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tWe 
onsider the problem of pri
ing for bandwidth pro-visioning over a single link, where users arrive a

ordingto a known sto
hasti
 traÆ
 model. The network ad-ministrator 
ontrols the resour
e allo
ation by setting apri
e at every epo
h, and ea
h user's response to the pri
eis governed by a demand fun
tion. We formulate thisproblem as a partially observable Markov de
ision pro-
ess (POMDP), and explore two novel pri
ing s
hemes|rea
tive pri
ing and spot pri
ing|and 
ompare their per-forman
e to appropriately tuned 
at pri
ing. We use agradient-as
ent approa
h in all the three pri
ing s
hemes.We provide methods for 
omputing the unbiased esti-mates of the gradient in an online (in
remental) fashion.Our simulation results show that our novel s
hemes takeadvantage of the known underlying traÆ
 model and sig-ni�
antly outperform the model-free pri
ing s
heme of
at pri
ing.I Introdu
tionBandwidth trading is be
oming in
reasingly important asmany 
ompanies want to sell their unused bandwidth. Akey problem in 
ompleting su
h trades is to have a goodonline pri
ing s
heme. Various pri
ing s
hemes have beendis
ussed in the literature for s
enarios with �xed setsof users [1℄[2℄[3℄. Pri
ing s
hemes appropriate for variousproblems with dynami
 user arrivals have also been devel-oped under various network settings [4℄[5℄[6℄. But theses
hemes deal with restri
tive traÆ
 models (e.g. Poissonarrivals) and were designed for �xed-bandwidth dialup
onne
tions. Our model more naturally allows the users'bandwidth demands to 
hange with pri
e as is typi
al inbandwidth trading (in previous models, the arrival rate
an 
hange in response to pri
e, but ea
h arrival pur
hasesa �xed-bandwidth 
onne
tion).We 
onsider the problem of optimal pri
ing for band-width provisioning, in whi
h we restri
t our attention tothe 
ase where all the resour
e is 
ontrolled by a sin-gle broker (typi
ally the network administrator) and isThis resear
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on-tra
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sold to dynami
ally arriving users on demand. We as-sume users arrive a

ording to a known sto
hasti
 traÆ
model, and explore methods to exploit the knowledge ofthis model. The broker 
ontrols the pri
e to be 
hargedfor the bandwidth. Subje
t to availability, the amountof bandwidth the users pur
hase is di
tated by their re-spe
tive demand fun
tions, whi
h we assume are knownto the broker. The goal of the broker is to set the pri
eover time so as to maximize its average revenue. Weexplore two novel pri
ing s
hemes|rea
tive pri
ing andspot pri
ing|and 
ompare their performan
e to appro-priately tuned 
at pri
ing. Through simulations we showthat the new pri
ing s
hemes, whi
h exploit the under-lying traÆ
 model, provide signi�
ant revenue improve-ment over the model-free s
heme of 
at pri
ing.We use the following notation. If ~� is a ve
tor, �i de-notes ith 
omponent of ~�. Contrarily, if � is a s
alar, �idenotes ith power of �. Also, for brevity, we present theproofs of the various results elsewhere [7℄.II Problem FormulationA Problem des
riptionWe 
onsider a dynami
 market in whi
h the resour
e be-ing traded is the bandwidth over a single link. We assumethat the maximum bandwidth available on the link is B.Even though we fo
us on the single-link s
enario, the al-gorithms we present 
an be extended to multiple-link,end-to-end trades. We 
onsider a traÆ
 model in whi
hthe user arrivals and departures are driven by a dis
rete-time Markov pro
ess S(�), 
alled the traÆ
-state pro
ess.The �nite state spa
e, S, of this pro
ess is made up ofelements 
alled traÆ
 states. We assume that for ea
hstate s 2 S, the number of 
alls arriving in any epo
h is aPoisson random variable with mean �s. We also assumethat for ea
h 
all arriving in state s 2 S, the 
all-holdingtime is a geometri
 random variable with mean �s. The
all-holding time of a 
all is de
lared as soon as the 
allarrives. Note that the Poisson or geometri
 assumptionsare not 
riti
al, and in fa
t 
an be repla
ed by any dis-tribution that depends only on the 
urrent traÆ
 state.We 
hara
terize a 
all i, i 2 Z+, by a pair of randomvariables, hai;dii, where ai represents the (integral) timeof arrival of 
all i and di represents the (integral) durationof 
all i. For 
all i, we de�ne a dis
rete-time sto
hasti




