
Learning Temporal, Relational, Force-Dynamic Event Definitions from Video�

Alan Fern and Jeffrey Mark Siskind and Robert Givan
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907–1285 USA

{afern,qobi,givan}@purdue.edu

Abstract

We present and evaluate a novel implemented approach for
learning to recognize events in video. First, we introduce
a sublanguage of event logic, calledk-AMA, that is suffi-
ciently expressive to represent visual events yet sufficiently
restrictive to support learning. Second, we develop a specific-
to-general learning algorithm for learning event definitions in
k-AMA. Finally, we apply this algorithm to the task of learn-
ing event definitions from video and show that it yields defi-
nitions that are competitive with hand-coded ones.

Introduction
Humans conceptualize the world in terms of objects and
events. This is reflected in the fact that we talk about the
world using nouns and verbs. We perceive events taking
place between objects, we interact with the world by per-
forming events on objects, and we reason about the effects
that actual and hypothetical events performed by us and oth-
ers have on objects. We alsolearn new object and event
types from novel experience. In this paper, we present and
evaluate novel implemented techniques that allow a com-
puter to learn to recognize new event types from video input.

We wish the acquired knowledge of event types to support
multiple modalities. Humans can observe someonefaxing a
letter for the first time and quickly be able to recognize fu-
ture occurrences of faxing, perform faxing, and reason about
faxing. It thus appears likely that humans use and learn event
representations that are sufficiently general to support fast
and efficient use in multiple modalities. A long-term goal of
our research is to allow similar cross-modal learning and use
of event representations. We intend the same learned repre-
sentations to be used for vision (as described in this paper),
planning (something that we are beginning to investigate),
and robotics (something left to the future).

A crucial requirement for event representations is that
they capture theinvariantsof an event type. Humans clas-

�This work was supported in part by NSF grants 9977981-IIS
and 0093100-IIS, an NSF Graduate Fellowship for Fern, and the
Center for Education and Research in Information Assurance and
Security at Purdue University. Part of this work was performed
while Siskind was at NEC Research Institute, Inc.

Copyright c
 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

sify both picking up a cup off a table and picking up a dumb-
bell off the floor aspicking up. This suggests that human
event representations arerelational. We have an abstract re-
lational notion ofpicking upthat is parameterized by the par-
ticipant objects rather than distinct propositional notions in-
stantiated for specific objects. Humans also classify an event
aspicking upno matter whether the hand is moving slowly
or quickly, horizontally or vertically, leftward or rightward,
or along a straight path or circuitous one. It appears that
it is not the characteristics of participant-object motion that
distinguishpicking upfrom other event types. Rather, it is
the fact that the object being picked up changes from being
supported by resting on its initial location to be supported by
being grasped by the agent. This suggests that the primitive
relations used to build event representations areforce dy-
namic(Talmy 1988). Finally, humans distinguish between
picking up and putting down a cup despite the fact that both
before putting down the cup and after picking up the cup the
same state of affairs holds, namely the human is holding the
cup. This suggests that event representations aretemporal.
The order of world states matters when defining event types.

Another desirable property of event representations is that
they beperspicuous. Humans can introspect and describe
the defining characteristics of event types. Such introspec-
tion is what allows us to create dictionaries. To support such
introspection, the representation language should allow such
characteristics to be explicitly manifest in event definitions
and not be emergent consequences of distributed parameters
as in neural networks or hidden Markov models.

We present a novel system that learns to recognize events
from video input using temporal, relational, force-dynamic
representations. This is not the first system to perform vi-
sual event recognition. We review prior work and compare
it to the current work later in the paper. In fact, one of us has
built two such prior systems. HOWARD (Siskind & Morris
1996) learns to classify events from video using temporal,
relational representations. But these representations are not
force dynamic. LEONARD (Siskind 2001) classifies events
from video using temporal, relational, force-dynamic repre-
sentations but does not learn these representations. It uses
a library of hand-code representations. This work adds a
learning component to LEONARD. We describe the repre-
sentation language used to support learning and the algo-
rithms used to learn representations in that language. We



also evaluate the performance of the approach and compare
the performance of learned representations to the prior hand-
coded representations. A companion paper (Fern, Givan, &
Siskind 2002) addresses theoretical issues of the approach,
elaborating on the algorithms, proving their correctness, and
analyzing their complexity.

Representing Event Types
LEONARD usesevent logic(Siskind 2001) to represent event
types. An event-logic expression� is either a primitive
event type or one of:�, 3R�, �1 _ �2, �1 ^R �2, �+,
8x�, or 9x�, wherex is a variable andR is a subset of in-
terval relations (Allen 1983). In this paper, we use only the
connectivê R with R being eitherfmg or f=g. � ^R 	
denotes occurrence of� and	 during intervals related by
a relation inR. � ^f=g 	, denoting simultaneous occur-
rence of� and	, and� ^fmg 	, denoting occurrence of�
followed immediately by occurrence of	, are sufficiently
common that we abbreviate them as� ^ 	 (without a sub-
script) and�;	 respectively.

