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Abstract. These notes present the main technologies used today for convert-
ing wind energy to electrical energy. They are meant to be used as a sup-
plement to introductory junior-level courses in electric power systems and/or
senior-level electric machines and power electronics courses. Several textbooks
(e.g., [6]) contain a very good fundamental treatment of electric machines,
including basic design principles, which is not going to be reproduced herein.
Also, basic knowledge of three-phase ac circuits and their steady-state analy-
sis using phasors is a prerequisite. Herein, we discuss the details of generat-
ing electric energy from wind, and we present methods to analyze the most
common wind energy conversion topologies. The “steady-state” of the wind
energy conversion process is emphasized. Quotation marks are used because
wind turbines are never in a steady-state due to the constant fluctuations of
wind; however, they can be assumed to be in some kind of quasi-steady state
because the wind variations are typically slower than the electrical dynamics
of interest. The design of wind turbines is a multi-disciplinary project, and
good designs are products of healthy collaboration of teams of engineers. But
as electrical engineers, the problem we are mainly interested in is the analysis
of the “electrical part” of a wind turbine. Other engineering disciplines are in-

volved with the design and manufacturing of the remaining components, such
as the nacelle, the blades, the hub, the gearbox, the tower, the foundations,
as well as with supply chain and transportation issues, or the layout of wind
power plants. Our domain of interest essentially consists of the generator,
any associated power electronics converters (if they exist), and the electrical
system that it is connected to.
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CHAPTER 1

Energy in the Wind Stream

1.1. Basic calculations

The objective of this section is to calculate the amount of kinetic energy in the
wind stream, and how much of that can be practically harnessed. This will be the
mechanical input on the shaft of our generators. To simplify things, we will do this
by considering an “ideal” kind of wind and some elementary principles from physics.
Our ideal wind flows in a single horizontal direction only, without any turbulence
whatsoever (this is called an irrotational flow). The viscosity of the wind is also
neglected (so the flow is called inviscid). The wind speed is denoted by vw and is
constant in time and space (we can call this a steady flow). The flow of the wind is
also assumed to be of the incompressible kind, meaning that the density ρ of wind
remains constant within a volume that moves with the same velocity as the wind.
Moreover, let’s assume that density is constant not only locally (as we track the
motion of a small volume of air), but that all of the air has the same density. Note
that the density of air depends on factors such as the temperature, the altitude, or
the humidity. A typical value that is often used is ρ = 1.25 kg/m

3
.

Now consider a vertical disc of radius R and surface area A = πR2 through
which the wind flows perpendicularly. Also let us visualize a cylindrical mass of air
of exactly the right size so that it can pass snugly through the disc. If you thought
of a thin cylinder, it would look like a coin balancing on its side, but it would not
have any solid sides; it’s just a cylinder of air. This cylinder of air has height h
and volume V = πR2h. The kinetic energy of the wind mass m that is contained
therein is E = 1

2
mv2w = 1

2
ρπR2hv2w. If somehow we were able to extract all this

kinetic energy in an amount of time t, we would obtain an average power P = E/t.
Since h = vwt (the wind speed was assumed to be constant), the time eventually
disappears from the expression, which now becomes

P =
1

2
ρπR2v3w . (1.1)

This is really convenient, because this expression works for any arbitrary time
length t, so we can let t become infinitesimally small (t → 0) and we can thus inter-
pret this expression as a continuous rate of energy extraction from the wind. (Of
course, this would be expressed in Joules per second, otherwise known as Watts.)

Example 1.1. Calculate the power density of wind for vw = 8 m/s.

The wind’s power density is defined as P/(πR2), which is equal to 1
2
ρv3w. Substitut-

ing yields (0.5)(1.25)(83) = 320 W/m2. Note that the relationship between power
and wind speed is cubic. So if the wind speed were to double, the power density
would increase by a factor of eight.

1



2 1. ENERGY IN THE WIND STREAM

1.2. The Betz limit

Unfortunately, extracting all the energy from a wind stream at the above rate
is not possible. To see why, consider what would happen if we actually (somehow)
did this. In this case, we would be removing the entire kinetic energy from the
wind, so that right after our disc the wind speed would have to be zero. However,
this would disrupt the flow of the wind, because new masses of wind that would
like to cross the disc would find it increasingly more difficult (or even impossible)
to do so. The above thought experiment reveals that we cannot and should not try
to extract all the energy from the wind stream, but only some portion of it.

Let us now try to obtain a better understanding of what happens in practice.
First, let us think about what would happen to our cylindrical mass of air if its
speed somehow changed. It turns out that the diameter of the cylinder changes to
accommodate the change of speed (here we are implicitly assuming that the shape
remains cylindrical). To see why, write m = ρV = ρπR2h = ρπR2vwt. If we divide
the mass by time, we obtain a quantity that is called the mass flow rate, which is
denoted by ṁ and has the physical significance of how much mass passes through
the disc in time t (how many kilograms per second). For our ideal wind stream,
the law of conservation of mass implies that this rate is constant and equal to
ṁ = ρπR2vw. Hence, the product R

2vw must also remain constant (because of our
original assumption of incompressible flow), which leads to the conclusion that the
radius of the cylinder depends on the speed.

Since in a wind turbine we are extracting kinetic energy from the wind, we
expect the wind speed to eventually decrease. Of course, we cannot build a de-
vice that would change the wind speed abruptly (as a step change) because that
would require an infinite amount of force (due to Newton’s second law of motion).
Therefore, the wind speed must decrease gradually. The maximum wind speed
vw(x1) = v1 is found upstream from the wind turbine, whereas the minimum speed
vw(x2) = v2 is downstream. The situation is depicted in Fig. 1.1. In this anal-
ysis, we are not really interested exactly how far the upstream and downstream
points are from each other. (But of course, this is something that designers of wind
power plants take very seriously into account. The wind turbines must be placed
adequately far from each other to reduce aerodynamic interactions.)

As the speed decreases, the radius of the wind-containing cylinder is increasing,
and the wind flow is restricted within a tubular boundary, outside of which nothing
can escape. Note that all vertical cross-sections at any horizontal position x are cir-
cles, where the wind speed component in the horizontal direction is the same; this
is why we wrote the wind speed as a single function of horizontal position, vw(x).
(Therefore, we are implicitly assuming that there is no variation of wind speed
in the vertical direction. This is a somewhat problematic assumption, because the
wind speed in reality tends to be higher as you move away from the ground due to a
phenomenon called wind shear. Also, since the cylinder’s radius is increasing, there
must be a component of wind speed in the vertical direction as well. Nevertheless,
to simplify things, we will keep going.) Somewhere in between the upstream and
downstream locations is our actuator disc, which represents the actual energy ex-
tracting device. Let us denote the radius of the disc as R(xd) = Rd. We do not
specify how this device looks like at this point, but we are assuming that somehow
we are able to build it. Also, we are considering a very thin device without blades
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Figure 1.1. Variation of wind speed and static pressure from far
upstream to far downstream.

so that the flow of the wind remains axial. Because of this abstraction, the ensu-
ing analysis is valid for a wide variety of conceivable horizontal-axis wind turbines
(also called HAWTs), under all the simplifying assumptions that were previously
stated. The wind speed at the position of the disc is denoted by vd. Obviously,
v1 > vd > v2.

Except from the tube’s radius, another variable that changes together with wind
speed is the static pressure p. Without going into too much detail, this phenomenon
is explained by a law of physics called Bernoulli’s principle, which states that the
sum of static and dynamic pressure, p+ 1

2
ρv2w, must remain constant for a horizontal

incompressible flow like we have assumed, but the constant is different for the flow
before and after the disc. The pressure starts increasing from the value p0 far
upstream of the actuator disc (which represents the atmospheric pressure), until it
reaches a maximum value p−d just before the disc. The disc introduces a step change

in the static pressure, so that right after it the pressure drops to p+d , and keeps
increasing until it reaches p0 downstream. This pressure difference on both sides of
the actuator disc can be thought to arise from a drag force F = (p−d −p+d )πR

2
d that is

pointing to the left, and which leads to a continuous extraction of power Pd = Fvd
by the disc (assuming that there are no losses). Applying Bernoulli’s principle twice,
we obtain p0 + 1

2
ρv21 = p−d + 1

2
ρv2d for upstream and p0 +

1
2
ρv22 = p+d + 1

2
ρv2d for

downstream, hence we can express the pressure difference as p−d −p+d = 1
2
ρ(v21−v22).

Therefore,

F =
1

2
ρπR2

d(v
2
1 − v22) . (1.2)

Now we introduce the law of conservation of momentum. This law is well
known for a single body of mass m (i.e., F = ma), but now it must be applied



4 1. ENERGY IN THE WIND STREAM

to the entire flow stream. It turns out that the drag force from the actuator disc
reduces the global momentum of the flow, and that this reduction can be related
to the difference between the input and output momentum rates by

F = ṁ(v1 − v2) . (1.3)

Choosing the expression of mass flow rate at the location of the disc, ṁ = ρπR2
dvd,

substituting in (1.3) and equating this with (1.2) leads to

vd =
v1 + v2

2
. (1.4)

We have just proved an important result, namely, that the wind speed at the
actuator disc is the average value of the upstream and downstream wind speeds.
Using this result we can now calculate the maximum extraction of power from the
wind stream.

More accurately, the problem we are trying to solve is the following: Given
an upstream wind speed v1, what is the downstream wind speed v2 that leads to
maximum power extraction from the actuator disc? To solve this, we rewrite the
equation for power extraction as

P = Fvd =
1

4
ρπR2

d(v1 − v2) (v1 + v2)
2
. (1.5)

This is an equation of the form P = P (v2), and its maximum point is obtained by
setting the derivative dP/dv2 equal to zero. This yields

−(v1 + v2)
2 + 2(v1 + v2)(v1 − v2) = 0 ⇒ v2 =

v1
3

. (1.6)

(To confirm that this point corresponds to a maximum one can evaluate the second
derivative d2P/dv22 , which should turn out to be negative.) This also leads to

vd =
2

3
v1 . (1.7)

The maximum possible power extraction from the wind stream is then

Pmax =

(
16

27

)(
1

2
ρπR2

dv
3
1

)

. (1.8)

The factor 16/27 ≈ 59% is called the maximum power coefficient, and Pmax is
commonly called the Betz limit, named after the German physicist Albert Betz [11].

Example 1.2. Calculate the Betz limit for a horizontal-axis wind turbine whose
blades sweep a circular area with a diameter of 80 m, and for an upstream wind
speed of v1 = 12 m/s.

The answer is found by substituting the given parameters in (1.8):

Pmax =

(
16

27

)(
1

2

)

(1.25)(3.14)(402)(123) = 3.2 MW . (1.9)

At this point, it is worthwhile to discuss briefly the interpretation of the Betz
limit. It is often said (rather incorrectly) that this represents the maximum possible
efficiency of a wind turbine. Remember that energy conversion efficiency is defined
as η = Pout/Pin. However, a closer look at (1.8) reveals that the stuff inside
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the second parentheses is not representative of the input power, even though it
resembles the expression (1.1)! In fact, it is not representative of the power flowing
through any cross-section of the flow tube whatsoever. For example, the input
power of the wind stream is Pin = 1

2
ρπR(x1)

2v31 , where R(x1)
2 = (vd/v1)R

2
d =

(2/3)R2
d. So Pin = 2

3
1
2
ρπR2

dv
3
1 , which yields a maximum efficiency

ηmax =
16
27
2
3

=
8

9
= 88.9% . (1.10)

So, when operating at the Betz limit, a wind turbine absorbs 88.9% of the available
power in the flow tube! (I would not hesitate to call it a very efficient device.) An
alternative interpretation of the 59% factor is the ratio of power extracted from
the turbine over the power of the unperturbed wind stream that would exist at the
same location before erecting the turbine. The reason why Betz originally wrote the
equation in this form is because he was not that much interested in the real efficiency
of the device, because of the abundance of wind energy in the atmosphere. Rather,
he wanted to answer the following question, which has significant engineering design
and economical consequences: “how much energy can be obtained in the most
favourable case from a rotor of given diameter in a wind of given speed?” [2]

Of course, real wind turbines can never reach the Betz limit, which was obtained
under several simplifying assumptions. In general, relaxing the assumptions that
were made leads to increased losses and a subsequent reduction in performance.
The real wind turbines tend to operate at lower “efficiencies,” reaching as high as
40–45%. Aerodynamics engineers strive to optimally design the blades, hub, and
nacelle, in order to reach as close to the Betz limit as possible.

