
A Framework for Simulation-based Network Control

via Hindsight Optimization

Edwin K. P. Chong, Robert L. Givan, and Hyeong Soo Chang

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285
E-mail: {echong,givan,hyeong}@ecn.purdue.edu

Abstract

We describe a novel approach for designing net-
work control algorithms that incorporate traffic models.
Traffic models can be viewed as stochastic predictions
about the future network state, and can be used to gen-
erate traces of potential future network behavior. Our
approach is to use such traces to heuristically evalu-
ate candidate control actions using a technique called
hindsight optimization. In hindsight optimization, the
finite-horizon “utility” achievable from a given system
state is estimated by averaging estimates obtained from
a number of traces starting at the state. For each trace,
the utility value of the state is estimated by determining
the optimal “hindsight control”—this is the control that
would be applied by an optimal controller that somehow
“knew” the whole trace beforehand—and then measur-
ing the utility obtained under that control. Averag-
ing over many samples then gives a simulation-based
“hindsight-optimal” utility for the starting state that
upper bounds the true utility value of the state. This
technique for estimating state utility can then be used
to select the control—simply select the control that
gives the highest utility. Our hindsight-optimization
approach to designing simulation-based control algo-
rithms can be applied to a wide variety of network
decision problems. We present empirical results show-
ing effectiveness for two example control problems—
multiclass scheduling and congestion control.

1 Introduction

Because of the stochastic nature of network traffic,
both at the packet and at the call or flow level, most net-
work decision problems are complex stochastic control
problems. These problems can be formalized as Markov
decision processes (MDPs) with extremely large state
spaces, with the added complexity that the current sys-
tem state is never fully known to the control process.
In such “partially observable” MDPs (POMDPs), find-
ing the optimal control is known to be very difficult in
general (see, e.g., [12]).

Recent decision-theory research [15], [10] has shown
that simulating system behavior can provide a princi-

Research supported in part by NSF under grant ECS-9501652
and by DARPA/ITO under grant F19628-98-C-0051.

pled way to find an optimal policy within asymptot-
ically slowly-growing time bounds (i.e., the sampling
method runtime does not grow exponentially with prob-
lem size). However, these techniques still require ab-
surdly large amounts of simulation to get bounds on
policy values that can be used in controlling a network
in most common network decision problems.

In this paper, we describe an alternative and more
effective paradigm for applying simulation to POMDP
control problems. Under this paradigm, we do not sim-
ulate a policy, but instead use a simulation model to
generate traces of the stochasticity in the system (typ-
ically traffic traces drawn from a traffic model). For
each such trace, we can then compute the optimal con-
trol. We call this the “hindsight control,” because the
true control problem being faced does not allow us to
know the traffic trace—the control problem when know-
ing the trace is like computing what we wish we had
done after encountering the traffic, i.e., the “hindsight”
control. For each trace, the hindsight control can be
used to determine the “hindsight-optimal value” of the
trace—that achieved under the hindsight control. We
take this value as a heuristic estimate (in general it is
an upper bound) of the value that we can accrue if we
encounter that trace. Averaging the hindsight-optimal
values over many traces, we get an upper bound on
the optimal expected value achievable from the current
state. Given this means of estimating optimal values,
familiar decision-theoretic techniques (described below)
then select an action based on knowledge of the current
utility of each action (the “Q-values”).

Hindsight optimization provides a general approach
to incorporating simulation in decision-making, yield-
ing in turn a general means for creating control poli-
cies that incorporate traffic models representing expec-
tations about the future traffic. This technique can be
applied to a wide variety of control problems faced in
the networking context. We describe below (in Sec-
tion 3) a proof-of-concept implementation of this ap-
proach for two simple problems: multiclass scheduling
and congestion control. We have empirically evaluated
our implementations and have demonstrated substan-
tially superior performance when comparing to previ-
ous control policies. The hindsight-optimization ap-
proach exploits the particular structure of some net-

work control problems, making it possible to obtain
superior performance. In particular, the technique ap-
pears to work best in situations where the randomness
is “exogenous”—i.e., the future traffic does not depend
on the current control.