LEONARD represents event types with definitions in event
logic like the following:

PICKUP(x; y; z)
4
=

�
(SUPPORTS(z; y) ^ CONTACTS(z; y));
(SUPPORTS(x; y) ^ ATTACHED(x; y))

�

This means that an event ofx picking up y off of z is
defined as a sequence of two states wherez supportsy
by way of contact in the first andx supportsy by way
of attachment in the second. SUPPORTS, CONTACTS, and
ATTACHED are primitive force-dynamic relations. These
are recovered from video input by a force-dynamic model-
reconstruction process (Siskind 2000). Events occurrences
are inferred from these primitive force-dynamic relations us-
ing event definitions like the above (the actual definitions
are more complex) by an event-classification process. Pre-
viously, these definitions were hand coded. In the work
reported here, we learn these definitions by applying the
same LEONARD force-dynamic model-reconstruction pro-
cess to training videos and inducing definitions, using the
novel techniques presented in this paper, from the primitive
force-dynamic relations produced by model reconstruction.
We then evaluate these definitions by using them to classify
test videos processed with the standard LEONARD model-
reconstruction and event-classification processes.

We determined that only a subset of the full event-logic
language was used in the hand-coded definitions. This sub-
set proved both to support a learning algorithm with certain
properties (see the companion paper) and to be an effective
restrictive learning bias (as demonstrated by the experimen-
tal results described later in this paper). We call this sub-
language AMA. AnA formula (intuitively ‘and’) is a con-
junction (L1 ^ � � � ^ Ll) of literalsLi. For now, these lit-
erals are primitive force-dynamic relations. The theoretical
results in the companion paper are limited to positive liter-
als. In the experimental results section, we discuss exten-
sions to support negative literals. AnMA formula (intu-
itively ‘meets-and’) is a sequence(A1; : : : ;Am) of A for-
mulasAi. An AMA formula (intuitively ‘and-meets-and’)

is a conjunction(M1 ^ � � � ^Mn) of MA formulasMi. The
above definition for PICKUP is an MA formula (and hence
an AMA formula). Intuitively, A formulas describe states of
the world, MA formulas describe sequences of states, what
we call timelines, and AMA formulas describe an event in
terms of multiple timelines that it must satisfy.

Learning Event Definitions
We adopt a specific-to-general ILP approach to learning
event definitions from positive-only data. The AMA lan-
guage is suitable for this approach because of three key prop-
erties. First, the least general MA formula (and hence AMA
formula) that covers any force-dynamic model produced by
model reconstruction exists and is unique up to semantic
equivalence. We call thesemodel covers. Second, the least
general AMA generalization (LGG) of two AMA formulas
exists and is unique up to semantic equivalence. Third, we
have a tractable syntactic notion of generalization for AMA,
refining semantic generalization, for which the correspond-
ing LGG of two formulas exists and is unique up to mu-
tual syntactic generalization. (See the companion paper for
discussion and proof of these properties.) We refer to this
“syntactic LGG” as the “LGG” from here on1. Our learn-
ing algorithm operates by producing model covers for the
training examples and folding the binary LGG operator over
these to yield the least general AMA formula that covers the
training set. This works because the binary LGG operator is
commutative and associative.

A key characteristic of our domain that allows the above
properties to hold is that our primitive event types areliq-
uid (Shoham 1987), i.e. if a primitive holds of an interval, it
holds of every subinterval of that interval. This means that
for any A formulaA, the MA formulasA,A;A,A;A;A, : : :
are equivalent. We use this in finding model covers and com-
puting the LGG of two AMA formulas.

Before presenting the algorithms to do so, we define some
notation. An MA formula(A1; : : : ;Am) has a set ofm+ 1
transition pointsti, one at the beginning, one between each
pair of adjacent A formulas, and one at the end. This set
is finite and totally ordered, yielding an adjacency relation.
A segmentAtiti+1 denotes the A formula between a pair
hti; ti+1i of adjacent transition points. An MA formula cor-
responds to a transition-point set and a set of segments be-
tween the pairs of adjacent transition points. And vice versa.

First, we show how to compute a model cover. The out-
put of model reconstruction is a set of primitive event oc-
currencesL@[s1; s2] whereL is a primitive event type and
[s1; s2] is a maximal interval during which it occurred. Be-
cause such primitive event types are liquid, occurrence dur-
ing all subintervals of[s1; s2] is implicit. Take the set ofsi
that appear in such primitive event occurrences as a set of
transition points, ordered by the< relation on time instants.
For every pairhti; ti+1i of adjacent transition points, take
Atiti+1 to be the conjunction of all primitive event typesL
whereL@[s1; s2] is a primitive event occurrence,s1 � ti,

1Our algorithm for syntactic LGG is exponentially more effi-
cient than our best algorithm for the true semantic LGG.



andti+1 � s2. This yields a model cover. Note that con-
structingAtiti+1 requires primitive-event liquidity.

