Natural Language Syntax

and
First Order Inference

David McAllester and Robert Givan
MIT Artificial Intelligence Laboratory
545 Technology Square
Cambridge Mass. 02139
dam@ai.mit.edu
rlg@ai.mit.edu

Abstract: We have argued elsewhere that first order inference can be made more
efficient by using non-standard syntax for first order logic. In this paper we define
a syntax for first order logic based on the structure of natural language under
Montague semantics. We show that, for a certain fairly expressive fragment of this
language, satisfiability is polynomial time decidable. The polynomial time decision
procedure can be used as a subroutine in general purpose inference systems and
seems to be more powerful than analogous procedures based on either classical or
taxonomic syntax.

This paper appeared in Artificial Intelligence vol. 56, 1992. A postscript electronic source
for this paper can be found in ftp.ai.mit.edu:/pub/dam/aijl.ps. A bibtex reference can be
found in internet file ftp.ai.mit.edu:/pub/dam/dam.bib.

1 Introduction

This paper presents a new polynomial time procedure for automated in-
ference. Although no polynomial time procedure can be complete for first
order logic, polynomial time inference procedures can often be used as pow-
erful subroutines in general purpose reasoning systems [7], [21], [17]. The
procedure presented here is a significant strengthening of the procedure pre-
sented in [16], which is in turn a significant strengthening of the well known
procedure for congruence closure [14], [9].

Both the procedure presented here and the one presented in [16] are de-
fined by inference rules written in a nonstandard syntax for first order logic.
Nonstandard syntax is essential to both the specification and to the im-
plementation of these procedures. The procedure given in [16] uses a syntax
based on taxonomic relations between expressions that denote sets. This pro-
cedure can be viewed as an extension of earlier work on knowledge represen-
tation languages, e.g., [3], [L1], [4], [5]. Knowledge representation languages
have traditionally been organized around taxonomic relationships between
classes. Al researchers often express the intuition that such taxonomic rep-
resentations facilitate inference. The technical results in [16] support this
intuition. The relationship between the work described here and previous
work on knowledge representation languages is discussed in more detail in
section 5.

The inference procedure presented here is based on a new nonstandard
syntax for first order logic which we call a Montagovian syntax. This syntax
is based on aspects of natural language syntax under compositional seman-
tics [1], [15], [18], [19], [10], [2]. In particular, our Montagovian syntax is
centered around class expressions, i.e., expressions that denote sets. In the
earlier taxonomic syntax we allowed for class symbols, such as the symbol
a-person, and class expressions such as (brother-of a-person). The ex-
pression (brother-of a-person) denotes the set of all individuals that are
the brother of some person. In general, any monadic predicate symbol of
classical syntax can be used as a class expression, and for any binary relation
R, and class expression s, one can construct the class expression (R s) which
denotes the set of individuals which are related under R to an element of

s. In the new Montagovian syntax we write the class expression (R s) as
(R (some s)) and we allow the construction of the (different) class expres-
sion (R (every s)). For example, if loves is a binary relation symbol, and
person is a class symbol, then we have the class expressions (loves (some
person)) and (loves (every person)). The former class expression de-
notes the set of all individuals that love some person while the latter class
expression denotes the set of all individuals that love all people. This expan-
sion of the vocabulary of class expressions results in an inference procedure
that is, in most respects, more powerful than the one based on taxonomic
syntax given in [16]. A precise specification of the syntax and semantics of
our Montagovian version of first order logic is presented below.

This paper is intended to provide technical support for the following two
somewhat informal claims.

1. The efficiency of inference is sensitive to the syntax used to express
statements.

2. Natural language is a source of inferentially powerful syntax.

This paper makes no contribution to the traditional study of the syn-
tax or semantics of natural language. We do not provide any new theory
for predicting which strings of words are grammatical natural language sen-
tences (the traditional study of syntax). Nor do we provide any new theory
for assigning meaning to natural language utterances (the traditional study
of semantics). There is a large literature on these topics with theories far
more sophisticated than the ones used here. This paper addresses a different
topic, the relationship between natural language syntax and efficient infer-
ence techniques. In studying the relation between syntax and inference we
have focused on only the most fundamental properties of natural language.

2 A Montagovian Syntax for First Order Logic

Our Montagovian syntax is a syntactic variant of first order predicate calculus
— every Montagovian formula can be translated to a classical formula, and

every classical formula can be translated to a Montagovian formula. However,
the quantifier-free fragment of Montagovian syntax is more expressive than
the quantifier-free fragment of either classical syntax or our earlier taxonomic
syntax. In spite of increased expressive power, the quantifier-free fragment
of Montagovian syntax retains most of the nice computational properties of
the quantifier-free fragment of classical syntax.

Classical syntax involves terms and formulas. In both taxonomic and
Montagovian syntax terms are replaced by class expressions where each class
expression denotes a set. The syntax of our Montagovian language is defined
as follows.

o A class expression is one of the following.

— A variable or constant symbol.
— A monadic predicate symbol.

— An expression of the form (R (some s)) or (R (every s)) where
R is a binary relation symbol and s is a class expression.

— An expression of the form (A @ ®(x)) where x is a variable and
¢ (x) is a formula.

o A formula is one of the following.

— An expression of the form (every s w) or (some s w) where s
and w are class expressions. Expressions of this type are called
atomic formulas.

— A Boolean combination of formulas. Atomic formulas and nega-
tions of atomic formulas are called literals.

