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1 IntroductionThis paper presents a new polynomial time procedure for automated in-ference. Although no polynomial time procedure can be complete for �rstorder logic, polynomial time inference procedures can often be used as pow-erful subroutines in general purpose reasoning systems [7], [21], [17]. Theprocedure presented here is a signi�cant strengthening of the procedure pre-sented in [16], which is in turn a signi�cant strengthening of the well knownprocedure for congruence closure [14], [9].Both the procedure presented here and the one presented in [16] are de-�ned by inference rules written in a nonstandard syntax for �rst order logic.Nonstandard syntax is essential to both the speci�cation and to the im-plementation of these procedures. The procedure given in [16] uses a syntaxbased on taxonomic relations between expressions that denote sets. This pro-cedure can be viewed as an extension of earlier work on knowledge represen-tation languages, e.g., [3], [11], [4], [5]. Knowledge representation languageshave traditionally been organized around taxonomic relationships betweenclasses. AI researchers often express the intuition that such taxonomic rep-resentations facilitate inference. The technical results in [16] support thisintuition. The relationship between the work described here and previouswork on knowledge representation languages is discussed in more detail insection 5.The inference procedure presented here is based on a new nonstandardsyntax for �rst order logic which we call a Montagovian syntax. This syntaxis based on aspects of natural language syntax under compositional seman-tics [1], [15], [18], [19], [10], [2]. In particular, our Montagovian syntax iscentered around class expressions, i.e., expressions that denote sets. In theearlier taxonomic syntax we allowed for class symbols, such as the symbola-person, and class expressions such as (brother-of a-person). The ex-pression (brother-of a-person) denotes the set of all individuals that arethe brother of some person. In general, any monadic predicate symbol ofclassical syntax can be used as a class expression, and for any binary relationR, and class expression s, one can construct the class expression (R s) whichdenotes the set of individuals which are related under R to an element of2



s. In the new Montagovian syntax we write the class expression (R s) as(R (some s)) and we allow the construction of the (di�erent) class expres-sion (R (every s)). For example, if loves is a binary relation symbol, andperson is a class symbol, then we have the class expressions (loves (someperson)) and (loves (every person)). The former class expression de-notes the set of all individuals that love some person while the latter classexpression denotes the set of all individuals that love all people. This expan-sion of the vocabulary of class expressions results in an inference procedurethat is, in most respects, more powerful than the one based on taxonomicsyntax given in [16]. A precise speci�cation of the syntax and semantics ofour Montagovian version of �rst order logic is presented below.This paper is intended to provide technical support for the following twosomewhat informal claims.1. The e�ciency of inference is sensitive to the syntax used to expressstatements.2. Natural language is a source of inferentially powerful syntax.This paper makes no contribution to the traditional study of the syn-tax or semantics of natural language. We do not provide any new theoryfor predicting which strings of words are grammatical natural language sen-tences (the traditional study of syntax). Nor do we provide any new theoryfor assigning meaning to natural language utterances (the traditional studyof semantics). There is a large literature on these topics with theories farmore sophisticated than the ones used here. This paper addresses a di�erenttopic, the relationship between natural language syntax and e�cient infer-ence techniques. In studying the relation between syntax and inference wehave focused on only the most fundamental properties of natural language.2 AMontagovian Syntax for First Order LogicOur Montagovian syntax is a syntactic variant of �rst order predicate calculus| every Montagovian formula can be translated to a classical formula, and3



every classical formula can be translated to a Montagovian formula. However,the quanti�er-free fragment of Montagovian syntax is more expressive thanthe quanti�er-free fragment of either classical syntax or our earlier taxonomicsyntax. In spite of increased expressive power, the quanti�er-free fragmentof Montagovian syntax retains most of the nice computational properties ofthe quanti�er-free fragment of classical syntax.Classical syntax involves terms and formulas. In both taxonomic andMontagovian syntax terms are replaced by class expressions where each classexpression denotes a set. The syntax of our Montagovian language is de�nedas follows.� A class expression is one of the following.{ A variable or constant symbol.{ A monadic predicate symbol.{ An expression of the form (R (some s)) or (R (every s))whereR is a binary relation symbol and s is a class expression.{ An expression of the form (� x �(x)) where x is a variable and�(x) is a formula..� A formula is one of the following.{ An expression of the form (every s w) or (some s w) where sand w are class expressions. Expressions of this type are calledatomic formulas.{ A Boolean combination of formulas. Atomic formulas and nega-tions of atomic formulas are called literals.Before giving a formal semantics, it is useful to consider some examplesof formulas and their associated meanings. If P and Q are class symbols then(every P Q) is a formula which is true if the set denoted by P is a subsetof the set denoted by Q. If man is a class symbol that denotes the set of all4