Next, we show how to compute the LGG of two AMA
formulas. First, consider two MA formulasM1 andM2.
Let T1 andT2 be the transition-point sets ofM1 andM2

respectively. Aproto-interdigitationT 0 of T1 andT2 is T1 [
T2 along with a total, reflexive, transitive ‘ordering’ relation
that satisfies the following: (a) the order onT 0 is consistent
with the orders onT1 andT2, (b) no two elements ofT1 (T2)
are equated, and (c) the minimal (maximal) elements ofT1
andT2 are equated. AninterdigitationT of T1 andT2 is the
partition of a proto-interdigitation under equality.

Given this, the LGG of two MA formulasM1 andM2

can be computed as follows. LetT1 andT2 be the transition
point sets ofM1 andM2 respectively. LetA1

t1
i
t1
i+1

be the

segment inM1 between transition pointst1i andt1i+1 in T1.
Similarly, letA2

t2
i
t2
i+1

be the segment inM2 between tran-

sition pointst2i andt2i+1 in T2. Let T be an interdigitation
of T1 andT2. T can be interpreted as a transition-point set
where the components are interpreted as transition points or-
dered by the interdigitation relation. Compute the segments
of T as follows. For each transition pointti in T , let f1(ti)
be the latest member ofT1 occurring inT no later thanti.
Definef2(ti) similarly for T2. Dually, defineg1(ti) to be
the earliest member ofT1 occurring inT no earlier thanti.
Defineg2(ti) similarly forT2. Now, for every pairhti; ti+1i
of adjacent transition points inT takeAtiti+1 to be the inter-
section ofA1

f1(ti) g1(ti+1)
andA2

f2(ti) g2(ti+1)
. This yields an

MA formula that generalizesM1 andM2. The conjunction
of all such formulas derived from all interdigitations is the
LGG of M1 andM2. The conjunction of the LGGs of all
pairs of MA formulasM1 andM2 in the AMA formulas�1

and�2 respectively is the LGG of�1 and�2. Note that
constructingAtitj , again, requires primitive-event liquidity.
Timelines in the LGG that subsume other such timelines can
be pruned in polynomial time using an algorithm presented
in our companion paper.

This LGG computation is clearly exponential in the in-
put size. The companion paper shows that the size of the
smallestLGG of two AMA formulas, which may be smaller
than the LGG computed here, can be exponential in the size
of the input formulas, so no better worst-case bound can be
achieved. This motivates restricting the AMA language to
k-AMA: AMA formulas that contain onlyk-MA formulas,
those with no more thank A formulas.

There is also a learning motivation for thek-AMA re-
striction: the hypothesis space grows exponentially ask is
relaxed and yet the AMA conjunction ofk-MA timelines
can capture much of the structure that formulas with longer
MA timelines capture. Thus, we studyk-AMA rather than
unbounded single MA timelines as hypotheses.

The k-coverof an AMA formula� is the least general
k-AMA formula �0 that covers�. We can compute the
k-cover of� as follows. First consider MA formulasM
with more thank A formulas. Ak-digitationof M is a sub-
setT 0 of the transition-point setT of M of size no greater
thank + 1 that contains the minimal and maximal elements

of T and is ordered by the same ordering relation asT .
Form a new MA formulaM 0 whose transition points are
a k-digitation ofM . Each segmentA0

t0
i
t0
i+1

of M 0 is the in-

tersection of all segmentsAtjtj+1 of M wheret0i0 � tj and
t0j0 � tj in T . M 0 generalizesM and isk-MA. The k-cover
of an MA formulaM with no more thank A formulas isM
itself. Otherwise, it is the conjunction of all suchM 0 for all
k-digitations ofM . Thek-cover of an AMA formula� is
the conjunction of thek-covers of the MA formulas in�. We
note that thek-cover of an AMA formula� may be expo-
nentially larger than�. However, in practice, after pruning
redundantk-MA formulas, we have found thatk-covers do
not exhibit undue size growth.

Given this, we restrict our learner tok-AMA by comput-
ing thek-cover of the output of both the model cover compu-
tation and the LGG computation each time it is performed.

Experiments Results
Prior to the work reported in this paper, LEONARD
needed hand-coded event definitions. We have augmented
LEONARD with the ability to learn definitions using ourk-
AMA learning algorithm and evaluated its performance.2

LEONARD is a three-stage pipeline. The raw input con-
sists of a video-frame sequence depicting events. First, a
segmentation-and-tracking component transforms this input
into a polygon movie: a sequence of frames, each frame be-
ing a set of convex polygons placed around the tracked ob-
jects in the video. Next, a model-reconstruction component
transforms the polygon movie into a force-dynamic model.
This model describes the changing support, contact, and at-
tachment relations between the tracked objects over time.
Finally, an event-recognition component determines which
events, from a library of event definitions, occurred in the
model and, accordingly, in the video. The learning process
uses the early stages of the LEONARD pipeline to produce
force-dynamic models from the training movies and applies
thek-AMA learning algorithm to these models.