Before giving a formal semantics, it is useful to consider some examples
of formulas and their associated meanings. If P and Q are class symbols then
(every P Q) is a formula which is true if the set denoted by P is a subset
of the set denoted by Q. If man is a class symbol that denotes the set of all

men, and runs is a class symbol that denotes the set of all things that run,
then the formula (every man runs) is true if every man runs. The formula
(some man runs) is true if some man runs.

Constant symbols and variables are taken to denote singleton sets. If John
is a constant symbol (or variable) then the formulas (every John runs) and
(some John runs) are semantically equivalent and we can use (John runs)
as an abbreviation for either formula. Similarly, we write (1ikes John) as
an abbreviation for either of the class expressions (1ikes (every John)) or
(likes (some John)).

If owns is a relation symbol, and denotes the predicate which is true of two
objects if the first owns the second, then the class expression (owns (some
car)) denotes the set of individuals that own some car. If policeman is a
class symbol that denotes the set of all policemen, then the formula (every
policeman (owns (some car))) is true if every policeman owns a car.

Unlike Montague, we make no distinction between nouns and verbs. As a
result, there are formulas of our Montagovian syntax that do not correspond
to grammatical sentences. For example, consider the formulas (every dog
mammal) and (every (loves John) (loves Mary)).

The formal semantics for our Montagovian syntax is a (drastic) simpli-
fication of Montague’s original semantics for English. Just as in classical
syntax, a model of our Montagovian language is a first order model, i.e., a
domain D together with an interpretation of constant, class, and relation
symbols. Any binary relation R can be transformed to a function R’ from
elements to sets such that y is an element of R'(z) if only if the pair (y, x)
is in the relation R. We adopt a superficial modification of the definition of
a first order structure so that a binary relation symbol denotes a function
from elements to sets rather than a relation. Under our definition, a first
order model interprets each constant symbol as an element of its domain,
each class symbol as a subset of its domain, and each relation symbol as a
function from domain elements to subsets of the domain. If the interpreta-
tion of a relation symbol R is clear from context, we will often write R(d) to
denote the set that is the result of applying (the value of) R to the domain
element d.

It M is a first order model, and p is a variable interpretation over M,
i.e., a mapping from variables to elements of the domain of M, then we write
V(e, M, p) for the semantic value of the expression e in the model M under
variable interpretation p. If s is a class expression then V(s, M, p) is a subset
of the domain of M. If ® is a formula, then V(®, M, p) is a truth value,
either T or F. The semantic evaluation function V is defined by structural
induction on expressions as follows.

e If P is a class symbol then V(P, M, p) is the set M(P).
e If cis a constant then V(¢, M, p) is the singleton set {M(c)}.
e If z is a variable then V(x, M, p) is the singleton set {p(x)}.

e V((R (every s)),M,p) is the set of all d such that, for every d' in
V(s, M, p), d is an element of R(d'). (Consider the class expression
(loves (every child)).)

e V((R (some s)), M, p) is the set of all d such that there exists an
element d' in V(s, M, p) such that d is in the set R(d'). (Consider the

class expression (loves (some child)).)

o V(A x ®(x)), M, p)is the set of all d such that V(®(x), M, p[x :=
d]) is T where p[a := d] is the same as p except that it interprets x as

d.
o V((every s 1), M, p)is T if V(s, M, p) is a subset of V(¢, M, p).

e V((some s t), M, p)is Tif V(s, M, p) has a non-empty intersection
with V(t, M, p).

e Boolean combinations of atomic formulas have their standard meaning.

Although explicit quantification has not been allowed in formulas, the
language is rich enough to express quantified formulas. Let THING be an
abbreviation for the class expression (A = (every x x)). Note that in any
first order model THING denotes the universal set, i.e., the entire domain of
the model. The formula Y& ®(x) can be taken to be an abbreviation for

(every thing (A a ®(x))). Similarly, the formula 3o ®(x) can be treated
as an abbreviation for (some thing (A x ®(x))). It is fairly easy to show
that any formula in our Montagovian language can be faithfully translated
into classical first order logic, and that any formula of classical first order
logic can be faithfully translated into our Montagovian language.

Montague gives an independent semantic value to noun phrases such as
(some person) and (every person) where these expressions denote func-
tions from sets to truth values. A formula such as (every s w) can then
be analyzed as ((every s) w), i.e., the function (every s) applied to the
argument w. Montague also gives a compositional meaning to class expres-
sions of the form (R (every s)) in terms of the independent meaning of the
expression (every s). Although we have no particular objection to Mon-
tague’s analysis, we have decided to simplify the exposition of our semantics
by avoiding any independent meaning for expressions of the form (every s).

3 Literal Satisfiability

Since Montagovian syntax is expressively equivalent to full first order logic, it
is impossible to construct a procedure which can always determine whether
a given formula is satisfiable. However, it is possible to define a fragment
of the language for which satisfiability is polynomial time decidable. In con-
structing a decision procedure we consider only “quantifier-free” formulas.
A formula of Montagovian syntax is called quantifier-free if it does not con-
tain any A-classes. For example, the formula (every woman (likes (some
man))) is considered to be quantifier free, while the formula (every man ()
xz (x (likes z)))) involves a A-class and is therefore not considered to be
quantifier-free. The quantifier-free fragment of the language has no bound
variables and a purely compositional semantics. We view bound variables
and noncompositional semantics as the essence of quantification. This notion
of quantifier-freeness is motivated, at least in part, by an analogy between
the quantifier-free fragment of our Montagovian syntax and the quantifier-
free fragment of classical first order logic. The decision procedure for the
quantifier-free Montagovian syntax is similar to the decision procedure for
the quantifier-free fragment of classical syntax.