pro
ess Ai(�) as follows:Ai(k) = � 1 if ai � k < ai + di0 otherwise : (1)In other words, Ai is one over the duration of the 
all,and zero everywhere else.When user i arrives, bandwidth allo
ation is performedas follows. The network administrator observes the 
ur-rent system state (to be de�ned formally later), and de-
lares the pri
e per unit time per unit bandwidth to theuser. All users are assumed to pur
hase bandwidth a
-
ording to a single demand fun
tion D(�) des
ribing theamount of resour
e pur
hased at ea
h pri
e1. We as-sume that the demand fun
tion is 
ompa
tly-supported,stri
tly-de
reasing, and di�erentiable over the interval ofits support. The demand fun
tion determines how mu
hbandwidth the user would ideally pur
hase at the 
ur-rent pri
e, and its derivative is used by our algorithms inlearning lo
ally optimal poli
ies by gradient-as
ent tun-ing. The network administrator next 
he
ks if there isenough resour
e available to satisfy the demand of ea
hof the newly arrived users at the 
urrent pri
e. If that isthe 
ase, ea
h of the new users gets the requested amountof resour
e and pays a 
ost a

ording to the 
urrent pri
e.Otherwise, the network administrator divides the avail-able bandwidth equally amongst all the users that havearrived in the 
urrent de
ision epo
h, and 
harges themfor the bandwidth it has sold. Bandwidth on
e sold to auser 
annot be re
laimed before the user leaves the sys-tem, and the initial allo
ation to a new user is 
onsumedat every time epo
h by that user for the duration of the
all. We assume that a user willing to pur
hase a givenbandwidth at a given pri
e is also willing to pur
haseany smaller amount at the same unit pri
e{there is nominimum-bandwidth requirement in our model.As des
ribed above, when 
ombined with informationabout the available resour
e and the number of new usersin the system, the demand fun
tion D(�) uniquely tellsus the amount of resour
e the user re
eives. We 
all thisamount the e�e
tive demand fun
tion of the user, anddenote it by D(p; r; n), where p 2 R+ is the pri
e, r 2 R+is the available resour
e, and n 2 Z+ is the number ofusers arriving in the 
urrent de
ision epo
h.Given the resour
e-allo
ation me
hanism as des
ribedabove, the aim of the network administrator is to set thelink pri
es p(�) (a fun
tion of time) so that the expe
tedrevenue is maximized. In other words, the network ad-ministrator should solve the following optimization prob-lem:max limH!1E 24 1H H�1Xk=0 Xi2Z+ (Ai(k)bip(ai))35 , (2)where p(�) are the de
ision variables, and bi is the band-width allo
ated to user i.1We assume this single demand fun
tion for simpli
ity here, butthis assumption 
an be relaxed by treating ea
h user's demand fun
-tion as a random variable whose value is de
lared at arrival.