Relational Data

LEONARD produces relational models that involve objects
and (force dynamic) relations between those objects. Thus
event definitions include variables to allow generalization
over objects. For example, a definition for PICKUP(x; y; z)
recognizes both PICKUP(hand; block; table) as well as
PICKUP(man; dumbbell; floor). Despite the fact that our
k-AMA learning algorithm is propositional, we are still able
to use it to learn relational definitions.

We take a straightforward object-correspondence ap-
proach to relational learning. We view the models out-
put by LEONARD as containing relations applied to con-
stants. Since we (currently) support only supervised
learning, we have a set of distinct training examples
for each event type. There is an implicit correspon-
dence between the objects filling the same role across

2The code and data set reported here is available from
ftp://dynamo.ecn.purdue.edu/pub/qobi/ama.tar.Z .



the different training models for a given type. For ex-
ample, models showing PICKUP(hand; block; table) and
PICKUP(man; dumbbell; floor) have implicit correspon-
denceshhand;mani, hblock; dumbbelli, andhtable; floori.
We outline two relational learning methods that differ in how
much object-correspondence information they require.

Complete Object Correspondence This first approach
assumes that a complete object correspondence is given, as
input, along with the training examples. Given such infor-
mation, we can propositionalize the training models by re-
placing corresponding objects with unique constants. The
propositionalized models are then given to our propositional
k-AMA learning algorithm which returns a propositionalk-
AMA formula. We then lift this propositional formula by re-
placing each constant with a distinct variable. Lavrac, Dze-
roski, & Grobelnik (1991) took a similar approach.

Partial Object Correspondence The above approach as-
sumes complete object-correspondence information. While
it is sometimes possible to provide all correspondences (for
example, by color-coding objects that fill identical roles
when recording training movies), such information is not
always available. When only a partial (or even no) object
correspondence is available, we can automatically complete
the correspondence and apply the above technique.

For the moment, assume that we have an evaluation func-
tion that takes two relational models and a candidate object
correspondence, as input, and yields an evaluation of cor-
respondence quality. Given a set of training examples with
missing object correspondences, we perform a greedy search
for the best set of object-correspondence completions over
the models. Our method works by storing a setP of propo-
sitionalized training examples (initially empty) and a setU
of unpropositionalized training examples (initially the entire
training set). For the first step, whenP is empty, we evaluate
all pairs of examples fromU , under all possible correspon-
dences, select the two that yield the highest score, remove
them fromU , propositionalize them according to the best
correspondence, and add them toP . For each subsequent
step, we use the previously computed values of all pairs of
examples, one fromU and one fromP , under all possi-
ble correspondences. We then select the example fromU
along with the correspondence that yields the highest aver-
age score relative to all models inP . This example is re-
moved fromU , propositionalized according to the winning
correspondence, and added toP . For a fixed number of ob-
jects, the effort expended is polynomial in the size of the
training set. However, if the number of objectsb in a train-
ing example grows, the number of correspondences grows
as bb. Thus, it is important that the events involve only a
modest number of objects.

Our evaluation function is based on the intuition that ob-
ject roles for visual events (as well as events from other do-
mains) can often be inferred by considering the changes be-
tween the initial and final moments of an event. Specifi-
cally, given two models and an object correspondence, we
first propositionalize the models according to the correspon-
dence. Next, we compute ADD and DELETE lists for each
model. The ADD list is the set of propositions that are

true at the final moment but not the initial moment. The
DELETE list is the set of propositions that are true at the
initial moment but not the final moment. (These add and
delete lists are motivated by STRIPS action representations.)
Given such ADDi and DELETEi lists for models1 and2,
the evaluation function returns the sum of the cardinalities
of ADD1 \ ADD2 and DELETE1 \ DELETE2. This mea-
sures the similarity between the ADD and DELETE lists of
the two models. We have found that this evaluation function
works well in the visual-event domain.

Negative Information
The AMA language does not allow negated propositions.
Negation, however, is sometimes necessary to adequately
define an event class. It turns out that we can easily get
the practical advantages of negation without incorporating
negation into the AMA language. We do this by appending
a new set of propositions to our models that intuitively repre-
sents the negation of each proposition. Assume the training
examples contain the propositionsfp1; : : : ; png. We intro-
duce a new setf�p1; : : : ; �png of propositions and add these
into the training models. It is a design choice as to how we
assign truth values to these new propositions.

In our experiments, we compare two methods for assign-
ing a truth value to�pi. The first method, calledfull negation,
assigns true to�pi in a model iff pi is false in the model.
The second method, calledboundary negation, differs from
full negation in that it only allows�pi to be true in the ini-
tial and final moments of a model.�pi must be false at all
other times. We have found that boundary negation provides
a good trade-off between no negation, which often produces
overly general results, and full negation, which often pro-
duces overly specific and much more complicated results.
Both methods share the property that they produce models
wherepi and �pi are never simultaneously true. Thus our
learning methods will never produce formulas with states
that contain bothpi and�pi.