The quantifier-free fragment of our Montagovian language roughly cor-
responds to simple subject-verb-object sentences. For example, (every dog
(ate (some bone))) or

(every (child-of Sally) (married (some (child-of John)))).

Sentences that involve traces or anaphora can usually not be expressed in
the quantifier-free fragment of our Montagovian language. For example, the
sentence “every man likes himself” involves the anaphora “himseltf”. Trans-
lating this into a Montagovian formula introduces a quantifier — (every
man (A z (x (likes x)))). As another example, consider the sentence
“Mary read some book John bought”. Most linguists would agree that the
word “bought” in this sentence has an invisible argument called a trace. The
following translation of this sentence into a Montagovian formula involves a
quantifier.!

(Mary (read (some (A = (x book) A (John (bought x))))))

It is difficult to precisely characterize the expressive power of the quantifier-
free fragment of Montagovian syntax. The quantifier-free Montagovian for-
mula (every dog (likes (every person))) can not be expressed in either
the quantifier-free fragments of classical or taxonomic taxonomic syntax.?
However, because classical and taxonomic syntax allow function symbols and
predicates of more than two arguments, the quantifier-free fragments of these
languages can express statements that are not expressible in quantifier free
Montagovian syntax. If we restrict classical and taxonomic syntax to con-
stant symbols and predicates of no more than two arguments, then quantifier-
free Montagovian syntax is strictly more expressive than quantifier-free clas-
sical or taxonomic syntax. It seems likely that the basic results of this section
can be extended to handle function symbols and predicates of more than two
arguments, although the proofs of theorems analogous to those given here are

! A more satisfying translation of the second sentence would be an expression of the form
(Mary (read (some (book (A z (John (bought x))))))) where the A-class is treated
as an intersectional adjectival phrase. Unfortunately, our simple Montagovian syntax does
not allow for direct intersection of class expressions.

2The formula (every dog (likes (some person))) can be expressed in quantifier-
free taxonomic syntax but not in quantifier-free classical syntax.

likely to be much more complex.? The quantifier-free fragment of Montago-
vian syntax is expressively incomparable with previously studied knowledge
representation languages such as those discussed in section 5.

Although satisfiability is undecidable for unrestricted first order formulas,
satisfiability is decidable for quantifier-free Montagovian syntax. Since the
quantifier free fragment of Montagovian syntax includes arbitrary Boolean
formulas, determining satisfiability is NP-hard and we can not expect to find
a polynomial time decision procedure. A more tractable problem is the [it-
eral satisfiability problem. This is the problem of determining if a given set
of literals? is satisfiable. In classical syntax, and in taxonomic syntax, the
literal satisfiability problems are polynomial time decidable. In Montago-
vian syntax the literal satisfiability problem is NP-complete. A proof of the
NP-hardness of the literal satisfiability problem for Montagovian syntax is
given in appendix I. The NP hardness of the Montagovian literal satisfiabil-
ity problem arises from the fact that, for a given class expression appearing
in the input, we may not know whether or not that exspression denotes the
empty set. If, for each class expression, we know whether or not that expres-
sion denotes the empty set then the literal satisfiability problem becomes
polynomial time decidable.

To simplify the presentation of the remainder of this paper we use the
notation ds where s is a class expression as an abbreviation for the formula
(some s s). Formulas of the form ds express the statement that there exist
elements of the set denoted by s, i.e., s does not denote the empty set.

Definition: We say that a set of formulas X determines existen-
tials if, for every class expression s that appears in any formula
in Y, ¥ contains either the formula ds or the formula —ds.

Montagovian Literal Satisfiability Theorem: The satisfia-
bility of a set of quantifier-free Montagovian literals that deter-
mines existentials is polynomial time decidable.

3The use of function symbols in taxonomic syntax greatly increases the complexity of
the completeness theorem for the decision procedure for the quantifier-free fragment.

*As defined above for Montagovian syntax, a literal is either an atomic formula or the
negation of an atomic formula where an atomic formula is any formula of the form (every
s w) or (some s w).

The above theorem implies that one can determine whether an arbitrary
set 2 of quantifier-free Montagovian literals is satisfiable by searching for a
superset of ¥ that determines existentials and is satisfiable. If there are n
class expressions in X then there are at most 2" extensions of ¥ that need to
be searched. This also implies that the satisfiability problem for quantifier-
free Montagovian formulas is in the complexity class NP — a quantifier free
formula @ is satisfiable if and only if there exists a truth assignment to
the atomic formulas in ®, and a truth assignment to existential statements
about the class expressions in ®, such that the truth assignment is satisfiable
according to the above procedure and satisfies the Boolean part of ®.

4 The Decision Procedure

We start by transforming the given set of literals ¥ into an equi-satisfiable
set, ' which contains no literals of the form (some s t) where s and t are dis-
tinct class expressions. We will call such literals positive intersection literals.
This transformation can be achieved by simply replacing any positive inter-
section literal (some s t) with the three literals (every w s), (every w)
and Jw where w is a new class symbol. Any model of ¥’ is also a model of ¥,
and any model of ¥ yields a model of ¥'. For the remainder of this section we
assume that X contains no positive intersection literals. Negative intersection
literals, i.e. literals of the form —(some s ?), may still be present.