2 Hindsight Optimization

Problem Framework. Our problem setting follows
that of standard Markov decision processes (MDPs).
Here we briefly describe the setting (for more details,
see [2]). Let X be a set of system states. At each state
x ∈ X, we take an action (or apply a control) a in a
set A(x) of feasible action choices. If we take action
a at state x, we receive a reward of R(x, a), and the
next state y is chosen according to a state-transition
probability P (x, y, a) (in networking applications, the
randomness of the next state is typically due to random
traffic). If we start at state x and apply a sequence of
actions a0, a1, a2, . . ., resulting in a sequence of states
x1, x2, . . ., then the total reward value over a horizon

of H time steps is VH(x) = E
(∑H−1

i=0 R(xi, ai)
)

where

the expectation is taken over possible (random) state
sequences, and x0 = x. In the standard problem for-
mulation, we are interested in action choices that are
determined by “state feedback”—if we are in state xi
at time i, then we set ai = µi(xi), where µi is a state-
feedback map. The sequence π = {µ0, µ1, . . .} is called
a policy. An optimal policy π∗ = {µ∗0, µ

∗
1, . . .} is one

that maximizes the total value. We denote the associ-
ated optimal value by V ∗H .

We write Qi(x, a) = R(x, a) + E(V ∗i−1(y)), where
the expectation is with respect to the next state y, and
V ∗i−1(y) is the optimal value over i−1 time steps starting
at state y. The main result in Markov decision theory
states that V ∗H(x) = maxa∈A(x)QH(x, a). Moreover,
the policy defined by µ∗i (x) = arg maxa∈A(x)QH−i(x, a)
is an optimal policy. In particular, for a fixed horizon
H, the action a∗ = µ∗0(x) = arg maxa∈A(x)QH(x, a)
is an optimal “current” action in maximizing the total
value VH(x). In practice we do not knowQH(x, a)—the
best we can hope for is to estimate these values.

The hindsight-optimization approach is based on
the following rationale. At each time step, we select the
action a∗ just described using an estimate of the val-
ues QH(x, a), for a fixed horizon H. For convenience,
we henceforth drop the subscript H and refer to the
values of Q(x, a) as the “Q-values.” For a given state
x and an action a, we estimate the value of Q(x, a) as
follows. We first generate traces of possible future “ran-
domness” over a horizon of H (in the case of network
control problems, these are typically traces of future
traffic), starting from state x. For each possible trace of
the future, we compute the reward accumulated by tak-
ing action a at time step 0 followed by the trace-specific
optimal sequence of actions a∗1, a

∗
2, . . . for the remaining

horizon of H − 1 in the trace. This optimal sequence
of actions corresponds to one that would be taken by a

controller with “hindsight” knowledge of uncertainties
in the future. The optimal accumulated reward along a
given trace is called the hindsight-optimal value of that
trace. We use the average of the hindsight-optimal val-
ues over the set of generated traces as our estimate of
the value of Q(x, a). Once we have estimated Q(x, a)
for all values of a ∈ A(x), we can then select the action
a∗ to be applied using the equation defining a∗ above.
This approach of applying a “moving-horizon” control
solution in an on-line fashion is common in the optimal-
control literature, (e.g. receding-horizon control [13]).

Formally, our procedure for estimating the Q-values
uses the following quantity Q̂(x, a) as an estimate of
Q(x, a): Q̂(x, a) = R(x, a) +E(V̂H−1(x1)), where

V̂H−1(x1) = E

(
max
a1,a2,...

H−1∑
i=1

R(xi, ai)

∣∣∣∣∣x1

)
.

Comparing the above with the equation Q(x, a) =
R(x, a) +E(V ∗H−1(x1)), where

V ∗H−1(x1) = max
µ1,µ2,...

E

(
H−1∑
i=1

R(xi, µi(xi))

∣∣∣∣∣x1

)
,

it is easy to see that our estimate Q̂(x, a) is an upper
bound of Q(x, a). Note that the “max” in the defini-
tion of V̂H−1 is over sequences of actions, due to the
ability (in V̂H−1) to apply tailored action sequences to
different stochastic futures. In contrast, the “max” in
V ∗H−1 above occurs outside the expectation, requiring a
single policy to be selected for all futures.

In a general decision problem, there is no reason to
suppose that the Q̂ upper bound is at all tight (it can
be arbitrarily loose). Even in the network-control prob-
lems we consider, we expect that this upper bound may
often be loose. However, because we are interested in
Q-values only to rank candidate control actions, we only
need the upper bounds to preserve the relative value at
different states. Our initial results below for selected
problems illustrate that these relative values are often
well reflected in the Q̂ upper bounds. The problems for
which we most expect the Q̂ upper bound to help us
make decisions are those that involve “exogenous” ran-
domness; i.e., problems where the randomness is not
a function of the control, such as networks where the
traffic does not depend on the control decision.