Data Set
Our data set contains examples of7 different event classes:
pick up, put down, stack, unstack, move, assemble, anddis-
assemble. Each of these involve a hand and two to three
blocks. For a detailed description of these event classes,
see Siskind (2001). Key frames from sample video se-
quences of these event classes are shown in figure 1. The
results of segmentation, tracking, and model reconstruc-
tion are overlayed on the video frames. We recorded30
movies for each of the7 event classes resulting in a total
of 210 movies comprising11946 frames. We replaced one
movie,assemble-left-qobi04 , with a duplicate copy
of assemble-left-qobi11 , because of segmentation
and tracking errors.

Some of the events classes are hierarchical in that oc-
currences of events in one class contain occurrences of
events in one or more simpler classes. For example, a
movie depicting a MOVE(a; b; c; d) event (i.e.a movesb
from c to d) contains subintervals where PICKUP(a; b; c)
and PUTDOWN(a; b; d) events occur. In evaluating the
learned definitions, we wish to detect both the events



pick up

frame 0 frame 13 frame 24

put down

frame 0 frame 16 frame 26

stack

frame 0 frame 12 frame 26

unstack

frame 2 frame 13 frame 24

move

frame 0 frame 9 frame 18 frame 37 frame 48

assemble

frame 0 frame 15 frame 29 frame 39 frame 70

frame 77 frame 92

disassemble

frame 2 frame 14 frame 22 frame 52 frame 56

frame 69 frame 80

Figure 1: Key frames from sample videos of the seven event types.



that correspond to an entire movie as well as subevents
that correspond to portions of that movie. For exam-
ple, given a movie depicting MOVE(a; b; c; d), we wish
to detect not only the MOVE(a; b; c; d) event but also the
PICKUP(a; b; c) and PUTDOWN(a; b; c) subevents as well.
For each movie type in our data set, we have a set ofin-
tendedevents and subevents that should be detected. If
a definition does not detect an intended event, we deem
the error a false negative. If a definition detects an un-
tended event, we deem the error a false positive. For ex-
ample, if a movie depicts a MOVE(a; b; c; d) event, the in-
tended events are MOVE(a; b; c; d), PICKUP(a; b; c), and
PUTDOWN(a; b; c). If the definition forpick updetects the
occurrence of PICKUP(c; b; a) and PICKUP(b; a; c), but not
PICKUP(a; b; c), it will be charged two false positives as
well as one false negative. We evaluate our definitions in
terms of false positive and negative rates as describe below.

Experimental Procedure
For each event class, we evaluate thek-AMA learning al-
gorithm using a leave-one-movie-out cross-validation tech-
nique with training-set sampling. The parameters to our
learning algorithm arek and the degreeD of negative infor-
mation used: either positive propositions only (P), boundary
negation (NPN), or full-negation (N). The parameters to our
evaluation procedure include the target event classE and
the training-set sizeN . Given this information, the evalua-
tion proceeds as follows: For each movieM (the held-out
movie) from the210 movies, apply thek-AMA learning al-
gorithm to a randomly drawn training sample ofN movies
from the30 movies of event classE (or 29 movies ifM is
one of the30). Use LEONARD to detect all occurrences of
the learned event definition inM . Based onE and the event
class ofM , record the number of false positives and false
negatives inM , as detected by LEONARD. Let FP and FN
be the total number of false positives and false negatives ob-
served over all210 held-out movies respectively. Repeat the
entire process of calculating FP and FN10 times and record
the averages asFP andFN.

Since some event classes occur more frequently in our
data than others (because simpler events occur as subevents
of more complex events but not vice versa), we do not re-
port FP andFN directly. Instead, we normalizeFP relative
to the number of times LEONARD detected the target event
within all 210 movies andFN relative to human assessment
of the total number of occurrences of the target event within
all 210 movies. The normalized value ofFP estimates the
probability that the target event did not occur, given that it
was predicted to occur, while the normalized value ofFN
estimates the probability that the event was not predicted to
occur, given that it did occur.

Results
To evaluate ourk-AMA learning approach, we ran leave-
one-movie-out experiments, as described above, for vary-
ing k, D, and N . The 210 example movies were
recorded with color-coded objects to provide complete
object-correspondence information. We compared our
learned event definitions to the performance of two sets of

0
BBBBBBBBB@

:3x = y ^ :3z = x ^ :3z = y^

SUPPORTED(y) ^ :3ATTACHED(x; z)^8>>>>>>><
>>>>>>>:

2
4 :3ATTACHED(x; y) ^ :3SUPPORTS(x; y)^

SUPPORTS(z; y)^
:3SUPPORTED(x) ^ :3ATTACHED(y; z)^
:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^
:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x)

3
5 ;