The literal satisfiability procedure is based on the inference rules given in
figure 1. These rules introduce a new formula, (at-most-one s) where s is
a class expression. The formula (at-most-one s) is true just in case the set
denoted by s contains at most one member. Inference rule 15 allows for the
derivation of positive intersection formulas — although we can assume that
Y does not contain positive intersection formulas it is convenient to allow
such formulas to be inferred. By assuming that ¥ does not contain positive
intersection formulas we can ensure that whenever we can infer (some s t)
there exists some expression w such that we can infer Jw, (every w s), and
(every w t) We now introduce a restricted inference relation H.

Definition: We write ¥ H & if & can be proven from ¥ using

10

(1) (every s t)

(every (R (some s)) (R (some)))

(2) (every s t)

(every (R (every t)) (R (every s)))

(3) (every r s), (every s t)

(every r t)
(4) (every t t)
(5) Je
(6) (at-most-one c¢)

(7) (R (some s5))

ds

(8) r, (every r 1)

Jt

(9) (at-most-one t), (every r t)

(at-most-one r)

(16)

—(every r t)

dr

ds
(at-most-one t)
(every s t)

(every t s)

Ir
(every r s)
(every r t)

(every (R (every s)) (R (some %)))

—3ds

(every ¢t (R (every s)))

(at-most-one), (every s t)

(every (R (some s)) (R (every t)))

(every r s)
(every r t)

dr

(some s t)

v
-

F

Figure 1: The inference rules for quantifier-free literals. In these rules the

letters r, s, and ¢ range over class expressions, ¢ ranges over constant symbols,

and R ranges over relation symbols.

11

the rules in figure 1 such that every class expression appearing in
the proof appears in X.

The definition of the relation H ensures that to determine whether ¥ H &
we need only consider formulas all of whose class expressions appear in .
For a given finite set Y there are only finitely many class expressions that
appear in Y — the number of class expressions can grow at most linearly
in the written length of 3. The inference rules have the property that they
can only be used to infer formulas of the form (every s w), (some s w), or
(at-most-one s) (recall that s is actually an abbreviation for (some s s)).
If we only consider formulas whose class expressions appear in X, then there
are at most order |X|? such formulas. This implies that by simply enumerat-
ing all derivable formulas one can determine, in polynomial time in the size
of ¥, determine whether or not ¥ H &.

Satisfiability Completeness Lemma: If ¥ is a set of quantifier-
free Montagovian literals that determines existentials, then ¥ is

satisfiable if and only if ¥ K F.

Given that one can determine in polynomial time whether ¥ H F, the
above satisfiability completeness lemma immediately implies the Montago-
vian literal satisfiability theorem of the preceding section. The proot of the
above completeness lemma is given in appendix II.

5 Other Knowledge Representation Languages

Our Montagovian syntax for first order logic is related to a large family of
knowledge representation languages known as concept languages or frame

description languages (FDLs) [6], [20], [22], [8].

Each FDL is similar to our Montagovian syntax in that it provides a
simple recursive definition of a particular set of class expressions built from

12

constant, predicate, and relation symbols.> The class expressions of a par-
ticular FDL can be considerably different from the class expressions of our
Montagovian syntax. For example, all FDLs discussed in the knowledge rep-
resentation literature include intersection operations on class expressions —
given any two class expressions s and w the class expression AND(s, w)
denotes the intersection of the sets denoted by s and w. A Montagovian
syntax that includes a class intersection operation is described in [12].

All languages in the knowledge representation literature also include class
expressions of the form VR.C' where R is a relation symbol and C' is a class
expression. An object x is a member of the class expression VR.C' if, for
every y such that the relation R holds between x and y, the individual y is
in the set denoted by C'. For example, the class expression Vchild-of.human
denotes the set of all individuals & such that every child of & is human. The
statement that every child of a human is human can be expressed as the
formula

(every human (V child-of . human)).

Intuitively, this formula states that every human has the property that every
child of that human is human. This same statement can be expressed in our
Montagovian syntax (or in our earlier taxonomic syntax) with the formula

(every (child-of (some human)) human).

It is important to note that class expressions of the form VR.C' are quite
different from class expressions of the form (R (every (')). For example,
V1oves.human is the class of individuals that love only humans, while (loves
(every human)) is the class of individuals that love all humans (and possibly
other things as well).

Class expressions of the form VR.C' are not expressible in our Montago-
vian syntax. In particular, there appears to be no way to express the formula
(every (VR.C') W) in Montagovian syntax. Conversely, there is no way that
class expressions of the form VR.C can be used to express the class expression

®Within the knowledge representation literature an FDL is not viewed as an alternative
syntax for full first order logic. Rather, the formulas of an FDL are restricted to include
only subset relations between restricted types of class expressions. These languages are
less expressive than full first order logic.

13

(R (some (')). In particular, there appears to be no way of translating the
formula (every W (R (some ('))) into a formula involving class expres-
sions of the form VR.C. There does not appear to be any simple relationship
between the expressive power of Montagovian syntax and previously studied

FDLs.

6 Montagovian vs. Classical Syntax

We have presented a polynomial time inference procedure defined by a set
of inference rules stated in a Montagovian syntax for first order logic. These
inference rules cannot be stated in classical syntax without resorting to higher
order unification. For example, consider inference rule 1.

(every s t)

(every (R (some s)) (R (some)))

This inference rule might be written in classical syntax as follows.

Ve P(x) — Q(x)

Yy 3z P(2) A R(z, y)) — (FzQ(x) A R(z, y))

Note, however, that to use the rule in classical syntax the predicates P
and () must be treated as variables that can bind to arbitrary predicates.
Theorem provers that instantiate predicate variables have traditionally used
higher order unification [13]. Consider applying the Montagovian version of
inference rule 1 to the Montagovian formula

(every (child-of (some bird)) (friend-of (every bird-watcher))).

