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Abstract—Multi-slice helical CT is widely used for baggage

inspection in transportation security due to its fast acquisition

speed and large scan coverage. In addition, recent studies indicate

that model-based reconstruction has the potential to improve

image quality and reduce artifacts relative to traditional filtered

backprojection (FBP) method. In this paper, we present the

results of a 3D model-based reconstruction algorithm on a multi-

slice helical scan of actual baggage with high and low density

objects, acquired on a medical CT system. We compared our

reconstruction results to conventional FBP reconstructions and

illustrated the potential value of our algorithm in terms of image

quality and artifact reduction.

I. INTRODUCTION

Computed tomography (CT) is widely used in transportation
security applications [1], [2]. Among various CT scanner
geometries, multi-slice helical CT has come into wide use
due to its fast acquisition and large scan coverage. In fact,
many airports have installed multi-slice helical CT systems
as a central component of baggage screening. However, the
more complex geometry of multi-slice helical CT also poses
challenges in reconstruction. For example, as cone angles
become wider, there is an increasing need to use true 3D
reconstruction methods in order to avoid the image artifacts
introduced by 2D approximations.

Moreover, the task in transportation security is quite differ-
ent from the medical problem. In the medical application, it is
critical to preserve fine details of soft tissue structure; however,
in the security application, typically it is more important to
obtain precise estimates of object boundary and its average
density. Also, in security, the objects typically have densities
that are substantially greater than water.

Recently, model-based reconstruction (MBR) algorithms
have been shown to be effective in the reconstruction of
multislice helical scan CT data [3]. These algorithms have
the advantage that they can incorporate more detailed models
of both the scanner and the objects being reconstructed. In ad-
dition, they offer flexibility in the application of transportation
security since they allow for more accurate reconstruction for
nontraditional geometries, such as with limited view data [4].
Model-based algorithms have the potential to more accurately
account for a wide array of scanner characteristics including
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photon counting and electronic noise, beam hardening, metal
attenuation and scatter, and the detector point-spread function.
More accurate modeling of the scanner can be used to reduce
streaking artifacts from high density objects, which arise in
many CT applications. In addition, the MBR method incorpo-
rates a prior model that can be tuned to the characteristics of
typical objects and the performance metrics of interest.

In this paper, we apply the methods of 3D model-based
reconstruction (MBR) to the problem of transportation security
imaging. Our approach is based on maximum a posterior
(MAP) reconstruction along with the iterative coordinate
descent (ICD) optimization method. We also describe how
our algorithm can be parallelized on multicore processing
hardware.

In our results, we present 3D MBR cross-sections from
real multislice helical scan data of travel bags packed with a
variety of high and low density objects, imaged on a medical
scanner. Our results indicate that MBR has the potential
to produce reconstructions with fewer artifacts than analytic
reconstruction methods.

II. STATISTICAL MODEL FOR IMAGE RECONSTRUCTION

Let x 2 RM be the image vector, and let y 2 RN be the
vector of projection measurements. We assume x and y are
related by a linear sparse matrix operator A,

y = Ax (1)

The matrix coefficient A

ij

reflects the formation of i-th
projection by j-th voxel.

In the Bayesian statistical framework, both x and y are con-
sidered as random, and the reconstruction is most commonly
computed as the maximum a posterior (MAP) estimate given
by

x̂ = argmin

x�0
{� log p(y|x)� log p(x)} (2)

where p(y|x) is the likelihood term corresponding to the
forward projection model and p(x) is the prior distribution
of x. Also notice that we impose a positivity constraint on the
image.

Given the image x, the received photon count �

i

of the
i-th projection follows a Poisson distribution with mean
�

T,i

e

�Ai⇤x where �

T,i

is the photon count of the i-th pro-
jection obtained in an air calibration scan. The line integral

The second international conference on image formation in X-ray computed tomography Page 297



of i-th projection can then be obtained by y

i

= log

⇣
�T,i

�i

⌘
.