1.3. Wind turbines’ power characteristics

In practice, it can be shown using more advanced principles of aerodynamics
that the power extracted by a wind turbine can be expressed as

P =
1

2
Cp(λ, θ)ρπR

2
dv

3
1 . (1.11)

The function Cp is called the performance coefficient, and it depends on something
called the tip-speed ratio λ and the blades’ pitch angle θ. The tip-speed ratio is
defined as

λ =
ωwRd

v1
(1.12)

and it represents the ratio between the circumferential speed of the tips of the blades
over the upstream wind speed. The parameter ωw denotes the angular velocity of
the blades, in rad/s. The explicit dependence on θ is due to the fact that modern
wind turbines have the capability to alter the pitch of the blades by rotating them.
Without going into too much detail, pitching the blades away from the optimal
point where ∂Cp/∂θ = 0 in effect reduces the aerodynamic torque on the blades
and the power extracted from the wind. This functionality is useful when a turbine
needs to limit its power output, or when it needs to slow down.

A typical variation of Cp is shown in Fig. 1.2. Because of the shape of these
curves, to harvest maximum power from the wind the turbine should operate at
the peak that occurs at the optimal tip-speed ratio (this varies with blade pitch
angle). Another interesting plot is the one shown in Fig. 1.3, which depicts the
power extracted from the wind as a function of the blades’ rotational speed, for
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Figure 1.2. A typical performance coefficient variation for a
range of blade pitch angles θ = {0, 2, 5, 10, 15, 25}◦.
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Figure 1.3. Turbine power vs. blade speed for wind speeds v1 =
{3, 5, . . . , 15} m/s, for a turbine with an 80-m wide swept area and
Cp(λ, 0) from Fig. 1.2.

different wind speeds (and assuming that the blades are not pitched). The red
dashed line connects the peak points of all the power curves, and represents the
maximum power extraction curve. This curve is cubic with respect to vw and ω
(because these two are proportional at the peaks), and so it rises very fast as the
wind speed increases.

The most common wind turbines in the market today are rated for 1.5–2.5 MW,
so something should be done to limit their output for high wind speeds (say, higher
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Figure 1.4. Wind turbine power output as a function of wind speed.

than 12 m/s). The wind speed at which a turbine reaches its nominal power output
is called the rated wind speed. Above this value, pitching of the blades occurs, and
the power output is maintained constant at rated value. (In practice, the power
output is not exactly constant due to the fluctuations of wind speed, but it stays
close to the rated value because of an automatic control system that adjusts the
blade pitch angle to make this happen. Some wind turbines do not have active pitch
control systems. These turbines are stall-regulated, meaning that their speed is
restrained from reaching dangerously high values because their blades are designed
to stall above a certain speed threshold.) The wind turbine stops producing power
at a maximum wind speed called the cut-out speed. Also observe that for low speeds
the power production is insignificant. For instance, the 3 m/s curve is almost
indistinguishable in the plot, having a peak power around 35 kW. So there is a
minimum wind speed, called the cut-in speed, below which a turbine just shuts itself
down because there is not enough energy in the wind to supply its own mechanical
losses and other auxiliary systems. A typical power production curve vs. wind speed
of a variable-speed wind turbine is sketched in Fig. 1.4. Of course, in our analysis
so far we have implicitly assumed that the turbines have yaw control systems to
align with the prevailing wind direction. It should be noted that the output power
is equal to the aerodynamic power that we have calculated minus all mechanical
and electrical losses incurred from the blades to the electrical terminals.

Example 1.3. For an upstream wind speed of v1 = 10 m/s, what is the op-
timal angular velocity for a wind turbine with an 80-m wide swept area and the
performance coefficient of Fig. 1.2?

Assuming that the blades are not pitched (i.e., normal operating mode with θ = 0◦),
the optimal tip-speed ratio is λ∗ ≈ 6.9. The optimal angular velocity is then
ω∗
w = λ∗v1/Rd = (6.9)(10)/(40) = 1.73 rad/s or 16.5 rpm (revolutions per minute).

This corresponds to about 4 seconds per revolution. Next time you drive by a wind
farm on a windy day, try to count how many seconds it takes for each revolution
and compare it with this number. On a less windy day, the turbines will rotate
slower.
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Figure 1.5. Schematic of a wind turbine drivetrain.

From the previous discussion we conclude that for maximum power extraction
the blades’ rotational speed must be proportional to the prevailing wind speed, which
of course varies continuously. This objective is achieved in modern wind turbines by
an automatic speed control system. Older wind turbines did not have this capabil-
ity; they were essentially fixed-speed machines so they were not able to get the most
out of the wind due to operation with sub-optimal tip-speed ratios. In modern tur-
bines, which are of the variable-speed kind, the speed is controlled by adjusting the
electromagnetic torque of the electrical generator (this acts in a direction opposite
of the aerodynamic torque and tends to brake the blades). The technology of power
electronics and motor drives enables us to control the electromagnetic torque with
high precision. Usually, the electrical generator is connected to the blades with a
gearbox. The blades are connected to a low-speed shaft, whereas the generator is
connected to a high-speed shaft, as depicted in Fig. 1.5. The aerodynamic torque
is reduced from a high value at the low-speed side Ta to a low value T ′

a at the
high-speed side; for an ideal lossless gearbox, these are related by the gearbox ra-
tio G > 1: T ′

a = Ta/G. The speed of the high-speed shaft can be determined by
the simple equation of motion

J
d

dt
ωrm = T ′

a − Te (1.13)

where J is the combined moment of inertia of the blades, shafts, gearbox, and
generator rotor, reflected to the high-speed side. By controlling the generator’s
electromagnetic torque Te we can make the rotor accelerate or decelerate, to remain
as close as possible to the optimum tip-speed ratio.

In general, the annual energy yield of a wind turbine depends on the variation
of wind speed over a year and the generator’s power curve. A generator will also
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be shut down periodically for maintenance. So a wind turbine does not provide
its rated power output on a continuous basis. Rather, it provides on average an
amount of power that is significantly lower than rated. The ratio of the turbine’s
average power over its rated capacity is called the capacity factor. This is typically
on the order of 30-40% for MW-scale onshore turbines, and could be higher for
offshore turbines (where the winds are typically better).

In the following chapters we will discuss in more detail the most common topolo-
gies for the conversion of the wind’s mechanical energy to electrical energy.

1.4. Exercises

(1) A wind power plant has 100 turbines, each one rated for 1.5 MW. The
capacity factor is 35%. What is the plant’s annual energy yield?

(2) Clipper Windpower had announced (in 2007) its plans to produce the
Britannia 7.5 MW offshore wind turbine, also called the MBE (Million
Barrel Equivalent), which at the time would have been the world’s largest
turbine.
(a) Estimate the blade diameter.
(b) Estimate how many years it will take for the turbine to generate the

same amount of energy that we can obtain by “burning” 1,000,000
oil barrels in a heat engine.

(3) The turbines in large wind power plants are typically positioned in a
rectangular grid configuration, which is oriented to face the prevailing
wind direction. The distance between turbines is measured in terms of
their rotor diameter. In onshore plants, typical grid dimensions are 3–
5 diameters apart perpendicular to the prevailing wind and 5–10 rotor
diameters apart parallel to the prevailing wind. In offshore plants, turbines
are placed 7–8 diameters apart, equally in both directions. This distance
is selected to minimize the interference between turbines, and maximize
the energy obtained. In this problem, we are interested to evaluate the
land usage of wind farms. (Of course, offshore wind power does not use
‘land’ per se, but you get the point.)
(a) Estimate the average power per unit of land area, where ‘average’

implies an averaging process over time. Your answer should be:

x W/m
2
. This involves a few “back-of-the-envelope”-type calcula-

tions. Make all necessary assumptions that you need, but justify
each one adequately. Provide two answers: one for onshore, and one
for offshore wind power plants.

(b) Explain why land usage is more or less independent of turbine size.
(c) Compare your answer to the land usage of solar energy plants.



CHAPTER 2

Squirrel-Cage Induction Generators

Squirrel-cage induction generators are commonly used in the topology shown
in Fig. 2.1, also called a Type-1 wind turbine. They are connected directly to the
power system (i.e., without a frequency-controlling power electronics interface), so
their stator has ac voltages and currents of system frequency (60 Hz in the USA). A
gearbox is necessary to connect the low-speed shaft where the blades are connected
(remember, this spins at only a few rpm) to the high-speed shaft at the generator
side. The induction generator rotor spins at almost synchronous speed, which is
1800 rpm for a four-pole machine or 1200 rpm for a six-pole machine (in the USA).
So this type of wind turbine is of the fixed-speed kind.

2.1. Analyzing the equivalent circuit

The analysis of the steady-state operation of a squirrel-cage induction generator
is based on its equivalent circuit, shown in Fig. 2.2, which is provided here without
derivation [6]. This is very similar to the T-equivalent circuit of a transformer,
and it represents one phase of a symmetric Y-connected three-phase machine. The
parameters of the equivalent circuit will be given to us, and all we usually have to do
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Figure 2.1. Topology of a Type-1 wind generator. (Note: A
thyristor-based “soft-starter” power electronics converter is some-
times used, which is not shown here because it does not affect the
steady-state operation. Also not shown is the parking brake.)
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Ĩr

R0 X0Ṽs
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Figure 2.2. Equivalent steady-state circuit of the squirrel-cage
induction machine.

is analyze the circuit for different operating conditions. The physical significance of
the resistances and reactances of the equivalent circuit is similar to the transformer,
and will not be discussed here further. However, there is one parameter that is
new, namely s, which divides the resistance of the rotor R2. This represents the
machine’s slip, which is defined as

s =
ωe − ωr

ωe
, (2.1)

where ωe = 2πfe is the electrical system’s angular frequency, and ωr = P
2
ωrm is

the mechanical rotor speed multiplied by the number of pole-pairs, also called the
electrical rotor speed. (Do not confuse this P with the symbol previously used for
power; in this context it just denotes the number of magnetic poles of the machine,
which is always an even number.) The slip is a way of expressing the relative
difference in speed between the magnetic field arising from the stator currents and
the mechanical speed of the rotor, or how fast the rotor “slips by” the stator field.
In a squirrel-cage induction machine, the slip needs to be nonzero for anything
interesting to happen. Otherwise, when the rotor is synchronized with the stator
magnetic field, no currents are induced in the rotor windings, and no torque is
generated. Remember that the stator electrical quantities (voltages and currents)
have the frequency of the system (e.g., fe = 60 Hz), whereas the induced electrical
quantities in the rotor have slip frequency, sfe.

