to a belief-state MDP. But this belief-state MDP has an unountable state spae, and thus teh-niques suh as value iteration or linear programming (see[10℄) annot be applied in this ase.There are a number of heuristi tehniques for solvingsuh MDPs [11℄[12℄[13℄[14℄. Here we explore the poliy-rollout tehnique developed by Bertsekas and Castanon[13℄ beause of the simpliity of implementation and avail-ability of an obvious \base poliy" for rollout. Herewe desribe this tehnique briey. See [7℄ and [13℄ formore details. A poliy � = f��0 ; ��1 ; : : :g is a sequene ofmaps ��k : ~X ! A , whih map a belief state ~x to ationu = ��k (~x) at time k. Given a poliy �, let ~Xk denote thebelief-state trajetory that results from following poliy� from start state ~x and then de�neq�H(~x; u) = g(~x; u) + H�1Xk=1 g( ~Xk; ��k ( ~Xk));Also de�ne Q�H(~x; u) 4= E hq�H(~x; u)j ~X0 = ~xi. In the pol-iy rollout tehnique, a \reasonably good" base poliy �0is hosen. Then based on the urrent state ~x, an ationu� = argmaxuQ�0H (~x; u) is hosen as the urrent ation.Under ertain general onditions, suh a poliy is an im-provement over �0. The following result helps us estimatethe derivative of Q�0H (�; �) with respet to u.Theorem 3 The stohasti funtion q�0H (~x; u) is di�er-entiable with respet to u a.e. on R+ with probability
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Figure 1: Comparison of the three priing shemes as afuntion of the ratio of the load fators.one. Moreover, �q�0H (~x; u)=�u gives a onditionally unbi-ased estimate of �Q�0H (~x; u)=�u, onditioned on the event~X0 = ~x.Thus, to �nd the urrent prie, we estimate the gra-dient of Q�0H by drawing multiple samples with ~X0 = ~xand omputing the derivative of q�0H (�; �) for eah sam-ple using a tehnique similar to the one demonstrated inSetion III-A. We then take a step in that diretion andrepeat this proedure several times until some stoppingriterion is met.Note that the proess of drawing samples distinguishesspot priing from the previous two shemes. Both in atpriing and reative priing, we rely on the past traje-tory of the system state to infer the gradient informa-tion. In spot priing, on the other hand, we simulate thefuture of the system by drawing multiple future traje-tories using the system belief state and the underlyingtraÆ model for this purpose. As a onsequene, thespot-priing sheme relies heavily on the knowledge ofthe traÆ model.IV Empirial ResultsIn this setion, we summarize the empirial results briey.We ompare the performane of the three priing shemesvia simulation. Mainly we wish to evaluate the priingshemes on the basis of (i) how they ope with varyingtraÆ load, and (ii) how they ope with non-linearity inthe demand funtion.We onsider a bandwidth market in whih only onevendor is present. The only resoure it has for sale is thebandwidth on a single link. We restrit our attention tothe ase where all the users have a single demand fun-tion of the form � log(p=k)=k. We all the parameterk the non-linearity of the demand funtion, as a fun-tion with larger value of k is more \non-linear." Theusers arrive aording to a disrete-time Markov Modu-lated Poisson Proess (MMPP) in whih the underlyingtraÆ-state proess has four states. States 1 and 3 havehigh traÆ load, whereas States 2 and 4 have low traÆ
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Figure 2: Perentage improvement over the at-priingsheme as a funtion of the ratio of the load fators.
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Flat pricingFigure 3: Comparison of the three priing shemes as afuntion of the non-linearity of the demand funtion.load. Formally, we de�ne the load fator in traÆ state sas the mean all holding time �s multiplied by the aver-age number of arrivals �s in that state. To evaluate theperformane of the three traÆ shemes under varyingload onditions, we vary the ratio of the load fators inStates 1 and 2 (by varying the load fator in State 2).Fig. 1 and Fig. 2 ompare the performane of the threetraÆ shemes as the ratio of the traÆ load in States 1and 2 is hanged. It an be seen that spot priing alwaysperforms the best, while at priing always performs theworst. Similar results are obtained for Fig. 3 and Fig. 4where we ompare the performane of the three priingshemes as the non-linearity of the demand funtion ishanged. Also, it an be seen that unlike reative pri-ing, spot priing maintains its advantage even at highnon-linearity values. Further evaluation of these teh-niques is presented in [7℄.V SummaryWe presented the problem of priing in a broker-mediatedmarket, where the entire resoure is ontrolled by thebroker. We presented two novel priing shemes: rea-tive priing and spot priing, and ompared their perfor-mane with that of the at-priing sheme. Flat priing



1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Non−linearity of demand function

P
er

ce
nt

ag
e 

im
pr

ov
em

en
t o

ve
r 

fla
t p

ric
in

g

Spot pricing
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