This formula states that any child of a bird is a friend of any bird watcher.
An application of inference rule 1 allows us to conclude

14

(every (owner-of (some (child-of (some bird))))
(owner-of (some (friend-of (every bird-watcher))))).

This formula says that anyone who owns the child of a bird also owns a
friend of every bird watcher. In Montagovian syntax inference rule 1 can be
applied using simple (classical) unification to bind the variables s and t of the
inference rule to the expressions (child-of (some bird)) and (friend-of
(every bird-watcher)) respectively. Now consider the same inference in
classical syntax. The premise can be stated as follows.

Vo (Jy bird(y)Achild-of(y =)) — (Vy bird-watcher(y) — friend-of(y z))

To apply the classical syntax version of the inference rule one must bind the
predicate variable P to the A-predicate

Az Jy bird(y) A child-of(y)
and bind @) to the A-predicate
Az Vy bird-watcher(y) — child-of(y).

Given this binding of P and () in the classical syntax rule, the conclusion of
the rule must be translated back into classical syntax by f-reducing appli-
cations of these A-predicates. Applying inference rule 1 in classical syntax
requires both higher order unification and -reduction.

The inference procedure described in the previous section has a simple
termination condition. Inference is restricted so that all class expressions
mentioned by derived formulas must already appear in the input set of lit-
erals. This restriction implies that only a finite (polynomial) number of for-
mulas can be derived and hence the inference process must terminate. If the
inference rules were expressed in classical rather than Montagovian syntax
the termination condition would be much more difficult to state. A simi-
lar comparison can be made between classical syntax and other knowledge
representation languages such as the FDLs discussed earlier.

15

7 Conclusions

We have argued that the effectiveness of inference is coupled to the selection
of the syntax in which formulas are expressed. If such a coupling does in-
deed exist then one can speak informally of “effective syntax” — a syntax is
effective to the extent that inference processes defined in that syntax can be
made effective. Classical syntax appears to be particularly ineffective.

If one accepts the proposition that the effectiveness of inference is cou-
pled to the syntax in which formulas are expressed then it is perhaps not
too surprising that natural language is a source of effective syntax. The
Montagovian syntax presented here is, of course, only distantly related to
the much richer and more complex syntax of actual natural languages. We
hope that natural language syntax will continue to be an inspiration for the
construction of yet more effective formal languages.

8 Appendix I: The Montagovian Literal Sat-
isfiability Problem

In this appendix we show that determining the satisfiability of a set of Mon-
tagovian literals (that need not determine existentials) is NP-hard. The proof
of NP-hardness is by reduction of a special case of monotone 3-SAT. More
specifically, we start with a set of propositional clauses where each clause
either contains three negative literals or two positive literals. We leave it to
the reader to verify that satisfiability of an arbitrary 3SAT problem can be
reduced to satisfiability of this special case. For each proposition symbol P
in our restricted 3SAT problem we introduce a class symbol P’ where the
truth of P will correspond to the existence of elements of the set denoted by
P’. We reduce the set of clauses to a set of Montagovian literals as follows:

For each clause of the form P V) we add the literal
(every (R (every P')) (G (some ()')))

where R and G are new relation symbols. Any model of this literal must

16

satisfy either 3P or 3Q)" — if both P’ and @)’ are assigned the empty set then
(R (every P’)) denotes the universal set, which must be non-empty, while
(G (some ")) denotes the empty set. Conversely, for any interpretation of
the class symbols P’ and ()’ as sets, if at least one of the two sets is non-
empty then one can ensure that the above literal is satisfied by making R the
empty relation and G the universal relation.

Now for any class symbols s, t and w we define [ds — (every ¢t w)] to be
the two literals (every ¢ (H (every s))) and (every (H (some s)) w),
where H is a new relation symbol specific to this constraint. Any model of
these literals must satisfy the constraint that if s denotes a non-empty set
then the set denoted by ¢ must be a subset of the set denoted by w. Con-
versely, for any assignment of sets to the class symbols s, £, and w satisfying
the desired constraint, there exists an interpretation of H satisfying the above
literals — if s is assigned the empty set then the above literals are satisfied
by any interpretation of H; if s is non-empty then ¢ must denote a subset of
the set denoted by w and the above literals are satisfied by interpreting H as
the relation that maps every domain element to the set denoted by w.

Finally, for any clause of the form =P V =) V —~U we add the literals that
constitute the constraints

[AP" — (every s wy)]

[FQ" — (every wy wy)]
[AU" — (every wy 1)]
—(every s t)

where s, t, wy, and w, are new class symbols specific to this clause. Any
model of the above formulas must assign one of the class symbols P’, (), or
R’ the empty set. Conversely, for any interpretation of P, Q)', and R’ as sets
at least one of which is empty, there exist interpretations of s, ¢, w; and w,
as sets that satisfy the above constraints.

We leave it to the reader to verify that the set of literals generated by this
reduction is satisfiable if and only if the original restricted 3SAT problem is
satisfiable.

17

9 Appendix II: Proof of the Completeness
Lemma

This appendix contains a proof of the completeness lemma, i.e., that if X is a
set of Montagovian literals that determines existentials then X is satisfiable
if and only if ¥ I/ F. This implies that if ¥ determines existentials then the
satisfiability of ¥ can be determined in polynomial time. This second state-
ment implies that the satisfiability of quantifier-free Montagovian formulas
is in the complexity class NP, and hence is NP-complete.