To ta
kle su
h problems, a heuristi
, 
alled the rolling-horizon approa
h, is widely used [8℄. In this approa
h,instead of 
onsidering the steady-state expe
ted reward asthe obje
tive fun
tion, a �nite horizon length H is �xed.At de
ision epo
h t, an a
tion is 
hosen to maximize theexpe
ted reward over the horizon from t to t+H � 1. Inthis framework the obje
tive of the network administratorat de
ision epo
h t is:max E 24t+H�1Xk=t Xi2Z+ (Ai(k)bip(ai))35 , (3)The pri
ing s
hemes that we introdu
e in Se
tion III usethis framework for 
omputing the optimal pri
es.B Partially Observable Markov De
isionPro
ess (POMDP) formulationState Spa
e: A state x 2 X is a triple hsx; nx; oxi, wheresx 2 S gives the arrival pro
ess state, and nx and ox aremultisets of a
tive user des
riptions, as follows. An a
tiveuser des
ription is a pair hr; bi of a natural number r > 0and a real number b in [0; B℄. The user des
ription hr; birepresents a user 
onsuming resour
e b per time epo
h forremaining duration of a
tivity r. The set nx representsthe users that have just arrived, and we require that ea
hmember hr; bi of nx has b = 0 as no bandwidth has beenpur
hased for these users yet. The set ox represents theusers still in the system from previous arrivals.A
tion Spa
e: At any de
ision epo
h, the network ad-ministrator is allowed to 
ontrol the pri
e for the linkbandwidth. Thus, our a
tion spa
e A is just R+ .Transition Law: Using the statisti
s of the traÆ
-state pro
ess and the various assumptions made inSe
tion II-A, one 
an easily write down the transition law(see [7℄).Reward Stru
ture: Let x = hsx; nx; oxi be the 
urrentstate of the system and u be the a
tion 
hosen. Let L(x)be the available resour
e at state x, B �Phr;bi2ox b, andN (x) be the number of arrivals at state x, jnxj. Then,the one-step reward g : X� A ! R is given byg(x; u) = Xhr;bi2nxD(u;L(x);N (x))ur: (4)Using this de�nition of one-step reward, our obje
tive isto �nd the poli
y that maximizes the expe
ted averagereward.Observation Spa
e: We treat the traÆ
-state part sx ofthe state x as unobservable. Spe
i�
ally, the observationspa
e O is the set of pairs o = hno; ooi of multisets ofuser des
riptions, 
orresponding to the observation of thestate 
omponents nx and ox.Observation Kernel: The observation kernel gives, forea
h state x and a
tion u, a probability distribution overthe observation spa
e O that assigns probability one tothe observation hnx; oxi.



C Completely-observable MDP(COMDP) formulationA POMDP 
an be 
onverted to an equivalent COMDPwhose state spa
e 
onsists of probability distributionsover the state spa
e of the POMDP. In the 
ase of ourproblem, the only un-observable part of the POMDPstate x is the traÆ
 state of the system, sx. Thus, ourPOMDP 
an be 
onverted to a COMDP whose state ~xis a three tuple h~I~x; n~x; o~xi, where n~x and o~x are as ex-plained in the de�nition of the partially observable statespa
e X. The 
omponent ~I~x is an jSj-dimensional ve
torrepresenting a probability distribution over S. Thus, Is~xindi
ates the probability of being in traÆ
 state s. Thestate ~x of this COMDP is also 
alled the belief state ofthe system. As in the previous se
tion, we also extend thefun
tions L(~x) and N (~x) to represent the leftover band-width and number of arrivals at belief state ~x. These arenot random be
ause the relevant state 
omponents arefully observed. The reward fun
tion g(~x; u) 
an also beextended in a similar fashion [7℄.III Pri
ing S
hemesA Flat pri
ingIn this naive s
heme, the network administrator 
hargesthe same pri
e at all de
ision epo
hs. Though 
losed-form formulas are available to 
ompute the optimal 
atpri
e for simple traÆ
 models [4℄[6℄, no su
h formulas ex-ist for general traÆ
 models. Here we present a sto
has-ti
 gradient-as
ent s
heme to solve the problem in (3).Without loss of generality2, we restri
t our attention tode
ision epo
h t = 0. To fa
ilitate the dis
ussion, we de-�ne the set A[t1; t2℄ of users that are a
tive for at leastone epo
h between the epo
hs t1 through t2. Thus,A[t1; t2℄ 4= fi : Ai(k) = 1; for some k 2 [t1; t2℄g: (5)Also, asso
iated with 
all i 2 A[0; H � 1℄, we de�ne arandom variable ~di to be the duration of that part of
all i that overlaps with the interval 0 to H � 1, givenby minfdi;di + ai; H � ai; Hg. In addition, for nota-tional 
onvenien
e, we extend the e�e
tive demand fun
-tion D(p; r; n) to a user-spe
i�
 e�e
tive demand fun
tionthat is spe
ialized to the 
onditions for user i, writtenD(p; i) and de�ned by D(p;L( ~Xai);N ( ~Xai)), where ~Xkis the system belief state at time k.Now in this notation, setting t = 0 in (3), and not-ing that in 
at pri
ing the pri
e is 
onstant, say p, theobje
tive fun
tion for this problem 
an be written as theexpe
tation of the following sto
hasti
 fun
tion:V 
atH (p) = Xi2A[0;H�1℄D(p; i)� p� ~di ; (6)where H is the �nite horizon.2We note that times may be negative in our formulation.