[ATTACHED(x; y) _ ATTACHED(y; z)] ;2
4 ATTACHED(x; y) ^ SUPPORTS(x; y)^

:3SUPPORTS(z; y)^
:3SUPPORTED(x) ^ :3ATTACHED(y; z)^
:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^
:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x)

3
5

9>>>>>>>=
>>>>>>>;

1
CCCCCCCCCA

0
BBBBBBBB@

:3x = y ^ :3z = x ^ :3z = y^

SUPPORTED(y) ^ :3ATTACHED(x; z)^8>>>>>><
>>>>>>:

2
4 :3ATTACHED(x; y) ^ :3SUPPORTS(x; y)^

SUPPORTS(z; y) ^ CONTACTS(z; y)^
:3SUPPORTED(x) ^ :3ATTACHED(y; z)^
:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^
:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x)

3
5^f<;mg

2
4 ATTACHED(x; y) ^ SUPPORTS(x; y)^

:3SUPPORTS(z; y)^
:3SUPPORTED(x) ^ :3ATTACHED(y; z)^
:3SUPPORTS(y; x) ^ :3SUPPORTS(y; z)^
:3SUPPORTS(x; z) ^ :3SUPPORTS(z; x)

3
5

9>>>>>>=
>>>>>>;

1
CCCCCCCCA

(
SUPPORTED(y);h

SUPPORTED(y) ^ ATTACHED(x; y)^
ATTACHED(y; z)

i
;

[SUPPORTED(y) ^ ATTACHED(x; y)]

)
^�

[SUPPORTED(y) ^ CONTACTS(y; z)] ;
[SUPPORTED(y) ^ ATTACHED(y; z)] ;
[SUPPORTED(y) ^ ATTACHED(x; y)]

�
^8<

:
�

SUPPORTED(y) ^ SUPPORTS(z; y)^
CONTACTS(y; z) ^ :3SUPPORTS(x; y)^
:3ATTACHED(x; y) ^ :3ATTACHED(y; z)

�
;

[SUPPORTED(y) ^ SUPPORTS(z; y)] ;
[SUPPORTED(y) ^ ATTACHED(x; y)]

9=
;^

8>>><
>>>:

�
SUPPORTED(y) ^ SUPPORTS(z; y)^
CONTACTS(y; z) ^ :3SUPPORTS(x; y)^
:3ATTACHED(x; y) ^ :3ATTACHED(y; z)

�
;

SUPPORTED(y);�
SUPPORTED(y) ^ SUPPORTS(x; y)^
ATTACHED(x; y) ^ :3SUPPORTS(z; y)^
:3CONTACTS(y; z) ^ :3ATTACHED(y; z)

�
9>>>=
>>>;

^

8<
:

[SUPPORTED(y) ^ SUPPORTS(z; y)] ;
[SUPPORTED(y) ^ ATTACHED(x; y)] ;�

SUPPORTED(y) ^ SUPPORTS(x; y)^
ATTACHED(x; y) ^ :3SUPPORTS(z; y)^
:3CONTACTS(y; z) ^ :3ATTACHED(y; z)

� 9=;
Figure 2: The definitions for PICKUP(x; y; z) in HD1 and
HD2 along with the machine-generated definition fork =
3 andD = NPN produced by training on all30 pick up
movies.

hand-coded definitions. The first set HD1 of hand-coded
definitions appeared in Siskind (2001). We manually revised
these to yield another set HD2 of hand-coded definitions that
gives a significantly betterFN at a cost inFP performance.
Figure illustrates sample definitions for PICKUP(x; y; z)
from HD1 and HD2 along with a sample machine-generated
definition produced by our method.

Object Correspondence To evaluate our algorithm for
finding object correspondences, we ignored the correspon-
dence information provided by color coding and applied the
algorithm to all training models for each event class. The
algorithm selected the correct correspondence for all210
training models. Thus, for this data set, the learning results
will be identical regardless of whether or not correspondence
information is provided manually. In light of this, the rest
of our experiments use the manual correspondence informa-



k D pu pd st un mo as di

2 NPN FP 0 0.14 0 0 0 0.75 0
FN 0 0.19 0.12 0.03 0 0 0

3 NPN FP 0 0 0 0 0 0 0
FN 0 0.2 0.45 0.10 0.03 0.07 0.10

4 NPN FP 0 0 0 0 0 0 0
FN 0 0.2 0.47 0.12 0.03 0.07 0.17

3 P FP 0.42 0.5 0 0.02 0 0 0
FN 0 0.19 0.42 0.11 0.03 0.03 0.10

3 N FP 0 0 0 0 0 0 0
FN 0.04 0.39 0.58 0.16 0.13 0.2 0.2

3 NPN FP 0 0 0 0 0 0 0
FN 0 0.2 0.45 0.10 0.03 0.07 0.10

HD1 FP 0.01 0.01 0 0 0 0 0
FN 0.02 0.22 0.82 0.62 0.03 1.0 0.5

HD2 FP 0.13 0.11 0 0 0 0 0
FN 0.0 0.19 0.42 0.02 0.0 0.77 0.0

Table 1: FP andFN for both learned definitions, varying
bothk andD, and hand-coded definitions.

tion, provided by color-coding, rather than recomputing it.