The slip is a very important parameter, because it ties the mechanical side
of things (how fast the rotor is spinning) with the electrical side. Without the
slip, the equivalent circuit becomes identical to a transformer circuit, which is a
motionless device. Note that the slip can take positive or negative values, depending
on the sign of ωe − ωr. When the slip is positive, the machine becomes a motor;
when it is negative the machine becomes a generator. One can observe that when
the slip is negative, the equivalent circuit has a resistance with a negative value
(R2/s < 0) which, instead of consuming power, generates power. Of course, the
actual rotor resistance does not change with speed; it is a constant that depends on
the machine design. Sometimes the equivalent circuit is drawn slightly differently,
with two resistances in series in the rotor side, R2/s = R2+

1−s
s R2, to make this fact

more explicit. When drawn like this, the physical significance of things becomes
more obvious. The rotor circuits consume an amount of power equal to 3I2rR2 as
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ohmic loss. The other component of power, 3I2r
1−s
s R2, arises from the process of

electromechanical energy conversion, and represents the power going to or coming
from the shaft. (There is no voltage or current source. The mechanical shaft power
is consumed or produced by a resistance!)

Example 2.1. A six-pole induction motor is connected to a 50-Hz system
(somewhere in Europe). The slip is s = 0.01, so the machine acts as a motor.

• What is the speed of the rotor in rpm?
The electrical rotor speed can be found from (2.1): ωr = (1 − s)ωe =
(0.99)(2π)(50) = (2π)(49.5) rad/s, or 49.5 Hz. The actual rotor speed is
found by taking into account the number of magnetic poles (six in this
case): frm = (49.5)/(3) = 16.5 Hz, or 990 rpm.

• What is the frequency of the currents in the stator winding?
The stator carries 50-Hz currents.

• What is the frequency of the currents in the rotor?
The rotor carries currents of frequency sfe = (0.01)(50) = 0.5 Hz. The
magnetic field of the rotor also has this frequency, but because it is spin-
ning (electrically) at 49.5 Hz, the rotor and stator magnetic fields are
synchronized, and constant electromagnetic torque is produced.

• What happens if the slip becomes −0.01?
This means that the machine is now acting as a generator. The rotor spins
faster than the stator magnetic field, at 50.5 Hz electrical, or 1010 rpm.
The stator still carries 50-Hz currents, but the rotor carries currents of
frequency −0.5 Hz. A frequency with a negative sign means that the
rotor’s magnetic field spins at the opposite direction than before (relative
to the rotor). Therefore, synchronism between the rotor and stator fields
is maintained.

We proceed with an extended example of how the induction machine equivalent
circuit can be solved for any given operating condition. Let us use the parameters of
the 15-HP electric machine from p. 293 of Kirtley’s textbook [6], which are repeated
here for convenience: P = 4 (number of poles), Vs = 138.6 V line-to-neutral rms
(240 V line-to-line), fe = 60 Hz, R1 = 0.06 Ω, R2 = 0.15 Ω, X1 = 0.44 Ω,
X2 = 0.43 Ω, X0 = 12.6 Ω. No information is provided for R0 so we will not use
this. Let us also assume that the slip is given to us, s = −0.03, so the machine is
acting as a generator. The following three methods are possible ways to solve the
equivalent circuit. What we mean by “solve” is to determine the currents that flow
in the stator and rotor windings, Ĩs and Ĩr , given the stator voltage and the slip.
Once we know the currents, we can then proceed to compute other quantities of
interest, such as the efficiency or the power factor.

2.1.1. Solving the equivalent circuit – Method 1. This method first finds
the circuit’s input impedance, and then proceeds backwards inside the equivalent
circuit. This is similar to the method of Section 13.2.1 in the textbook [6].
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(1) Find the air-gap impedance Zg by combining two parallel branches:

Zg = jX0//(R2/s+ jX2) =
1

1
jX0

+ 1
R2/s+jX2

(2.2)

Note that R2/s+ jX2 = −5+ j0.43 Ω, with a negative real part. For low
slip values, the rotor-side impedance is dominated by the resistive term.
After calculations, we obtain Zg = −4.08 + j1.98 Ω.

(2) Add the stator’s impedance to the parallel combination, to find the total
input impedance:

Zin = R1 + jX1 + Zg (2.3)

= 0.06 + j0.44− 4.08 + j1.98

= −4.02 + j2.42 Ω

(3) Find the stator current:

Ĩs =
Ṽs

Zin

(2.4)

=
138.6∠0

−4.02 + j2.42
=

138.6∠0

4.69∠148.9◦

= 29.6∠− 148.9◦ A

(4) Compute the internal voltage across the magnetizing branch:

Ṽ0 = Ṽs − Ĩs(R1 + jX1) (2.5)

= 138.6− (29.6∠− 148.9◦)(0.06 + j0.44)

= 133.9∠5.2◦ V

(5) Compute the rotor current (note the minus sign due to assumed current
direction in Fig. 2.2):

Ĩr = − Ṽ0

R2/s+ jX2

(2.6)

= · · · = 26.7∠10.1◦ A

Alternatively, the rotor current could have been obtained directly (without

the need to compute Ṽ0) with a current divider:

Ĩr = − jX0

jX0 + jX2 +
R2

s

Ĩs (2.7)

2.1.2. Solving the equivalent circuit – Method 2. This method is based
on applying KCL at the (top) node of the magnetizing branch.

(1) The sum of the currents flowing out of the node is zero,

Ṽ0 − Ṽs

R1 + jX1

+
Ṽ0

jX0

+
Ṽ0

R2

s + jX2

= 0 (2.8)

or by rearranging terms,

Ṽ0

(

1

R1 + jX1

+
1

jX0

+
1

R2

s + jX2

)

=
Ṽs

R1 + jX1

(2.9)

which can be solved for Ṽ0 yielding the same answer as before.
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(2) Compute the rotor current using (2.6).
(3) Compute the stator current:

Ĩs =
Ṽs − Ṽ0

R1 + jX1

(2.10)

2.1.3. Solving the equivalent circuit – Method 3. This method is based
on finding the Thévenin equivalent seen from the rotor, and it is similar to the one
described in Section 13.2.1.1 of the textbook [6]. Recall that this circuit is formed
by a voltage source in series with an impedance. In this case, the voltage source is
the open-circuit voltage right after the magnetizing branch (at the rotor side), and
the impedance is the one seen from that point looking to the left when the stator
terminals are short-circuited.

(1) The Thévenin voltage can be found with a voltage divider:

ṼTh =
jX0

R1 + jX1 + jX0

Ṽs (2.11)

Using the numerical values provided, we obtain

ṼTh = 133.9∠0.3◦ V

(2) The Thévenin impedance is

ZTh =
1

1
R1+jX1

+ 1
jX0

(2.12)

= 0.06 + j0.43 Ω

(3) The rotor current is found by

Ĩr = − ṼTh

ZTh +
R2

s + jX2

(2.13)

(4) Calculate the stator current by an “inverse” current divider (cf. (2.7)):

Ĩs = − jX0 + jX2 +
R2

s

jX0

Ĩr (2.14)

The advantage of Method 3 lies in the fact that it allows the quick calculation of
rotor current (in one step) for any given value of slip using (2.13), hence it is really
useful when plotting rotor-side quantities that depend on the slip, such as the shaft
power and torque.

2.1.4. Calculating power and torque. We have previously shown using the
equivalent circuit that the mechanical power that flows to the shaft (i.e., from the
electrical to the mechanical side) is given by

Pm = 3I2r
1− s

s
R2 . (2.15)

In our case, this is equal to: (3)(26.72)
(
− 1.03

0.03

)
(0.15) = −11 kW. The minus sign

means that the power flows in the opposite direction (from the mechanical to the
electrical side), which makes sense because this machine is acting as a generator.
The actual shaft power (positive for motor action, negative for generator action) is
denoted by Psh. This is equal to Pm minus friction and windage losses, Pw. In this
example, this could be, say, Pw = 500 W. The amount of friction and windage loss
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will be given, because it cannot be computed using the electrical equivalent circuit.
Therefore,

Pm = Pw + Psh , (2.16)

and Psh = −11.5 kW. A small amount of power is dissipated as heat on the rotor:

Pd = 3I2rR2 (2.17)

equal to (3)(26.72)(0.15) = 321 W. The sum of Pm and Pd can be thought to pass
through the air-gap from the stator side, and is called the air-gap power, Pag. The
equation that relates these three powers is

Pag = Pd + Pm = 3I2r
R2

s
. (2.18)

The air-gap power is about −10.7 kW in our example. There is an additional
component of ohmic loss on the stator windings, called armature dissipation, Pa:

Pa = 3I2sR1 . (2.19)

This is equal to (3)(29.62)(0.06) = 158 W. The stator power is what enters the
motor terminals:

Ps = Pa + Pag = Pa + Pd + Pw + Psh (2.20)

which equals 158 + 321 + 500 − 11500 = −10521 W. Note that if the core loss
resistance R0 had not been not neglected, it would have introduced an additional
loss component P0:

P0 = 3
V 2
0

R0

. (2.21)

The analysis of the equivalent circuit would have followed the same steps as above.
These power flow calculations are illustrated with a Sankey diagram in Fig. 2.3.
Finally, the shaft torque is calculated by

Tsh =
Psh

ωrm
=

Psh

2
P ωr

=
Psh

2
P (1− s)ωe

(2.22)

which is equal to (−11500)(2)/(1.03)/(377) = −59.2 N-m.

2.1.5. Calculating the efficiency. The machine’s efficiency can be calcu-
lated by one of the following expressions:

η =
Pout

Pin

= 1− Ploss

Pin

=
Pout

Pout + Ploss

. (2.23)

It is up to us to decide which one is more convenient. It is important to remember
that the input and output sides depend on the mode of operation! For motor action,
the input is the stator and the output is the shaft. For generator action, it is the
other way around. The shaft (input) power is −11500 W. The stator (output)
power has already been calculated as −10521 W. Alternatively, we could obtain
this by

Ps = 3Re{ṼsĨ
∗
s } (2.24)

= (3)(138.6)(29.6) cos(148.9◦) = −10.5 kW

Therefore, the machine’s efficiency is

η =
10521

11500
= 91.5% .
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Figure 2.3. Sankey diagram of power flow in a squirrel-cage in-
duction generator. (The core loss due to magnetic hysteresis and
eddy currents is ignored.)

It is important to observe that the efficiency depends on the operating point, so it
varies according to how much power is being transferred.

2.1.6. Calculating reactive power and the power factor. As electrical
engineers, we are particularly interested in the reactive power consumed by the
generator. As we will see, this type of generator typically draws a substantial
amount of reactive power from the system. This can cause problems especially in
weak grids, that is, transmission systems with relatively high impedance, because
the reactive power consumption may lead to unacceptably low voltage levels. To
improve the situation, power factor correcting capacitor banks are used, as shown
in Fig. 2.1. The reactive power consumption can be calculated by

Qs = 3Im{ṼsĨ
∗
s } (2.25)

= (3)(138.6)(29.6) sin(148.9◦) = 6.4 kVAr

We can also calculate a power factor value. It should be noted that usually we
compute power factor for loads, which consume real power. For a generator, the
power factor can be defined as

pf =
|Ps|
Ss

=
|Ps|

√

P 2
s +Q2

s

. (2.26)

So, in this example, the power factor is (10.5)/(
√
10.52 + 6.42) = 0.85.