The key step in our approach is selecting the
hindsight-optimal sequence of control actions, given a
particular trace of future randomness. In general this
can be a very hard optimization problem; however, for
typical network control tasks, this problem is both solv-
able and novel—limited work has been done on optimal
network decision-making with known traffic traces. The
utility estimates obtained by this technique may not
converge to the true utility with large sample size—
these are heuristic estimates that must be evaluated
empirically by the performance of the resulting policy.

Traffic
Simulation

Hindsight
Optimizer

Averaging

Q-value
Estimate

Traffic
Traces

Hindsight-optimal
Values

......

Candidate
Action

Action Selection

Action Evaluator

Network

State Estimation

State Estimate

Selected
Action

Partial
Observation

Figure 1: Basic control architecture

Control Architecture. The basic control architec-
ture of our framework is shown in Figure 1. The main
components of the framework (the decision-making
module) are the action evaluator and action selector,
which use system-state estimates together with a traf-
fic simulator to select control actions to be applied to
the network. As will be described further below, be-
cause we only have partial observations of the system,
we do not have access to actual system states but only
estimates of them. The state variable x from our previ-
ous description must then be interpreted as a state esti-
mate. Indeed, standard MDP theory can be applied to
the partially-observed case by incorporating the state
estimate distribution into the state space (see [2]).

The controller takes as input a state estimate re-
flecting what is known about the hidden state of the
traffic sources—this state estimate and its maintenance
over time depend on the particular traffic model used.
For example, if the traffic model is a Markov-modulated
Bernoulli process, the state estimate is a probability
distribution over the hidden Markov state space, and
the update rule is given by POMDP theory and is es-
sentially a form of Bayes’ rule for incorporating new ob-
servations. (Put more concretely, each time new traffic
arrives, Bayes’ rule is used to update our expectations
about future traffic based on our traffic model.) The
decision-making module (action selection plus action
evaluation) uses the state estimate to inform the traffic
simulations used to select the control action, shown as
the output of the module fed back into the network.

The decision-making component is dominated by
the action evaluator. This module first uses the traf-
fic model (with the state estimate) to generate poten-
tial future traffic traces. The hindsight optimizer then
computes the value obtainable by a controller encoun-
tering each trace with foreknowledge (or, equivalently,
the value obtainable by a “revisionist” hindsight con-
troller looking back on the traffic). The values for the
different traces are then averaged, giving the overall
value obtainable. The module shown is labeled an “ac-
tion evaluator” because it accepts as input a “candi-
date action” to be evaluated—this evaluation is done
by requiring that the selected control in the hindsight
optimizer begin with that action, as described in the
previous section. The action evaluator returns an es-
timate of the utility of taking the candidate action a
at state x (i.e., Q̂(x, a)). This same estimation process
is performed for each candidate action, and the action

with the highest utility estimate is selected.
We have found it critical for the simulation traces

used in evaluating different candidate actions for com-
parison against one another be the same traces—
otherwise far more traces are needed for the compar-
ison. Our interest in the relative rather than exact
utility of the actions allows us to tolerate less accurate
estimates when the inaccuracy is systematic across all
actions. So, our technique allows savings in simula-
tion time by focusing on the relative utility—similar to
the benefits of common-random-numbers simulation in
perturbation analysis [9] (see also [3]).

State Estimation: Stochastic traffic models implic-
itly describe probability distributions over possible fu-
ture traffic sequences. With many traffic models, these
distributions change over time depending on the actual
traffic. For example, if the model indicates we are ex-
pecting a burst of traffic in the near future with high
likelihood, and then such a burst arrives, we may no
longer be expecting such a burst (i.e., traffic sequences
containing such bursts will be assigned a low probability
by the model after the burst arrives, but a high proba-
bility before the burst). Maintaining the traffic model
during traffic arrivals is the task of state estimation.