men, and runs is a class symbol that denotes the set of all things that run,then the formula (every man runs) is true if every man runs. The formula(some man runs) is true if some man runs.Constant symbols and variables are taken to denote singleton sets. If Johnis a constant symbol (or variable) then the formulas (every John runs) and(some John runs) are semantically equivalent and we can use (John runs)as an abbreviation for either formula. Similarly, we write (likes John) asan abbreviation for either of the class expressions (likes (every John)) or(likes (some John)).If owns is a relation symbol, and denotes the predicate which is true of twoobjects if the �rst owns the second, then the class expression (owns (somecar)) denotes the set of individuals that own some car. If policeman is aclass symbol that denotes the set of all policemen, then the formula (everypoliceman (owns (some car))) is true if every policeman owns a car.Unlike Montague, we make no distinction between nouns and verbs. As aresult, there are formulas of our Montagovian syntax that do not correspondto grammatical sentences. For example, consider the formulas (every dogmammal) and (every (loves John) (loves Mary)).The formal semantics for our Montagovian syntax is a (drastic) simpli-�cation of Montague's original semantics for English. Just as in classicalsyntax, a model of our Montagovian language is a �rst order model, i.e., adomain D together with an interpretation of constant, class, and relationsymbols. Any binary relation R can be transformed to a function R0 fromelements to sets such that y is an element of R0(x) if only if the pair hy; xiis in the relation R. We adopt a super�cial modi�cation of the de�nition ofa �rst order structure so that a binary relation symbol denotes a functionfrom elements to sets rather than a relation. Under our de�nition, a �rstorder model interprets each constant symbol as an element of its domain,each class symbol as a subset of its domain, and each relation symbol as afunction from domain elements to subsets of the domain. If the interpreta-tion of a relation symbol R is clear from context, we will often write R(d) todenote the set that is the result of applying (the value of) R to the domainelement d. 5



If M is a �rst order model, and � is a variable interpretation over M,i.e., a mapping from variables to elements of the domain ofM, then we writeV(e;M; �) for the semantic value of the expression e in the modelM undervariable interpretation �. If s is a class expression then V(s;M; �) is a subsetof the domain of M. If � is a formula, then V(�;M; �) is a truth value,either T or F. The semantic evaluation function V is de�ned by structuralinduction on expressions as follows.� If P is a class symbol then V(P; M; �) is the set M(P ).� If c is a constant then V(c; M; �) is the singleton set fM(c)g.� If x is a variable then V(x; M; �) is the singleton set f�(x)g.� V((R (every s));M; �) is the set of all d such that, for every d0 inV(s;M; �), d is an element of R(d0). (Consider the class expression(loves (every child)).)� V((R (some s));M; �) is the set of all d such that there exists anelement d0 in V(s;M; �) such that d is in the set R(d0). (Consider theclass expression (loves (some child)).)� V((� x �(x)); M; �) is the set of all d such that V(�(x); M; �[x :=d]) is T where �[x := d] is the same as � except that it interprets x asd.� V((every s t); M; �) is T if V(s; M; �) is a subset of V(t; M; �).� V((some s t); M; �) is T if V(s; M; �) has a non-empty intersectionwith V(t; M; �).� Boolean combinations of atomic formulas have their standard meaning.Although explicit quanti�cation has not been allowed in formulas, thelanguage is rich enough to express quanti�ed formulas. Let THING be anabbreviation for the class expression (� x (every x x)). Note that in any�rst order model THING denotes the universal set, i.e., the entire domain ofthe model. The formula 8x �(x) can be taken to be an abbreviation for6



(every thing (� x �(x))). Similarly, the formula 9x �(x) can be treatedas an abbreviation for (some thing (� x �(x))). It is fairly easy to showthat any formula in our Montagovian language can be faithfully translatedinto classical �rst order logic, and that any formula of classical �rst orderlogic can be faithfully translated into our Montagovian language.Montague gives an independent semantic value to noun phrases such as(some person) and (every person) where these expressions denote func-tions from sets to truth values. A formula such as (every s w) can thenbe analyzed as ((every s) w), i.e., the function (every s) applied to theargument w. Montague also gives a compositional meaning to class expres-sions of the form (R (every s)) in terms of the independent meaning of theexpression (every s). Although we have no particular objection to Mon-tague's analysis, we have decided to simplify the exposition of our semanticsby avoiding any independent meaning for expressions of the form (every s).3 Literal Satis�abilitySince Montagovian syntax is expressively equivalent to full �rst order logic, itis impossible to construct a procedure which can always determine whethera given formula is satis�able. However, it is possible to de�ne a fragmentof the language for which satis�ability is polynomial time decidable. In con-structing a decision procedure we consider only \quanti�er-free" formulas.A formula of Montagovian syntax is called quanti�er-free if it does not con-tain any �-classes. For example, the formula (every woman (likes (someman))) is considered to be quanti�er free, while the formula (every man (�x (x (likes x)))) involves a �-class and is therefore not considered to bequanti�er-free. The quanti�er-free fragment of the language has no boundvariables and a purely compositional semantics. We view bound variablesand noncompositional semantics as the essence of quanti�cation. This notionof quanti�er-freeness is motivated, at least in part, by an analogy betweenthe quanti�er-free fragment of our Montagovian syntax and the quanti�er-free fragment of classical �rst order logic. The decision procedure for thequanti�er-free Montagovian syntax is similar to the decision procedure forthe quanti�er-free fragment of classical syntax.7