2.1.7. Calculating the torque-speed curve. Usually the induction motor
operation is captured by a plot of the torque as a function of rotor speed. In the
previous section we explained the process of calculating torque for a given value of
slip. All we need to do to obtain the curve is to calculate the torque for a range
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of slip values, which correspond to a range of rotor speeds. For example, we could
use Method 3 to obtain the rotor current from (2.13), and combine with (2.15) and
(2.22) to obtain the following expression for torque:

Te = 3
P

2

V 2
ThR2

(sωe)
[(
RTh + R2

s

)2
+ (XTh +X2)

2
] (2.27)

where we have neglected friction and windage losses. We call this the electro-
magnetic torque to distinguish it from the true shaft torque, which accounts for
friction and windage losses. This is plotted in Fig. 2.4, and it usually looks like
this irrespective of motor size and rating. It is extremely important to understand
that a squirrel-cage machine only uses a fraction of this speed range under normal
operating conditions. For motor action, the machine operates for speeds slightly
less than synchronous, i.e., for ωr < ωe, but not very far away. This means that
the slip has a small positive value. For generator action, the machine operates for
speeds slightly above synchronous, i.e., for ωr > ωe, but not very far away. This
means that the slip has a small negative value. In addition, it operates away from
the peak points where maximum positive or negative torque is obtained, which are
called pull-out torque points. For this example, the peak points are obtained for
values of slip equal to ±0.175 (it can be shown that the two slip values that give
maximum/minimum torque are always of the form ±sm). Nevertheless, rated op-
eration is obtained typically for a much smaller value of slip, on the order of 3–5%.
Remember, our machine was rated for 15 HP = 11.2 kW, which is close to the
power output we obtained previously for a −3% slip. The actual operating speed
depends on the mechanical load on the shaft, and can be determined by intersecting
the load’s torque curve with the machine’s torque curve. (At the equilibrium, these
two torques must be exactly equal to each other.) Due to the steep slope of the
torque curve around the synchronous speed, the rotor speed does not vary much
regardless of mechanical load, and the squirrel-cage induction machine is essentially
a fixed-speed machine.

2.2. Wind energy conversion with squirrel-cage induction machines

We will now see how a squirrel-cage induction generator can be used to capture
the energy of the wind. We proceed with a simple example that illustrates the basic
ideas.

Example 2.2. Design a wind turbine based on the previously analyzed 15-HP
squirrel-cage induction generator.

What this example is asking is to determine ballpark figures for the radius of the
blades and the gearbox ratio for such a (small-size) wind turbine, under some rea-
sonable assumptions that must be made because of lack of information. What
is certain is that this will be a fixed-speed turbine, whose high-speed shaft will
be spinning a little higher than 1800 rpm, say, at 1855 rpm for rated power
(this corresponds to −3% slip). Let’s assume that: (i) the performance coef-
ficient of the blades has a maximum value Cp,max = 0.43 for an optimal tip-
speed ratio λ∗ = 7.6, and that it is expressed by a polynomial function Cp(λ) =
(
0.185λ4 − 5.28λ3 + 40.7λ2 − 28.6λ− 6.6

)
× 10−3 for 3 ≤ λ ≤ 13, which is plotted

in Fig. 2.5; (ii) rated electrical power 11 kW is obtained when the wind speed is
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Figure 2.4. Torque-speed characteristic of a squirrel-cage induc-
tion machine.

10 m/s; (iii) rated power is obtained under the optimal tip-speed ratio; (iv) the
gearbox efficiency is ηgb = 90%; (v) the generator efficiency is ηg = 91.5%. We use
a modified version of (1.11) that reflects our assumptions,

Ps = ηgbηg
1

2
Cp,maxρπR

2
dv

3
1

which can be solved for the radius: Rd = 4.0 m. The gearbox ratio can be found
from the optimal tip-speed ratio assumption, which requires that λ∗ = ωwRd/v1,
so: ωw = (7.6)(10)/(4) = 19 rad/s. The gearbox ratio is: G = ωrm/ωw =
(1.03)(188.5)/(19) = 10.2.

It is useful to plot the electromagnetic torque-speed characteristic of this ma-
chine, and superimpose the mechanical torque from the wind, shown in Fig. 2.6.
This can be achieved with a simple Matlab script, like the one appended below.
From this, one can make several interesting observations: (i) the operating condi-
tion for any wind speed is found by the intersection of the corresponding red curve
(mechanical torque) with the blue line (electromagnetic torque); (ii) the generator
produces power from about 6 m/s to 10 m/s (the rated wind speed); (iii) the power
of the wind for lower wind speeds (e.g., 4 m/s) cannot be harvested; (iv) the inter-
section of the 10 m/s curve with the electromagnetic torque does not correspond to
the peak value of the torque, even though we assumed that this point corresponds
to the peak of the Cp(λ) curve; at this point, maximum power is extracted from the
wind but this happens at a value of torque somewhat smaller than its maximum.
This can be verified by plotting the power vs. speed curve, shown in Fig. 2.7. Our
design is correct; the wind turbine does indeed output rated electrical power 11 kW
when the wind speed is 10 m/s. Nevertheless, for wind speeds less than 10 m/s,
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Figure 2.5. Blades’ coefficient of performance for the turbine of Example 2.2.
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Figure 2.6. Electromagnetic torque-speed characteristic and me-
chanical torque for wind speeds v1 = {6, 8, 10, 12} m/s.

the power is less than the corresponding peak values. It turns out that we can do
better using the topology that is described in the next chapter.

1 % MATLAB SCRIPT THAT COMPUTES TORQUE & POWER VS. SPEED

% machine parameters

we = 2*pi*60; %rad/s

5 R1 = 0.06; %ohm

R2 = 0.15;
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Figure 2.7. Electromagnetic power-speed characteristic and me-
chanical power for wind speeds v1 = {6, 8, 10, 12} m/s.

X1 = 0.44;

X2 = 0.43;

X0 = 12.6;

10 P = 4;

Vs = 138.6; % l-n rms

Pwloss = 500; % friction & windage loss

15 % gearbox parameters

G = 10.2;

eta_gb = 0.9;

% blades & air

20 R = 4.0;

rho = 1.25;

Ad = pi*R^2;

% wind speed

25 vw = 6:2:12;

% rotor speed

wr = we*linspace(0,2,500);

s = (we - wr)/we;

30

% Thevenin voltage & impedance

Vth = j*X0/(R1 + j*X1 + j*X0)*Vs;

Zth = 1/(1/(R1 + j*X1) + 1/(j*X0));

Rth = real(Zth);
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35 Xth = imag(Zth);

% torque and power vs. speed characteristics

Te = 3*P/2*abs(Vth)^2*R2./(s*we)./...

((Rth + R2./s).^2 + (Xth + X2)^2);

40 Pe = Te.*wr*2/P;

figure(1), clf

% ... plot torque vs. speed commands go here ...

45 figure(2), clf

% ... plot power vs. speed commands go here ...

% wind power and torque

wrm = 2/P*wr;

50 ww = wrm/G; % blade speed

for k=1:length(vw)

lambda = ww*R/vw(k);

Cp = SCIG_Cp_fun(lambda); % this function computes Cp(lambda)

55 Pw = 0.5*rho*Cp*Ad*vw(k)^3; % wind power

Psh = -Pw*eta_gb; % shaft power at the high-speed side

Pm = Psh + Pwloss; % mechanical power entering the

% equivalent circuit

Tm = Pm./wrm; % mechanical torque

60

% ...superimpose wind torque on figure(1) commands go here...

% ...superimpose wind power on figure(2) commands go here...

65 end

We are also interested in the generator’s terminal quantities, such as the stator
current, the power factor, and the efficiency. These are plotted in Fig. 2.8. An
important thing to observe is that the power factor will be quite low, especially
for low and moderate wind speeds, hence necessitating the installation of a power
factor correcting capacitor bank. We draw the following conclusions from the above
analysis of the Type-1 topology: (i) It is essentially a fixed-speed turbine, so it does
not harvest the maximum possible energy from the wind. Nevertheless, in some
turbines the number of magnetic poles can be changed dynamically by reconfiguring
the connection of the stator windings, thus allowing operation over a wider wind
speed range. (ii) It is a simple topology that uses a low-maintenance machine
(a squirrel-cage induction generator) but requires capacitor banks to improve the
power factor. (iii) Because the rotor speed remains constant, variations in wind
power due to fluctuating wind speed pass straight through to the electrical system
and can cause undesirable effects, such as voltage flicker. (iv) When faults happen in
the power grid (such as abrupt voltage sags due to short-circuits), the squirrel-cage
machine tends to draw relatively large transient currents, which can be problematic.
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Figure 2.8. Plots of stator current (rms value), power factor,
stator power and shaft power, and efficiency η = Ps/Psh.

One must be extremely careful not to use the equivalent circuit for such analyses,
because it is only valid for steady-state operation but rather useless for dynamic
analysis of electric machinery.

2.3. Exercises

(1) A three-phase four-pole squirrel-cage induction generator is connected di-
rectly to a 60-Hz power system, and is driven by a prime mover that
provides constant mechanical torque. The generator’s speed is 1820 rpm.
Suddenly, a voltage sag occurs; the new voltage rms value is related to
the old voltage rms value by V2 = 0.9V1. The new value of speed is
approximately:
(a) 1805 rpm
(b) 1815 rpm
(c) 1825 rpm
(d) 1835 rpm

(2) Modify the equivalent circuit analysis methods of Chapter 2, this time
including a core loss resistor R0 = 10 Ω. Also modify the Matlab code
and re-plot Figs. 2.6 and 2.7.



CHAPTER 3

Wound-Rotor Induction Generators

This type of wind turbine, also referred to as a Type-2 turbine, uses a wound-
rotor induction generator. This is different from the squirrel-cage induction genera-
tor because it has windings on the rotor that are not short-circuited, and which can
be accessed via slip rings and brushes, as shown in Fig. 3.1. The rotor windings
are then connected to an external three-phase resistor bank. The resistor bank
contains variable resistors, which we can control from zero to maximum resistance
Re per phase. The control logic will be described in more detail later on. For
higher reliability, we avoid using mechanically varying resistors. Instead, this con-
trol is achieved with a suitable power electronics converter; the actual resistance
has a fixed value, but the electronics make it “look like” it is variable from the
rotor side. A variant of this topology is one where the external resistors and power
electronics are mounted on the machine’s rotor. This eliminates the slip rings and
brushes, which require regular maintenance, but now control signals must be trans-
mitted wirelessly to the rotor for adjusting the external resistance, and extra heat
is dissipated inside the rotor (this makes cooling the machine more challenging).
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Figure 3.1. Topology of a Type-2 wind generator. (Note: A
thyristor-based “soft-starter” power electronics converter is some-
times used, which is not shown here because it does not affect the
steady-state operation. Also not shown is the parking brake.)
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Figure 3.2. Equivalent steady-state circuit of the wound-rotor
induction machine.

3.1. Analyzing the equivalent circuit

The equivalent circuit of this type of generator is shown in Fig. 3.2. There are
two notable differences from the squirrel-cage equivalent circuit of Fig. 2.2: (i) The
first difference is that there is a variable external resistance R′

e/s connected at the
rotor side. Its variability stems from two sources, namely, the slip and the fact that
we can control its value Re. (ii) The second difference is that the rotor parameters

are now primed, e.g., X ′
2 or Ĩ

′
r. This is because all rotor quantities must be reflected

to the stator side, in exactly the same manner as for the transformer’s equivalent
circuit. The transformation depends on the turns ratio between the stator and
rotor windings. In particular, if the external resistor has an actual value of Re Ω,
then the value used in the equivalent circuit is R′

e = (Ns/Nr)
2Re. Similarly, the

reflected rotor current is Ĩ ′r = (Nr/Ns)Ĩr .
This circuit can be solved using the same methods that were applied to the

squirrel-cage machine. We just need to substitute R2 by R′
2,tot = R′

2 + R′
e in the

equations. In particular, the rotor circuits and the external resistance waste an
amount of power equal to 3I ′2r R′

2,tot as heat. The other component, 3I ′2r
1−s
s R′

2,tot,
is related to electromechanical energy conversion. The salient characteristic of a
wound-rotor induction generator is that its torque-speed curve can be modified by
adjusting the value of external resistance. This is classically illustrated with a plot
such as the one in Fig. 3.3, which was obtained assuming that we have a 15-HP
wound-rotor machine with the same parameters as the squirrel-cage machine in the
previous chapter. The torque-speed curve is “stretched” outwards by increasing
Re. It turns out that the peak points occur for values of slip that are directly pro-
portional to R′

2+R′
e, and that the corresponding pull-out torque remains constant.