In our initial work in this framework, we have used
Markov-modulated Bernoulli Process (MMBP) traffic
models (e.g., [7], [14]). These models can easily rep-
resent a wide variety of interesting traffic patterns, in-
cluding self-similar traffic. An MMBP traffic model is
a discrete time model given by providing a finite set S
of traffic generation states, with a transition probabil-
ity matrix T giving for each pair of states s1 and s2

from S the probability of transitioning from s1 to s2 at
each time step spent in s1. Associated with each state
s ∈ S is a Bernoulli process Bs governing traffic genera-
tion for each time step spent in state s. This process is
given by specifying a single probability of generating a
packet during each time step (when multiple simultane-
ous arrivals are allowed, a distribution over the possible
number of arrivals must be given).

While we currently model network traffic with a
state-based model such as an MMBP traffic model,
we assume that the controller does not have access to
any direct observation of the current state of the traf-
fic model. The only way the controller can gain any
knowledge of this state is by observing the traffic gen-
erated and performing state estimation. In this case, a
state estimate is a probability distribution over the pos-
sible traffic generation states (all those in S). This esti-
mate is easily updated using Bayes’ rule after each time
step of traffic arrivals, given knowledge of the transition
probabilities T and the state-associated Bernoulli pro-
cesses Bs. Note that the state estimation process relies
on the controller having knowledge of the traffic model
itself: this knowledge is expected to derive either from
a model inference algorithm (such as the expectation
maximization (EM) algorithm, widely used in hidden-
Markov-model estimation problems (e.g., [17])[18]), or

from call or flow-related information (possibly selected
from a library of generic traffic models representing dif-
ferent types of call or flow), or possibly even from polic-
ing of the traffic source.

Action Evaluation: The action evaluation module
is the heart of our control framework. This module ac-
cepts a state estimate and a candidate action as input,
and must return a Q-value estimate reflecting the ex-
pected utility achieved by taking that action assuming
optimal behavior thereafter. Accurate calculation of
Q-values is known to be intractable in general in par-
tially observable contexts (i.e., where state estimation
must be used rather than direct knowledge of the under-
lying state), and is expensive even in fully-observable
contexts where the state space is very large. However,
because we are only using the Q-values to select an ac-
tion to perform, we only care about the relative values,
not necessarily about the accuracy of the values. For
these reasons, it may suffice to use our previously de-
scribed heuristic method of Q-value estimation, focus-
ing on preserving the relative Q-values where possible.

Recall that our approach is to use the state estimate
provided to generate simulation traces of the stochas-
ticity in the system. In simple cases where the control
is open-loop, this trace does not depend on the selected
control actions and often simply amounts to a likely
future traffic sequence. Closed-loop control problems
(e.g., those resulting from models incorporating TCP
protocol effects) are more complex and are subjects of
further ongoing research to broaden our framework.

Once we have simulation traces describing “possible
futures” for the system, we derive an approximate Q-
value for taking the candidate action by assuming that
we start with that action, and then solving for the op-
timal subsequent control for each simulation trace and
measuring the value attained under that control. By
averaging these values over the different traces, we get
what we call the hindsight-optimal Q-value for the can-
didate action. This is the value we expect to obtain if
we start with the candidate action and our controller
presciently knows the future traffic. It is important to
note that we use the simulation traces by assuming for
each one (in turn) that the trace is the actual traffic,
and then computing the optimal control for that traffic.
This assumption often makes fast analysis possible.

Action Selection: In the simplest case, the action
selection portion of our framework involves using the
action evaluator to estimate the Q-value for each can-
didate action, and then selecting the action with the
highest estimate. This technique is used in the schedul-
ing example described in Section 3 below. However, a
number of issues can complicate this plan.

In many network problems, the control decision
must be made at a very fine timescale-too fine to al-
low for repeated simulation and even very simple sim-
ulation analysis. In these situations, the action selec-
tion technique just described will be too expensive. We
intend to design control for such problems by design-

ing a parameterized policy and using the hindsight-
optimization technique to select the best parameter set-
tings at a coarser timescale. In this case, the action se-
lection task is to select a parameter setting to be used
by the parameterized policy for a period of time until a
new selection is made (thus giving a mechanism for au-
tomatically adapting the parameter setting to changing
traffic conditions as reflected in the traffic model).