Theorem 1 The sto
hasti
 fun
tion V 
atH : R+ ! Ris di�erentiable a.e. on R+ with probability one.Moreover, �V 
atH (p)=�p gives an unbiased estimate of�E[V 
atH (p)℄=�p.Theorem 1 implies that one 
an use the derivative ofV 
atH (�) along an observed sample path of duration Has an estimate of the gradient of the obje
tive fun
tion.Thus, to maximize the obje
tive fun
tion online, we re-peat the pro
ess of gradient estimation many times, andevery time we estimate the gradient, we take a step inthe dire
tion of the gradient. A step size of �k su
h thatP �k =1 andP �2k <1 is known to be appropriate forsu
h algorithms [9℄.The derivative of V 
atH (p) along an observed samplepath 
an be 
omputed in an in
remental fashion as fol-lows. De�ne vL(�), for 0 � L < H , re
ursively as follows:v0(p) = Xfi2A[0;0℄g�D(p; i)� p� ~di�vL(p) = Xfi:ai=Lg�D(p; i)� p� ~di�+ vL�1(p) (7)Using this de�nition, we have V 
atH (p) = vH�1(p), andthus V 
atH (�) 
an be 
omputed in an in
remental fashionas we observe the sample path. Now, di�erentiating (7),we get,�vL(p)�p = �vL�1(p)�p+ Xfi:ai=Lg�D(p; i) + p� �D(p; i)�p �� ~di:(8)But from the de�nition of D(p; i) it 
an easily be seenthat�D(p; i)�p = 8<: �D(p)�p if not 
ongested,1N ( ~Xai ) �L( ~Xai )�p otherwise, (9)where 
all i is 
onsidered \
ongested" if and only ifPfj:aj=aigD(p) > L( ~Xai).The available bandwidth L(XL) at time L, in turnevolves a

ording to the following dis
rete-time equation,L( ~Xk) = L( ~Xk�1)�Xfi:ai=k�1gD(p; i) + Xfi:ai+di=kgD(p; i); (10)whi
h on di�erentiation gives,�L( ~Xk)�p = �L( ~Xk�1)�p �Xfi:ai=k�1g�D(p; i)�p + Xfi:ai+di=kg�D(p; i)�p :(11)Equations (9) and (11) are dis
rete-time 
ausal equa-tions, that 
an be implemented in an online fashion to
ompute the respe
tive derivatives, whi
h when 
ombinedwith (8), 
an be used to 
ompute �V 
atH (p)=�p online.



B Rea
tive Pri
ingIn our remaining two pri
ing approa
hes, the pri
e being
harged 
an vary from epo
h to epo
h at the adminis-trator's dis
retion. The administrator de
ides the appro-priate pri
e for a parti
ular epo
h using the underlyingknown traÆ
 model. In rea
tive pri
ing, the network ad-ministrator asso
iates a pri
e with ea
h underlying traf-�
 state, i.e., maintains a ve
tor ~� of jSj pri
es. Be
ausethe arrival pro
ess is not fully observable, at ea
h epo
h,the administrator 
hooses a state estimate ~s a