(Exercise 1 asks you to prove this.)

3.2. Wind energy conversion with wound-rotor machines

Nevertheless, for wind energy conversion, we are more interested in the power-
speed curve, which has the interesting shape shown in Fig. 3.4. Apparently, we can
use this property to operate this generator as a variable-speed wind turbine, which
will allow us to capture more energy out of the wind stream. What we want is
to match the wind’s power output at any given wind speed with the appropriate
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external resistance in order to operate at the optimum tip-speed ratio. The example
that follows shows how to design a wind turbine to achieve this.
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Table 3.1. Setpoints of external resistance, stator power output,
and efficiency.

vw (m/s) R′
e (Ω) −Ps (kW) ηg

6–8 0 1.8–5.3 0.77–0.89
8.5 0.4 6.3 0.87
9 0.75 7.4 0.83
9.5 1.05 8.2 0.79
10 1.33 9 0.76

Example 3.1. Design a wind turbine based on a 15-HP wound-rotor induction
generator.

This is similar to Example 2.2, but now we will use the variable external resistance
to vary the slip. Let’s assume that when the wind speed is 8 m/s we operate
with the optimal tip-speed ratio, and with a small slip that we can neglect in the
calculation (its effect will be insignificant). For wind speeds less than 8 m/s the
external resistance will be kept to zero, but as the wind speed increases further
we will start increasing Re. If the rotor speed is close to synchronous for 8 m/s,
then for 10 m/s it will have to be 10/8 = 1.25 times higher, or the slip will be
−25%. Let’s also maintain the same radius, Rd = 4 m. Other parameters, such
as the performance coefficient function or the gearbox’s efficiency, will be the same
as before. (A more accurate calculation would use a gearbox efficiency that varies
with speed, but we will assume it is constant here for simplicity.) We can first find
the gearbox ratio from λ∗ = ωwRd/v1, so: ωw = (7.6)(8)/(4) = 15.2 rad/s. The
gearbox ratio is then: G = ωrm/ωw = (188.5)/(15.2) = 12.4. The next step is
to determine the value of R′

e for each wind speed for maximum power extraction.
This can be done with a simple trial-and-error process. The results are entered in
Table 3.1, and are also shown in graphical form in Fig. 3.5.

Unfortunately, a critical look at the results of Example 3.1 reveals that the per-
formance is perhaps unacceptable. The physics of induction machines are working
against us. Even though we are harvesting slightly more energy from the wind than
before, this does not reach the stator side because it is dissipated as heat (ohmic
loss) in the rotor-side circuits (especially for the higher wind speeds). In fact, we
can derive two simple formulas that can explain what is happening quite clearly.
By combining (2.15), (2.17), and (2.18), it can be seen that

Pag

Pm
=

1

1− s
(3.1)

and
Pag

Pd
=

1

s
(3.2)

For small negative values of slip, almost all of the mechanical shaft power reaches
the air gap. But as the slip starts to decrease (becomes more negative), the losses
in the rotor increase. In other words, the machine’s rotor is more efficient when the
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rotor speed is closer to synchronous speed. In this example, we let the slip go as far
as −25%, which led to a significant reduction in efficiency. A better design would
be one where the slip is limited to a smaller range, say, no less than −10%, and this
is what is typically done in practice; however, this kind of permissible speed range
is not optimum for a wind turbine application. The type of turbine described in
the next chapter can operate over a much wider speed range. Finally, it should be
noted that the speed range of the Type-2 turbine can be improved by changing the
number of magnetic poles (thus changing the synchronous speed), which is achieved
by altering the connections of the stator windings on the fly.

3.3. Exercises

(1) For a wound-rotor induction machine, show that the slip values that cor-
respond to maximum positive or negative torque are of the form sm =
±(R′

2 + R′
e)C, where C > 0 is a constant that does not depend on the

rotor-side resistance. Also show that the maximum torque values do not
depend on rotor-side resistance. [Hint: Use (2.27) to solve ∂Te/∂s = 0.]

(2) Verify that the numbers in Table 3.1, on page 26, are correct.
(3) Rework example 3.1 so that the slip does not become less than −10%,

as discussed on page 27. Recompute the performance parameters shown
in Table 3.1. Also compute the power output and efficiency for the same
range of wind speed (compute discrete values every 1 m/s) for the Type-1
turbine of Chapter 2 and compare with the Type-2 turbine performance.



CHAPTER 4

Doubly-Fed Induction Generators

The topology of a doubly-fed induction generator (DFIG), also called a Type-3
turbine, is shown in Fig. 4.1. Similar to the Type-2 turbine, this topology uses a
wound-rotor induction generator, but the difference lies in what is connected to
the rotor. The DFIG’s rotor is actually connected to the power system via an
appropriate power electronics topology. The most common topology used is a back-
to-back ac-dc-ac converter, which comprises two separate bi-directional converters
coupled with a dc link. More details about the operation of the power electronics
can be found in Section 12.5.4.2 of the textbook [6], as well as in books dedicated
to the subject of power electronics [8–10]. The role of the rotor-side converter,
which operates based on an advanced motor drive control, is dual: (i) it controls
the frequency of the currents that flow in the rotor windings, so that synchronism
is maintained between the stator and rotor magnetic fields at all times (this is
achieved automatically by the laws of physics in the squirrel-cage and wound-rotor
induction machine with external resistor, but now it must be done “manually”);
(ii) it controls the magnitude and phase of the currents that flow in the rotor
windings, and indirectly by doing this it controls the real and reactive power that
the wind turbine provides to the system. In the analysis that will follow we will
discuss some of the basic principles of its control strategy. We will not, however,
delve into the operation of the grid-side converter in detail. It suffices to say that
the grid-side converter has the role of transferring power to and from the rotor
side, thus maintaining the dc-link capacitor at constant voltage. Both converters
will be treated as ideal voltage sources, capable of generating any arbitrary voltage
phasor (up to a maximum voltage limit that depends on the dc-link voltage) of
arbitrary frequency (especially necessary for the rotor-side converter). The step-up
transformer is a three-winding transformer, with two low-voltage windings for the
stator and rotor, and a medium-voltage winding for connection to the wind farm
collection system.

4.1. Insights from the DFIG’s equivalent circuit

As usual we proceed with the equivalent circuit of this topology, shown in
Fig. 4.2. This is the same as the circuit of the Type-2 topology, with one differ-
ence: the external resistor is now replaced by the rotor voltage divided by the slip,
Ṽ ′
r/s. Also note that this voltage is primed, i.e., reflected to the stator side, so its

relationship with the actual voltage at the rotor terminals is Ṽ ′
r = (Ns/Nr)Ṽr. In

the equivalent circuit, all voltages and currents have the same frequency, which is
the stator (power grid) frequency. In reality the rotor circuits have voltages and
currents of slip frequency, as was discussed previously for the squirrel-cage machine.
There is, however, a small problem with this circuit that should be pointed out:
it is valid for all nonzero slip values but breaks down for s = 0 due to divisions

28
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Figure 4.2. Equivalent steady-state circuit of the doubly-fed in-
duction generator.

by zero. This is a real issue for the DFIG because—as we will see in the ensuing
analysis—it operates for a range of slips from negative to positive values (so zero is
included). For s = 0, the rotor-side converter generates a dc voltage, and the rotor
circuits have dc currents. Let us not worry about this for the moment; we will deal
with this issue later on.

One of the main reasons why the DFIG has become a very common topology
for wind energy conversion becomes obvious once the flows of power are examined.
We will ignore R0 in the analysis. First, we write expressions for the stator and
rotor voltages by looking at the equivalent circuit and applying Kirchhoff’s voltage
law twice:

Ṽs = R1Ĩs + jX1Ĩs + jX0Ĩm (4.1)
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Ṽ ′
r = R′

2Ĩ
′
r + jsX ′

2Ĩ
′
r + jsX0Ĩm (4.2)

where Ĩm = Ĩs + Ĩ ′r . Note that the rotor-side voltage equation was obtained by
multiplying both sides of the KVL equation by s, so that it no longer is in the
denominators. We are interested in the real powers that flow into the stator and
rotor side, Ps and Pr, respectively. These are

Ps = 3Re{ṼsĨ
∗
s } (4.3)

Pr = 3Re{Ṽ ′
r Ĩ

′∗
r } (4.4)

so by using the voltage equations above:

Ps = 3R1I
2
s + 3Re{jX0ĨmĨ∗s } (4.5)

Pr = 3R′
2I

′2
r + 3Re{jsX0ĨmĨ ′∗r } (4.6)

or

Ps = 3R1I
2
s + 3Re{jX0(Ĩs + Ĩ ′r)Ĩ

∗
s } (4.7)

Pr = 3R′
2I

′2
r + 3Re{jsX0(Ĩs + Ĩ ′r)Ĩ

′∗
r } (4.8)

and finally

Ps = 3R1I
2
s + 3Re{jX0Ĩ

′
r Ĩ

∗
s } (4.9)

Pr = 3R′
2I

′2
r + 3Re{jsX0ĨsĨ

′∗
r } (4.10)

The quantity Ps − 3R1I
2
s is what flows to the rotor via the air gap; previously we

named this the air gap power Pag. The quantity Pr−3R′
2I

′2
r is called the slip power

Psl. Using some elementary complex algebra manipulations, it can be shown that

Psl = −sPag (4.11)

and if we ignore the relatively small resistive losses we can also approximately say
that

Pr ≈ −sPs (4.12)

Obviously, the mechanical power must be (from conservation of energy considera-
tions)

Pm = Pag + Psl = (1 − s)Pag (4.13)

From this analysis we can draw the following conclusions:

• When s > 0 (this is called sub-synchronous operation) the rotor side
power has opposite sign than the stator side power. So, for generator
action (Ps < 0) the rotor is absorbing power.

• When s < 0 (this is called super-synchronous operation) the rotor side
power has the same sign as the stator side power. So, for generator action
(Ps < 0) the rotor is generating power.

• The slip power increases with |s|. In the Type-2 turbine, this power was
lost as heat in the external resistance. In the Type-3 turbine, we can
recover this power using the power electronics, and feed it back to the
system. This permits efficient operation for much higher values of slip
than before.

• The power coming from the shaft (for generator action) splits between
the stator and rotor sides. For small values of |s|, the stator side carries
the bulk of the power. Therefore, the power electronics that are connected
to the rotor side need to be rated for only the slip power! The use of a
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partially rated converter leads to significant cost savings, and simplifies the
design of the power electronics. It is in fact one of the main advantages
that have led to the prevalence of the Type-3 wind turbine. Typically,
commercially available DFIG turbines operate within a ±30% slip range.