The quanti�er-free fragment of our Montagovian language roughly cor-responds to simple subject-verb-object sentences. For example, (every dog(ate (some bone))) or(every (child-of Sally) (married (some (child-of John)))):Sentences that involve traces or anaphora can usually not be expressed inthe quanti�er-free fragment of our Montagovian language. For example, thesentence \every man likes himself" involves the anaphora \himself". Trans-lating this into a Montagovian formula introduces a quanti�er | (everyman (� x (x (likes x)))). As another example, consider the sentence\Mary read some book John bought". Most linguists would agree that theword \bought" in this sentence has an invisible argument called a trace. Thefollowing translation of this sentence into a Montagovian formula involves aquanti�er.1(Mary (read (some (� x (x book) ^ (John (bought x))))))It is di�cult to precisely characterize the expressive power of the quanti�er-free fragment of Montagovian syntax. The quanti�er-free Montagovian for-mula (every dog (likes (every person))) can not be expressed in eitherthe quanti�er-free fragments of classical or taxonomic taxonomic syntax.2However, because classical and taxonomic syntax allow function symbols andpredicates of more than two arguments, the quanti�er-free fragments of theselanguages can express statements that are not expressible in quanti�er freeMontagovian syntax. If we restrict classical and taxonomic syntax to con-stant symbols and predicates of no more than two arguments, then quanti�er-free Montagovian syntax is strictly more expressive than quanti�er-free clas-sical or taxonomic syntax. It seems likely that the basic results of this sectioncan be extended to handle function symbols and predicates of more than twoarguments, although the proofs of theorems analogous to those given here are1Amore satisfying translation of the second sentence would be an expression of the form(Mary (read (some (book (� x (John (bought x))))))) where the �-class is treatedas an intersectional adjectival phrase. Unfortunately, our simple Montagovian syntax doesnot allow for direct intersection of class expressions.2The formula (every dog (likes (some person))) can be expressed in quanti�er-free taxonomic syntax but not in quanti�er-free classical syntax.8



likely to be much more complex.3 The quanti�er-free fragment of Montago-vian syntax is expressively incomparable with previously studied knowledgerepresentation languages such as those discussed in section 5.Although satis�ability is undecidable for unrestricted �rst order formulas,satis�ability is decidable for quanti�er-free Montagovian syntax. Since thequanti�er free fragment of Montagovian syntax includes arbitrary Booleanformulas, determining satis�ability is NP-hard and we can not expect to �nda polynomial time decision procedure. A more tractable problem is the lit-eral satis�ability problem. This is the problem of determining if a given setof literals4 is satis�able. In classical syntax, and in taxonomic syntax, theliteral satis�ability problems are polynomial time decidable. In Montago-vian syntax the literal satis�ability problem is NP-complete. A proof of theNP-hardness of the literal satis�ability problem for Montagovian syntax isgiven in appendix I. The NP hardness of the Montagovian literal satis�abil-ity problem arises from the fact that, for a given class expression appearingin the input, we may not know whether or not that exspression denotes theempty set. If, for each class expression, we know whether or not that expres-sion denotes the empty set then the literal satis�ability problem becomespolynomial time decidable.To simplify the presentation of the remainder of this paper we use thenotation 9s where s is a class expression as an abbreviation for the formula(some s s). Formulas of the form 9s express the statement that there existelements of the set denoted by s, i.e., s does not denote the empty set.De�nition: We say that a set of formulas � determines existen-tials if, for every class expression s that appears in any formulain �, � contains either the formula 9s or the formula :9s.Montagovian Literal Satis�ability Theorem: The satis�a-bility of a set of quanti�er-free Montagovian literals that deter-mines existentials is polynomial time decidable.3The use of function symbols in taxonomic syntax greatly increases the complexity ofthe completeness theorem for the decision procedure for the quanti�er-free fragment.4As de�ned above for Montagovian syntax, a literal is either an atomic formula or thenegation of an atomic formula where an atomic formula is any formula of the form (everys w) or (some s w). 9