Suppose that ¥ is a set of quantifier-free Montagovian literals that de-
termines existentials and contains no positive intersection literals. We must
show that X is satisfiable if and only if ¥ I/ F. If ¥ H F then the sound-
ness of the individual inference rules guarantees that X is unsatisfiable. If
Y K F we must show that there exists a model of ¥. To simplify the presen-
tation we introduce the notation ¥ H s = w to indicate that we have both
Y H (every s w) and X H (every w s).

Assume that ¥ f F. We will construct a formal model of ¥ where the
elements of the domain are constructed from the class expressions that ap-
pear in 2. Given that X is quantifier-free we can replace any variable in ¥ by
a constant symbol without affecting satisfiability. We can therefore assume
without loss of generality that no there are no variables in Y. The definition
of the semantic domain of the model involves two complications. First, we
must construct equivalence classes of class expressions. If ¥ H s = ¢, and
Y H (at-most-one s), then s and ¢ must denote the same singleton set. In
this case the single object in the set denoted by s is (essentially) the equiva-
lence class of all class expressions that are provably equal to s. The second
complication involves the need for both “minimal” and “maximal” elements
of the set denoted by a class expresison. If ¥ tf (every (R (some s)) 1)
then we will guarantee that the set denoted by s contains a maximal ele-
ment d such that R(d) is a “large” set, and in particular, that R(d) includes
something not in the set denoted by t. Let |s| be the equivalence class of the
class expression s. We use the notation "some-|s|" to denoted the pair of the
symbol “some” and the class |s|. The pair "some-|s|" will be the desired max-
imal element of the class denoted by s. If ¥ K (every ¢t (R (every s)))

18

then we will guarantee that s contains some minimal element d such that
R(d) denotes a small set, and in particular, that the set denoted by ¢ con-
tains something not in R(d). By analogy with maximal elements, we use the
notation "every-|s|" to denote the formal object that will be the minimal
element of the set denoted by s.

We say that a class expression s is a domain expression if it appears in X
and ¥ H Js. If s is a domain expression then we use the notation |s| to denote
the set of all domain expressions ¢ such that ¥ H s = ¢. Inference rules 3 and
4 guarantee that the sets of the form |s| form a partition of the domain ex-
pressions into equivalence classes. The semantic domain D of our model will
consist of minimal elements "every-|s|" and maximal elements "some-|s|"
where ¥ H ds, i.e., s is a domain expression. If ¥ H (at-most-one s) then
only the minimal element "every-|s|" will be included in the domain. In-
ference rule 9 guarantees that if ¥ H (at-most-one s) and ¥ H s =t then
¥ H (at-most-one t). This implies that the choice of whether or not to in-
clude the domain element "some=-|s|" in the semantic domain is independent
of the choice of the representative s of the class |s|.

Given this semantic domain D, we must define an interpretation for the
class symbols and relation symbols in ¥ such that each literal of ¥ is satisfied.
The model we construct will satisfy a certain denotation invariant — the set
denoted by a class expression s that appears in X will consist of all domain
elements "some-|t|" and "every-|t|" such that ¥ H (every ¢ s). We define
the interpretation of constant symbols, class symbols, and relation symbols
using this desired denotation invariant as a guide. We use the notation
"Q-|s|" to mean either the object "some-|s|" or the object "every-|s|".
The denotation of a class symbol P is defined to be the set of all domain
members of the form "@Q-|s|" such that ¥ H (every s P). This definition
immediately guarantees the denotation invariant for class symbols.

We define the denotation of a constant symbol ¢ that appears in X to be
the domain member "every-|c|". Inference rules 5, 6, 9 and 11 guarantee
that the denotation invariant holds for constant symbols. We interpret each
constant symbol that does not appear in ¥ as an arbitrary element of the
semantic domain.

We will now define the interpretation of relation symbols. To define the

19

function denoted by a relation symbol R we need to define the set R("Q)-|s|™)
for any domain element "Q)-|s|". Intuitively, the set R("Q-|s|"), where @)
is either some or every, should be the set of domain members "Q’~|t|" such
that ¥ H (every ¢ (R () s))). This intuitive definition fails because the
class expression (R () s)) need not appear in X. To remedy this situation
we define a new relation Fo.

o We write ¥ o (every ¢t (R (some s))) if any one of the following
conditions hold:

— For some (R (some w)) appearing in X, 3 H (every w s) and
Y H (every t (R (some w))).

— For some (R (every w)) appearing in 2, ¥ H (some s w) and
Y H (every t (R (every w))).

o We write ¥ o (every ¢ (R (every s))) if any one of the following
conditions hold:

— For some (R (every w)) appearing in X, & H (every s w) and
Y H (every t (R (every w))).

— For some (R (some w)) appearing in X, > H (at-most-one w),
Y Hw=sand ¥ H (every ¢t (R (some w))).

It ¥ H (every t (R (@) s))) then ¥ o (every ¢ (R () s))). Con-
versely, if (R (@) s)) appears in X, and ¥ o (every ¢ (R () s))) then
Y H (every t (R (@ s))). The difference between the two relations is re-
stricted to expressions of the form (R () s)) that do not appear in ¥. The
reader can also check that if ¥ H ds and ¥ o (every ¢t (R (every s)))
then ¥ o0 (every ¢t (R (some s))).

We now define the set R("Q-|s|") to be the set of all domain elements
"some-|t|" and "every-|t|" such that ¥ Fo (every ¢t (R (Q s))). We must
check that this definition is well formed, i.e., that the definition is inde-
pendent of the choice of s and ¢ used as the representatives of the equiv-
alence classes |s| and |t|. Fortunately, the transitivity of the subset rela-
tion guarantees that if ¢ is equivalent to ¢ and s’ is equivalent to s then

Y Fo (every ' (R (Q ¢'))) if and only if ¥ Fo (every ¢t (R (Q s))).