• Something very interesting takes place for sub-synchronous operation.
The situation is easier to understand with a numerical example. Let’s
assume that the shaft power is ‘−1’ (generator action, units omitted),
and that the slip is 20%. Then the air gap power will be (−1)/(1− 0.2) =
−1.25, which implies that the stator outputs more power than is generated
from the mechanical side! This extra power comes from the rotor side,
which absorbs it from the system. In other words, an amount of power
equal to ‘0.25’ circulates within the topology.

• For super-synchronous operation, the situation is as follows. Let’s assume
that the shaft power is ‘−1’ (generator action, units omitted), and that
the slip is −20%. Then the air gap power will be (−1)/(1 + 0.2) = −0.83
and the rotor power is −0.17. In this case, the shaft power splits in two
parts, with the bulk of the power flowing through the stator side. The
two components of power meet again at the transformer, where they are
combined and supplied to the power system.

The special case of synchronous speed operation (s = 0) appears to be prob-
lematic, due to a division by zero in the equivalent circuit. However, when we wrote
the rotor voltage equation in the form (4.2), we indirectly solved this issue. In this
special case, the rotor voltage equation becomes

Ṽ ′
r = R′

2Ĩ
′
r (4.14)

So, at this operating point, the rotor-side voltage needs to be just enough to drive
the current through the rotor winding resistance, and the rotor-side converter sup-
plies only a small amount of power equal to the ohmic loss on the rotor-side resis-
tance. It is important to understand that, even if the above equation uses phasors
that represent ac quantities, in reality the rotor quantities are dc when s = 0. For
example, the rotor’s line-to-neutral voltages and currents are

v′ar =
√
2V ′

r cos(θ) = R′
2i

′
ar (4.15)

v′br =
√
2V ′

r cos(θ − 2π
3
) = R′

2i
′
br (4.16)

v′cr =
√
2V ′

r cos(θ +
2π
3
) = R′

2i
′
cr (4.17)

where θ is a constant angle. These equations show the relationship between the dc
values and the rms values (V ′

r , I
′
r) of the fictitious ac quantities that are used in

the equivalent circuit.

4.2. Wind energy conversion with DFIGs

A typical power vs. wind speed characteristic of a Type-3 wind turbine is shown
in Fig. 4.3 [1,4], which is a modified version of Fig. 1.4. The following operating
modes are present:

• From point B to C, the turbine’s rotational speed is variable, and the
control system tries to maintain the optimum tip-speed ratio by keeping
the blades’ ωw proportional to v1. The power production follows a quasi-
cubic trajectory due to the losses in the drivetrain. The generator will
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Figure 4.3. Type-3 turbine power output as a function of wind speed.

rotate at synchronous speed for a wind speed somewhere in between the
two limits, and in sub-synchronous or super-synchronous mode otherwise.

• From point A (cut-in speed) to B, the turbine operates as a fixed-speed
machine, at minimum speed ωw,min. Therefore, the tip-speed ratio in this
range is suboptimal, and the power production deviates from its ideal
cubic trajectory (represented by the dotted curve). The same thing hap-
pens from point C to D (rated speed), where the speed is kept constant
at its maximum value ωw,max. One reason why these two limits appear
is because the rotor-side converter might not have sufficient voltage ca-
pability to drive the currents for larger speed deviations, even for the
low-speed, low-power condition. (The maximum voltage that a converter
can generate is related to the voltage level of the dc link. This is a de-
sign parameter and it is limited by what the dc-link capacitors can safely
handle. Note that the dc-link voltage should be high enough to drive the
currents required for both the rotor-side and the grid-side converter. If
the three-winding transformer has unequal turns ratios, the grid-side con-
verter voltage can be lower than the stator winding voltage.) A simple
justification of this can be obtained from the equivalent circuit, by ne-
glecting stator and rotor resistance and leakage inductances, which leads
to Ṽ ′

r ≈ sṼs or V ′
r ≈ |s|Vs. Bigger deviations from synchronous speed cor-

respond to proportionally bigger absolute values of slip and rotor voltage.
• At point D, the generator’s rated power is reached, so from point D to E
(cut-out speed) the blades are pitched to maintain constant power output.

It should be noted that, in reality, the power output does not follow such a nice
and smooth trajectory as shown in Fig. 4.3. Due to the constant fluctuations of
wind speed, the power output looks like a cloud around the ideal curve.

4.3. Controlling a DFIG

Now let us take a look at how the DFIG is controlled. To this end, we will
consider the rotor-side converter acting as a controllable current source, which
can inject the appropriate currents in the rotor windings, Ĩ ′r. We can control the
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current’s magnitude (up to a maximum value) and angle, which is measured relative
to the stator voltage. Without loss of generality, we assume that the stator voltage
phasor is the angular reference, Ṽs = Vs∠0, and that the rotor current phasor is
Ĩ ′r = I ′r∠θir = I ′ra + jI ′rb. The stator voltage magnitude Vs is imposed from the
larger power system that the turbine is connected to, and for this analysis it will
be assumed constant. We will also ignore the effect of R0. Let’s re-write the stator
voltage equation (4.1) as follows:

Ṽs = (R1 + jXs)Ĩs + jX0Ĩ
′
r (4.18)

where we defined Xs = X0 +X1. This can be solved for the stator current

Ĩs =
Ṽs − jX0Ĩ

′
r

R1 + jXs
(4.19)

Typically, R1 is much smaller than Xs, so an excellent approximation is

Ĩs ≈
Ṽs − jX0Ĩ

′
r

jXs
(4.20)

The complex power consumed by the generator’ stator is Ss = 3ṼsĨ
∗
s , which be-

comes

Ss ≈ 3Vs
Vs + jX0(I

′
ra − jI ′rb)

−jXs
(4.21)

= j3Vs
(Vs +X0I

′
rb) + jX0I

′
ra

Xs
(4.22)

The stator real and reactive power are then

Ps ≈ −3
X0

Xs
VsI

′
ra (4.23)

Qs ≈ 3Vs
Vs +X0I

′
rb

Xs
(4.24)

From these equations we can see that by controlling the rotor current phasor we
can actually control the power output of the turbine! In fact, we can control
independently the stator’s real and reactive power by adjusting the two components
of the rotor current, I ′ra and I ′rb. For generator action, I

′
ra must be always positive,

and its exact value depends on the wind speed (i.e., on how much power must be
absorbed from the wind). We can also make the stator absorb or generate reactive
power; if I ′rb > −Vs/X0 the stator absorbs reactive power, and it generates reactive
power otherwise. This capability is very important, because the DFIG can operate
with (controllable) power factor close to unity, so it is not necessary to install power
factor correcting capacitor banks, which were necessary for Type-1 and Type-2
turbines. Some turbines also provide the capability to power system operators to
remotely set the desirable reactive power consumption or generation level, according
to the needs of the power system (for example, in order to regulate the voltage level
in the transmission system, similarly to what is done with the excitation systems
of traditional synchronous generators). In practice, the positioning of the rotor
current phasor at the appropriate angle θir requires measurement of the stator
voltage angle using a phase-locked loop and measurement of the rotor angle using
a position encoder.
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Example 4.1. Consider a 1.8-MWDFIG wind turbine, whose stator is rated for
690 V (line-to-line), 60 Hz. The parameters of the generator areX1 = X ′

2 = 0.04 Ω,
X0 = 0.9 Ω, R1 = R′

2 = 2 mΩ, and it has P = 6 poles. The machine’s total
hysteresis, eddy current, friction, and windage loss is 4 kW. Analyze the following
two operating conditions, assuming rated stator voltage: (i) Pout = 0.6 MW, Qs =
0, for s = 0.19; (ii) Pout = 1.4 MW, Qs = 0.1 MVAr, for s = −0.19.

(i) The first operating point corresponds to sub-synchronous operation. For a
60-Hz, 6-pole machine, synchronous speed is 1200 rpm. So the generator’s
speed is (1−0.19)(1200) = 972 rpm. Using the approximation Pr ≈ −sPs,
we obtain Pout = −(Ps + Pr) ≈ −(1− s)Ps. So Ps ≈ −(0.6)/(1− 0.19) =
−0.74 MW (negative sign because the stator is generating power) and
Pr ≈ 0.14 MW (positive sign because the rotor is absorbing power). An
amount of power equal to 140 kW is circulating within the generator and
the power electronics.

The rotor current can be computed using (4.23) and (4.24):

I ′ra ≈ − PsXs

3X0Vs
=

(740000)(0.94)

(3)(0.9)(690/
√
3)

= 646.7 A

and

I ′rb ≈
QsXs

3X0Vs
− Vs

X0

= −690/
√
3

0.9
= −442.6 A

So, the rotor current phasor is Ĩ ′r = 646.7− j442.6 = 783.7∠− 34.4◦ A. It
is interesting to note the relatively large value of current (442.6 A) that is
required to maintain unity power factor at the stator side. This current
component compensates the reactive power loss inside the generator. The
stator current can be computed from (4.20):

Ĩs ≈
(690/

√
3)− j(0.9)(646.7− j442.6)

j0.94
= 619.2∠180◦ A

Since Ṽs = (690/
√
3)∠0, this yields a real power production from the

stator Ps = −740 kW. The rotor voltage can be found using (4.2):

Ṽ ′
r = (0.002 + j(0.19)(0.94))(646.7− j442.6)+

+ j(0.19)(0.9)(−619.2) = 80.8∠6.2◦ V

The real power absorbed by the rotor is

Pr = 3V ′
r I

′
r cos(θvr − θir)

= (3)(80.8)(783.7)(cos 40.6◦) = 144.2 kW

which is close to the value estimated above (140 kW). This is supplied by
the rotor-side converter. The grid-side converter will have to absorb this
same amount plus an additional component to compensate for internal
losses in the power electronics. For example, if we assume that each
converter is 96% efficient, the amount drawn by the grid-side converter
is (144.2)/(0.962) = 156.5 kW. The total real power provided to the
system by the wind turbine is then (740) − (156.5) = 583.5 kW, which
turns out to be slightly less than the original estimate of 600 kW. This is
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because we are now accounting for the various losses in the system with
more accuracy. If the wind turbine really “needs” to provide 600 kW to
the system, this can be readily achieved by its control system that can
quickly adjust the rotor current I ′ra upwards to achieve this goal. The
ohmic loss on the rotor is

3(I ′r)
2R′

2 = (3)(783.72)(0.002) = 3.7 kW

The ohmic loss on the stator is

3(Is)
2R1 = (3)(619.22)(0.002) = 2.3 kW

Therefore, the slip power is (144.2)− (3.7) = 140.5 kW, the airgap power
is (−740)− (2.3) = −742.3 kW, and the mechanical power is (−742.3) +
(140.5) = −601.8 kW. If we add the hysteresis, eddy current, friction,
and windage loss, we obtain the total input power to the generator at
its shaft, 605.8 kW. The combined efficiency of the generator and power
electronics is (583.5)/(605.8) = 96.3%.

The reactive power absorbed by the rotor is

Qr = 3V ′
r I

′
r sin(θvr − θir)

= (3)(80.8)(783.7)(sin 40.6◦) = 123.6 kVAr

This is supplied by the rotor-side converter. Note, however, that the
grid-side converter does not have to absorb the same amount of reactive
power from the grid (unlike the real power, there is no physical law that
warrants the conservation of reactive power flowing through two back-
to-back converters). In fact, the reactive powers of the rotor-side and
grid-side converters are completely independent from each other. The
grid-side converter can be commanded to absorb (or generate) its own
reactive power, Qg. The total reactive power absorbed by the combination
of generator and power electronics is Qs+Qg. Of course, the total reactive
power absorbed from the power system is somewhat greater than this due
to the presence of the step-up transformer, which consumes some amount
of reactive power as well. If we knew the impedance of this transformer,
we would be able to calculate this. The advantage of using the rotor-
side converter instead of the grid-side converter for reactive power control
is that it acts as a reactive power “amplifier!” The rotor-side reactive
power is essentially amplified by a factor close to 1/s. To see this, you
may compare the reactive power that is provided (123.6 kVAr) with the
amount that appears at the stator side (3Vs(X0/Xs)I

′
rb = −506.4 kVAr),

exactly balancing the 3V 2
s /Xs consumption amount in this case.