The above theorem implies that one can determine whether an arbitraryset � of quanti�er-free Montagovian literals is satis�able by searching for asuperset of � that determines existentials and is satis�able. If there are nclass expressions in � then there are at most 2n extensions of � that need tobe searched. This also implies that the satis�ability problem for quanti�er-free Montagovian formulas is in the complexity class NP | a quanti�er freeformula � is satis�able if and only if there exists a truth assignment tothe atomic formulas in �, and a truth assignment to existential statementsabout the class expressions in �, such that the truth assignment is satis�ableaccording to the above procedure and satis�es the Boolean part of �.4 The Decision ProcedureWe start by transforming the given set of literals � into an equi-satis�ableset �0 which contains no literals of the form (some s t) where s and t are dis-tinct class expressions. We will call such literals positive intersection literals.This transformation can be achieved by simply replacing any positive inter-section literal (some s t) with the three literals (every w s), (every w t)and 9w where w is a new class symbol. Any model of �0 is also a model of �,and any model of � yields a model of �0. For the remainder of this section weassume that � contains no positive intersection literals. Negative intersectionliterals, i.e. literals of the form :(some s t), may still be present.The literal satis�ability procedure is based on the inference rules given in�gure 1. These rules introduce a new formula, (at-most-one s) where s isa class expression. The formula (at-most-one s) is true just in case the setdenoted by s contains at most one member. Inference rule 15 allows for thederivation of positive intersection formulas | although we can assume that� does not contain positive intersection formulas it is convenient to allowsuch formulas to be inferred. By assuming that � does not contain positiveintersection formulas we can ensure that whenever we can infer (some s t)there exists some expression w such that we can infer 9w, (every w s), and(every w t) We now introduce a restricted inference relation .̀De�nition: We write � ` � if � can be proven from � using10



(1) (every s t)(every (R (some s)) (R (some t)))(2) (every s t)(every (R (every t)) (R (every s)))(3) (every r s); (every s t)(every r t)(4) (every t t)(5) 9c(6) (at-most-one c)(7) 9(R (some s))9s(8) 9r; (every r t)9t(9) (at-most-one t); (every r t)(at-most-one r)

(10) :(every r t)9r(11) 9s(at-most-one t)(every s t)(every t s)(12) 9r(every r s)(every r t)(every (R (every s)) (R (some t)))(13) :9s(every t (R (every s)))(14) (at-most-one t); (every s t)(every (R (some s)) (R (every t)))(15) (every r s)(every r t)9r(some s t)(16) 	:	FFigure 1: The inference rules for quanti�er-free literals. In these rules theletters r, s, and t range over class expressions, c ranges over constant symbols,and R ranges over relation symbols. 11



the rules in �gure 1 such that every class expression appearing inthe proof appears in �.The de�nition of the relation ` ensures that to determine whether � ` �we need only consider formulas all of whose class expressions appear in �.For a given �nite set � there are only �nitely many class expressions thatappear in � | the number of class expressions can grow at most linearlyin the written length of �. The inference rules have the property that theycan only be used to infer formulas of the form (every s w), (some s w), or(at-most-one s) (recall that 9s is actually an abbreviation for (some s s)).If we only consider formulas whose class expressions appear in �, then thereare at most order j�j2 such formulas. This implies that by simply enumerat-ing all derivable formulas one can determine, in polynomial time in the sizeof �, determine whether or not � ` �.Satis�ability Completeness Lemma: If � is a set of quanti�er-free Montagovian literals that determines existentials, then � issatis�able if and only if � 6` F.Given that one can determine in polynomial time whether � ` F, theabove satis�ability completeness lemma immediately implies the Montago-vian literal satis�ability theorem of the preceding section. The proof of theabove completeness lemma is given in appendix II.5 Other Knowledge Representation LanguagesOur Montagovian syntax for �rst order logic is related to a large family ofknowledge representation languages known as concept languages or framedescription languages (FDLs) [6], [20], [22], [8].Each FDL is similar to our Montagovian syntax in that it provides asimple recursive de�nition of a particular set of class expressions built from12



constant, predicate, and relation symbols.5 The class expressions of a par-ticular FDL can be considerably di�erent from the class expressions of ourMontagovian syntax. For example, all FDLs discussed in the knowledge rep-resentation literature include intersection operations on class expressions |given any two class expressions s and w the class expression AND(s; w)denotes the intersection of the sets denoted by s and w. A Montagoviansyntax that includes a class intersection operation is described in [12].All languages in the knowledge representation literature also include classexpressions of the form 8R:C where R is a relation symbol and C is a classexpression. An object x is a member of the class expression 8R:C if, forevery y such that the relation R holds between x and y, the individual y isin the set denoted by C. For example, the class expression 8child-of:humandenotes the set of all individuals x such that every child of x is human. Thestatement that every child of a human is human can be expressed as theformula (every human (8 child-of . human)):Intuitively, this formula states that every human has the property that everychild of that human is human. This same statement can be expressed in ourMontagovian syntax (or in our earlier taxonomic syntax) with the formula(every (child-of (some human)) human):It is important to note that class expressions of the form 8R:C are quitedi�erent from class expressions of the form (R (every C)). For example,8loves:human is the class of individuals that love only humans, while (loves(every human)) is the class of individuals that love all humans (and possiblyother things as well).Class expressions of the form 8R:C are not expressible in our Montago-vian syntax. In particular, there appears to be no way to express the formula(every (8R:C) W) in Montagovian syntax. Conversely, there is no way thatclass expressions of the form 8R:C can be used to express the class expression5Within the knowledge representation literature an FDL is not viewed as an alternativesyntax for full �rst order logic. Rather, the formulas of an FDL are restricted to includeonly subset relations between restricted types of class expressions. These languages areless expressive than full �rst order logic. 13