Using the second order Taylor expansion, the log likelihood
term can be approximated by a quadratic function [5],

log p(y|x) ⇡ �1

2

(y �Ax)

T

D(y �Ax) + c(y) (3)

where D is the diagonal matrix with diagonal elements D

i,i

which are proportional to the photon counts �

i

, and c(y)

is a term depending only on y. Notice that in this case, a
smaller value of �

i

indicates that the associate projection is
less heavily weighted.

The prior distribution p(x) incorporates knowledge about
the object being reconstructed, x. We will describe the prior
model in detail in the next section.

III. METHOD AND ALGORITHM

A. 3D Forward Projection Model

To calculate the projection matrix A, we use the distance-
driven (DD) model [6]. Figure 1 illustrates how the 3D
projection geometry is decomposed into the z axis that falls
along the object’s translation direction, and the xy-plane,
which is perpendicular to z [3]. Each voxel is flattened along
the dimension most parallel to the detector, and the coefficient
A

ij

is calculated as the product of xy-plane projection, B
ij

,
and z-direction projection, C

ij

.

A

ij

= B

ij

⇥ C

ij

(4)

The coefficients B

ij

and C

ij

are calculated as the convolution
of the detector response and the flattened voxel profile to yield

B

ij

=

�
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�d

c
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(6)
where W denotes the voxel’s width when projected onto the
detector, �d denotes the detector width, subscript c and r

denote channel and row respectively, ✓ and � are the ray angles
in xy-plane and z-direction, and ˜

✓ is the adjusted ray angle
defined by

˜

✓ =

⇣
✓ +

⇡

4

⌘
mod

⇡

2

� ⇡

4

. (7)

The function clip is defined by clip[a, b, c] =

min(max(a, b), c).

B. Prior Model

We model the image x as a Markov random field, with a
26-point 3D neighborhood and the following distribution

p(x) =

1

z

exp

8
<

:�
X

{s,r}2C

b

s,r

⇢(x

s

� x

r

)

9
=

; (8)

where ⇢ is the positive and symmetric potential function and
C is the set of all pairwise cliques.
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Fig. 1. 3D forward projection geometry used for the distance driven projector.

We studied two different potential functions, given by the
l1 norm prior, which is a special case of generalized Gaussian
MRF (GGMRF) [7] when p = 1,

⇢(�) = |�| , (9)

and the q-generalized Gaussian MRF (q-GGMRF) [3].

⇢(�) =

|�|q

1 + |�/c|q�p

(10)

The q-GGMRF allows more degrees of freedom to control
both low-contrast and high-contrast edge characteristics. If
|�| ⌧ c, ⇢(�) ⇡ |�|q and if |�| � c, ⇢(�) ⇡ |�/c|p
where c is the parameter determining the transition between
the two cases. Normally, we will set q = 2 and 1 < p < q.
It ensures the overall cost to be convex and, therefore, allows
global convergence.

C. Optimization

The overall cost function, obtained by combining the ap-
proximate log-likelihood and the prior, is

x̂ = argmin

x�0

8
<

:
1

2

ky �Axk2
D

+

X

{s,r}2C

b

s,r

⇢(x

s

� x

r

)

9
=

;
(11)

We solve this optimization problem using the iterative coor-
dinate descent (ICD) algorithm [5] in which we scan over all
voxels and sequentially optimize each voxel while fixing the
others. In order to solve the 1D optimization problem resulting
from each pixel update, we design a quadratic substitute
functional q(�;�

0
) that upper bounds ⇢(�) and optimize the

cost with ⇢(�) replaced by q(�;�

0
) [8]. In particular,

q(�;�

0
) =

⇢

0
(�

0
)

2�

0 �

2 (12)

where �

0 denotes the voxel difference before this update.
In this way, the original 1D line search is converted into a
quadratic optimization and the closed form solution can be
derived. Since the substitute cost is always an upper bound of
the original cost, minimizing the substitute will also produce a
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Fig. 2. Parallelized ICD scheme

decreasing sequence of original cost and iterative optimization
will lead to the optimal solution of the original problem.

In order to further speed convergence, we also use the
non-homogeneous ICD (NHICD) method of [8]. The idea
is to focus computation on voxels which tend to generate
significant updates. In NHICD, we alternated between a full
scan and a partial scan which involves only those voxels which
have significant updates at the previous iteration. This scheme
provides a further speedup of approximately a factor of three.