ording tothe probability distribution ~I~x|this de�nes the sto
has-ti
 pro
ess ~S(�) giving ~s over time. The administratorthen 
hooses the 
omponent �~s of ~� 
orresponding to ~s asthe 
urrent pri
e.Thus, we 
an view the ve
tor ~� as a design parameterto be tuned by gradient as
ent. De�neV rea
tiveH (~�) = Xi2A[0;H�1℄�D(� ~S(ai); i)� � ~S(ai) � ~di� :Our goal is to �nd the ~� that maximizes E[V rea
tiveH (�)℄.We have the following result:Theorem 2 The fun
tion V rea
tiveH : RjSj+ ! R is dif-ferentiable almost everywhere on RjSj+ with probabilityone. Also, �V rea
tiveH (~�)=��s is an unbiased estimate of�E[V rea
tiveH (~�)℄=��s for all s 2 S.Theorem 2 is an analog of Theorem 1 for the rea
tive-pri
ing s
heme. Using this theorem, an on-line, in
remen-tal gradient-based algorithm by generalizing the methodgiven in the previous se
tion to tune ea
h 
omponent of~� in pla
e of tuning the s
alar p. This generalization isfairly straightforward, and is given by the following vari-ants of equations 7 to 11.v0(~�) = Xfi2A[0;0℄g�D(� ~S(ai); i)� � ~S(ai) � ~di�vL(~�) = Xfi:ai=Lg�D(� ~S(ai); i)� � ~S(ai) � ~di�+ vL�1(p)(12)�vL(~�)��s = �vL�1(~�)��s+ Xfi:ai=Lg D(� ~S(ai); i)�� ~S(ai)��s + � ~S(ai) �D(� ~S(ai); i)��s ! ~di:(13)�D(� ~S(ai); i)��s = 8>>>>><>>>>>: 0 if not 
ongestedand ~S(ai) 6= s,�D(�s)��s if not 
ongestedand ~S(ai) = s,1N ( ~Xai ) �L( ~Xai )��s otherwise, (14)

L( ~Xk) = L( ~Xk�1)�Xfi:ai=k�1gD(� ~S(ai); i) + Xfi:ai+di=kgD(� ~S(ai); i);(15)�L( ~Xk)��s = �L( ~Xk�1)��s � Xfi:ai=k�1g�D(� ~S(ai); i)��s+ Xfi:ai+di=kg�D(� ~S(ai); i)��s : (16)Note that, in this s
heme the network administratorkeeps tra
k of the belief state to sele
t a state estimatein order to 
harge an appropriate pri
e at ea
h de
isionepo
h. To do this, the administrator relies on the under-lying traÆ
 model. Thus this s
heme exploits the traÆ
model for pri
ing the bandwidth eÆ
iently.C Spot Pri
ingIn a spot-pri
ing s
heme, as in rea
tive pri
ing, the net-work administrator may 
hange the bandwidth pri
e ev-ery de
ision epo
h. But here, the administrator is notbound to sele
t a pri
e as a deterministi
 fun
tion ofthe state estimate ~s. Solving the pri
ing problem as aPOMDP as des
ribed in Se
tion II-B results in an opti-mal spot-pri
ing poli
y. In Se
tion II-C, we 
onverted thepri
ing POMDP to a belief-state MDP. But this belief-state MDP has an un
ountable state spa
e, and thus te
h-niques su
h as value iteration or linear programming (see[10℄) 
annot be applied in this 
ase.There are a number of heuristi
 te
hniques for solvingsu
h MDPs [11℄[12℄[13℄[14℄. Here we explore the poli
y-rollout te
hnique developed by Bertsekas and Castanon[13℄ be
ause of the simpli
ity of implementation and avail-ability of an obvious \base poli
y" for rollout. Herewe des
ribe this te
hnique brie
y. See [7℄ and [13℄ formore details. A poli
y � = f��0 ; ��1 ; : : :g is a sequen
e ofmaps ��k : ~X ! A , whi
h map a belief state ~x to a
tionu = ��k (~x) at time k. Given a poli
y �, let ~Xk denote thebelief-state traje
tory that results from following poli
y� from start state ~x and then de�neq�H(~x; u) = g(~x; u) + H�1Xk=1 g( ~Xk; ��k ( ~Xk));Also de�ne Q�H(~x; u) 4= E hq�H(~x; u)j ~X0 = ~xi. In the pol-i
y rollout te
hnique, a \reasonably good" base poli
y �0is 
hosen. Then based on the 
urrent state ~x, an a
tionu� = argmaxuQ�0H (~x; u) is 
hosen as the 
urrent a
tion.Under 
ertain general 
onditions, su
h a poli
y is an im-provement over �0. The following result helps us estimatethe derivative of Q�0H (�; �) with respe
t to u.Theorem 3 The sto
hasti
 fun
tion q�0H (~x; u) is di�er-entiable with respe
t to u a.e. on R+ with probability
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Figure 1: Comparison of the three pri
ing s
hemes as afun
tion of the ratio of the load fa
tors.one. Moreover, �q�0H (~x; u)=�u gives a 
onditionally unbi-ased estimate of �Q�0H (~x; u)=�u, 
onditioned on the event~X0 = ~x.Thus, to �nd the 
urrent pri
e, we estimate the gra-dient of Q�0H by drawing multiple samples with ~X0 = ~xand 
omputing the derivative of q�0H (�; �) for ea
h sam-ple using a te
hnique similar to the one demonstrated inSe
tion III-A. We then take a step in that dire
tion andrepeat this pro
edure several times until some stopping
riterion is met.Note that the pro
ess of drawing samples distinguishesspot pri
ing from the previous two s
hemes. Both in 
atpri
ing and rea
tive pri
ing, we rely on the past traje
-tory of the system state to infer the gradient informa-tion. In spot pri
ing, on the other hand, we simulate thefuture of the system by drawing multiple future traje
-tories using the system belief state and the underlyingtraÆ
 model for this purpose. As a 
onsequen
e, thespot-pri
ing s
heme relies heavily on the knowledge ofthe traÆ
 model.IV Empiri
al ResultsIn this se
tion, we summarize the empiri
al results brie
y.We 
ompare the performan
e of the three pri
ing s
hemesvia simulation. Mainly we wish to evaluate the pri
ings
hemes on the basis of (i) how they 
ope with varyingtraÆ
 load, and (ii) how they 
ope with non-linearity inthe demand fun
tion.We 
onsider a bandwidth market in whi
h only onevendor is present. The only resour
e it has for sale is thebandwidth on a single link. We restri
t our attention tothe 
ase where all the users have a single demand fun
-tion of the form � log(p=k)=k. We 
all the parameterk the non-linearity of the demand fun
tion, as a fun
-tion with larger value of k is more \non-linear." Theusers arrive a