(R (some C)). In particular, there appears to be no way of translating theformula (every W (R (some C))) into a formula involving class expres-sions of the form 8R:C. There does not appear to be any simple relationshipbetween the expressive power of Montagovian syntax and previously studiedFDLs.6 Montagovian vs. Classical SyntaxWe have presented a polynomial time inference procedure de�ned by a setof inference rules stated in a Montagovian syntax for �rst order logic. Theseinference rules cannot be stated in classical syntax without resorting to higherorder uni�cation. For example, consider inference rule 1.(every s t)(every (R (some s)) (R (some t)))This inference rule might be written in classical syntax as follows.8x P (x)! Q(x)8y (9x P (x)^R(x; y)) ! (9xQ(x) ^R(x; y))Note, however, that to use the rule in classical syntax the predicates Pand Q must be treated as variables that can bind to arbitrary predicates.Theorem provers that instantiate predicate variables have traditionally usedhigher order uni�cation [13]. Consider applying the Montagovian version ofinference rule 1 to the Montagovian formula(every (child-of (some bird)) (friend-of (every bird-watcher))).This formula states that any child of a bird is a friend of any bird watcher.An application of inference rule 1 allows us to conclude14



(every (owner-of (some (child-of (some bird))))(owner-of (some (friend-of (every bird-watcher))))).This formula says that anyone who owns the child of a bird also owns afriend of every bird watcher. In Montagovian syntax inference rule 1 can beapplied using simple (classical) uni�cation to bind the variables s and t of theinference rule to the expressions (child-of (some bird)) and (friend-of(every bird-watcher)) respectively. Now consider the same inference inclassical syntax. The premise can be stated as follows.8x (9y bird(y)^child-of(y x))! (8y bird-watcher(y)! friend-of(y x))To apply the classical syntax version of the inference rule one must bind thepredicate variable P to the �-predicate�x 9y bird(y) ^ child-of(y x)and bind Q to the �-predicate�x 8y bird-watcher(y)! child-of(y x):Given this binding of P and Q in the classical syntax rule, the conclusion ofthe rule must be translated back into classical syntax by �-reducing appli-cations of these �-predicates. Applying inference rule 1 in classical syntaxrequires both higher order uni�cation and �-reduction.The inference procedure described in the previous section has a simpletermination condition. Inference is restricted so that all class expressionsmentioned by derived formulas must already appear in the input set of lit-erals. This restriction implies that only a �nite (polynomial) number of for-mulas can be derived and hence the inference process must terminate. If theinference rules were expressed in classical rather than Montagovian syntaxthe termination condition would be much more di�cult to state. A simi-lar comparison can be made between classical syntax and other knowledgerepresentation languages such as the FDLs discussed earlier.15



7 ConclusionsWe have argued that the e�ectiveness of inference is coupled to the selectionof the syntax in which formulas are expressed. If such a coupling does in-deed exist then one can speak informally of \e�ective syntax" | a syntax ise�ective to the extent that inference processes de�ned in that syntax can bemade e�ective. Classical syntax appears to be particularly ine�ective.If one accepts the proposition that the e�ectiveness of inference is cou-pled to the syntax in which formulas are expressed then it is perhaps nottoo surprising that natural language is a source of e�ective syntax. TheMontagovian syntax presented here is, of course, only distantly related tothe much richer and more complex syntax of actual natural languages. Wehope that natural language syntax will continue to be an inspiration for theconstruction of yet more e�ective formal languages.8 Appendix I: The Montagovian Literal Sat-is�ability ProblemIn this appendix we show that determining the satis�ability of a set of Mon-tagovian literals (that need not determine existentials) is NP-hard. The proofof NP-hardness is by reduction of a special case of monotone 3-SAT. Morespeci�cally, we start with a set of propositional clauses where each clauseeither contains three negative literals or two positive literals. We leave it tothe reader to verify that satis�ability of an arbitrary 3SAT problem can bereduced to satis�ability of this special case. For each proposition symbol Pin our restricted 3SAT problem we introduce a class symbol P 0 where thetruth of P will correspond to the existence of elements of the set denoted byP 0. We reduce the set of clauses to a set of Montagovian literals as follows:For each clause of the form P _Q we add the literal(every (R (every P 0)) (G (some Q0)))where R and G are new relation symbols. Any model of this literal must16