Varying k The first three rows of table 1 show theFP and
FN values for all7 event classes fork 2 f2; 3; 4g, N = 29
(the maximum), andD = NPN. Similar trends were found
for D = P andD = N. The general trend is that, ask
increases,FP decreases andFN increases. Such a trend is
a consequence of ourk-cover approach. This is because,
ask increases, thek-AMA language contains strictly more
formulas. Thus fork1 > k2, thek1-cover will never be more
general than thek2-cover. This strongly suggests (but does
not prove) thatFP will be non-increasing withk andFN will
be non-decreasing withk.

Our results show that2-AMA is overly general forput
down and assemble, i.e. it gives highFP. In contrast,4-
AMA is overly specific, as it achievesFP= 0 for each event
class but with a significant penalty inFN. 3-AMA appears
to provide with a good trade-off between the two, achieving
FP= 0 for each event class, while yielding reasonableFN.

Varying D Rows four through sixth of table 1 showFP
and FN for all 7 event classes forD 2 fP;NPN;Ng,
N = 29, andk = 3. Similar trends were observed for
other values ofk. The general trend is that, as the degree of
negative information increases, the learned event definitions
become more specific. In other words,FP decreases andFN
increases. This makes sense since, as more negative infor-
mation is added to the training models, more specific struc-
ture can be found in the data and exploited by thek-AMA
formulas. We can see that, withD = P, the definitions for
pick up andput downare overly general, as they produce
high FP. Alternatively, withD = N, the learned definitions
are overly specific, givingFP = 0, at the cost of highFN.
In these experiments, as well as others, we have found that
D = NPN yields the best of both worlds:FP = 0 for all
event classes and lowerFN than achieved withD = N.

Experiments not shown here have demonstrated that,
without negation forpick upandput down, we can increasek

arbitrarily, in an attempt to specialize the learned definitions,
and never significantly reduceFP. This indicates that neg-
ative information plays a crucial role in constructing defini-
tions for these event classes.

Comparison to Hand-Coded Definitions The bottom
two rows of table 1 show the results for HD1 and HD2. We
have not yet attempted to automatically select the parame-
ters for learning (i.e.k andD). Rather, here we focus on
comparing the hand-coded definitions to the parameter set
that we judged to be best performing across all event classes.
We believe, however, that these parameters could be selected
reliably using cross-validation techniques on a larger data
set. In that case, the parameters would be selected on a per–
event-class basis and would likely result in an even more
favorable comparison to the hand-coded definitions.

The results show that the learned definitions significantly
outperform HD1 on the current data set. The HD1 defini-
tions were found to produce a large number of false neg-
atives on the current data set. Manual revision of HD1

yielded HD2. Notice that, although HD2 produces signifi-
cantly fewer false negatives for all event classes, it produces
more false positives forpick upandput down. This is be-
cause the hand definitions utilizepick upandput downas
macros for defining the other events.

The performance of the learned definitions is competitive
with the performance of HD2. The main differences in per-
formance are: (a) forpick upandput down, the learned and
HD2 definitions achieve nearly the sameFN but the learned
definitions achieveFP= 0 whereas HD2 has significantFP,
(b) for unstackanddisassemble, the learned definitions per-
form moderately worse than HD2 with respect toFN, and
(c) the learned definitions perform significantly better than
HD2 onassembleevents.

We conjecture that further manual revision could improve
HD2 to perform as well as (and perhaps better than) the
learned definitions for every event class. Nonetheless, we
view this experiment as promising, as it demonstrates that
our learning technique is able to compete with, and some-
times outperform, hand-coded definitions.

Varying N It is of practical interest to know how training
set size affects our algorithm’s performance. For this appli-
cation, it is important that our method work well with fairly
small data sets, as it can be tedious to collect event data.

Table 2 shows theFN of our learning algorithm for each
event class, asN is reduced from29 to 5. For these experi-
ments, we usedk = 3 andD = NPN. Note thatFP= 0 for
all event classes and allN and hence is not shown. We ex-
pectFN to increase asN is decreased, since, with specific-
to-general learning, more data yields more-general defini-
tions. Generally,FN is flat forN > 20, increases slowly for
10 < N < 20, and increases abruptly for5 < N < 10. We
also see that, for several event classes,FN decreases slowly,
asN is increased from20 to 29. This indicates that a larger
data set might yield improved results.