(ii) The second operating point corresponds to super-synchronous operation.
The generator’s speed is (1 + 0.19)(1200) = 1428 rpm. Now the powers
are divided as follows: Ps ≈ (−1.4)/(1 + 0.19) = −1.18 MW and Pr ≈
−0.22 MW (negative sign because the rotor is also providing power).

The rotor current can be computed using (4.23) and (4.24):

I ′ra ≈ − PsXs

3X0Vs
=

(1180000)(0.94)

(3)(0.9)(690/
√
3)

= 1031.2 A
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and

I ′rb ≈
QsXs

3X0Vs
− Vs

X0

=
(100000)(0.94)

(3)(0.9)(690/
√
3)

− 690/
√
3

0.9
= −355.2 A

So, the rotor current phasor is Ĩ ′r = 1031.2− j355.2 = 1090.7∠− 19.0◦ A.
The stator current can be computed from (4.20):

Ĩs ≈
(690/

√
3)− j(0.9)(1031.2− j355.2)

j0.94
= 990.9∠− 175.2◦ A

Since Ṽs = (690/
√
3)∠0, this yields a real power production from the

stator Ps = −1.18 MW. The rotor voltage can be found using (4.2):

Ṽ ′
r = (0.002 + j(−0.19)(0.94))(1031.2− j355.2)+

+ j(−0.19)(0.9)(990.9∠− 175.2◦) = 77.2∠− 168.0◦ V

Due to the negative slip, the rotor voltage phasor has dramatically changed
direction from the previous case (almost a 180◦ rotation).

The real power generated by the rotor is

Pr = 3V ′
r I

′
r cos(θvr − θir)

= (3)(77.2)(1090.7)(cos(−149◦)) = −216.5 kW

which is close to the value estimated above (220 kW). If we assume that
each converter is 96% efficient, the power exiting the grid-side converter is
(216.5)(0.962) = 199.5 kW. The total real power provided to the system
by the wind turbine is then (1.18)+(0.1995) ≈ 1.38 MW, which is slightly
less than the original estimate of 1.4 MW. The ohmic loss on the rotor is

3(I ′r)
2R′

2 = (3)(1090.72)(0.002) = 7.1 kW

The ohmic loss on the stator is

3(Is)
2R1 = (3)(990.92)(0.002) = 5.9 kW

Therefore, the slip power is (−216.5) − (7.1) = −223.6 kW, the airgap
power is (−1180) − (5.9) = −1185.9 kW, and the mechanical power is
(−1185.9) + (−223.6) = −1409.5 kW. If we add the hysteresis, eddy
current, friction, and windage loss, we obtain the total input power to
the generator, 1413.5 kW. The combined efficiency of the generator and
power electronics is (1380)/(1413.5) = 97.6%.

The reactive power absorbed by the rotor is

Qr = −3V ′
rI

′
r sin(θvr − θir)

= −(3)(77.2)(1090.7)(sin(−149◦)) = 130.1 kVAr

It is important to understand that when the slip is negative (during super-
synchronous operation), the electrical frequency of the rotor currents also
becomes negative, because it is equal to sωe. A negative frequency can
be interpreted as a reversal of the direction of rotation of the rotor pha-
sors, which now are spinning clockwise (remember, phasors are normally
rotating counter-clockwise). So, in this example, the rotor current is still
lagging the voltage by 149◦, and the rotor is consuming reactive power.
This explains the minus sign that appeared in the reactive power equation
above.
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Table 4.1. Wind speed statistical data and turbine power pro-
duction data for Problem 1.

vw (m/s) probability (%) power from turbine (kW)
0–4 — 0
4–5 8 100
5–6 9 200
6–7 9.5 320
7–8 9.5 550
8–9 9 810
9–10 8.5 1150
10–11 7.5 1410
11–12 6.5 1660
12–13 5 1770
13–25 12 1800
> 25 — 0

We conclude this chapter by summarizing the salient points of Type-3 (DFIG)
wind turbines’ operational characteristics: (i) They are variable-speed turbines,
and so can harvest more of the available wind energy. (ii) The ability to operate
at reduced rotor speeds also improves aerodynamic noise emissions. (iii) They only
need a partially rated power electronics converter. (iv) Due to the variable-speed
operation, the combined rotating inertia of the blades, hub, gearbox, shafts, and
generator rotor acts as a kinetic energy storage buffer; so the fast variations of
the wind speed are filtered and do not pass directly through to the power system,
thus reducing voltage flicker and other related interconnection problems. (v) The
power electronics provide the capability to control the turbine’s reactive power
output as well. (vi) Unlike the Type-1 and Type-2 turbines, the DFIGs can remain
connected to the power system during faults, and in some cases will support the
power system recovery. This capability is called low-voltage ride-through, and is
nowadays mandated by grid interconnection regulations worldwide.

4.4. Exercises

(1) At a candidate site that is under consideration for a possible wind power
plant development, the statistics of wind speed at hub height are pro-
vided in Table 4.1. The plant will contain 1.8-MW Type-3 turbines; their
average power production for each wind speed range is also provided in
the table (this is obtained from the turbine’s data sheet). Estimate the
annual energy yield of each turbine (in MWh) and the capacity factor.

(2) Consider a DFIG wind turbine, whose stator is rated for 690 V (line-to-
line), 60 Hz. The parameters of the generator are X1 = X ′

2 = 0.05 Ω,
X0 = 1 Ω, R1 = R′

2 = 2 mΩ, and it has P = 6 poles. The generator
is rotating at synchronous speed, producing 1 MW, under rated voltage
conditions. The machine’s total hysteresis, eddy current, and windage
loss is 5 kW.
(a) Which answer best represents the split of real power between stator

and rotor?
(A) (Ps, Pr) = (−0.5,−0.5) MW
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(B) (Ps, Pr) = (−0.75,−0.25) MW
(C) (Ps, Pr) = (−1.0, 0.0) MW
(D) (Ps, Pr) = (−1.25, 0.25) MW

(b) If the stator is providing 100 kVAr to the power system, compute the

rotor current, Ĩ ′r.

(c) Compute the rotor voltage, Ṽ ′
r .

(d) Compute the generator’s shaft speed in rpm.
(e) The grid-side converter is providing 50 kVAr to the power system.

How much reactive power is flowing from the rotor to the rotor-side
converter?

(f) What is the power at the generator’s shaft?
(g) The generator is connected to the blades through a gearbox with

a gear ratio of 80:1. Assuming the gearbox is lossless, what is the
torque at the low-speed shaft?

(h) What is the generator’s efficiency?
(3) Consider the DFIG used in Example 4.1. We would like to analyze its

operation for the point-B to point-C range shown in Fig. 4.3. At point B,
the slip is 25% and the power produced by the turbine is 400 kW. At
point C, the slip is −20% and the power produced is 1.5 MW. At syn-
chronous speed (somewhere in between points B and C), the power output
is 800 kW. Assume a quasi-cubic increase of power output in this speed
range of the form P (x) = a1x+ a2x

2 + a3x
3, where x is the per-unit rotor

speed, ωr/ωe, and P (x) is measured in MW.
(a) Determine the coefficients a1, a2, a3 of the power output function.
(b) Write a Matlab script that calculates the same quantities that were

found when solving Example 4.1, such as rotor current, rotor voltage,
rotor power, losses, etc., for the entire speed range between the two
points B and C. Also plot the variation of these quantities as a func-
tion of x, i.e., rotor speed. Repeat the calculations and plots three
times: first for unity power factor, then for power factor 0.95 lead-
ing (define “leading” to mean that the turbine is absorbing Q, as
if the load that it is connected to has a leading power factor) and
0.95 lagging (define “lagging” to mean that the turbine is generat-
ing Q). Assume that the grid-side converter is not providing any
reactive power support to the system.



CHAPTER 5

Permanent-Magnet Synchronous Generators

Type-4 wind turbines are based on permanent-magnet synchronous generators
(PMSGs), and are connected using the topology shown in Fig. 5.1. A fully rated
power electronics converter that can handle the full power output of the generator
is needed to interface the generator with the power system. The converter enables
the decoupling of the rotational speed of the machine from the constant electrical
frequency of the grid. For variable-speed operation, the stator-side converter gen-
erates ac voltages and currents of the appropriate frequency to match the rotor’s
speed. (Remember, in synchronous machines, the rotor must be synchronized with
the magnetic field of the stator.) It can also regulate the magnitude and phase of
the stator current, in order to control the electromagnetic torque of the generator,
and therefore to make the rotor speed approach the value required to obtain opti-
mal tip-speed ratio. Usually, the power electronics topology is like the one shown
in Fig. 5.1, i.e., employing two back-to-back IGBT-based converters with a dc link,
although other topologies can be used as well. In another quite common topology,
an uncontrolled diode rectifier is connected at the stator side instead of a fully
controllable converter. This helps reduce the complexity and cost of the power
electronics, but does not provide as much flexibility to control the stator currents.
In these notes, we will analyze the former topology, thus implicitly assuming that
we can precisely adjust the stator current magnitude and phase angle.

5.1. The PMSG equivalent circuit

A very good introduction to permanent magnet synchronous machines is pro-
vided in Chapter 15 of the textbook [6]. It turns out that the steady-state model
of a PMSG—similarly to the model of a classical synchronous generator—can be
expressed simply as an internal voltage source in series with an impedance. The
model’s basic equation relates the terminal voltage phasor Ṽs to the stator current
phasor Ĩs and an internal voltage phasor Ẽpm:

Ṽs = Ẽpm − (Rs + jωrLq)Ĩs (5.1)

Ẽpm is produced by the rotation of the permanent magnets but also depends on
a component of stator current called the d -axis current and denoted by Ids; it is
given by

Ẽpm = 1√
2
ωr [λpm − (Ld − Lq)Ids] e

jδ (5.2)

The current is assumed to have a positive direction flowing out of the generator’s
terminals. (Note that this is a slight difference from the convention used in the pre-
vious chapters, where stator current was assumed to be flowing into the terminals.
This is just a different way of defining things, and leads to the real power being
positive for generation action.) The PMSG equivalent circuit is shown in Fig. 5.2.

39
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Figure 5.1. Topology of a Type-4 wind generator. (Note: Direct-
drive designs do not have a gearbox; the low-speed shaft is directly
connected to a PMSG with large number of poles.)
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Figure 5.2. Equivalent steady-state circuit of a PMSG.