An additional issue that arises when the space of
candidate actions is quite large (e.g., the space of pos-
sible parameter settings for a parameterized policy, as
just described). In this case, it is not possible to try ev-
ery possible candidate action—instead, it is necessary
to use search techniques such as gradient ascent to find
a locally hindsight-optimal action by using hindsight-
optimization to evaluate some but not all of the candi-
date actions. This technique is used in the congestion
control example discussed below. The details of this
approach will depend heavily on the structure of the
action space for the problem at hand.

Adaptation: The block diagram in Figure 1 reflects
the basic operation of a hindsight-optimization-based
controller. Implicit in this operation is the presence
of a traffic model that is informing the traffic simula-
tion block. Therefore, it is quite natural to convert a
hindsight-optimization controller into an adaptive con-
troller by adding a traffic model inference module that
updates the traffic model periodically. The resulting
controller can be expected to select control based on an
ongoing and changing estimate of the expected future
traffic patterns. Such a controller will react flexibly to
a variety of changing conditions including both unex-
pected network faults and changing congestion condi-
tions, providing a form of adaptive fault tolerance auto-
matically at each control point in the network structure.

Related Work: As mentioned in Section 1, the re-
cent decision-theoretic work of [15] and [10] provide an
impractical alternative way of finding optimal policies
using simulation. Recent work by Bertsekas et al. on
rollout algorithms also provide a means of using sim-
ulations to find “good” control actions [3, 4]. How-
ever, that work was formulated for the simpler fully-
observable problem domain, rather than the partially-
observable domain common in network control. Also,
the rollout approach relies on starting with a good
heuristic policy for the control problem being consid-
ered, in contrast with our approach. Interestingly, while
our hindsight approach provides an upper bound on the
Q-values, the rollout approach provides a lower bound.
Together such upper and lower bound values may yield
useful information on the accuracy of our Q-value ap-
proximation, suggesting the possibility of combining
the rollout approach with ours in a natural way.

3 Examples

Multiclass Scheduling. In this section we discuss
a network control problem that we have studied within
our framework. We considered the scheduling problem

for packet networks with multiple classes of traffic with
associated deadlines. For this example, we assumed
discrete time and fixed-size packets falling into a small
finite number of classes, where each class has an asso-
ciated weight. The objective of the scheduler here is to
minimize the weighted loss of packets, where a packet
is lost if it is not served before its deadline.

As a baseline for comparison, we considered two
simple schedulers for this problem, along with a third
scheduler that we designed without using simulation.
The simple schedulers were: (1) earliest-deadline-first
(EDF), which ignores the classes and serves the soonest-
to-expire packet; and static-priority (SP), which ignores
deadlines and always serves the highest weighted out-
standing packet. The scheduler we designed without
simulation is a greedy scheduler called current-minloss
(CM), which selects a packet so as to minimize weighted
loss on those packets already in the queue if no further
packets arrive (see [6] for details). Note that both EDF
and CM are throughput optimal scheduling policies—
these policies minimize idle time, always serving as
many packets as possible over any time interval and
traffic (see [8]). SP can fail to have this property by
focusing exclusively on class weight.

We then designed a hindsight-optimizing (HO)
scheduler, which uses the techniques of this paper
to estimate the impact of modeled future traffic on
the scheduling decision. The framework requires solv-
ing the offline problem in order to analyze simulation
traces-in this case, that problem is to find the optimal
schedule for a multiclass traffic stream with deadlines
when that traffic is known in advance. We designed
a solution to this problem that we call the “Prescient
Minloss” algorithm (see [5] for details). This solution
works by considering the packets from highest weight to
lowest weight, and creating a schedule by adding each
packet as it is considered at the latest possible time in
the schedule. Adding a packet to the schedule may re-
quire shuffling the packets already in the schedule to
earlier times-as long as no packet is shuffled to a time
before its arrival. If there is no way to shuffle packets
in the schedule to allow the addition of a packet when
it is considered, then the packet is dropped. We have
proven that this approach yields an optimal schedule
for the specific traffic in the simulation trace.

The hindsight-optimization technique described in
Section 2 provides a natural means to extend this algo-
rithm for offline scheduling into an online scheduler that
uses simulation and traffic modeling. Each simulation
trace is analyzed using the offline algorithm for each
candidate action, to give an “optimistic” estimate of the
value obtainable after the action (an optimistic Q-value
estimate). The action with the best estimate (averaged
over the different traces) is selected and performed. For
this example, the simulation-based decision-making is
repeated at each time step. The resulting control policy
is called the hindsight-optimizing (HO) policy.