D. Parallelization

To utilize multi-core processing and speed up the recon-
struction for large image volumes, we implemented a paral-
lelized ICD update scheme. In this scheme, the full image
volume is cut into N boxes along the z-direction as shown in
Figure 2 and each processor is responsible for updating voxels
in one box. Different processors are synchronized once they
finish the work; therefore, one synchronization is made per full
scan. This will assign each processor a fairly large amount of
work to do in parallel and workload is roughly balanced for
different processors in order to reduce processor waiting time.
Also, since the image is stored with the index in z-direction
as the fastest-changing variable, the processors update voxels
along z-direction first in order to create better cache efficiency.
Moreover, the voxels being updated are selected to be far
apart so that they do not share the same sinogram entry, and
therefore, can be updated independently.

IV. RESULTS

In this study, we used scan data acquired on a medical
scanner and provided by the ALERT (Awareness and Local-
ization of Explosives-Related Threats) Center, at Northeastern
University, to conduct our experiments. The reconstructed
image is of size 512⇥512⇥840 and the voxel width is 0.975
mm in cross-section in the xy-plane and the slice thickness
is 1.25 mm in z-direction. Figure 3 illustrates some of the
objects contained in the bag used in our experiment.

Figure 6 demonstrates the quality of different reconstruction
algorithms. The FBP reconstruction is blurred, as we can see
on the feet of the toy Mr. Potato Head in (a). The shape of
some objects are distorted. For example, in the center of (a)
and (b), the steel bar, which is of high density and supposed
to be a rectangular shape, has been distorted. Also, we can

(a) (b)

(c) (d)

Fig. 3. Objects contained in the baggage (a) toy Mr. Potato Head (b) gel
pad (c) steel bar (d) box cutter

see the severe streaking artifacts, such as the region around
the high-density objects in (b). The model-based algorithms,
on the other hand, provide better reconstructions. The overall
image is sharper and shapes of objects are more accurately
recovered. Moreover, the model-based algorithm reduces the
structured artifacts as compared to the FBP method. These
advantages suggest that the model-based algorithm has the
ability to provide more detailed and accurate rendering, which
could possibly lead to better detection performance.

We further quantify the reconstruction quality by measuring
the noise variance on the uniform region. In Figure 4, a target
object, which is a plastic bottle of water, is shown. The streak-
ing artifact caused by the nearby high-density metal object
can be easily identified in the FBP reconstruction. In Figure
5, we plot the CT voxel values along the line passing through
the bottle of water vertically. We observe that the curve of
the FBP reconstruction fluctuates more significantly than the
curve of the other two model-based reconstructions. We further
calculate the noise variances with different reconstructions
along the line and the result is listed in Table I. The FBP
reconstruction leads to the largest noise variance, which is the
result of the streaking artifacts. It also shows that q-GGMRF
gives the smallest noise variance. This is due to the fact that
q-GGMRF has more smoothing effects than the l1 norm prior.

TABLE I
NOISE VARIANCE ON UNIFORM REGION

Method FBP l1 norm prior q-GGMRF
Noise variance 3042.8 836.0 496.5

V. CONCLUSION

In this work, we developed a model-based image recon-
struction algorithm and tested it on the data taken from actual
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(a) (b) (c)

Fig. 4. Reconstructions zoomed to the target area using (a) FBP, (b) l1 norm
prior, and (c) q-GGMRF The round object is the plastic bottle of water.
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Fig. 5. CT values for voxels along the line through the center of the target
region in Figure 4

baggage. Our algorithm depends on a statistical framework in-
volving a forward model and a prior model. We compared our
reconstructions using two different priors, l1 norm prior and
q-GGMRF prior, to the standard FBP algorithm. The model-
based algorithms provide better reconstructions and reduce
structured artifacts, which suggests potential advantages over
the FBP approach.
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Fig. 6. Reconstruction of the ALERT baggage security data using (a, b)
FBP, (c, d) l1 norm prior, and (e, f) q-GGMRF. The gray scale is in offset
Hounsfield Unit (HU), where air = 0 HU and the scale range for all results
shown is in [0, 1600] HU.
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