20

This completes the definition of a first order structure — we have defined
a semantic domain and assigned an appropriate meaning to all constant
symbols, class symbols, and relation symbols. We will now prove that every
class expression that appears in ¥ satisfies the desired denotation invariant.

Denotation Invariant: For any class expression s that ap-
pears in X, the denotation of s equals the set of domain elements
"Q-|t|" such that ¥ H (every ¢ s).

We prove this invariant by induction on the structure of class expres-
sions. Every class expression appearing in X is either a class symbol, a
constant symbol, or an expression of the form (R () s)) for some relation
symbol R, specifier (), and class expression s. We have already argued that
the denotation invariant holds for class symbols and constant symbols. Now
we assume that s satisfies the denotation invariant and consider an expres-
sion in ¥ of the form (R (@ s)). It now suffices to show that (R (Q) s))
satisfies the denotation invariant, i.e., the set denoted by (R (@) s)) is the
set of domain elements "Q'-[¢|" such that ¥ H (every ¢t (R (Q s))). We
consider four cases corresponding to whether () is “some” or “every” and to
which direction of the inclusion we are trying to show.

First we consider expressions of the form (R (some s)). Let "Q-|{|"
be an element of the set denoted by (R (some s)). We must show that
Y H (every t (R (some s))). Since "Q-|t|" is in the set denoted by
(R (some s)) there must be some element "Q'~|s'|" in the set denoted by
s such that the set R("Q'-|s'|") contains "@Q-|¢t|". By the induction hy-
pothesis we must have ¥ H (every s’ s). By the definition of the mean-
ing of R, we must have ¥ Fo (every ¢t (R (@' s))). Since s is a do-
main expression we must have ¥ H ds’. As noted above, the definition
of Fo implies that if ¥ H ds’ and ¥ Fo (every ¢ (R (every s'))) then
Y Fo (every t (R (some s'))). So ¥ to (every ¢ (R (some s'))) (it is
possible that ¥ Fo (every ¢ (R (some s'))) even if "some-|s'|" is not a
domain member.) By the definition of of o there must exist some expres-
sion (R (Q" w)) that appears in ¥ such that ¥ H (every ¢t (R (Q" w)))
and such that (R (Q" w)) satisfies one of the two ways of establishing
Y Fo (every ¢t (R (some s))). Let (R (Q" w)) be an expression that

21

satisfies one of these two cases. We leave it to the reader to verify that in each
case the expression (R (Q” w)) ensures that ¥ Fo (every ¢ (R (some s)))
and thus that ¥ H (every ¢ (R (some s))).

Now suppose that ¥ H (every ¢t (R (some s))). We must show that
domain elements of the form "@Q-|¢|" are members of the set denoted by
(R (some s)). Since t is a domain expression we have ¥ H Jt. Inference
rules 7 and 8 now guarantee that ¥ H ds. Now suppose that ¥ H (at-most-one s).
In that case the definition of Fo ensures that ¥ o (every ¢ (R (every s))).
Since s satisfies the denotation invariant, and ¥ H Js, the element "every-|s|"
must be in the set denoted by s. Finally, since ¥ o (every ¢ (R (every s))),
we have that the set R("every-|s|") contains "@Q-[t|" and thus "Q-|¢t|" is in
the set denoted by (R (some s)). Now suppose that ¥ f (at-most-one s).
In this case the fact that ¥ H ds and the denotation invariant for s guarantee
that the set denoted by s includes the element "some-|s|". But the fact that
Y H (every ¢t (R (some s))) immediately implies that "@Q-|t|" is in the
set R("some-|s|") and thus "@Q-|t|" is in the set denoted by (R (some s)).

Now we consider expressions of the form (R (every s)). Let "Q-|{|"
be an element of the the set denoted by (R (every s)). We must show
that ¥ H (every t (R (every s))). Suppose that ¥ t# Js. Since X de-
termines existentials, we must have ¥ H —ds. In this case inference rule
13 guarantees that ¥ H (every ¢ (R (every s))). Now suppose ¥ H Js.
In this case the denotation invariant, and inference rule 4, guarantees that
the set denoted by s contains the element "every-|s|". Since "@Q-|t|" is in
the set denoted by (R (every s)), we must have that "Q-|¢|" is in the set
R("every-|s|"). But, by the definition of the denotation of R, this implies
that ¥ Fo (every t (R (every s))). Since (R (every s)) appears in 2,
we have ¥ H (every ¢t (R (every s))).

Finally, suppose ¥ H (every ¢ (R (every s))). We must show that
domain elements of the form "@Q-|¢|" are members of the set denoted by
(R (every s)). Let "Q'~|s'|" be an arbitrary member of the set denoted by
s. We must show that "@Q)-|t|" is a member of the set R("Q'-|s|"). Since
"Q'-|s'|" is a domain member, we must have ¥ H ds’. The denotation
invariant for s implies that ¥ H (every s’ s). These two facts, plus in-
ference rules 15 and 4, imply that ¥ H (some s’ s). The definition of Fo

22

now guarantees that ¥ Fo (every ¢t (R (Q" s))) and thus "@Q-[¢|" is in
the set R("Q'-|s|") as desired. This completes the proof of the denotation
invariant.