satisfy either 9P 0 or 9Q0 | if both P 0 and Q0 are assigned the empty set then(R (every P 0)) denotes the universal set, which must be non-empty, while(G (some Q0)) denotes the empty set. Conversely, for any interpretation ofthe class symbols P 0 and Q0 as sets, if at least one of the two sets is non-empty then one can ensure that the above literal is satis�ed by making R theempty relation and G the universal relation.Now for any class symbols s, t and w we de�ne [9s! (every t w)] to bethe two literals (every t (H (every s))) and (every (H (some s)) w),where H is a new relation symbol speci�c to this constraint. Any model ofthese literals must satisfy the constraint that if s denotes a non-empty setthen the set denoted by t must be a subset of the set denoted by w. Con-versely, for any assignment of sets to the class symbols s, t, and w satisfyingthe desired constraint, there exists an interpretation of H satisfying the aboveliterals | if s is assigned the empty set then the above literals are satis�edby any interpretation of H; if s is non-empty then t must denote a subset ofthe set denoted by w and the above literals are satis�ed by interpreting H asthe relation that maps every domain element to the set denoted by w.Finally, for any clause of the form :P _:Q_:U we add the literals thatconstitute the constraints [9P 0 ! (every s w1)][9Q0 ! (every w1 w2)][9U 0 ! (every w2 t)]:(every s t)where s, t, w1, and w2 are new class symbols speci�c to this clause. Anymodel of the above formulas must assign one of the class symbols P 0, Q0, orR0 the empty set. Conversely, for any interpretation of P 0, Q0, and R0 as setsat least one of which is empty, there exist interpretations of s, t, w1 and w2as sets that satisfy the above constraints.We leave it to the reader to verify that the set of literals generated by thisreduction is satis�able if and only if the original restricted 3SAT problem issatis�able. 17



9 Appendix II: Proof of the CompletenessLemmaThis appendix contains a proof of the completeness lemma, i.e., that if � is aset of Montagovian literals that determines existentials then � is satis�ableif and only if � 6` F. This implies that if � determines existentials then thesatis�ability of � can be determined in polynomial time. This second state-ment implies that the satis�ability of quanti�er-free Montagovian formulasis in the complexity class NP, and hence is NP-complete.Suppose that � is a set of quanti�er-free Montagovian literals that de-termines existentials and contains no positive intersection literals. We mustshow that � is satis�able if and only if � 6` F. If � ` F then the sound-ness of the individual inference rules guarantees that � is unsatis�able. If� 6` F we must show that there exists a model of �. To simplify the presen-tation we introduce the notation � ` s = w to indicate that we have both� ` (every s w) and � ` (every w s).Assume that � 6` F. We will construct a formal model of � where theelements of the domain are constructed from the class expressions that ap-pear in �. Given that � is quanti�er-free we can replace any variable in � bya constant symbol without a�ecting satis�ability. We can therefore assumewithout loss of generality that no there are no variables in �. The de�nitionof the semantic domain of the model involves two complications. First, wemust construct equivalence classes of class expressions. If � ` s = t, and� ` (at-most-one s), then s and t must denote the same singleton set. Inthis case the single object in the set denoted by s is (essentially) the equiva-lence class of all class expressions that are provably equal to s. The secondcomplication involves the need for both \minimal" and \maximal" elementsof the set denoted by a class expresison. If � 6` (every (R (some s)) t)then we will guarantee that the set denoted by s contains a maximal ele-ment d such that R(d) is a \large" set, and in particular, that R(d) includessomething not in the set denoted by t. Let jsj be the equivalence class of theclass expression s. We use the notation "some-jsj" to denoted the pair of thesymbol \some" and the class jsj. The pair "some-jsj"will be the desired max-imal element of the class denoted by s. If � 6` (every t (R (every s)))18