The above equations involve the machine’s parameters and operating condition:
Rs is the stator winding resistance per phase in Ω or mΩ (assuming Y-connection);
Lq and Ld are the qd -axes inductances in H or mH; ωr is the electrical rotor speed
in rad/s; λpm is the constant flux linkage generated by the permanent magnets
in Wb or V-s; δ measures the rotor’s angle relative to the phase voltage in rad (in
steady state, the rotor and the voltage have the same frequency, so δ is constant);
finally, the stator current satisfies the following equation, via which the qd -axes
currents are indirectly defined:

√
2Ĩse

−jδ = Iqs − jIds (5.3)

The interested reader can refer to [7] for more details about these equations and
their derivation. The equations suggest the phasor diagram shown in Fig. 5.3, where
the stator voltage is chosen as the angle reference. The phasor diagram contains two
sets of orthogonal axes: (i) The real and imaginary axes are stationary, and they
represent the coordinate system for phasors. (ii) The q- and d -axes are positioned
on the rotor, and in particular the d -axis is aligned with the magnetic flux generated
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Figure 5.3. Phasor diagram of a PMSG. (The current angle φ is
negative when the current is in the position shown.)

by the permanent magnets. The figure shows how the stator current phasor can
be decomposed into two other components Iqs and Ids (instead of Re{Ĩs} and

Im{Ĩs}) along these axes. The phasor diagram (by definition) can be interpreted as
a snapshot of the situation at t = 0; for synchronous generators we usually define
t = 0 as the moment when the a-phase stator voltage phasor (Ṽs) is horizontal.
If we unfreeze time, everything in the picture will rotate counterclockwise with
velocity ωr, including the qd -axes, with the exception of the stationary real and
imaginary axes.

Before we proceed, we make two interesting observations about the internal
voltage phasor Ẽpm. (i) Its magnitude Epm is proportional to rotor speed ωr. So
for low wind speeds, if we maintain the optimal tip-speed ratio, we expect this
internal voltage to be small. As the wind speed increases, this voltage will rise.
Therefore, the power electronics converter that is connected to the stator must be
capable of generating a wide range of voltage levels to accommodate this change.
(ii) Its magnitude is also dependent on the current that flows in the stator, and in
particular it depends on the d -axis component of the current. So, it does not only
depend on the strength of the permanent magnets, but on the operating condition
as well.

Example 5.1. Consider a 750-kW, 16-pole, 600-rpm permanent magnet ma-
chine whose parameters are: Ld = 0.6 mH, Lq = 0.8 mH, λpm = 1 V-s, and
Rs = 2 mΩ. The machine is rotating at rated speed. It is connected to a power
electronics converter that acts as a current source and generates Iqs = 300 A and

Ids = 100 A. Determine the terminal voltage Ṽs, the internal voltage Ẽpm, the

stator current Ĩs, and the real and reactive power generated by the machine.
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First, we find the rated rotor speed, which is

ωr = (2π)(rpm/60)(P/2) = (2π)(600/60)(16/2) = 502.4 rad/s

It is easy to calculate the magnitude of the internal voltage:

Epm = 1√
2
(502.4)

[
1− (0.6− 0.8)(10−3)(100)

]
= 362.4 V

but we do not yet know its angle δ. Now if we multiply both sides of (5.1) by e−jδ

we get

Ṽse
−jδ = Ẽpme−jδ − (Rs + jωrLq)Ĩse

−jδ

= Epm − (Rs + jωrLq)
1√
2
(Iqs − jIds)

= 362.4− (2 + j(502.4)(0.8))(10−3) 1√
2
(300− j100)

= 333.5− j85.1 = 344.2∠− 14.3◦ V

Since by definition Ṽs = Vs∠0, we obtain Ṽs = 344.2∠0 V, and δ = 14.3◦. So
Ẽpm = 362.4∠14.3◦ V, and

Ĩs =
1√
2
(Iqs − jIds)e

jδ = · · · = 223.6∠− 4.1◦ A

The real and reactive power generated can be found by

Ss = 3ṼsĨ
∗
s = (3)(344.2)(223.6∠4.1◦) = 230.3 kW+ j16.6 kVAr

If the converters are each 97% efficient, the power that reaches the power system
is (230.3)(0.972) = 216.7 kW. The reactive power, however, does not have to flow
through. The grid-side converter can generate (or absorb) an amount of reactive
power that is independent of Qs.

5.2. Wind energy conversion with PMSGs

The wind energy conversion process with a PMSG is similar to what happens
with a DFIG. A power vs. wind speed characteristic such as the one shown in
Fig. 4.3 is obtained. The main difference is that we are no longer limited by a
maximum-slip constraint. So, we can vary the rotating speed over a wider range,
while at the same time maintaining optimum tip-speed ratio. In a sense, there is
only a B-C segment, whereas the A-B and C-D segments are eliminated. This can
help us harvest a little more energy from the wind.

5.3. Controlling a PMSG

The main idea behind the control of a PMSG is obvious once the power output
of the generator is computed. We will neglect the small resistance Rs to simplify the
calculations. The complex power output is Ss = 3ṼsĨ

∗
s . Utilizing the expressions

(5.1), (5.2), and (5.3) we obtain

Ss ≈ 3(Ẽpm − jωrLq Ĩs)Ĩ
∗
s

= 3ẼpmĨ∗s − j3ωrLqI
2
s

= 3
{

1√
2
ωr [λpm − (Ld − Lq)Ids] e

jδ
}{

1√
2
(Iqs + jIds)e

−jδ
}

− j3ωrLqI
2
s
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= 3
2
ωr [λpm − (Ld − Lq)Ids] Iqs +

+ j 3
2
ωr [λpm − (Ld − Lq)Ids] Ids − j 3

2
ωrLq(I

2
qs + I2ds)

Therefore,

Ss ≈ 3
2
ωr [λpm − (Ld − Lq)Ids] Iqs
︸ ︷︷ ︸

Ps

+j 3
2
ωr

[
λpmIds − LdI

2
ds − LqI

2
qs

]

︸ ︷︷ ︸

Qs

(5.4)

It can be seen that the real power output can be controlled by adjusting the qd -
axes stator current components. Remember, these are related to the rotor position,
so a position encoder is necessary. In some PM machines, Ld = Lq (for example,
in machines were magnets are mounted on the rotor surface). In this case, the
real power output is proportional to Iqs. The other component of current (Ids)
is not necessary, so it is usually kept to zero in order to minimize ohmic loss. In
other PM machine designs, typically when the magnets are embedded in the rotor,
the saliency makes Ld < Lq (yes, this is not a typo; unlike what happens in a
traditional salient-pole synchronous generator with field winding, in PM machines
the d -axis inductance is smaller than the q-axis inductance because of the presence
of the magnets along the d -axis that have low magnetic permeability). In this case,
there is an additional component of torque, called the reluctance torque, which we
can utilize to obtain extra power output. The trick is to allow Ids to obtain positive
values.

In fact, there is an infinite number of Iqs-Ids combinations that produce a
desired power output, conditional on the rotor speed. It is convenient to eliminate
the rotor speed, and work with the electromagnetic torque instead, which is Te =
Ps/ωrm, where ωrm = 2

P ωr:

Te =
3
2
P
2
[λpm − (Ld − Lq)Ids] Iqs (5.5)

Solving for the q-axis current yields constant-torque hyperbolas of the form Iqs =
a/(b + cIds). Three such curves are plotted in Fig. 5.4, but there is only one
pair of qd -axes currents that will provide a given torque value at minimum ohmic
loss, which occurs when the current magnitude is minimum. Alternatively, this
means that we want to get the maximum possible torque output for a given current
magnitude Is. This control strategy is called maximum torque per ampere (MTPA)
operation. Mathematically, we can express this problem as follows:

maximizeIqs,Ids
3
2
P
2
[λpm − (Ld − Lq)Ids] Iqs

subject to I2qs + I2ds = I2s

This is an optimization problem with an equality constraint, which can be solved
by introducing a Lagrangian multiplier λ (this is just a number and should not
be confused with λpm that has a different physical significance). The Lagrangian
function is

L(Iqs, Ids, λ) = 3
2
P
2
[λpm − (Ld − Lq)Ids] Iqs + λ(I2qs + I2ds − I2s )
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and the solution is found by the set of equations

∂L
∂Iqs

= 0 ⇒ 3
2
P
2
[λpm − (Ld − Lq)Ids] + 2λIqs = 0

∂L
∂Ids

= 0 ⇒ − 3
2
P
2
(Ld − Lq)Iqs + 2λIds = 0

∂L
∂λ

= 0 ⇒ I2qs + I2ds = I2s

We can solve the second equation for λ, and then substitute in the first one. This
yields after some elementary manipulations

I2qs = I2ds −
λpm

Ld − Lq
Ids (5.6)

This equation describes a hyperbolic curve on the Iqs-Ids plane, on which all MTPA
points lie. This is plotted in Fig. 5.4. For any given stator current magnitude, we
can substitute I2qs = I2s − I2ds and then solve a quadratic equation for Ids to obtain
the components of stator current that will maximize the torque:

2I2ds −
λpm

Ld − Lq
Ids − I2s = 0 (5.7)

Once we know the currents (we also compute Iqs =
√

I2s − I2ds), we can find the
torque using (5.5). What we have obtained so far is an MTPA mapping or look-up
table from Is to (Iqs, Ids) and finally to Te. However, for controlling the PMSG
we are interested in the inverse mapping, i.e., from Te to (Iqs, Ids), so that we
can ask the power electronics to generate these currents. This is very easy to
obtain by reversing the original look-up table. Of course, the torque cannot be
increased indefinitely. The maximum torque is obtained at the intersection of the
MTPA curve with a circle defined by I2qs + I2ds = 2I2s,max, where Is,max represents
the maximum permissible rms value of current that can flow through the stator
windings and/or the power electronics.

5.4. Exercises

(1) Consider a 500-KW, 16-pole, 600-rpm permanent magnet machine whose
parameters are: Ld = 0.35 mH, Lq = 0.7 mH, λpm = 0.7 V-s, Rs = 6 mΩ.
The machine’s rated phase current is 700 A rms, and rated voltage is
440 V line-to-line rms. If the machine is generating rated power at rated
speed and rated current, determine: (i) Ĩs, (ii) Ṽs, (iii) Ẽpm, and (iv) Qs.

(2) Repeat problem (1) under the assumption that the machine is generating
rated power at rated speed and rated voltage.

(3) Similarly to the current equation (5.3), we can define the qd -axes voltages
for a PMSG by √

2Ṽse
−jδ = Vqs − jVds

Show that the equivalent circuit equations in phasor form (5.1)-(5.2) are
equivalent to

Vqs = −RsIqs + ωr(λpm − LdIds)

Vds = −RsIds + ωrLqIqs

(4) Prove that the MTPA curve defined by equation (5.6) is a hyperbola.
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Figure 5.4. PMSG characteristic curves on the Iqs-Ids plane.
Three constant-torque curves with Te1 < Te2 < Te3 are shown. The
MTPA curve intersects the constant-torque curves at the points
that have minimum distance from the origin.

(5) For the PMSG of problem (1), compute the MTPA mapping f : R+ → R
2,

that maps Te 7→ (Iqs, Ids). An analytical expression for f might not exist,
so it might be necessary to provide the mapping in the form of a look-up
table.

(6) Using the PMSG qd -axes voltage equations of problem (3), show that

the condition of constant stator voltage magnitude, V 2
qs + V 2

ds = (
√
2V0)

2,
corresponds to an ellipse on the Iqs-Ids plane. (To simplify the analysis,
you may set Rs = 0.) Sketch a representative ellipse, and explain how its
shape changes if ωr is increased.

(7) For a PMSG, show that the condition of constant reactive power out-
put, Qs(Iqs, Ids;ωr) = Q0, corresponds to an ellipse on the Iqs-Ids plane.
Sketch the ellipse for Q0 = 0, and explain how its shape changes under
varying Q0 and fixed ωr. Show that the maximum reactive power that a
PMSG can output for a given ωr is

Qs,max =
3ωrλ

2
pm

8Ld

and that this occurs when Iqs = 0 and Ids =
λpm

2Ld
. Also explain why the

PMSG will absorb reactive power for all (Iqs, Ids) combinations, except
for the ones that are located inside the Q0 = 0 ellipse.
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