We now conclude our proof of the completeness lemma by showing that
the model defined above satisfies every literal ¢ in Y. ¢ must be of the form
(every s t), ~(every s t), ds, or = (some s t) (formulas of the form —3s
are a special case of negative intersection formulas and we have assumed that
Y does not contain any positive intersection formulas other than formulas of
the form ds). First, consider a literal in ¥ of the form (every s ¢). The
denotation invariant (and the transitivity inference rule) implies that the set
denoted by s must be a subset of the set denoted by ¢. Now consider a
formula in ¥ of the form —(every s t). Inference rule 12 guarantees that
Y H ds. Thus the semantic domain includes the object "every-|s|". But
since ¥ A F, we must have ¥ tf (every s t). Thus by the denotation
invariant, "every-|s|" must be a member of the set denoted by s that is not
a member of the set denoted by ¢, and thus the formula (every s ¢) must
be false in the defined model. Now consider a formula in ¥ of the form ds.
The denotation invariant, and definition of the semantic domain immediately
imply that the set denoted by s includes the object "every-|s|" and thus
the formula ds is true in the defined model. Finally, consider a formula in
Y of the form —(some s t). Suppose this formula were false in the defined
model, i.e., there exists a domain element that is in both the set denoted
by s and the set denoted by t. Let "Q-|w|" be a domain element that is in
both s and ¢. The definition of the semantic domain implies that ¥ H Jw.
The denotation invariant for s and ¢ implies that ¥ H (every w s) and
Y H (every w t). But the definition of the relation H implies that in this
case we have &, H (some s t) and hence ¥ H F which we have assumed is
not so. This concludes the proof of the completeness lemma.

ACKNOWLEDGEMENT

This research was supported in part by National Science Foundation Grant
IRI-8819624 and in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N0O0014-85-
K-0124 and N00014-89-3-3202.

23

References

1]

2]

3]

[4]

[5]

[6]

[10]

[11]

Kasimierz Adjuciewicz. Die syntaktische konnexitat. Studia Philophica,
1:1-27, 1935. Translated as “Sytactic Connection” in Strolls McCall
(ed), Polish Logic: 1920-1939 (Oxford University Press, 1967).

Emmon Bach. Categorial grammars as theories of language. In Richard
Oehrle and Edmond Bach, editors, Categorial Grammars and Natural
Language Structures, pages 17-34. D. Reidel, 1988.

D. Bobrow and T. Winograd. An overview of krl, a knowledge repre-
sentation language. Cognitive Science, 1(1):3-46, 1977.

R. Brachman, R. Fikes, and H. Levesque. Krypton: A functional ap-
proach to knowledge representation. I[FEE Computer, 16:63-73, 1983.

R. J. Brachman. What is-a is and isn’t: An analysis of taxonomic links

in semantic networks. [EEE Computer, 16(10):30-36, October 1983.

Ronald Brachman and James Schmolze. An overview of the kl-one
knowledge representation system. Computational Intelligence, 9(2):171—
216, 1985.

S. D. Johnson Constable, R. L. and C. D. Eichenlaub. An Introduction
to the PL/CV2 Programming Logic, volume 135 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1982.

Francesco Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.
The complexity of concept languages. In Proceedings of KR91, pages
151-162. Morgan Kaufmann Publishers, 1991.

Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the
common subexpression problem. JACM, 27(4):758-771, October 1980.

D. Dowty, R. E. Wall, and S. Peters. Introduction to Montague Seman-
tics. D. Reidel, 1981.

Scott E. Fahlman. NETL: A System for Representing Real World
Knowledge. MIT Press, 1979.

24

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Robert Givan, David McAllester, and Sameer Shalaby. Natural language
based inference procedures applied to schubert’s steamroller. In AAAI-
91, pages 915-920. Morgan Kaufmann Publishers, July 1991. internet
file ftp.ai.mit.edu:/pub/users/dam/aaai9lb.ps.

G. P. Huet. A unification algorithm for typed lambda-calculus. Theo-
retical Computer Science, 1:27-57, 1975.

Dexter C. Kozen. Complexity of finitely presented algebras. In Proceed-
ings of the Ninth Annual ACM Symposium on the Theory of Computu-
tation, pages 164177, 1977.

J. Lambek. The mathematics of sentence structure. American Mathe-

matical Monthly, 65:154-169, 1958.

D. McAllester and R. Givan. Taxonomic syntax for first or-
der inference. JACM, 40(2):246-283, April 1993. internet file
ftp.ai.mit.edu:/pub/users/dam/jacm1.ps.

David A. McAllester. Ontic: A Knowledge Representation System for
Mathematics. MIT Press, 1989.

Richard Montague. Universal grammar. Theoria, 36:373-398, 1970.
Reprinted in: Formal Philosophy: Selected Papers of Richard Montague,
ed. by R. H. Thomason, Yale University Press, 1974.

Richard Montague. The proper treatment of quantification in ordi-
nary english. In Approaches to Natrual Language: Proceedings of the
1970 Stanford Workshop on Grammar and Semantics. Reidel, 1973.
Reprinted in: Formal Philosophy: Selected Papers of Richard Montague,
ed. by R. H. Thomason, Yale University Press, 1974.

Bernhard Nebel. Computational complexity of terminological reasoning

in back. Artificial Intelligence, 34(3):371-384, 1988.

Greg. Nelson and Derek Oppen. Simplification by cooperating decision
procedures. ACM Trans. Prog. Lang. and Syst., 1:245-257, October
1979.

25

[22] M. Schmidt-Schaub and G. Smalka. Attributive concept descriptions
with complements. Artificial Intelligence, 47:1-26, 1991.

26