then we will guarantee that s contains some minimal element d such thatR(d) denotes a small set, and in particular, that the set denoted by t con-tains something not in R(d). By analogy with maximal elements, we use thenotation "every-jsj" to denote the formal object that will be the minimalelement of the set denoted by s.We say that a class expression s is a domain expression if it appears in �and � ` 9s. If s is a domain expression then we use the notation jsj to denotethe set of all domain expressions t such that � ` s = t. Inference rules 3 and4 guarantee that the sets of the form jsj form a partition of the domain ex-pressions into equivalence classes. The semantic domain D of our model willconsist of minimal elements "every-jsj" and maximal elements "some-jsj"where � ` 9s, i.e., s is a domain expression. If � ` (at-most-one s) thenonly the minimal element "every-jsj" will be included in the domain. In-ference rule 9 guarantees that if � ` (at-most-one s) and � ` s = t then� ` (at-most-one t). This implies that the choice of whether or not to in-clude the domain element "some-jsj" in the semantic domain is independentof the choice of the representative s of the class jsj.Given this semantic domain D, we must de�ne an interpretation for theclass symbols and relation symbols in � such that each literal of � is satis�ed.The model we construct will satisfy a certain denotation invariant | the setdenoted by a class expression s that appears in � will consist of all domainelements "some-jtj" and "every-jtj" such that � ` (every t s). We de�nethe interpretation of constant symbols, class symbols, and relation symbolsusing this desired denotation invariant as a guide. We use the notation"Q-jsj" to mean either the object "some-jsj" or the object "every-jsj".The denotation of a class symbol P is de�ned to be the set of all domainmembers of the form "Q-jsj" such that � ` (every s P). This de�nitionimmediately guarantees the denotation invariant for class symbols.We de�ne the denotation of a constant symbol c that appears in � to bethe domain member "every-jcj". Inference rules 5, 6, 9 and 11 guaranteethat the denotation invariant holds for constant symbols. We interpret eachconstant symbol that does not appear in � as an arbitrary element of thesemantic domain.We will now de�ne the interpretation of relation symbols. To de�ne the19



function denoted by a relation symbol R we need to de�ne the set R("Q-jsj")for any domain element "Q-jsj". Intuitively, the set R("Q-jsj"), where Qis either some or every, should be the set of domain members "Q0-jtj" suchthat � ` (every t (R (Q s))). This intuitive de�nition fails because theclass expression (R (Q s)) need not appear in �. To remedy this situationwe de�ne a new relation �̀.� We write � �̀ (every t (R (some s))) if any one of the followingconditions hold:{ For some (R (some w)) appearing in �, � ` (every w s) and� ` (every t (R (some w))):{ For some (R (every w)) appearing in �, � ` (some s w) and� ` (every t (R (every w))):� We write � �̀ (every t (R (every s))) if any one of the followingconditions hold:{ For some (R (every w)) appearing in �, � ` (every s w) and� ` (every t (R (every w))):{ For some (R (some w)) appearing in �, � ` (at-most-one w),� ` w = s and � ` (every t (R (some w))):If � ` (every t (R (Q s))) then � �̀ (every t (R (Q s))). Con-versely, if (R (Q s)) appears in �, and � �̀ (every t (R (Q s))) then� ` (every t (R (Q s))). The di�erence between the two relations is re-stricted to expressions of the form (R (Q s)) that do not appear in �. Thereader can also check that if � ` 9s and � �̀ (every t (R (every s)))then � �̀ (every t (R (some s))).We now de�ne the set R("Q-jsj") to be the set of all domain elements"some-jtj" and "every-jtj" such that � �̀ (every t (R (Q s))). We mustcheck that this de�nition is well formed, i.e., that the de�nition is inde-pendent of the choice of s and t used as the representatives of the equiv-alence classes jsj and jtj. Fortunately, the transitivity of the subset rela-tion guarantees that if t0 is equivalent to t and s0 is equivalent to s then� �̀ (every t0 (R (Q s0))) if and only if � �̀ (every t (R (Q s))).20



This completes the de�nition of a �rst order structure | we have de�neda semantic domain and assigned an appropriate meaning to all constantsymbols, class symbols, and relation symbols. We will now prove that everyclass expression that appears in � satis�es the desired denotation invariant.Denotation Invariant: For any class expression s that ap-pears in �, the denotation of s equals the set of domain elements"Q-jtj" such that � ` (every t s).We prove this invariant by induction on the structure of class expres-sions. Every class expression appearing in � is either a class symbol, aconstant symbol, or an expression of the form (R (Q s)) for some relationsymbol R, speci�er Q, and class expression s. We have already argued thatthe denotation invariant holds for class symbols and constant symbols. Nowwe assume that s satis�es the denotation invariant and consider an expres-sion in � of the form (R (Q s)). It now su�ces to show that (R (Q s))satis�es the denotation invariant, i.e., the set denoted by (R (Q s)) is theset of domain elements "Q0-jtj" such that � ` (every t (R (Q s))). Weconsider four cases corresponding to whether Q is \some" or \every" and towhich direction of the inclusion we are trying to show.First we consider expressions of the form (R (some s)). Let "Q-jtj"be an element of the set denoted by (R (some s)). We must show that� ` (every t (R (some s))). Since "Q-jtj" is in the set denoted by(R (some s)) there must be some element "Q0-js0j" in the set denoted bys such that the set R("Q0-js0j") contains "Q-jtj". By the induction hy-pothesis we must have � ` (every s0 s). By the de�nition of the mean-ing of R, we must have � �̀ (every t (R (Q0 s0))). Since s0 is a do-main expression we must have � ` 9s0. As noted above, the de�nitionof �̀ implies that if � ` 9s0 and � �̀ (every t (R (every s0))) then� �̀ (every t (R (some s0))). So � �̀ (every t (R (some s0))) (it ispossible that � �̀ (every t (R (some s0))) even if "some-js0j" is not adomain member.) By the de�nition of of �̀ there must exist some expres-sion (R (Q00 w)) that appears in � such that � ` (every t (R (Q00 w)))and such that (R (Q00 w)) satis�es one of the two ways of establishing� �̀ (every t (R (some s0))). Let (R (Q00 w)) be an expression that21