Figure 2 shows results for comparing these four

0 2 4 6 8 10 12 14 16 18

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time

C
um

ul
at

iv
e

w
ei

gh
te

d
lo

ss

 EDF
 SP
 CM
 HO

Figure 2: Weighted packet loss for four schedulers

schedulers on this multiclass scheduling problem with
deadlines. The graphs show the cumulative weighted
packet loss over time for each scheduler against two dif-
ferent traffic sources. These results were obtained using
the NS simulator to evaluate the four schedulers for the
problem. These results show that the simple schedulers
fail completely to control weighted loss. The greedy
CM scheduler we designed achieves a more reasonable
weighted loss, and our hindsight-optimizing HO policy
achieves a further substantial improvement by incorpo-
rating an accurate traffic model using our techniques.

Congestion Control. We have also tested our
control framework for a multi-source congestion control
scheme, in work with Gang Wu. A full description of
our results on congestion control is presented in [19];
here we present a brief summary. The control problem
involves a bottleneck node in a network through which
we assume there are a number of fully controllable
sources attempting to transmit data—these sources are
located at various control delays from the bottleneck
node. We assume Markov-modulated cross-traffic af-
fecting the available bandwidth at the bottleneck node,
and attempt to select flow rates for the sources to
maximize the (weighted) difference between through-
put achieved and delay experienced at the bottleneck
node, with a fairness penalty term applied to encourage
fair allocation of bandwidth among the sources.

In our empirical evaluation of the congestion control
scheme, we used the network simulator “NS” (currently
available from Lawrence Berkeley National Labora-
tory’s website at http://www-mash.cs.berkeley.edu/).
The simulated network comprises three controlled traf-
fic sources (transimitting low-priority traffic), one un-
controlled “cross-traffic” source (transmitting high-
priority traffic), one bottleneck node, and one sink
node. Traffic from all the sources, controlled or un-
controlled, goes through the bottleneck node to the
sink node via a 55 Mbps link. All other links are of
bandwidth 155 Mbps. The round-trip delays from the
three controlled sources to the bottleneck node are non-
negligible: they are 20, 30, and 40 ms. The uncon-
trolled node generates traffic consisting of 10 identical
two-state on/off traffic flows, each having a mean rate
of 2.2 Mbps. In tests below, we will be varying the (on
and off) rates to have different variation of the aggre-

0 20 40 60 80
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Variance (Mbps2)

U
til

iz
at

io
n

HO
PD−50
PD−10
PD−1

0 20 40 60 80
0

200

400

600

800

1000

Variance (Mbps2)

D
el

ay
 (

se
cs

.)

HO
PD−50
PD−10
PD−1

Figure 3: Utilization and delay for four controllers

gated traffic rate but at the same time keep the same
mean. This allows us to study the impact of the cross
traffic variance on the congestion controller.

Our congestion controller, residing at the bottleneck
node, computes rate commands based on the band-
width left unused by the high-priority cross-traffic and
relays them to the controlled sources. The controller is
implemented within the hindsight optimization frame-
work, using a gradient ascent method to find a locally
“hindsight optimal” action in the continuous action
space. We note that the hindsight optimizing controller
here exploits an accurate stochastic model of the cross
traffic, which is not used by the competing controllers.
The goal is to show that this model can be used to im-
prove the provision of high utilization, low delay, low
packet loss rate, while maintaining fairness.

Figure 3 shows bottleneck-link utilization and de-
lay experienced for our technique and three competing
PD-style controllers [11, 1] on this problem, as the vari-
ance of the cross-traffic model is increased. These plots
show that our scheme provides the desired balance be-
tween utilization and delay—the only comparable PD
controller with respect to delay has highly unaccept-
able throughout. Space precludes showing results that
demonstrate the new technique dramatically reduces
packet loss and achieves reasonable fairness (but some-
what less fairness than PD controllers).