ording to a dis
rete-time Markov Modu-lated Poisson Pro
ess (MMPP) in whi
h the underlyingtraÆ
-state pro
ess has four states. States 1 and 3 havehigh traÆ
 load, whereas States 2 and 4 have low traÆ
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Figure 2: Per
entage improvement over the 
at-pri
ings
heme as a fun
tion of the ratio of the load fa
tors.
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Flat pricingFigure 3: Comparison of the three pri
ing s
hemes as afun
tion of the non-linearity of the demand fun
tion.load. Formally, we de�ne the load fa
tor in traÆ
 state sas the mean 
all holding time �s multiplied by the aver-age number of arrivals �s in that state. To evaluate theperforman
e of the three traÆ
 s
hemes under varyingload 
onditions, we vary the ratio of the load fa
tors inStates 1 and 2 (by varying the load fa
tor in State 2).Fig. 1 and Fig. 2 
ompare the performan
e of the threetraÆ
 s
hemes as the ratio of the traÆ
 load in States 1and 2 is 
hanged. It 
an be seen that spot pri
ing alwaysperforms the best, while 
at pri
ing always performs theworst. Similar results are obtained for Fig. 3 and Fig. 4where we 
ompare the performan
e of the three pri
ings
hemes as the non-linearity of the demand fun
tion is
hanged. Also, it 
an be seen that unlike rea
tive pri
-ing, spot pri
ing maintains its advantage even at highnon-linearity values. Further evaluation of these te
h-niques is presented in [7℄.V SummaryWe presented the problem of pri
ing in a broker-mediatedmarket, where the entire resour
e is 
ontrolled by thebroker. We presented two novel pri
ing s
hemes: rea
-tive pri
ing and spot pri
ing, and 
ompared their perfor-man
e with that of the 
at-pri
ing s
heme. Flat pri
ing
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entage improvement over the 
at-pri
ings
heme as a fun
tion of non-linearity of the demand fun
-tion.uses the least system-state information, while the spot-pri
ing s
heme uses the most system-state information.We established that under various traÆ
 
onditions anddemand stru
tures, the spot-pri
ing s
heme outperformsthe rea
tive-pri
ing s
heme, whi
h in turn outperformsthe 
at-pri
ing s
heme. The spot-pri
ing s
heme was alsoshown to take advantage of various 
onditions, su
h asvarying load and non-linearity of demand fun
tion. Eventhough we fo
ussed on the single-link model, the pri
-ing s
hemes presented here 
an immediately be extendedto multi-link, end-to-end trades by asso
iating a di�erentpri
e with ea
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