satis�es one of these two cases. We leave it to the reader to verify that in eachcase the expression (R (Q00 w)) ensures that � �̀ (every t (R (some s)))and thus that � ` (every t (R (some s))).Now suppose that � ` (every t (R (some s))). We must show thatdomain elements of the form "Q-jtj" are members of the set denoted by(R (some s)). Since t is a domain expression we have � ` 9t. Inferencerules 7 and 8 now guarantee that � ` 9s. Now suppose that � ` (at-most-one s).In that case the de�nition of �̀ ensures that � �̀ (every t (R (every s))).Since s satis�es the denotation invariant, and � ` 9s, the element "every-jsj"must be in the set denoted by s. Finally, since � �̀ (every t (R (every s))),we have that the set R("every-jsj") contains "Q-jtj" and thus "Q-jtj" is inthe set denoted by (R (some s)). Now suppose that � 6` (at-most-one s).In this case the fact that � ` 9s and the denotation invariant for s guaranteethat the set denoted by s includes the element "some-jsj". But the fact that� ` (every t (R (some s))) immediately implies that "Q-jtj" is in theset R("some-jsj") and thus "Q-jtj" is in the set denoted by (R (some s)).Now we consider expressions of the form (R (every s)). Let "Q-jtj"be an element of the the set denoted by (R (every s)). We must showthat � ` (every t (R (every s))). Suppose that � 6` 9s. Since � de-termines existentials, we must have � ` :9s. In this case inference rule13 guarantees that � ` (every t (R (every s))). Now suppose � ` 9s.In this case the denotation invariant, and inference rule 4, guarantees thatthe set denoted by s contains the element "every-jsj". Since "Q-jtj" is inthe set denoted by (R (every s)), we must have that "Q-jtj" is in the setR("every-jsj"). But, by the de�nition of the denotation of R, this impliesthat � �̀ (every t (R (every s))). Since (R (every s)) appears in �,we have � ` (every t (R (every s))).Finally, suppose � ` (every t (R (every s))). We must show thatdomain elements of the form "Q-jtj" are members of the set denoted by(R (every s)). Let "Q0-js0j" be an arbitrary member of the set denoted bys. We must show that "Q-jtj" is a member of the set R("Q0-js0j"). Since"Q0-js0j" is a domain member, we must have � ` 9s0. The denotationinvariant for s implies that � ` (every s0 s). These two facts, plus in-ference rules 15 and 4, imply that � ` (some s0 s). The de�nition of �̀22



now guarantees that � �̀ (every t (R (Q0 s0))) and thus "Q-jtj" is inthe set R("Q0-js0j") as desired. This completes the proof of the denotationinvariant.We now conclude our proof of the completeness lemma by showing thatthe model de�ned above satis�es every literal ' in �. ' must be of the form(every s t), :(every s t), 9s, or :(some s t) (formulas of the form :9sare a special case of negative intersection formulas and we have assumed that� does not contain any positive intersection formulas other than formulas ofthe form 9s). First, consider a literal in � of the form (every s t). Thedenotation invariant (and the transitivity inference rule) implies that the setdenoted by s must be a subset of the set denoted by t. Now consider aformula in � of the form :(every s t). Inference rule 12 guarantees that� ` 9s. Thus the semantic domain includes the object "every-jsj". Butsince � 6` F, we must have � 6` (every s t). Thus by the denotationinvariant, "every-jsj"must be a member of the set denoted by s that is nota member of the set denoted by t, and thus the formula (every s t) mustbe false in the de�ned model. Now consider a formula in � of the form 9s.The denotation invariant, and de�nition of the semantic domain immediatelyimply that the set denoted by s includes the object "every-jsj" and thusthe formula 9s is true in the de�ned model. Finally, consider a formula in� of the form :(some s t). Suppose this formula were false in the de�nedmodel, i.e., there exists a domain element that is in both the set denotedby s and the set denoted by t. Let "Q-jwj" be a domain element that is inboth s and t. The de�nition of the semantic domain implies that � ` 9w.The denotation invariant for s and t implies that � ` (every w s) and� ` (every w t). But the de�nition of the relation ` implies that in thiscase we have � ` (some s t) and hence � ` F which we have assumed isnot so. This concludes the proof of the completeness lemma.ACKNOWLEDGEMENTThis research was supported in part by National Science Foundation GrantIRI-8819624 and in part by the Advanced Research Projects Agency of theDepartment of Defense under O�ce of Naval Research contract N00014-85-K-0124 and N00014-89-j-3202. 23
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