4 Summary and Conclusions

We presented a novel paradigm for designing online
simulation-based control algorithms. However, much
remains to be explored in our framework. Perhaps
the most significant research task is to determine the
breadth of applicability and select most fruitful areas
of application of the new approach; a closely related
task is to develop a better analytical understanding of
the new paradigm. The experimental work summarized
above represents a preliminary proof-of-concept for this
new idea, but cannot be viewed as a measure of its po-
tential generality. We plan to exploit fully the poten-
tial impact of this technique by applying it to a wide
range of network control problems at varying granu-
larities of network behavior; we further plan to study
the interaction between our technique and self-similar
and multifractal traffic models (e.g., [16]) and expand
the applicability of our approach by considering closed-
loop control questions such as those raised by consider-

ing the interaction of the TCP protocol with network
control. Further, by incorporating online traffic model
inference techniques into the framework, we hope to
automatically extend the control algorithms designed
using our framework to adaptive algorithms that react
to changing traffic conditions, including hostile attacks
and unforeseeable congestion.

References

[1] L. Benmohamed and S. M. Meerkov, “Feedback control
of congestion in packet switching networks: The case of a single
congested node,” IEEE/ACM Trans. Networking, vol. 1, no. 6,
pp. 693–707, Dec. 1993.

[2] D. P. Bertsekas, Dynamic Programming and Optimal
Control, Vol. 1 and 2. Athena Scientific, 1995.

[3] D. P. Bertsekas, “Differential Training of Rollout Policies,”
in Proc. 35th Allerton Conference on Communication, Control,
and Computing, October 1997.

[4] D. P. Bertsekas and D. A. Castanon, “Rollout Algorithms
for Stochastic Scheduling Problems,” J. of Heuristics, Vol. 5,
pp. 89–108, 1999.

[5] H. S. Chang, R. Givan, and E. K. P. Chong, “On-line
scheduling via sampling,” in Proc. 5th Int. Conf. on Artificial
Intelligence Planning and Scheduling (AIPS2000), April 11–15,
pp. 62–71, 2000.

[6] R. Givan, E. K. P. Chong, and H. S. Chang, “Scheduling
multiclass packet streams to minimize weighted loss,” unpub-
lished manuscript, 2000.

[7] W. Fischer and K. Meier-Hellstern, “The Markov-
modulated Poisson process (MMPP) cookbook,” Perf. Evalua-
tion, Vol. 18, pp. 149–171, 1992.

[8] B. Hajek and P. Seri, “On causal scheduling of multiclass
traffic with deadlines,” in Proc. IEEE Int. Symp. on Infor. Th.,
pp. 166, 1998.

[9] Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Dis-
crete Event Dynamic Systems, Kluwer, 1991.

[10] M. Kearns, Y. Mansour, and A. Y. Ng, “Approximate
Planning in Large POMDPs via Reusable Trajectories,” in Adv.
in Neural Infor. Proc. Sys., S. A. Solla, T. K. Leen, and K. R.
Muller, eds., MIT Press, 2000.

[11] A. Kolarov and G. Ramamurthy, “A control-theoretic ap-
proach to the design of an explicit rate controller for ABR ser-
vice,” IEEE/ACM Trans. Networking, vol. 7, no. 5, pp. 741–753,
Oct. 1999.

[12] M. L. Littman, Algorithms for Sequential Decision Mak-
ing. Ph.D. dissertation and Technical Report CS-96-09, Brown
University, Computer Science Dept., Providence, RI, March 1996.

[13] D. Q. Mayne and H. Michalska, “Receding horizon control
of nonlinear systems,” IEEE Trans. Auto. Contr., vol. 35, no. 7,
pp. 814–824, Jul. 1990.

[14] H. Michiel and K. Laevens, “Teletraffic engineering in a
broad-band era,” Proc. IEEE, vol. 85, No. 12, pp. 2007–2032,
1997.

[15] D. A. McAllester and S. Singh, “Approximate Planning
for Factored POMDPs using Belief State Simplification,” in Proc.
15th Annual Conf. on Uncertainty in AI, pp. 409–416, 1999.

[16] K. Park and W. Willinger (eds.), Self-Similar Network
Traffic and Performance Evaluation, Wiley Interscience, 1999.

[17] L. R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proc. IEEE, Vol. 77,
No. 2, pp. 257–285, 1989.

[18] J. W. Turin, “Fitting stochastic automata via the EM
algorithm”, Stochastic Models, vol. 12, pp. 405–424, 1996.

[19] G. Wu, E. K. P. Chong, and R. Givan, Jr.
Burst-level Congestion Control Using Hindsight Optimiza-
tion, unpublished manuscript, School of Electrical and Com-
puter Engineering, Purdue University, 2000. (available at
http://dynamo.ecn.purdue.edu/ ngi/)