Related Work
Prior work has investigated various subsets of the pieces of
learning and using temporal, relational, and force-dynamic



N pu pd st un mo as di

29 0.0 0.20 0.45 0.10 0.03 0.07 0.10
25 0.0 0.20 0.47 0.16 0.05 0.09 0.10
20 0.01 0.21 0.50 0.17 0.08 0.12 0.12
15 0.01 0.22 0.53 0.26 0.14 0.20 0.16
10 0.07 0.27 0.60 0.36 0.23 0.32 0.26
5 0.22 0.43 0.77 0.54 0.35 0.57 0.43

Table 2:FN for k = 3,D = NPN, and various values ofN .

representations for recognizing events in video. But none,
to date, combine all the pieces together. The following is a
representative list and not meant to be comprehensive. Bor-
chardt (1985) presents temporal, relational, force-dynamic
event definitions but these definitions are neither learned
nor applied to video. Regier (1992) presents techniques
for learning temporal event definitions but the learned def-
initions are neither relational, force dynamic, nor applied
to video. Yamoto, Ohya, & Ishii (1992), Starner (1995),
Brand & Essa (1995), Brand, Oliver, & Pentland (1997),
and Bobick & Ivanov (1998) present techniques for learn-
ing temporal event definitions from video but the learned
definitions are neither relational nor force dynamic. Pin-
hanez & Bobick (1995) and Brand (1997a) present tem-
poral, relational event definitions that recognize events in
video but these definitions are neither learned nor force dy-
namic. Brand (1997b) and Mann & Jepson (1998) present
techniques for analyzing force dynamics in video but nei-
ther formulate event definitions nor apply these techniques
to recognizing events or learning event definitions.

Conclusion
We have presentedk-AMA, a novel restrictive bias on event
logic, along with a novel learning algorithm for that hypoth-
esis space. This language is sufficiently expressive to sup-
port learning temporal, relational, force-dynamic event def-
initions from video. To date, however, the definitions are
neither cross-modal nor perspicuous. And while the per-
formance of learned definitions matches that of hand-coded
ones, we wish to surpass hand coding. In the future, we
intend to address cross-modality by applyingk-AMA learn-
ing to the planning domain. And we believe that addressing
perspicuity will lead to improved performance.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals.Communications of the ACM26(11):832–843.

Bobick, A. F., and Ivanov, Y. A. 1998. Action recognition
using probabilistic parsing. InProceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 196–202.

Borchardt, G. C. 1985. Event calculus. InProceedings of
the Ninth International Joint Conference on Artificial In-
telligence, 524–527.

Brand, M., and Essa, I. 1995. Causal analysis for vi-
sual gesture understanding. InProceedings of AAAI Fall
Symposium on Computational Models for Integrating Lan-
guage and Vision.

Brand, M.; Oliver, N.; and Pentland, A. 1997. Coupled
hidden Markov models for complex action recognition. In
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition.
Brand, M. 1997a. The inverse hollywood problem: From
video to scripts and storyboards via causal analysis. InPro-
ceedings of the Fourteenth National Conference on Artifi-
cial Intelligence, 132–137.
Brand, M. 1997b. Physics-based visual understanding.
Computer Vision and Image Understanding65(2):192–
205.
Fern, A.; Givan, R.; and Siskind, J. M. 2002. Specific-to-
general learning for temporal events. InProceedings of the
Eighteenth National Conference on Artificial Intelligence.
Lavrac, N.; Dzeroski, S.; and Grobelnik, M. 1991. Learn-
ing nonrecursive definitions of relations with LINUS. In
Proceedings of the Fifth European Working Session on
Learning, 265–288.
Mann, R., and Jepson, A. D. 1998. Toward the compu-
tational perception of action. InProceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 794–799.
Pinhanez, C., and Bobick, A. 1995. Scripts in machine un-
derstanding of image sequences. InAAAI Fall Symposium
Series on Computational Models for Integrating Language
and Vision.
Regier, T. P. 1992.The Acquisition of Lexical Semantics for
Spatial Terms: A Connectionist Model of Perceptual Cate-
gorization. Ph.D. Dissertation, University of California at
Berkeley.
Shoham, Y. 1987. Temporal logics in AI: Semanti-
cal and ontological considerations.Artificial Intelligence
33(1):89–104.
Siskind, J. M., and Morris, Q. 1996. A maximum-
likelihood approach to visual event classification. InPro-
ceedings of the Fourth European Conference on Computer
Vision, 347–360. Cambridge, UK: Springer-Verlag.
Siskind, J. M. 2000. Visual event classification via force
dynamics. InProceedings of the Seventeenth National
Conference on Artificial Intelligence, 149–155.
Siskind, J. M. 2001. Grounding the lexical semantics of
verbs in visual perception using force dynamics and event
logic. Journal of Artificial Intelligence Research15:31–90.
Starner, T. E. 1995. Visual recognition of American Sign
Language using hidden Markov models. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA.
Talmy, L. 1988. Force dynamics in language and cognition.
Cognitive Science12:49–100.
Yamoto, J.; Ohya, J.; and Ishii, K. 1992. Recognizing hu-
man action in time-sequential images using hidden Markov
model. InProceedings of the 1992 IEEE Conference on
Computer Vision and Pattern Recognition, 379–385. IEEE
Press.


